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Summary 

Despite the essential role of Specialized Metabolites (SMs) in the interaction of plants with the 

environment, studying the ability of crop seeds to produce these protective compounds has been 

neglected. Furthermore, seeds produce a myriad of SMs providing an interesting model to investigate 

their diversity and plasticity. Camelina sativa gained a lot of interest in the past few years as rustic 

oilseed crop. A characterization of seed SM landscapes in six camelina genotypes grown in the field 

and harvested during five growing seasons has been undertaken in this work. This allowed a 

comprehensive annotation of seed SMs combining analyses that cluster SMs based on their chemical 

structures and co-accumulation patterns. These data showed broad effects of the environment on the 

stimulation of the seed-specialized metabolome. Among well annotated compounds, flavonols were 

identified as the metabolic class characterised by high plasticity, revealing significant variable 

accumulation according to the year and/or the genotype. Lastly, a deeper characterisation of primary 

metabolites and lipids in two selected genotypes has been performed. We showed that, in addition to 

flavonols, alkaloids and glucosinolates displayed a higher phenotypic plasticity with respect to most of 

the primary metabolites, including some sugars and major storage compounds such as fatty acids, 

proteins and most lipid classes (e.g. DAG, TAG), but similar plasticity compared to free amino acids 

and carboxylic acids. This work highlighted major and unexplored effects of the environment on the 

seed specialized metabolome demonstrating that seeds exhibit a dynamic and plastic metabolism, with 

an impact on seed quality. 

 

Significance statement 

Seeds produce a myriad of Specialized Metabolites (SMs) with an essential role in the interaction of 

plants with the environment. We characterized SM landscapes, primary metabolites and lipid 

composition in the seeds of camelina genotypes grown in the open field in five consecutive growing 

seasons. Our results showed the predominant effect of the environment on the regulation of the seed -

specialized metabolome, with a potential impact on seed quality of camelina that may also occur in 

other oilseed crops. 

  



 
 

INTRODUCTION 

Plants produce large amounts of metabolites with different functions ranging from environmental 

adaptation to developmental controls (Erb and Kliebenstein, 2020; Fang et al., 2019). Some of these 

metabolites, namely specialized (or secondary) metabolites (SMs), are usually synthetized in small 

concentrations, and have a limited distribution to specific plant families, genera or species (Tissier et 

al., 2015; Bhatla, 2018; Pichersky and Lewinsohn, 2011; Arimura and Maffei, 2016). They are 

commonly classified in three major groups according to their chemical structure: terpenoids, nitrogen 

and sulphur containing compounds, and phenylpropanoids (or phenolic compounds) (Jacobowitz and 

Weng, 2020). In addition, many lipids are also characterized by huge diversity among plant species 

and many of them can be considered as SMs (Matsuzawa et al., 2021; Tsugawa et al., 2020). Hence, 

each class of metabolites comprises a tremendous diversity of structures leading to a wide range of 

biological activities (Wang et al., 2019; Kosmacz et al., 2020). 

 

In plants, terpenoids are the most structurally divers group of annotated SMs, with more than 25000 

compounds identified that derived from the assembly of 5-C isoprene skeletons (terpenes) (Tissier et 

al., 2015). A second group of SMs, i.e. nitrogen and sulphur containing compounds, includes 

alkaloids, glucosinolates, cyanogenic glycosides and some non-protein amino acids (Wang et al., 

2019; Ziegler and Facchini, 2008; Halkier and Gershenzon, 2006). Among them, alkaloids are the 

most represented, with more than 15000 compounds annotated (Bhatla, 2018). Finally, 

phenylpropanoids (or phenolic compounds) are molecules containing one or more hydroxylated 

aromatic rings, and are synthetized via the malonate and shikimate pathways (Vogt, 2009; Tohge et 

al., 2017; Corso et al., 2020). Plants produce more than 10000 phenolic compounds, which range from 

simple single aromatic rings such as benzoic acid or cinnamic acid to more complex molecules as 

flavan-3-ol polymers (also termed proanthocyanidins, PAs) (Corso et al., 2020; Lepiniec et al., 2006). 

Flavonoids are certainly the largest group of phenylpropanoids, with more than 9000 representatives 

(Tohge et al., 2017; Corso et al., 2020). They have a C6-C3-C6 skeleton, characterized by two 

benzene rings fused by a heterocyclic pyran ring. Flavonoid diversity, biological activity and transport 

are strongly affected by the degree of glycosylation, hydroxylation and methylation patterns of the 

benzene rings (Tohge et al., 2020; Sudheeran et al., 2020; Tohge et al., 2017; Wang et al., 2019). 

 

Specialized metabolites play crucial physiological and ecological roles throughout the plant life cycle. 

They protect plants against abiotic stresses such as drought, high or low temperatures, toxic metals and 

UV, and can constitute effective defences against biotic stresses such as pathogens, herbivores or plant 

competitors (Delgoda and Murray, 2017; Corso et al., 2020; Lacchini and Goossens, 2020; Kosmacz 

et al., 2020; Lepiniec et al., 2006; Li et al., 2020; Tohge et al., 2016). For example, SMs can act as 

phytoalexins in response to pathogens, antifeedants against herbivory or allelopathic compounds to 

stunt the germination/growth of other plants (Corso et al., 2020; Corso et al., 2021). These compounds 



 
 

are also involved in plant nutrition and/or reproduction, they play a role in plant metal homeostasis 

and in plant-microbes interaction, as in the case of root flavones affecting composition rhizosphere 

microbial community to improve maize performance upon nitrogen deprivation (Corso and de la 

Torre, 2020; Corso et al., 2020; Croteau, R., Kutchan, T.M. and Lewis, 2000; Maeda, 2019; Arimura 

and Maffei, 2016; Korenblum et al., 2020; Yu et al., 2021). Given the key role of SM in plant-

environment interaction, metabolomics is considered the omics technique that is closest to the 

phenotype (Guijas et al., 2018). In fact, SMs give a substantial contribution to plant phenotypic 

plasticity, defined as the ability of a genotype to express different phenotypes (in this case the 

metabolites) according to environmental conditions (Fox et al., 2019; Bonamour et al., 2018; Diouf et 

al., 2020; Bradshaw, 1965; Grenier et al., 2016). 

Seeds constitute (directly or indirectly) a major component of the human diet, providing proteins, oil, 

and starch for both human and animal nutrition. They present a wide range of SMs that are important 

for their physiological, agronomic, nutritional and industrial qualities (Corso et al., 2020; Lepiniec et 

al., 2006; Corso et al., 2021). A large diversity of SMs has been characterized in seeds of several plant 

species, including Brassicaceae (Routaboul et al., 2006; Quéro et al., 2016; Corso et al., 2020; 

Lepiniec et al., 2006). They show remarkable levels and wide distribution of phenylpropanoids, 

flavonoids in particular (Routaboul et al., 2006; Routaboul et al., 2012; Alseekh, Ofner, et al., 2020; 

Auger et al., 2010). Nevertheless, we are far from an exhaustive characterization of seed-specialized 

metabolite diversity and of the impact of the environment on this diversity. 

Camelina [Camelina sativa (L.) Crantz] is a Brassicaceae species that has gained a lot of interest in 

the past few years (Zanetti et al., 2021). This crop is highly tolerant to biotic and abiotic stresses. 

Camelina seeds are characterized by unique oil composition (e.g. high level of polyunsaturated fatty 

acids, PUFA, and in particular 18:3 fatty acids), and high oil content. It reaches adequate yields under 

low-input management and in limiting environments (Zanetti et al., 2017; Faure and Tepfer, 2016; 

Yuan and Li, 2020). Nevertheless, further studies are needed to better valorise camelina seed co-

products after oil extraction, including SMs such as polyphenols and carotenoids present in high 

amounts (Quéro et al., 2016). Only a few data are available on camelina SM diversity and no 

information is available on their plasticity and induction in response to environmental conditions. 

 

In this work, we characterized the diversity of specialized metabolites in the seeds of six camelina 

genotypes (MIDAS, OMEGA, WUR, 787-08, 789-02 and 887) grown in the open field and harvested 

during five consecutive growing seasons (2015-2019). Using molecular network analyses, which 

gather metabolites based on their structures, combined with metabolite co-accumulation networks, we 

extended the characterization and pathway information of the main metabolic classes in camelina 

seeds. Among the main seed SM classes, we identified those influenced by the environment and/or the 

genotype. Moreover, we characterized the impact of the environment on the phenotypic plasticity of 

primary and specialized metabolites in camelina seeds.  



 
 

RESULTS 

 

Plant development and meteorological data 

In the multi-year experiment (2015-2019) conducted on six camelina genotypes grown in Italy 

(Bologna), the plants were able to reach maturity in about 100 days (Figure 1a). The average minimum 

(Tmin) and maximum (Tmax) temperatures (Figure 1b) measured from 50% flowering to seed maturity 

(Figure 1c), a particularly important phase for seed quality, were quite variable in the years studied. 

This particular developmental phase has been reported as the most important in camelina seed 

development and filling (Walia et al., 2018; Righini et al., 2019). In detail, the average Tmin ranged 

from 13.5 °C in 2017 to 16.6 °C in 2019, while the average Tmax ranged from 25.6 °C in 2016 to 29.3 

°C in 2019. The cumulative precipitation in the same growth phase (from 50% flowering to maturity) 

showed even higher variability among the five years studied (Figure 1b). Specifically, 2017 had the 

lowest  precipitation (52.2 mm), whereas 2016 showed around two- to three-fold higher cumulative 

precipitation (161.6 mm) compared with the other years (Figure 1b). Besides, in 2016, a hailstorm 

occurred before harvest (Zanetti et al., 2017). Considering these variations, we will refer to the 

multiple factors underlying differences among growing seasons as the ‘environment’. 

 

Plant phenology and seed quality parameters 

Environmental conditions had a significant influence on camelina development across years (Figure 

1c). In particular, sowing took place between mid-March to early April, and consequently flowering 

occurred between early and late May, while seed maturity was reached between mid-June and early-

July. Seed oil content (%) showed low variations among genotypes and years (Tukey’s range test; 

P≤0.05). WUR was the genotype with the lowest average seed oil content (36.7 %), while 787-08 and 

789-02 (both 39.4 %) reached the highest values. Concerning years, 2016 (39.3 %) and 2019 (37.4 %) 

reported the highest and the lowest seed oil content, respectively, compared with the other growing 

seasons. Seed protein content (%) was also significantly, albeit modestly, influenced by years and 

genotypes. Among genotypes, 787-08 (29.2 %) had the lowest protein content, and 887 and WUR the 

highest (30.1 %). Concerning years, 2017 was the one reporting the highest seed protein content, while 

2015 and 2016 had lowest protein content. It is worth mentioning that the coefficient of variation for 

seed oil content and seed protein content was only 4.2% and 6.7% respectively, highlighting the 

limited variability for these qualitative traits in camelina seeds (Figures 1d, e). 

 

The metabolomic landscape of camelina seeds 

Untargeted SM profiling revealed a large diversity in camelina seeds (Figure 2; Table S1). Untargeted 

metabolomic data in ElectroSpray Ionization in positive (ESI+) and negative (ESI-) modes allowed the 

detection of 1595 peaks of putative known and unknown metabolites (i.e. metabolic features). 

The average intensity of SMs among all samples (Table S2) was calculated and identified the top-10 



 
 

with higher average intensity (Figure S1a). Among them four were flavonoids (Rutin, Quercetin-3-

(Glucose [G] - Rhamnose [R] - Pentose [P]), Isorhamnetin-3-(G - R) and Catechin-3-G), one cinnamic 

acid (Sinapine), and one amino acid (γ-glutamyl leucine). In addition, four compounds had no 

annotation in homemade or public libraries (n8, n14, p29, p117; Figure S1b). The putative structure of 

these metabolites with no annotation was determined using SIRIUS 4.0 (Dührkop et al., 2019), that 

propose molecular structures using LC-MS/MS data (see methods). The proposed structures of n8 and 

n14 belong to the glucosinolate class, more precisely n8 was annotated as Glucocamelinin and n14 as 

Glucoarabin. p29 was putatively annotated as a sugar while metabolite p117 was annotated as an 

amino acid. 

LC-MS/MS data were used to build a molecular network with MetGem software (Figure 2a, b; Table 

S1). This method allows clustering of compounds with high degree of structural similarity according 

to their MS2 spectra, and therefore identifying clusters of unknown metabolites using the MS/MS 

information for annotated compounds (Olivon et al., 2018). The analysis of camelina seed metabolites 

using public databases for annotation and internal standard, coupled to molecular network, allowed the 

assignment of 30% of the detected molecules to a metabolic category. Conversely, 18% of the 

metabolites were included in clusters that could not be associated to a metabolic class, and 52 % of the 

metabolites were not comprised in a cluster and not annotated (Figure 2a). Overall, SMs identified in 

camelina seeds have been assigned to sixteen putative metabolic categories: flavonoids (flavonols, 

flavan-3-ols, flavones, flavanones and isoflavones), amino acids and derivatives, cinnamic acids, 

carbohydrates, alkaloids, benzoic acids, glucosinolates, terpenes, nucleosides, chalcones, phenolic 

glycosides, phenolic acids, glutathione (GSH) and lignans (Figure 2c). Flavonols were the most 

represented metabolic category (68), followed by amino acids and derivatives (43), cinnamic acids 

(40) and sugars and carbohydrates (36). A relatively lower number of metabolites were annotated as 

alkaloids (13), flavan-3-ols (13), benzoic acids (13) and glucosinolates (10). The other metabolic 

categories presented less than 10 metabolites. 

 

Genetic and environmental regulations of camelina seed specialized metabolome 

The ESI+ and ESI- relative metabolite intensities data were analysed by a linear model to evaluate the 

genotype and year effects as well as their interactions. After filtering, statistical analyses were 

performed with 1481 out of the 1595 metabolic features detected (see experimental procedures). 

Pairwise comparisons were carried out between the different years (e.g. 2015 vs. 2016 on average for 

all genotypes), genotypes (e.g. OMEGA vs. MIDAS on average for all years) and genotype X 

environment (e.g. [OMEGA-2015 vs. OMEGA-2016] compared with [MIDAS-2015 vs. MIDAS-

2016]). From this point on Differentially Accumulated Metabolic features (DAMf) will be used to 

indicate the number of metabolic features showing significantly different levels (induced or repressed) 

between two samples or group of samples/factors. Statistical analyses highlighted 1111 and 1378 

DAMf in response to the genotype and the environment (i.e. the year), respectively (Figure 3a). 



 
 

Furthermore, 1452 DAMf were affected by genotype X environment interaction. Thus, statistical 

analyses revealed that the environment was the most important factor influencing metabolite 

accumulation and affected 93% of the analysed camelina seed-specialized metabolome. To measure 

the specific impact of each year and genotype, DAMf were identified for each comparison (Figure 3b, 

Figure S2). Overall, the year 2016 showed the largest number of cumulated DAMf, with 2494 induced 

and 660 reduced metabolites compared to the other years among all comparisons (Figure 3b, Figure 

S2). Concerning genotypes, OMEGA showed the largest number of cumulated DAMf, with 1690 and 

402 induced and reduced accumulation of SMs, respectively, compared with the others (Figure 3b, 

Figure S2). 

 

Identification and accumulation profiles of metabolites affected by environmental and genotype 

variations 

The analyses highlighted a strong and broad effect of the environment on SM diversity and 

accumulation, and the majority of DAMf that were in common between the environment and the 

genotype (G-E). In this light, the G-E DAMf (1051 metabolic features) were considered for further 

analyses (Figure 3a). Using this subset of DAMf, we performed an enrichment analysis using the 

metabolic categories highlighted by the molecular network analysis (Table S1, column ‘Metabolic 

category’). Not-annotated metabolites clustering together in the molecular network analysis (Figure 

2b) and therefore having similar chemical structures, were considered as a distinct metabolic category 

(see methods for more information). Among the DAMf common to genotypes and environments, 

flavonols (47 DAMf), cinnamic acids (35 DAMf), and glucosinolates (10 DAMf) were found to be 

enriched compared with the metabolite reference set library (see methods for further information; 

Figure 4a). In addition, two unknown categories, namely p_2_a (20 DAMf) and p_2_c (9 DAMf) were 

also enriched (Figure 4a). The heatmaps built using the average metabolite intensity for each category 

showed that the environmental conditions of 2016 induced higher average metabolite accumulation 

compared with the other years for the enriched metabolic categories, except for flavonols and, to a 

lesser extent, to not annotated category p_2_c (Figure 4b). Conversely, 2018 and 2019 were the years 

during which cinnamic acids, glucosinolates, p_2_a and p_2_c metabolic categories displayed the 

lowest accumulation levels. In addition, the genotypes OMEGA and 787-08 showed higher amounts 

of metabolites for most of the categories. These results confirmed the strong effect of the environment, 

particularly in 2016, on the accumulation of SMs. Interestingly, flavonols presented an accumulation 

pattern that significantly differed from the other metabolite categories (Figure 4b). 

 

Identification of important metabolite hubs and their environmental induction 

The results obtained so far highlighted large variations according to the environment and/or the 

genotype of several metabolic categories. Nevertheless, it remained unclear how genotypes or the 

environmental conditions affected the accumulation of specific metabolites or their decorations (e.g. 



 
 

glycosylated / acylated / methylated quercetin or kaempferol ). To establish a link between metabolite 

structures (and therefore their putative/potential biological activity) and environmental conditions or 

genotypes, a co-accumulation network analysis was performed based on correlation among metabolite 

intensity (Figure 5; r > 0.7) using metabolomic data extracted for the enriched metabolic classes 

(Figures 6 and S4). Co-accumulated metabolites obtained from the metabolite correlation network 

were visualised in boxplots for each cluster. In comparison with the other enriched categories, which 

were grouped in only one cluster, flavonols were splitted into several clusters, highlighting more 

diversified accumulation profiles in response to year and/or genotype (Figure 6). A metabolic 

signature was identified for several flavonol clusters identified by co-accumulation analyses, and 

specific metabolite decorations were associated to each year (i.e. to different environmental 

conditions). Specifically, rutin (Quercetin [Q])-3-(G-R)), Kaempferol [K]-3-(G-R), Isorhamnetin 

[Iso]-3-(G-R), K-3-(G-R), Q-3-(G-R-P), Iso-3-(G-R-P) and Q-3-(G-R-R) (Figure 7), belong to a co-

accumulation cluster that showed slightly lower accumulation in 2015 (cluster ‘a’). Other flavonol 

clusters showed a much clearer metabolite accumulation behaviour. In particular, acetylated and 

malonylated mono- or di-glycosylated quercetin and isorhamnetin belong to cluster ‘b’, characterized 

by metabolites showing markedly high accumulation in 2016, and in 789-02 and OMEGA genotypes. 

Cluster ‘c’, which is characterized by 12-times higher accumulation of metabolites in 2019 compared 

to other years, includes K-3-(G-Malonyl), K-(OH-3-MethylGlutaryl)-G and Q-3-(G-Galloyl). Q-3-(R-

G-G) (cluster ‘d’) and diglycosylated quercetin bounded to feruloyl (cluster ‘f’) were markedly more 

accumulated in 2016, but their accumulation patterns differ according to the genotypes. Finally, 

metabolites belonging to cluster ‘e’, which are characterized by higher accumulation in 2018 and in 

MIDAS and 787-08, were tri-glycosylated quercetin and flavonols with coumaroyl, feruloyl or 

sinapoyl alcohol groups (Figure 7). 

The other annotated enriched metabolic categories, cinnamic acid and glucosinolates, were merged 

into only one cluster, showing higher accumulation in 2016 (Figure S3). Twenty-nine cinnamic-acid 

derivatives were incorporated in the network and clustered together (Figure S3a). Most of the 

cinnamic acids shown in the network derived from sinapic acids and/or sinapine, including different 

glycosylated forms (Figure S5). Finally, annotated glucosinolates were 9-methylthiononyl 

glucosinolate, 8-methylsulfinyloctyl glucosinolate and its chain-elongated homologues glucoarabin 

and glucocamelinin (Figure S6). 

Both p_2_a and p_2_c enriched unknown (not annotated) metabolic categories, found using molecular 

network analyses, were merged into one co-accumulated clusters. As already described for the top-10 

most accumulated metabolites (Figure S1), the putative structures of the metabolites belonging to the 

enriched metabolic categories with no annotation were proposed using SIRIUS 4.0 (Dührkop et al., 

2019). The metabolites of p_2_a and p_2_c categories were putatively annotated as amino acids and 

phenolic acids, respectively. These enriched metabolic categories were characterized by higher 

accumulation in 2015 and 2016, especially for p_2_c category (Figure S7). 



 
 

 

 

Comparison of primary metabolites, oil composition and specialized metabolite plasticity in 

camelina seeds 

To gain deeper knowledge on the metabolic composition and the plasticity of seed specialized (e.g. 

flavan-3-ols, flavonols and glucosinolates) and primary (free amino acids, sugars, carboxylic acids, 

fatty acids, lipids) metabolites, additional analyses were performed on selected genotypes. The 

analysis of primary metabolites (92 metabolites, Table S3), and fatty acids (17 metabolites, Table S4) 

as well as lipids (1476 metabolic features [Mf], Table S5) were obtained by GC-MS and LC-MS/MS, 

respectively. Metabolite analyses were carried out on seeds of OMEGA and 789-02 genotypes 

harvested from 2015 to 2019. These genotypes were chosen based on their contrasted profiles for SMs 

(Figure 3b, 4b), OMEGA and 789-02 being the ones showing the highest and lowest SM 

accumulation, respectively. A co-accumulation network analysis (similarly to what has been done 

previously for SMs; Figure 8a) was performed to calculate the phenotypic plasticity, using a widely 

used index (Relative Distance Plasticity Index, RDPI; Valladares et al., 2006), for the main primary 

and specialized  metabolic categories (Figure 8b; Table S6). The RDPI index allows the quantification 

of phenotypic plasticity based on phenotypic distances between different individuals of a given species 

(e.g. camelina plants) exposed to different environments (e.g. 2015 to 2019). While this index has 

been used to compare plasticity among different species, we applied the method to compare the 

plasticity of different phenotypes (i.e. the metabolic classes) from the same species and tissue. Co-

accumulated (i.e. highly correlated: r > 0.8) metabolites were visualised in heatmaps build for each 

cluster and obtained from the metabolite correlation network (Figure 8a), and the phenotypic plasticity 

was calculated for each cluster and category (Figure 8b), using the average metabolite intensity (see 

method for further information). The correlation cut-off has been increased compared to the previous 

correlation network because of the lower number of genotypes considered and, therefore, of samples 

used to calculate the correlation. 

Alkaloids, flavonols, and glucosinolates SMs, together with free amino acids and carboxylic acids 

primary metabolites, were the categories showing the largest plasticity level. Conversely, seed oil and 

protein contents, major fatty acids (18:1Δ9, 18:2 and 18:3), most lipid categories (Diacylglycerols, 

DAG; Triacylglycerols, TAG; Phospholipids) and protein content were characterized by markedly 

lower plasticity than that just reported for SMs. These categories showed indeed a quite similar 

accumulation behaviour and no clear metabolic signature across the five years considered in this study. 

Lower plasticity was also observed for cinnamic acids, flavan-3-ols, and one sugar cluster (which 

included sucrose, the most abundant sugar). According to metabolite accumulation profiles, 2016, 

2017 and 2019 were the years inducing the highest number of specialized and primary metabolites 

(Figure 8a), including alkaloids (2016), flavonols (2016 and/or 2019), glucosinolates (2016 and 2017), 

free amino acids (2016 and 2019), sugars (2016 and, 2017 or 2019), carboxylic acids (2019). 



 
 

Last, carbon and nitrogen content in seeds of the two genotypes was also analysed. The results for C/N 

did not reveal a significant impact of genotype nor environment in camelina seeds (Figure S8). 

 

The environmental regulation of oil composition in camelina seeds 

Untargeted lipidomic analyses allowed the annotation of 199 metabolic features (out of 1476), mainly 

classified into 7 metabolic categories: TAG (85 Mf), Phospholipids (43 Mf), DAG (33 Mf), Fatty acid 

methyl esters (5 Mf), Sterol lipids (5 Mf), Monoradylglycerols (3 Mf) and Glycerolipids (1 Mf) (Table 

S5). We also detected (+)-.gamma.-Tocopherol, and minor classes corresponding to 

Phosphatidylmethanols (8 Mf) and Fatty acid methyl esters, respectively (5 Mf). These last two 

metabolic classes could be artefacts derived from the extraction protocol that was used. Statistical 

analyses reveal that 596 (40 %) lipid DAMf were affected by both genotype and environment, 

belonging to the DAG, TAG, phospholipids and sterol lipids. The heatmaps constructed using the 

accumulation of metabolites for each category or separately for all metabolites showed that the 

environmental conditions of 2019 induced lower levels of metabolite accumulation compared to the 

other years (Figure 9b, Figure S9). In addition, 2017 and 2018 were characterized also by moderately 

lower level of many DAG and sterol lipids. As already shown by the analysis of phenotypic plasticity, 

fatty acids (FAs) profiles were stable among the different years, despite the significant but moderate 

impact of the environment on the accumulation of some major FAs was moderately but significantly 

affected by the environment (C18:1Δ9, C18:2, C18:3) (Figure 9a). 

  



 
 

DISCUSSION 

Phenotypic plasticity refers to the ability of an individual (or a genotype) to cope with environmental 

changes by modulating one or multiple phenotypic traits (Arnold et al., 2019; Fusco and Minelli, 

2010). The genetic and environmental impacts on the regulation of gene expression or physiological 

traits were extensively studied in several plant species and specific tissues or organs (Gruber et al., 

2013; Dal Santo et al., 2016; Dal Santo et al., 2013; Janková Drdová et al., 2019; Jong et al., 2019; 

Ibañez et al., 2017). Conversely, little if any information is available on the overall impact of the 

environment on the induction or repression of the specialized metabolome, especially in seeds. 

Studying these processes is particularly interesting in crops, including Brassicaceae species such as 

camelina, a cultivated oilseed crop, whose seeds constitute a valuable feedstock for food, feed and 

biobased industrial applications. Although it is known that camelina seeds contain numerous SM 

classes, most available studies focused on a limited number of compounds, mainly fatty acids or anti-

nutritional compounds, such as glucosinolates (Amyot et al., 2019). 

 

In the present study, using a molecular network approach (Olivon et al., 2018; Elie et al., 2019) 

coupled with manual confirmation of metabolite annotation using molecular structure identification 

(Dührkop et al., 2019), we found a large diversity of SM classes (16 in total) in camelina seeds (Figure 

2). The present results highlighted that only 30% of the identified metabolites are annotated or belong 

to a cluster with annotated metabolites. This is not totally unexpected, since the metabolites present in 

public databases used for annotation represent only a small portion of the plant metabolome (7-10%) 

(Chaleckis et al., 2019; Szymański et al., 2020). It is worth mentioning that the percentage of 

annotated molecules increased significantly when only the highly accumulated metabolites are 

considered (Table S1). Despite the large fraction of non-annotate metabolites, using Sirius and 

molecular network analyses allowed us to increase the percentage of metabolites that were assigned to 

a metabolic class from 12% (public databases) to 30%. In addition, we significantly expanded the 

identification of metabolic classes compared with the published untargeted metabolomic analyses on 

camelina, which mostly focused their attention on annotated metabolites such as sinapine, a few 

flavonols and flavan-3-ols, and/or glucosinolates (Quéro et al., 2016; Berhow et al., 2014). Major 

challenges in the selection of metabolite datasets and their annotation include the duplication of the 

signal for metabolic features and in-source fragments causing SM miss annotation (Xu et al., 2015; 

Domingo-Almenara et al., 2018; Godzien et al., 2015). Thus, the impact of in-source ion 

fragmentation was limited by filtering the metabolic features showing high correlation (r > 0.95) and 

the same retention time. 

 

Given the five years studied characterized by high meteorological variability and the six genotypes, 

the trends observed allowed to hypothesize on the major factors impacting the specialized metabolome 

landscape in camelina seeds. Although the selected genotypes were obtained from different breeding 



 
 

programs and showed major differences in morphology, seed yield, protein and oil content (Righini et 

al., 2019; Zanetti et al., 2017; Krzyżaniak et al., 2019), metabolite accumulation and diversity can be 

mainly linked to different weather conditions occurring in each growing season. Indeed, 2016 was 

characterized by lower temperatures and strikingly higher amounts of precipitation during the seed 

filling phase, while 2018 and 2019 showed higher temperatures and lower precipitation during the 

seed filling period. It is worth remarking that while camelina is able to cope quite well with drought 

stress (Enjalbert et al., 2013), its ability to handle high temperatures (Carmo-Silva and Salvucci, 2012) 

during the seed filling phase is quite limited, and this is in strong agreement with the present results, 

which highlighted the lowest metabolome induction under those conditions(Figure 3b; 2018 and 2019 

growing seasons). In addition, a hailstorm occurred in 2016 prior to harvest, which might have also 

affected the accumulation of some classes of seed-specialized metabolites. Many of them being well-

known antioxidants, which can also act as natural plant defence to adverse and stressful environmental 

conditions. 

 

Among the annotated metabolites modulated by environment and genotype, flavonols were the most 

represented class (Figure 4). The flavonol metabolome was induced in several genotypes and years 

(i.e. by various environmental conditions), as shown by the high number of co-accumulation clusters 

(six, Figure 6) identified for this category. Hence, since the number of clusters can be directly related 

to the diversity of a metabolic class, the present data suggest that flavonols are a very plastic category 

among the SMs observed in camelina seeds. The large accumulation of flavonols in different years 

could be linked to the ability of plants to respond to different environmental stresses re-directing some 

biosynthetic pathways. This diversity could be linked to flavonol structure with two aromatic rings and 

multiple potential decoration sites (glycosylated, methylated and/or acylated; Figures 6 and 7) 

compared with cinnamic acids (Figure S5) and glucosinolates (Figure S6). The importance of 

decorations in metabolite activity and plant-interaction with abiotic and biotic factors has been 

recently highlighted by Behr et al. (2020). This is also the case of N-hydroxy-pipecolic acid, whose 

glycosylation affects plant immunity responses and plant growth (Cai et al., 2021; Mohnike et al., 

2021). 

The accumulation of flavonols in response to abiotic stresses has been extensively documented for 

vegetative tissues (Corso et al., 2020; Nakabayashi et al., 2014; Tohge et al., 2016; Pourcel et al., 

2007; Muhlemann et al., 2018; Emiliani et al., 2013), while very few information are available for 

seeds (Macgregor et al., 2015; Corso et al., 2020) The antioxidant and protective activities of some 

flavonols would explain their higher accumulation in 2018 and 2019, which presented the highest 

temperatures during the seed filling phase, and in 2017, characterized by very limited amounts of 

precipitation (Figure 1b; Figure 4). 

 



 
 

The present analyses suggest that flavonols with different decorations (hydroxylation, glycosylation, 

methylation and acylation) are differentially accumulated according to environmental conditions 

(Alseekh, Perez de Souza, et al., 2020; Chen et al., 2020), especially in response to fluctuating 

temperatures and high precipitation. In relation to the effects of the environment, the Q -diglycoside –

malonyl or feruloyl, and Q-triglycoside, together with acylated and malonylated Q-glycosides were 

markedly more accumulated in 2016, characterized by high precipitation rate and low temperatures 

(mix of the two stresses/conditions). Instead, Q and/or K –monoglycoside and -triglycoside (+ 

malonyl, galloyl or feruloyl) were significantly more accumulated in 2018 and 2019, characterized by 

higher temperatures (heat stress). Glycosylation, acylation and methylation play crucial roles in 

stability, solubility and bioavailability of flavonoids. For instance, de-glycosylation is a well-

characterized fine-tuned mechanism regulating flavonoid localization, availability, and biological 

activity (Wang et al., 2019). Characterizing the effects of abiotic (e.g. heat or drought stress) and/or 

biotic stresses on the accumulation of specific flavonoids and related decorations will be essential for 

understanding the environmental impact on seed specialized metabolism and seed quality. 

 

It has been reported that camelina seed yield and quality (e.g. protein and oil content, oil composition, 

dormancy or longevity) are affected by meteorological conditions (Zanetti et al., 2017; Krzyżaniak et 

al., 2019). Nonetheless, the present study showed that the environment  has a limited impact on major 

seed oil primary metabolites (lipids and fatty acids) and protein contents (Figures 8 and 9), which were 

characterized by low phenotypic plasticity. Nevertheless, DAG and sterol lipids showed slightly lower 

accumulation in 2018 and/or 2019 compared with the other years (Figure 9). The impact of abiotic 

(Hou et al., 2016; Shiva et al., 2020) and biotic (Jeon et al., 2020; Kazaz et al., 2021) stresses on lipid 

accumulation has been already described for vegetative tissues, but the data on seed specialized 

metabolome are scarce. In particular, osmotic, drought and high temperature stresses enhance the 

accumulation of phospholipids, including phosphatidylcholine (PC) and phosphatidylethanolamine 

(PE). The low variability of seed lipids and fatty acid content and composition might be related to 

camelina domestication history. This species, together with other domesticated Brassicaceae (e.g. 

Brassica napus), has been indeed selected for oil production, and showed a higher and less variable 

seed oil content compared with wild Brassicaceae (Barker et al., 2007; Sharafi et al., 2015). 

Conversely, in addition to many SM classes (alkaloids, flavonols, or glucosinolates), a surprisingly 

high plasticity was observed for free amino acids, carboxylic acids and some sugars (primary 

metabolites) in camelina seeds. This suggests that, in addition to the seed specialized metabolome, 

some metabolic classes belonging to the seed free primary metabolome can be shaped by the 

environment (Maeda, 2019). This could be due to the fact that many primary metabolites (e.g. free 

amino acids) are precursors of major SMs, as in the case of L-phenylalanine for flavonoids (Maeda, 

2019; Maeda and Fernie, 2021). A positive induction on the accumulation of seed free primary 

metabolites has been also observed in Arabidopsis plants subjected to ABA-deficiency, which has 



 
 

been linked to a premature metabolism resumption state (Chauffour et al., 2019). Besides free primary 

metabolites, protein content and turnover might also play a major role in triggering the events leading 

to successful seed germination and seedling establishment (Galland et al., 2014), which could explain 

the higher stability of camelina seed total protein content highlighted in the current work.  

 

Regarding the differences in metabolite accumulation among the genotypes, both OMEGA and 787-08 

showed the highest metabolome induction (Figure 3). Inversely, the genotype 789-02 showed the 

lowest metabolite accumulation level for most of the studied metabolic categories. Conversely, 787-08 

has been previously identified as a cultivar with large seeds, providing good and stable oil yields 

across different environments (Zanetti et al., 2017). Moreover, cultivars 789-02 and 887 are 

characterized by different seed oil composition (i.e. increased ὠ3/ ὠ6 ratio) particularly suitable to 

different feed, food and industrial applications. The present results suggest that the agronomic 

performance of the cultivar 787-08 could be related to an improved genetic combination allowing the 

diversity and abundance of metabolites. The accordance between metabolite composition and the other 

traits found in genotypes 787-08 and OMEGA may represent a promising strategy for future breeding 

in camelina. 

 

In this work were combined two different approaches to annotate and cluster specialized metabolites 

based on their structure and co-accumulation, respectively. A more precise characterization of new 

metabolites was achieved by linking their chemical structures to their accumulation patterns. In 

addition, using fatty acid profiles and untargeted lipidomics it was possible to dissect the impact of the 

environmental conditions on seed oil composition, important characteristics for a seed oil crop as 

camelina. In conclusion, this study highlights that the environment has major and unexplored effects 

on the regulation of the seed specialized metabolome, suggesting that seeds might not be exclusively 

storage and “metabolically static” organs, but they show a very plastic specialized metabolism. 

  



 
 

EXPERIMENTAL PROCEDURES 

Genetic material, field experimental protocol and meteorological parameters 

Six different genotypes of camelina were grown at the experimental farm of Bologna University 

(Italy) located in Cadriano (Bologna, Italy, 44°30′N, 11°23′E, 32 m a.s.l.) during five consecutive 

years (2015-2019). The soil at Cadriano is characterized as clay-loam (Udic Ustochrepts, mesic). The 

six tested genotypes were: MIDAS (AAFC, Saskatoon, Canada), OMEGA (University of Poznan, 

Poland), WUR (Wageningen University and Research, The Netherlands), and 787-08, 789-02 and 887 

(Smart Earth Camelina, Saskatoon, Canada). These genotypes were chosen to represent the highest 

diversity among breeding programs and qualitative seed traits, in particular OMEGA and WUR belong 

to the breeding programs carried out at Poznan (Poland) and Wageningen (The Netherlands) 

Universities, respectively. MIDAS has been selected by AAFC (Saskatoon, Canada) to be highly 

tolerant to disease (i.e,. downey mildew) and with stable productive performance. Cultivars 787-08, 

887 and 789-08 derive from the breeding program of Smart Earth Camelina (Canada), and they are 

improved for: increased seed weight, and stable and high seed yield and oil content (787-08); 

improved fatty acid composition (887), seed weight and improved fatty acid composition (789-02). 

Weather parameters (daily minimum, Tmin, maximum, Tmax, and precipitation) were measured and 

recorded by automated weather stations located at the experimental farm. Camelina was sown each 

year in late winter/early spring accordingly to the specific meteorological conditions. The same 

agronomic management for all the trials was adopted, consisting in typical tillage system (ploughing + 

harrowing), a seeding rate of 500 seeds m-2, no irrigation, a top-dressing fertilization with N (50 kg N 

ha-1, as urea at bolting stage), with no pest, disease nor weed chemical control. The experimental 

design was a randomized complete block with 3 or 4 biological replicates depending on the year. The 

plants were monitored weekly for their phenological phases, which were surveyed according to the 

BBCH scale for camelina (Martinelli and Galasso, 2011). At full maturity (residual seed moisture 

<12%), the central portion of each plot (~6 m2) was cut manually at the soil level, and then threshed 

using a plot combine. Representative seed samples from individual plots were cleaned at the “Ricerca 

e Analisi Sementi” laboratory (LaRAS) of DISTAL department (Università di Bologna, IT), and then 

stored at 4 °C in the dark before shipping to IJPB institute (INRAE-Versailles, FR). 

 

Protein and Oil extraction and analysis 

Oil and protein determinations in all samples have been carried out by AAFC (Saskatoon, Canada), by 

near-infrared spectroscopy (NIRS) as reported by Zanetti et al. (2017). Oil and protein contents are 

reported as a percentage on a whole seed dry matter (zero moisture) basis. 

 

Extraction of polar/semipolar specialized metabolites, primary metabolites and lipid fraction 

Metabolites were extracted from 60 mg of camelina dry mature seeds (105 samples in total). The 

metabolite extraction protocol was adapted from Corso et al. (2018) and Giavalisco et al. (2011). 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/near-infrared-spectroscopy


 
 

Briefly, 1 mL of MeOH: Methyl-tert-butyl: H2O (1:3:1), conserved at 4°C, and 200 ng of Apigenin 

(used as internal standard) were added to each sample, which was then homogenized in 2ml tubes 

using a FastPrep instrument (1 min, 14,000 rpm). The mixtures were then shaken for 30 min at 4ºC 

using a ThermoMixer™ C (Eppendorf), placed in an ice cooled ultrasonication bath for 15 min and 

centrifuged for 1 min at the maximum speed to remove debris. The extracted samples were then 

transferred in new tubes containing 650 mL of MeOH: water (1:3), previously placed at -20ºC. The 

mixtures were centrifuged for 1 min at 14,000 rpm. The addition of MeOH: water (1:3) and the 

centrifugation led to a phase separation, providing an upper organic phase, containing the lipids, a 

lower aqueous phase, containing the polar and semi-polar metabolites, and a pellet of starch and 

proteins. The phase containing the polar / semi-polar metabolites and lipids were dried down in a 

SpeedVac vacuum concentrator (o/n) and resuspended in 200 μL of ULC/MS grade water (Biosolve). 

 

UPLC-MS/MS analysis of polar/semipolar specialized metabolites and lipid fractions 

Untargeted metabolomic data were acquired using a UHPLC system (Ultimate 3000 Thermo) coupled 

to quadrupole time of flight mass spectrometer (Q-Tof Impact II Bruker Daltonics, Bremen, 

Germany).  

For untargeted polar and semipolar metabolomic analysis, a Nucleoshell RP 18 plus reversed-phase 

column (2 x 100 mm, 2.7 μm; Macherey-Nagel) was used for chromatographic separation. The mobile 

phases used for the chromatographic separation were (A) 0.1% formic acid in H2O and (B) 0.1% 

formic acid in acetonitrile. The flow rate was of 400 μL/min and the following gradient was used: 95% 

of A for 1-min, followed by a linear gradient from 95% A to 80% A from 1 to 3-min, then a linear 

gradient from 80% A to 75% A from 3 to 8-min, a linear gradient from 75% A to 40% A from 8 to 20-

min. 0% of A was hold until 24-min, followed by a linear gradient from 0% A to 95% A from 24 to 

27-min. Finally, the column was washed by 30% A at for 3.5 min then re-equilibrated for 3.5-min (35-

min total run time). 

For untargeted lipidomic analysis, an EC 100/2 Nucleoshell Phenyl-Hexyl column (2 x 100 mm, 2.7 

μm; Macherey-Nagel) was used for chromatographic separation. The mobile phases used for the 

chromatographic separation were (A) H20 + 1% ammonium formate in H2O + 0.1% formic acid and 

(B) Acetonitrile : isopropanol (7 : 3) + 1% of 10mM ammonium formate in H2O + 0.1% formic acid. 

The flow rate was of 400 μL/min and the following gradient was used: 45% of A for 1-min, followed 

by a linear gradient from 45% A to 30% A from 1 to 2-min, then a linear gradient from 30% A to 15% 

A from 2 to 7-min, a linear gradient from 15% A to 10% A from 7 to 15-min, a linear gradient from 

10% A to 6% A from 15 to 19-min, a linear gradient from 6% A to 2% A from 19 to 26-min. 0% of A 

was hold until 27-min, followed by a linear gradient from 0% A to 45% A from 27 to 35-min (35-min 

total run time). 

For both untargeted metabolomics and lipidomics, data-dependent acquisition (DDA) methods were 

used for mass spectrometer data in positive and negative ESI modes using the following parameters: 



 
 

capillary voltage, 4.5kV; nebuliser gas flow, 2.1 bar; dry gas flow, 6 L/min; drying gas in the heated 

electrospray source temperature, 140ºC. Samples were analysed at 8Hz with a mass range of 100 to 

1500 m/z. Stepping acquisition parameters were created to improve the fragmentation profile with a 

collision RF from 200 to 700 Vpp, a transfer time from 20 to 70 µs and collision energy from 20 to 40 

eV. Each cycle included a MS fullscan and 5 MS/MS CID on the 5 main ions of the previous MS 

spectrum. 

 

UPLC-MS/MS data processing 

The .d data files (Bruker Daltonics, Bremen, Germany) were converted to .mzXML format using the 

MSConvert software (ProteoWizard package 3.0, Chambers et al., 2012). mzXML data processing, 

mass detection, chromatogram building, deconvolution, samples alignment, and data export, were 

performed using MZmine 2.52 software (http://mzmine.github.io/) for both positive and negative data 

files. The ADAP chromatogram builder (Myers et al., 2017) method was used with a minimum group 

size of scan 3, a group intensity threshold of 1000, a minimum highest intensity of 1500 and m/z 

tolerance of 10 ppm. Deconvolution was performed with the ADAP wavelets algorithm using the 

following setting: S/N threshold 8, peak duration range = 0.01-1 min RT wavelet range 0.02-0.2 min, 

MS2 scan were paired using a m/z tolerance range of 0.01 Da and RT tolerance of 0.4 min. Then, 

isotopic peak grouper algorithm was used with a m/z tolerance of 10 ppm and RT tolerance of 0.4. All 

the peaks were filtered using feature list row filter keeping only peaks with MS2 scan. The alignment 

of samples was performed using the join aligner with an m/z tolerance of 10 ppm, a weight for m/z and 

RT at 1, a retention time tolerance of 0.3 min. Metabolites accumulation was normalized according to 

the internal standard (Apigenin) and weight of seeds used for the extraction. 

A first research in library with Mzmine was done with identification module and “custom database 

search” to begin the annotation with our library, currently containing 93 annotations (RT and m/z) in 

positive mode and 61 in negative mode, with RT tolerance of 0.3 min and m/z tolerance of 0.0025 Da 

or 6 ppm. 

 

Molecular networking of untargeted metabolomic data 

Molecular networks were generated with MetGem software (Olivon et al., 2018; 

https://metgem.github.io) using the .mgf and .csv files obtained with MZmine2 analysis. The 

molecular network was optimized for the ESI+ and ESI- datasets and different cosine similarity score 

thresholds were tested. ESI- and ESI+ molecular networks were generated using cosine score 

thresholds of 0.75 and 0.8, respectively. Molecular networks were exported to Cytoscape software 

(Shannon et al., 2003; https://cytoscape.org/) to format the metabolic categories. 

 

Metabolite annotation of untargeted metabolomic data 

Metabolite annotation was performed in four consecutive steps. First, the obtained RT and m/z data of 

http://mzmine.github.io/


 
 

each feature were compared with our home-made library containing more than 150 standards or 

experimental common features (RT, m/z). Second, the ESI- and ESI+ metabolomic data used for 

molecular network analyses were searched against the available MS2 spectral libraries (Massbank NA, 

GNPS Public Spectral Library, NIST14 Tandem, NIH Natural Product and MS-Dial), with absolute 

m/z tolerance of 0.02, 4 minimum matched peaks and minimal cosine score of 0.8. Third, not-

annotated metabolites that belong to molecular network clusters containing annotated metabolites 

from step 1 and 2 were assigned to the same chemical family. Finally, for metabolites that had no or 

unclear annotation, Sirius software (https://bio.informatik.uni-jena.de/software/sirius/) was used. 

Sirius is based on machine learning techniques that used available chemical structures and MS/MS 

data from chemical databanks to propose structures of unknown compounds. Raw data were 

normalised on the internal standard (Apigenin) and weight of seeds used for the extraction. 

 

Metabolite annotation of untargeted lipidomic data 

Lipid metabolites annotation was performed in different consecutive steps. First, the ESI- and ESI+ 

metabolomic data used for molecular network analyses were searched against the available MS2 

spectral libraries (Massbank NA, GNPS Public Spectral Library, NIST14 Tandem and NIH Natural 

Product), with absolute m/z tolerance of 0.02; 4 minimum matched peaks and minimal cosine score of 

0.65. Second, in the different clusters of the molecular network, the result of the database search was 

validated using the different specific fragments and neutral loss for the different lipid class with their 

MS2 spectrum (Lipid Class Specific Fragments - Lipidomics-Standards-Initiative (LSI)). If the 

database search result was valid, annotation of other features was performed by stepwise comparison 

from the valid lipid metabolite. Finally, for the cluster of molecular network that had no data base 

search result, Sirius software (https://bio.informatik.uni-jena.de/software/sirius/) was used. 

 

Chemical structures drawing 

Specialized metabolites structures were drawn using ChemDraw 19.0 with default parameters 

 

Fatty Acids analysis 

Fatty acid composition of the seed oil was determined using the same protocol described in Zanetti et 

al. (2017) 

 

Primary Metabolites: GC-MS data analysis and processing 

The lower aqueous phase that was obtained after phase separation of the extracted samples was used to 

analyse primary metabolites via GC-MS. 

GC-MS analyses and data processing were performed according to Fiehn (2006), Fiehn et al. (2008) 

and Ponnaiah et al. (2019). Briefly, 150µl of the extraction solution were taken and dry in a Speed-

Vac evaporator for 2 h at 30°C before adding 10 µL of 20 mg.mL-1 methoxyamine in pyridine to the 

https://lipidomics-standards-initiative.org/resources/lipid-class-specific-fragments


 
 

samples. The reaction was performed for 90 min at 30°C under continuous shaking in an Eppendorf 

thermomixer. 90 µL N-methyl-N-trimethylsilyl- trifluoroacetamide (MSTFA) (Regis Technologies, 

Morton Grove, IL, USA) were then added and the reaction continued for 30 min at 37°C. After 

cooling, all the samples were transferred to an Agilent vial for injection. At 4 h after derivatization, 1 

µL of sample was injected in splitless mode on an Agilent 7890B gas chromatograph coupled to an 

Agilent 5977A mass spectrometer. The column was an Rxi-5SilMS from Restek (30 m with 10 m 

Integra-Guard column). An injection in split mode with a ratio of 1:30 was systematically performed 

for saturated compounds quantification. Oven temperature ramp was 60°C for 1 min then 10°C min-1 

to 325°C for 10 min. Helium constant flow was 1.1 mL.min-1. Temperatures were the following: 

injector: 250°C, transfer line: 290°C, source: 230°C and quadrupole 150°C. The quadrupole mass 

spectrometer was switched on after a 5.90 min solvent delay time, scanning from 50 to 600 m/z. 

Absolute retention times were locked to the internal standard d27-myristic acid using the RTL system 

provided in Agilent’s Masshunter software. Retention time locking reduces run-to-run retention time 

variation. Samples were randomized. A fatty acid methyl esters mix (C8, C9, C10, C12, C14, C16, 

C18, C20, C22, C24, C26, C28, C30) was injected at the beginning of analysis for external RI 

calibration. The Agilent Fiehn GC/MS Metabolomics RTL Library (version June 2008) was employed 

for metabolite identifications. Peak areas determined with the Masshunter Quantitative Analysis 

(Agilent Technologies, Santa Clara, CA, USA) in splitless and split 30 modes. Resulting areas were 

compiled into one single MS Excel file for comparison. Peak areas were normalized to Ribitol and 

Dry Weight. A total of 92 unique metabolites were identified are expressed in arbitrary units (semi-

quantitative determination). 

 

Statistical and enrichment analyses on polar and semi/polar specialized metabolomic data 

Normalised metabolite accumulations were expressed as Relative Units (RU). Only metabolites 

having values higher than 0.05 RU in at least 1/6 of the samples (corresponding to the number of 

genotypes) were considered. For these 1481 metabolic features, accumulation was modeled with a 

linear model to decompose the averaged accumulation by a genotype effect plus a year effect and an 

interaction between the genotype and the year. Several questions were addressed with this model (i) 

the differences of accumulation between two genotypes averaged on years or given a year (ii) the 

differences of accumulation between two years averaged on genotypes or given a genotype (iii) the 

interactions between genotypes and years by testing if the difference of accumulation between two 

years in a given genotype is the same for a second genotype. 

All these questions were written as contrasts in the linear model. P-values were adjusted across the 

metabolites for each question to control the false discovery rate (FDR), and a difference of 

accumulation for a metabolite was declared significant if its adjusted p-value was lower than 0.05. A 

Venn diagram, with the number of DAM depending on the year, genotype and genotype X year 

interaction, was then made (http://jvenn.toulouse.inra.fr/app/example.html). 

http://jvenn.toulouse.inra.fr/app/example.html


 
 

Enrichment analysis was done by using a hypergeometric test and the FDR was controlled across all 

the terms at level 0.05. The metabolite reference set was defined from the annotated and unknown 

metabolic categories (Table S1, column ‘Metabolic category’). The analyses was performed with the 

software R. The contrasts and the enrichment tests were written according to the functions of the tool 

DiCoExpress (Lambert et al., 2020). 

 

Statistical analyses on lipids and primary metabolite data 

Similarly to polar/semipolar specialized metabolites, lipids and primary metabolites data were 

normalized to an internal standard. Differentially Accumulated Metabolites (DAM) or metabolic 

features (DAMf) were then identified following the same statistical pipeline used for polar/semipolar 

metabolites. DAM and/or DAMf affected by the environment and/or the genotype were then used for 

further computational analyses and data interpretation. 

 

Total carbon and nitrogen contents 

Three milligram of seeds were placed in tin capsules and burned in an elemental analyser (Pyrocube, 

Elementar, Lyon, France). Separation of resulting N2 and CO2 gas was performed on two gas-selective 

columns with Thermal Conductivity Detector (TCD). They can be quantified against standards 

(ammonium sulfate 21.2% N, benzoic acid  68.85 % C, glutamic acid 9.51% N / 40.82% C and 

glutamine 19.17% N / 41.09% C). The elemental carbon or nitrogen content was given in % (mass 

fraction). 

 

Heatmap, hierarchical clustering, metabolites co-accumulation analysis and calculation of 

phenotypic plasticity 

The heatmaps and hierarchical clustering analyses of metabolomic data were carried out using the 

‘heatmap.2’ function of GPLOTS R package (https://cran.r-project.org/bin/windows/base/). The 

metabolite value used for the heatmaps were calculated as percentage related to the sample showing 

the highest accumulation value for each metabolite (maximum and minimum accumulation for yellow 

and blue colours, respectively; specific values are reporter for each heatmap). 

Correlation was calculated among metabolites from enriched metabolic classes or with the average 

accumulation patterns of all annotated metabolic classes using ‘ExpressionCorrelation’ app of 

Cytoscape software (Shannon et al., 2003). All 105 samples present in the dataset were used to 

calculate correlations among metabolites. Metabolite co-accumulation networks were visualised using 

Cytoscape software. 

To measure phenotypic plasticity, the Relative Distance Plasticity Index (RDPI; Valladares et al., 

2006) was calculated for specialized and primary metabolic categories using the Plasticity R package 

(https://github.com/ameztegui/Plasticity). 

 



 
 

Statistical analyses on physiological and seed quality parameters 

To assess statistical differences in physiological parameters (yield), protein and oil content, and fatty 

acids composition among the different years (2015, 2016, 2017, 2018, 2019) or Camelina sativa 

accessions (MIDAS, OMEGA, WUR, 787.08, 789.02 and 887), an ANOVA with Tukey’s range test 

(P≤0.05) post-hoc correction was performed using the AGRICOLAE R package. 
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FIGURE LEGENDS 

Figure 1. Growth cycle of camelina, meteorological data and seed quality parameters. 
(a) Developmental cycle of camelina plants in Bologna (Italy). The average phenological stages and 
days after sowing (DAS) are indicated. 
(b) Meteorological parameters obtained from 50% flowering to seed maturity. Minimum (Tmin), 
average (Tavg) and maximum (Tmax) temperatures (°C), and amount of precipitation (mm) are 
shown. 
(c) Sowing, flowering and harvest dates are indicated for each year studied (2015 to 2019). 
(d, e) Total seed oil (d) and protein (e) contents are shown for each year and genotype. Vertical bars = 
standard deviations. Different letters indicate statistically significant differences (P ≤ 0.05, Tukey’s 
range test). 
 

Figure 2. Molecular Networks and annotation of the seed-specialized metabolites 
(a) The molecular networks are shown for metabolite analyses carried out in positive (ESI+) and 
negative (ESI-) ionization modes. Different colours correspond to different metabolic classes. 
Metabolites are grouped based on their chemical structures. Cosine similarity scores of 0.8 and 0.75 
were used for ESI+ and ESI-, respectively. 
(b) Percentage of specialized metabolites present in a molecular network with or without an 
annotation. 
(c) Histogram showing the annotated/known metabolic categories identified in camelina seeds. The 
number of metabolites that belong to each category is indicated in the figure. 
 

Figure 3. Genetic and environmental impact on the accumulation of seed-specialized metabolites. 
(a) Venn diagram and histogram indicating the number of Differentially Accumulated Metabolites 
(DAMf) according to the Environment, Genotype and Genotype x Environment (GxE) factors. 
(b) Number of induced (yellow) and repressed (blue) DAMf for each year and genotype. The DAM 
numbers are cumulative and were calculated considering all the statistical comparisons for each year 
and/or genotype. 
(c) Hierarchical clustering analysis using the amounts of metabolites. The results are shown separately 
for years and genotypes. 
 

Figure 4. Enriched metabolic categories 
(a) Histograms showing the annotated and not-annotated enriched metabolic categories using DAM 
affected by the genotype (G) and the environment (E). The number of metabolites that belong to each 
category is indicated. 
(b) Heat maps showing the average metabolite accumulation separately for years and genotypes for 
each enriched metabolic category. The accumulation values were calculated as a percentage related to 
the sample showing the highest accumulation value for each metabolite (100% and 40% for yellow 
and blue colours, respectively) within years or genotypes. 
 

Figure 5. Specialized metabolites co-accumulation networks. 
The accumulation patterns were used to calculate correlations (r > 0.7) among metabolites and define 
the clusters. Only the metabolites belonging to enriched categories were considered in this analysis. 
The metabolites from each enriched category are highlighted with different colours. 
 

Figure 6. Flavonol co-accumulation network. 
Clusters and accumulation patterns are shown for the flavonols present in co-accumulation networks. 



 
 

The boxplots represent the accumulation patterns for each metabolite in all years and genotypes. The 
m/z, retention time, MetGem cluster and annotations are also shown for each metabolite. The 
accumulation values (boxplots) were normalized and calculated as a percentage related to the sample 
showing the highest accumulation value for each metabolite (100% for the highest accumulation 
value) within years or genotypes. 
 

Figure 7. Flavonol-related pathways and clusters 
Biological pathway representing flavonol-related metabolites. The boxplots represent the 
accumulation patterns for each metabolite in all years. The accumulation values (boxplots) were 
normalized and calculated as a percentage related to the sample showing the highest accumulation 
value for each metabolite (100% for the highest accumulation value) within years or genotypes. 
 

Figure 8. Comparison and phenotypic plasticity of seed primary and specialized metabolites, and oil 
composition in OMEGA and 789-02 varieties. 
(a) Heat maps showing the average metabolite accumulation, from 2015 to 2019, for differentially 
accumulated metabolites belonging to specialized and primary metabolic categories. The accumulation 
patterns were used to calculate correlations (r > 0.8) among metabolites and assign a metabolic class to 
a specific cluster. The accumulation values were calculated as a percentage related to the sample 
showing the highest accumulation value for each metabolite (100% and 0% for yellow and blue 
colours, respectively) within years or genotypes. 
(b) Boxplots showing the Relative Distance Plasticity Index (RDPI), representing the phenotypic 
plasticity for the main specialized and primary (sugars, free amino acids, carboxylic acids, lipids and 
proteins) metabolic categories. RDPI index is comprised between 0 (low/no plasticity) and 1 (very 
high plasticity). 
 
Figure 9. Seed oil composition in OMEGA and 789-02 varieties. 
(a, b) Fatty acid (a) and lipid (b) profiles and accumulation patterns are shown. Heat maps showing the 
average metabolite accumulation according to the different years are shown. The accumulation values 
were calculated as a percentage related to the sample showing the highest accumulation value for each 
metabolite (100% and 40% for yellow and blue colours, respectively) within years or genotypes. 
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