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Abstract—The ability to detect, localize and classify objects
that are anomalies is a challenging task in the computer vision
community. In this paper, we tackle these tasks developing
a framework to automatically inspect the railway during the
night. Specifically, it is able to predict the presence, the image
coordinates and the class of obstacles. To deal with the low-
light environment, the framework is based on thermal images
and consists of three different modules that address the problem
of detecting anomalies, predicting their image coordinates and
classifying them. Moreover, due to the absolute lack of publicly-
released datasets collected in the railway context for anomaly
detection, we introduce a new multi-modal dataset, acquired
from a rail drone, used to evaluate the proposed framework.
Experimental results confirm the accuracy of the framework and
its suitability, in terms of computational load, performance, and
inference time, to be implemented on a self-powered inspection
system.

I. INTRODUCTION

Anomaly detection is defined as the identification of sam-

ples which exhibit significant differences with respect to

the regularity. The ability of autonomous systems to detect

and recognize unknown objects or events is crucial in many

application domains, ranging from defect detection [1], video

surveillance [2], medical imaging [3] to reinforcement learn-

ing [4]. The large majority of literature works about anomaly

detection assume that acquisition devices are in a fixed position

and then images and videos have static backgrounds [5]. For

instance, this is the case of methods relying on data collected

by video surveillance [6] or industrial cameras [7].

Moreover, several works perform anomaly detection relying

on a supervised approach [8], [9], that usually requires time-

consuming manual annotations, together to the unrealistic

assumption that all anomaly patterns are available during

the training process. Only recently, some works investigate

the anomaly detection task on videos acquired through a

dashboard-mounted camera on a moving ego-vehicle for traffic

accident detection on roads [5].

In this paper, we propose a framework for the anomaly

detection task on videos acquired from a moving camera.

Specifically, our framework is able to detect, i.e. predict if

a frame is regular or anomalous, to localize, i.e. predict the

image coordinates, and to identify, i.e. predict the class object,

anomalies in thermal video sequences, as shown in Figure 2.

The framework is created for the automatic inspection of

railways based on thermal images and the vision acquisition

system is implemented on a rail drone, a small and light-

weight vehicle, operated by remote control. Thus, a reduced

energy consumption and real time performance are required.

The inspection of railways, i.e. the activity to check the

absence of obstacles placed on the railroad that could damage

or derail trains, is a key element to guarantee the safety

of transports. Due to the vastness of railways, an automatic

inspection conducted during nighttime, when the train circu-

lation is usually suspended, is strongly demanded.

Therefore, we collect a new dataset, namely Vesuvio, that

contains more than 30k frames acquired during the night

through a vision system based on a synchronized stereo,

thermal and standard RGB cameras. The dataset contains more

than 50 anomalous and regular (non-anomalous) sequences.

Anomalies consist in various objects, usually employed in rail

yards, and depicted in Figure 1, in the thermal domain.

Summarizing, the main contributions are the following:

• We present a new framework for the automatic inspection

of railways during the night. The framework is based on

thermal images and consists of three different modules

to detect, localize and classify anomalies in video se-

quences.

• We present a new dataset, Vesuvio, specifically created for

the anomaly detection task with moving cameras. To the

best of our knowledge, this is the first publicly-released

dataset acquired from a rail drone during the night.

• The proposed framework achieves good accuracy and real

time performance, representing a suitable solution for a

self-powered system installed on a rail drone.

II. RELATED WORK

Anomaly Detection Generally, literature works that

address the anomaly detection task are divided in two

different approaches: reconstruction-based models and

probabilistic methods. The former propose to learn a

parametric reconstruction of normal data, through traditional

sparse-coding algorithms [10], [11], deep autoencoders [2]

or generative adversarial networks [6]. A similar approach is

the future frame prediction: in [12] anomalies are detected

comparing the differences between a predicted future frame

and the current acquired frame.



The latter rely on the approximation of a density function of

motion features and normal appearance. In this case, optical

flow and trajectory analysis exploiting non-parametric [13]

and parametric [14] estimators are usually used. Recently,

the introduction of deep learning-based representations has

grown [3], [15].

Even though methods for anomaly detection with fixed

cameras achieve the state-of-the-art accuracy, highly dynamic

scenarios, such as the railway inspection with images

taken from a drone, pose challenges in reconstruct what is

considered as regular [5]. Besides, we observe that these

types of work are mainly focused on video surveillance

scenarios [16], [17].

Only a minor part of the works on anomaly detection

are based on moving cameras. In [5], an unsupervised

approach is proposed for traffic accident detection. The

vision acquisition system is a dashboard-mounted camera

and the key idea of this method is to predict the future

locations of traffic participants in order to avoid car crashes.

In [18], a dataset of crowd-sourced dash camera images is

presented and a supervised method to detect anomalies, in

terms of driving offences and motorbike and car collisions

on roads, is proposed. Abati et al. [19] proposed an anomaly

detection method on an automotive dataset [20], but the visual

content is purposely discarded, maintaining only eye fixations.

Anomaly Detection on Railways In general, a very limited

amount of works exploit visual data in the railway scenario,

for similar tasks such as anti-collision prediction [21], [22]

and track detection [23], [24], [25]. Only few works tackle

the task of anomaly detection applied on this specific context.

Unfortunately, we note that datasets are often not publicly

available.

Usually, literature works exploit the use of infrared or ultra-

sonic range sensors placed on trains. In [26], a system based

on a range sensor is proposed in order to perform obstacle

detection. An infrared emitter is placed in the frontal part

of the locomotive and a light turns on when an object is

detected within a range distance. In [27] authors proposed

a framework based on infrared sensors and GSM and GPS

signals addressing the obstacle detection and avoidance and

the train tracking. Similar to the previous work, an infrared

sensor is used to detect the presence of obstacles in front

of the locomotive. In [28] a Lidar and a vision system are

implemented, the two sensor outputs are then merged to detect

frontal obstacles.

Only recently, in [29] a public dataset for semantic scene

understanding for trains and trams, namely RailSem19, is

introduced. This dataset covers a variety of tasks, such as clas-

sification of trains, switches, switch states, platforms, buffer

stops, rail traffic signs and rail traffic lights. Unfortunately,

obstacles have not been considered. In [30], infrared sensors

are not placed on the train, but on the railway sides: the lack of

connection between emitters and receivers reveals the presence

of obstacles.

In general, we note that solutions based only on a vision

system are not present in the literature. In addition, there is a

lack of datasets acquired on railways through a vision-based

system.

III. Vesuvio DATASET

To the best of our knowledge, this is the first dataset

collected for the anomaly detection task in a railway scenario

during the night. As mentioned above, the dataset is acquired

placing a variety of cameras in the front part of a rail drone,

so cameras are placed very close to the cobbled road.

Data is collected during the night since the inspection activities

are planned to be done when the train circulation is usually

suspended.

Considering the aforementioned elements, there are three main

aspects that have to be taken into account for the choice of

the acquisition devices, directly derived from the automotive

context [31]:

• Night Vision: acquisition cameras have to deal with the

night time of the acquisition process [32]. This issue is

tackled with the adoption of external light sources and

thermal cameras. It is important to note that there are

limitations in the power consumption of light sources

since the rail drone is self-powered.

• Fast acquisition: the frame rate, expressed in terms of

frames per second (fps), and the shutter speed of the

cameras must be high enough to avoid motion blur [33]

caused by the high speed of the drone (up to 100 km/h).

• High Resolution: in order to guarantee that even small-

size objects are detected by the vision system, acquisition

cameras with a high spatial resolution are needed.

To comply with these requirements, the following cameras are

employed:

• Flir Boson 6401: this is a high-resolution thermal camera

which is able to acquire frames with a spatial resolution

of 640 × 480 pixels, up to 60 frames per second. This

camera, due to its form factor (21×21×11 mm), weight

(7.5g) and limited energy consumption (only 500mW) is

particularly suitable to be installed on the rail drone. The

camera is equipped with a 14mm lens.

• Zed stereo camera2: this is a stereo camera specifically

created for the outdoor setting. It has a resolution of

4416×1242 pixels and it is able to acquire 3D surround-

ings up to 20 meters of distance, ranging from 15 to 100
frames per second depending on the resolution. It needs

a dedicated graphics processing unit to run in real time

and an external light source.

• Basler acA800-510uc3: this industrial RGB camera has

a high frame rate (500 fps) that imposes a limited spatial

resolution of 800 × 600 pixels. The camera is equipped

with a 75mm zoom lens. Also in this case, an external

light source is required.

1https://prod.flir.it/products/boson
2https://www.stereolabs.com/zed
3https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/

aca800-510uc

https://prod.flir.it/products/boson
https://www.stereolabs.com/zed
https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca800-510uc
https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca800-510uc


(a) Electrical Insulator (b) Fuel tank (c) Rail signal (d) Pickaxe

(e) Locking turnout (f) Track lifting jack (g) Traffic light (h) Insulating stick

(i) LPG tank (j) Balise (k) Oiler (l) No anomaly

Fig. 1: Anomaly classes included in the Vesuvio dataset. Images of the thermal domain.

The Vesuvio dataset consists of more than 10k frames.

Every frame is manually annotated with the presence and the

location (bounding box) of obstacles. There are 11 classes of

anomalies, i.e. objects placed on the railway:

• Electrical insulator

• Fuel tank

• Rail signal

• Pickaxe

• Locking turnout

• Track lifting jack

• Traffic light

• Insulating stick

• LPG tank

• Balise

• Oiler

All classes are depicted in Figure 1 in the thermal domain

(the domain exploited in the proposed framework). These

objects are the common tools that are in construction sites

along the railways.

IV. PROPOSED FRAMEWORK

We propose a framework consisting of 3 different mod-

ules, each specialized in a different task: anomaly detection,

anomaly localization and anomaly classification, as shown in

Figure 2. Frames acquired by the vision system, placed in

the frontal part of the rail drone, are the input data of the

architecture. In particular, in this paper we employ the frames

collected through the thermal camera. We detail each module,

in terms of task, architecture and training procedure, in the

following paragraphs.

A. Anomaly Detection Module

Taking inspiration from [34], the first module of the frame-

work performs the anomaly detection task. In our case, the

goal is to predict if an acquired frame contains or not anoma-

lies, i.e. obstacles on the rails.

The input of the module is a single thermal frame. Since

cameras are placed in a fixed position on the drone, their

height from soil is always the same. Therefore, input images

are cropped to discard meaningless areas of the acquired frame

(i.e. area outside the railways, see Fig. 2). The output of the

module is represented by a binary frame label.

The model consists of 2 different networks: their size is limited

to balance detection accuracy, inference speed and energy

consumption. The first network is a deep encoder-decoder

architecture [35], here referred merely as autoencoder, that

receives as input only regular frames (during the training)

and outputs the reconstructed ones. Then, such reconstruction

should represent a clean image devoid of any anomaly. This

reconstruction is, then, compared with the input through an

absolute and a gradient difference, i.e. a difference computed

only on the gradients, of the two images. The 2 resulting

images are then stacked as a dual-channel image and used

as input for the second network of the module, that predicts

the presence or the absence of anomalies into the frame. The

use of difference images as input leads this second network to

use both the information in terms of difference in textures and



Fig. 2: Overall view of the proposed system. In green, the Anomaly Detection module: given a thermal frame as input, the

module predict if the frame contains or not an anomaly. If yes, the module of Anomaly Localization (orange) is activated and

predicts the localization of the anomaly in the given input frame. Finally, the Anomaly Classification module (blue) identifies

the class of the anomaly. Details about the deep architectures are reported in Section IV.

patches (absolute difference) and the difference in contours

and lines (gradient distance).

These steps are reported in the green part of figure 2.

Model. As mentioned above, this module consists in 2 differ-

ent architectures and accepts input images with a resolution

of 192× 192 pixels. The first network is an encoder-decoder

model, in which the encoder part consists in 9 convolutional

layers with stride s = 2, only the first and the last two layers

have stride s = 1. The decoder part is symmetrical: it is

composed of 9 transpose convolutional layer to up-sample the

feature maps, first two and the last have stride s = 1, the

remaining s = 2. All layers of the encoder and decoder parts

have kernel size k = 3. Except for the first layer, the size of

the feature map is doubled (and then halved) at each layer,

starting from 16, arriving to 1024 in the bottleneck, then back

to 16 again at the end of the decoder. The final output is still

an image with size 192 × 192 pixels. For all layers, Leaky

ReLu [36] with slope s = 10−2 is used as activation function.

This deep architecture has ≃ 22M parameters.

The second network of the module is a CNN that has the

same architecture of the previous encoder, but the number of

filters is halved (from 8 to 256) and the last convolutional

layer is removed. After this layer, feature maps are flatten

and 2 linear layers are added in order to output the binary

classification (anomaly or not-anomaly). The first linear layer

has 48 units, while the second one has 2 units. There is a

dropout regularization layer with drop probability p = 0.3 in

the middle. This network contains ≃ 700k parameters.

Training. The encoder-decoder architecture is trained with an

unsupervised approach. During the training, the autoencoder

receives only frames without anomalies.

Since the encoder-decoder architecture aims to reconstruct the

input frame, we adopt the commonly used Mean Squared

Error (LMSE) as loss function:

LMSE =
1

MN

M
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m
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(4)

In Equations 1 and 4, I of size M ×N is the input (Ii) of the

reconstructed (Ir) image while GIi and GIr are the gradients

computed respectively on the input and the reconstructed

images.

Equations 2 and 3, firstly described in [37], allow the com-

putation of the gradient along both vertical and horizontal

dimensions of an image. Minimizing this loss is equivalent

to improve the definition of lines and contours in the recon-

structed frame.

Taking inspiration from [38], the final loss L used in the

training procedure is:

L = α · LMSE + β · LGL (5)

In our experiments, we set α = β = 1, while the learning rate

is set to lr = 10−3.

For the second architecture, the Binary Cross Entropy loss

function is exploited with a learning rate of lr = 10−2. The

Adam [39] optimizer is used for the training of both the

architectures.

B. Anomaly Localization Module

The goal of this module is to localize the detected anomaly

in frame coordinates. This module is activated only when the

first one classifies the frame as anomaly. The input is the dual-

channel image computed by the previous module as the stack

of the absolute and the gradient difference. The output is a

probability map, here referred also as heatmap, i.e. a map



TABLE I: Experimental results for the proposed framework. The framework is tested on two dataset splits: “80-20” and

“cross-class”. Details are reported in Section V.

80-20 split Cross-class split

Modules Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Anomaly Detection 0.966 0.989 0.957 0.973 0.848 0.903 0.776 0.835
Anomaly Localization 0.903 0.741 0.989 0.847 0.785 0.521 0.997 0.684
Anomaly Classification 0.970 0.795 0.794 0.785 - - - -

in which the location of the anomaly is expressed with a

bi-variate Gaussian function whose peak is centered on the

anomaly. The probability map is then used to extract a crop

of the detected anomaly which will be classified by the last

module of the framework. This approach allows to overcome

the traditional sliding-window approach, producing benefits

in speed performance and detection accuracy. The module is

represented in the orange area of Figure 2.

Model. The network is based on an encoder-decoder archi-

tecture which is similar to the one exploited in the anomaly

detection module, but differs in some details. In particular,

the number of filters are 8 for the input and the output layer,

the bottleneck have size of 512 and max-pooling layers (with

kernel size k = 3 and stride s = 2) are used instead of

convolutional layers with stride s = 2. The generated heatmap

has the size of the input image, i.e. 192× 192 pixels.

The resulting autoencoder is lighter, in terms of number of

parameters, than the one used in the first module. Indeed,

the aim of this architecture is not the full reconstruction of

the input image, but the generation of a probability map with

a Gaussian function centered on the anomalous object. The

network consists of ≃ 5.5M parameters.

Training. In this case, we employ a supervised training: the

ground-truth probability maps are generated as maps of shape

192 × 192 pixels on which we apply a bi-variate Gaussian

function, centered on the anomalies which have been manually

annotated with bounding boxes in the Vesuvio dataset. In our

experiments, we set σ = 0.25·A, where A is the area in pixels

of the rectangular bounding box. The loss used is the MSE,

as detailed in Equation 1, but computed between the predicted

and the ground truth heatmap, with a learning rate lr = 10−4

and the Adam [39] optimizer.

C. Anomaly Classification Module

The last module of the framework aims to classify a detected

and localized anomaly. Therefore, the deep architecture of

this module acts as a multi-class classifier. The input is the

heatmap computed by the previous module and the initial

thermal image. Through the heatmap, the thermal image is

cropped at the anomaly location (see Section V-A for further

details) and only this portion of the image is classified by the

architecture. The network outputs a probability score on the

list of classes described in Section III and the output of the

module is the class with the higher probability. The module is

represented in the blue area of Figure 2.

TABLE II: Results of the anomaly classification module.

Class Accuracy Precision Recall F1-score

Electrical insulator 0.94 0.54 0.44 0.48
Fuel tank 0.96 0.65 0.76 0.70
Rail signal 0.99 1.0 0.77 0.87

Pickaxe 0.97 0.58 0.92 0.71
Locking turnout 0.99 0.88 0.78 0.82

Track lifting jack 0.98 0.81 0.94 0.87
Traffic light 0.99 0.88 0.95 0.91

Insulating stick 0.98 0.97 0.90 0.94
LPG tank 0.97 0.92 0.79 0.85

Balise 0.93 0.73 0.53 0.62
Olier 0.97 0.79 0.96 0.87

Model. The model is based on a Convolution Neural Network

that is equivalent of the encoder block of the autoencoder

architecture employed in the second module. The last convolu-

tional layer is replaced with 2 linear layers with size 16 and 12
(equal to the number of classes), respectively. The input size is

fixed to 64×64: smaller images are zero-padded while bigger

images are appropriately resized (the bigger side is resized to

64 while the other side is zero-padded). This module has only

600k parameters.

Training. For the training procedure we exploit the class an-

notations in terms of bounding boxes provided in the Vesuvio

dataset. Parameters are optimized by Adam [39] with an initial

learning rate of 10−4, while the Categorical Cross Entropy is

exploited as loss function.

V. EXPERIMENTAL EVALUATION

In this Section, we conduct the experimental evaluation

of the proposed framework. Firstly, we report the metrics

exploited to assess the quality of our method. Then, we collect

result for each single module, in order to understand the

contribution of each module. Finally, we report the results of

the whole pipeline, in terms of accuracy and inference time.

We test the proposed framework on two different settings

of the dataset.

In the first one, we group all the anomaly frames, i.e. frames

that contain an object. Then, for each class, we sample about

80% of frames for the training step and the remaining 20%
for the testing phase. Finally, we randomly sample from the

original dataset an equal number of regular frames both for the

training and testing subsets. We refer to this common dataset

setting as “80-20”.

The second setting is a more-challenging cross-class modality:

we select 3 classes which differ for their appearance (pickaxe,



Fig. 3: Output of the proposed framework. From the left are reported: the thermal input frame, the reconstructed frame, the

absolute and gradient difference images, the heatmap and finally the bounding box (here represented as a green rectangle)

processed by the anomaly classification module. In the third row a regular frame, i.e. a frame without anomalies, is reported.

fuel tank and oiler) for the testing set, and the remaining

8 classes for the training set. Similar to the previous case,

we then sample an equal number of regular frames from the

dataset for both training and testing parts.

A. Metrics

For all the experiments, we use the common accuracy,

precision, recall and F1 metrics. The anomaly detection is a

binary classification task, since a frame is predict as regular

or as anomaly, while the anomaly classification is a multi-

class task, since there are 12 classes in Vesuvio dataset (11
anomalies and 1 class for frames without any object).

For the anomaly localization results, we consider an object as

correctly located if:

IoU(A,B) > τ (6)

where

IoU(A,B) =
Area of Intersection

Area of Union
=

|A ∩B|

|A ∪B| − |A ∩B|
(7)

in which A and B are ground truth and predicted anomaly

bounding boxes, respectively, while the threshold τ is set to

0.3 as used in [40]. Bounding box A is provided in the dataset

annotations, while B is computed by finding the peak of the

Gaussian function in the heatmap and then calculating the

bounding box size as 3 ·σ. Moreover, we compute the average

distance d between the centers of the bounding boxes A and

B, or rather:

d =
1

N

∑

‖cA − cB‖2 (8)

where cA,B are the centers of the bounding boxes A and B

while N is the number of test frames.

B. Results

Results for the anomaly detection, localization and classifi-

cation tasks are reported in Table I. In general, experimental

results confirm that the proposed framework is able to handle

objects never seen during the training phase.

For the anomaly detection module, we observe that the

framework is able to achieve a good accuracy, both in terms of

precision and recall. Thermal data are probably a good choice

and the classification of the difference images (absolute and

gradient differences between input and reconstructed frames)

represents a suitable approach in order to detect anomalies on

the railways. For the anomaly localization module, in addition

to the results in Table I, we report an average distance of



d = 7.3 pixels for the “80-20” split and an average distance

of d = 16.6 pixels in the cross-class modality.

For the anomaly classification task we maintain only the

“80-20” setting, since the classifier is trained and tested on all

classes. General results are reported in Table I, while results

focused on each class are reported in Table II. We observe

that the precision and recall scores are negatively influenced

by the size of the anomaly: for instance, the electrical insulator

is the smallest anomaly in the dataset. Also objects that are

similar, from a visual point of view, to elements typically on

the railway (such as sleepers) present low scores: this is the

case of the pickaxe and balises. Furthemore, we note that the

adoption of a shallow network for the classification task does

not significantly compromise the final performance.

Finally, we test each module for the evaluation of the infer-

ence time. The framework achieves 190 fps for the anomaly

detection module, 130 fps for the anomaly localization and

more than 1000 fps for the object classification task. Overall,

the system is able to run at about 100 fps considering the

whole pipeline, i.e. all modules running at the same time.

This is due to the adoption of architectures that are balanced

between the number of parameters, i.e. the computational load,

and the final accuracy. Tests have been carried out on a PC

equipped with an Intel i7-4790 CPU (3.60 GHz) and a NVidia

P4000. The deep architectures of the framework have been

implemented in Pytorch.

VI. CONCLUSION

In this paper, we proposed a new challenging dataset,

namely Vesuvio, and a multi-stage framework to perform

detection, localization and classification of anomalies on rail-

ways, in order to detect obstacles that could affect the safety

of the train transport. Three different acquisition devices – a

thermal, a stereo and a RGB camera – have been placed on

a rail drone and images have been acquired during nighttime.

Experimental results confirm the effectiveness of the proposed

method Real-time performance is achieved thanks to the use

of shallow deep architectures, balancing a low computational

load and high accuracy. Future work will regard the use of the

stereo data and the intensity images, available in the dataset, in

conjunction with thermal data, to improve the overall accuracy

and the reliability of the system. Furthermore, as reported

in [41], more accurate predictions may be obtained exploiting

the time information embedded in the video acquired.
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