
09 September 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Brahmia, S., Brahmia, Z., Grandi, F., Bouaziz, R. (2021). Versioning Temporal Characteristics of JSON-
based Big Data via the τJSchema Framework. INTERNATIONAL JOURNAL OF CLOUD COMPUTING, 10(5-6),
406-441 [10.1504/IJCC.2021.120387].

Published Version:

Versioning Temporal Characteristics of JSON-based Big Data via the τJSchema Framework

Published:
DOI: http://doi.org/10.1504/IJCC.2021.120387

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/859447 since: 2023-12-07

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1504/IJCC.2021.120387
https://hdl.handle.net/11585/859447

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Versioning temporal characteristics of JSON-based big data via the τJSchema
framework by Safa Brahmia; Zouhaier Brahmia; Fabio Grandi; Rafik Bouaziz
International Journal of Cloud Computing (IJCC), Vol. 10, No. 5/6, 2021

The final published version is available online at:
https://dx.doi.org/10.1504/IJCC.2021.120387

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://dx.doi.org/10.1504/IJCC.2021.120387

 Int. J. Cloud Computing, Vol. X, No. Y, xxxx 1

 Copyright © 201x Inderscience Enterprises Ltd.

Versioning Temporal Characteristics of JSON-based
Big Data via the τJSchema Framework

Safa Brahmia, Zouhaier Brahmia*

Department of Computer Science, Faculty of Economics and

Management, University of Sfax,

Road of the Aerodrome, Km 4.5, P.O.Box 1088, 3018 Sfax, Tunisia

E-mail: safa.brahmia@gmail.com

E-mail: zouhaier.brahmia@fsegs.rnu.tn

*Corresponding author

Fabio Grandi

DISI - Department of Computer Science and Engineering, University

of Bologna

Viale Risorgimento, 2, I-40136 Bologna BO, Italy

E-mail: fabio.grandi@unibo.it

Rafik Bouaziz

Department of Computer Science, Faculty of Economics and

Management, University of Sfax,

Road of the Aerodrome, Km 4.5, P.O.Box 1088, 3018 Sfax, Tunisia

E-mail: rafik.bouaziz@usf.tn

Abstract: In previous work, we have proposed the use of a framework, named
τJSchema (temporal JSON Schema), for the definition and validation of
temporal JSON documents that conform to a temporal JSON schema. A
τJSchema schema is composed of a conventional (i.e., non-temporal) JSON
schema, annotated with a set of temporal logical and temporal physical
characteristics. Subsequently, we have extended τJSchema to support
versioning of conventional JSON schemas. In this work, we complete the
picture by extending our framework to also support versioning of temporal
characteristics. In fact, we propose a suitable versioning technique and provide
a complete set of low-level change operations for the maintenance of these
characteristics; for each operation, we define its arguments and its operational
semantics. With this extension, τJSchema provides a full support of temporal
versioning of JSON-based Big Data at both instance and schema levels.

Keywords: Big Data, NoSQL, JSON, JSON Schema, τJSchema, Conventional
JSON schema, Temporal JSON schema, Temporal logical characteristic,
Temporal physical characteristic, Schema change, Schema versioning

Reference to this paper should be made as follows: Brahmia, S., Brahmia, Z.,
Grandi, F. and Bouaziz, R. (xxxx) ‘Versioning Temporal Characteristics of
JSON-based Big Data via the τJSchema Framework’, Int. J. Cloud Computing,
Vol. , No. , pp. .

Biographical notes: Safa Brahmia is currently a PhD student in Computer

 S. Brahmia et al.

Science at the Faculty of Economics and Management of the University of
Sfax, Tunisia. She is working on temporal and multi-schema-version JSON-
based NoSQL databases. She is a member of the Multimedia, InfoRmation
systems, and Advanced Computing Laboratory (MIRACL) since 2015. She
received her MSc degree in Computer Science, in December 2014, from the
Faculty of Economics and Management of the University of Sfax.

Zouhaier Brahmia is currently an Associate Professor of Computer Science in
the Department of Computer Science at the Faculty of Economics and
Management of the University of Sfax, Tunisia. He is a member of the
Multimedia, InfoRmation systems, and Advanced Computing Laboratory
(MIRACL). His scientific interests include temporal databases, schema
versioning, and temporal, evolution and versioning aspects in emerging
databases (XML, and NoSQL), Big Data, and Semantic Web ontologies. He
received an MSc degree in Computer Science, in July 2005, and a PhD in
Computer Science, in December 2011, from the Faculty of Economics and
Management of the University of Sfax.

Fabio Grandi has been an Associate Professor at the University of Bologna,
Italy, since 1998, currently in the Department of Computer Science and
Engineering. From 1989 to 2012 he has worked at the CSITE center of the
Italian National Research Council (CNR) in Bologna in the field of neural
networks and temporal databases, initially supported by a CNR fellowship. In
1993 and 1994 he was an Adjunct Professor at the Universities of Ferrara, Italy,
and Bologna. He was appointed as Research Associate at the University of
Bologna in 1994. His scientific interests include temporal, evolution and
versioning aspects in data management, WWW and Semantic Web, knowledge
representation, storage structures and access cost models. He received a Laurea
degree cum Laude in Electronics Engineering and a PhD in Electronics
Engineering and Computer Science from the University of Bologna.

Rafik Bouaziz is currently a Full Professor of Computer Science at the Faculty
of Economics and Management of the University of Sfax, Tunisia. He was the
president of the University of Sfax between 2014 and 2017, and the director of
the “Economy, Management, and Computer Science” doctoral school, in the
same university, between 2011 and 2014. In his PhD thesis (defended in 1988),
he has dealt with temporal data management and historical record of data in
Information Systems. The subject of his habilitation (obtained in 2007) was “A
contribution for the management of data and schema versioning in advanced
information systems”. His current research interests are temporal databases,
real-time databases, information systems engineering, ontologies, data
warehousing and workflows.

This paper is a revised and expanded version of a paper entitled ‘Managing
temporal and versioning aspects of JSON-based big data via the τJSchema
framework’ presented at The International Conference on Big Data and Smart
Digital Environment (ICBDSDE’2018), Casablanca, Morocco, 29–30
November 2018.

1 Introduction

Nowadays, Big Data (Chen and Zhang, 2014; IRMA, 2016; Khosla and Kaur, 2018) are

being exchanged and stored in the Cloud to be used in various applications like Internet

of Things, healthcare systems, social networks, big science projects and Smart Cities.

 Versioning Temporal Characteristics of JSON-based Big Data via the τJSchema
Framework

Moreover, both structures (or definitions) of Big Data and their instances are evolving

over time and changing at a very high speed, to reflect changes in users’ requirements or

in the reference world of the database. Moreover, several modern applications, which

exploit Big Data, require a complete history of all Big Data versions and all changes

performed on both data instances and their schemas (Cuzzocrea, 2015), in order to allow

(i) recovering past Big Data versions, (ii) tracking changes over time, and (iii) executing

temporal queries (Snodgrass et al., 1995) on temporal Big Data. However, although the

schema versioning technique —which consists in creating a new schema version each

time a schema change is applied, while preserving old schema versions with their

corresponding data (Brahmia et al., 2015)— has long been advocated to be the best

solution to this issue, no technical support is currently available. In fact, state-of-the-art

Big Data management systems, especially NoSQL database management systems1

(Cattell, 2010; Tiwari, 2011; Pokorný, 2013; Sharma et al., 2014; Gudivada et al., 2014;

Sharma et al., 2015; Corbellini et al., 2017; Davoudian et al., 2018), do not provide

solutions for handling either temporal evolution and versioning aspects of Big Data.

Therefore, the designers and developers of the aforementioned applications have to

proceed in an ad hoc manner when they should deal with Big Data evolution while

keeping track of all versions of Big Data and their schemas, or when they should allow

time-slice queries to be evaluated, or when it is required to specify a comprehensive

schema for time-varying Big Data.

In order to efficiently manage and query Big Data evolution over time, we think that

we should have Big Data management systems with built-in temporal support. To this

purpose, in our previous work (Brahmia et al., 2016), we have proposed the adoption of a

framework named τJSchema (temporal JSON Schema) for a disciplined and systematic

approach to the temporal management of JSON-based Big Data in NoSQL databases.

The τJSchema infrastructure includes a data model and suite of tools that allow the

NoSQL Database Administrator (NSDBA) to create and validate temporal JSON

documents (which store time-varying Big Data) through the use of a temporal JSON

schema (which defines the structure of these temporal Big Data and to which obey the

temporal JSON documents). A τJSchema schema consists in a conventional (i.e., non-

temporal) JSON schema (IETF, 2013a) annotated with a set of temporal logical and

temporal physical characteristics. Changing the definition of the temporal characteristics,

according to the evolution of the application requirements can make a big difference in

the resulting temporal Big Data representation. It is worth mentioning that the temporal

logical and physical characteristics are orthogonal and are independently maintained,

while they are stored together in a single JSON document (IETF, 2014), named the

temporal characteristics document and associated to the conventional JSON schema.

In its initial definition (Brahmia et al., 2016), τJSchema was proposed as an

infrastructure for managing JSON documents with time-varying instances that are valid

to a static schema; only instance versioning was supported at that stage. Nevertheless,

since each one of the three components of a τJSchema schema —namely conventional

JSON schema, temporal logical characteristics, and temporal physical characteristics—

could also evolve over time to respond to new applications’ requirements, in (Brahmia et

al., 2017) we augmented the τJSchema capabilities with the support of versioning of

1 http://www.nosql-database.org/

 S. Brahmia et al.

conventional JSON schemas. In this work, as in its preliminary version (Brahmia et al.,

2018a), we complete the picture by extending our framework to also support versioning

of temporal logical and temporal physical characteristics. Indeed, we propose a technique

for temporal characteristics versioning, and provide a complete set of low-level change

operations for the maintenance of these characteristics. For each one of the proposed

operations, we define its arguments and its operational semantics. Thus, with this

extension, τJSchema will fully support temporal versioning of JSON-based Big Data at

both instance and schema levels, and consequently will provide bookkeeping of a fully-

fledged history of Big Data changes.

The remainder of this paper is organized as follows. Section 2 briefly describes the

τJSchema framework. Section 3 presents our approach for versioning of temporal (logical

and physical) characteristics. Section 4 introduces the schema change operations that we

propose for the maintenance of temporal logical and physical characteristics. Section 5

illustrates our approach through an application example. Section 6 discusses related

work. The last section summarizes the paper and gives some remarks about our future

work.

2 The τJSchema Framework

In this section, we provide a detailed description of our τJSchema framework (Brahmia et

al., 2016) for handling temporal JSON documents. Its definition was inspired by the well-

known τXSchema framework proposed for XML documents in (Currim et al., 2004;

Snodgrass et al., 2008) and further developed in (Brahmia et al., 2014; Brahmia et al.,

2018b), with which it shares the same organization.

The τJSchema framework allows a NSDBA to create a temporal JSON schema for

temporal JSON data instances from a conventional JSON schema, temporal logical

characteristics, and temporal physical characteristics. The τJSchema organization is based

on the following principles: (i) separation between the conventional schema and the

temporal schema, and between the conventional instances and the temporal instances; (ii)

use of logical and physical characteristics to specify temporal logical and temporal

physical aspects, respectively, at schema level.

Figure 1 illustrates the architecture of τJSchema. Notice that only the components that

are presented in the figure as rectangular boxes with one continuous line border (i.e.,

boxes 1, 2, 3, and 4) are specific to an individual time-varying JSON document and need

to be supplied by a NSDBA. The framework is based on the JSON Schema language

(IETF, 2013a).

The NSDBA starts by creating the conventional JSON schema (box 1), which is a

traditional JSON Schema document that models a given real world entity, without any

temporal aspect. To each conventional JSON schema corresponds a set of conventional

(i.e., non-temporal) JSON documents or JSON Schema instances (box 2). Any change to

the conventional JSON schema is propagated to its corresponding instances.

After that, the NSDBA augments the conventional schema with temporal logical and

temporal physical characteristics, which allow him/her to express, in an explicit way, all

requirements dealing with the representation and the management of temporal aspects

associated to the components of the conventional schema, as described below.

Temporal logical characteristics (Currim et al., 2004) allow the NSDBA to specify (i)

whether a conventional schema component (e.g., property, object) varies over valid time

 Versioning Temporal Characteristics of JSON-based Big Data via the τJSchema
Framework

and/or transaction time, (ii) whether its lifetime must be described as a continuous state

or a single event, (iii) whether the component itself may appear at certain times (and not

at others), and (iv) whether its content changes. If no logical characteristics are provided,

the default logical characteristic is that anything can change. However, once the

conventional schema is annotated, components that are not described as time-varying are

static and, thus, they must have the same value across every conventional JSON

document instance (box 2).

Figure 1 The architecture of τJSchema (Brahmia et al., 2016).

Temporal physical characteristics (Currim et al., 2004) specify the timestamp

representation options chosen by the NSDBA, such as where the timestamps are placed

and which kind of representation is adopted for their implementation.. The location of

timestamps is largely independent of which components vary over time. Timestamps can

be located either on time-varying components (as specified by the logical characteristics)

or somewhere above such components in the data structure hierarchical organization.

Two JSON documents with the same logical characteristics will look very different if we

change locations of their physical timestamps. Changing some aspects of even one

timestamp may give rise to very different representations. τJSchema supplies a default set

of physical characteristics, which is to timestamp the root property with valid and

transaction times. However, explicitly defining them can lead to more compact

representations (Currim et al., 2004).

Although the two sets of temporal characteristics are orthogonal and can evolve

independently, they are stored together in a single JSON document associated to the

conventional schema which is a standard JSON document named the temporal

characteristics document. The schema for the logical and physical characteristics is given

by TCSchema (box 5) which is JSON Schema document (IETF, 2013a).

 S. Brahmia et al.

Finally, the NSDBA finishes by annotating the conventional schema and asks the

system to save his/her work. Consequently, the system creates the temporal JSON

schema (box 6) providing the linking information between the conventional schema and

its corresponding logical and physical characteristics. The temporal schema is a standard

JSON document, which ties the conventional schema, the logical characteristics, and the

physical characteristics together. In the τJSchema framework, the temporal JSON schema

is the logical equivalent of the conventional JSON schema in a non-temporal

environment. This document associates a series of conventional schema definitions with

temporal characteristics, along with the time span during which the association was in

effect. The schema for the temporal JSON schema document is given by TSSchema (box

7) which is JSON Schema document.

After creating the temporal schema, the system creates a temporal JSON document

(box 8) in order to link each conventional JSON document (box 2), which is valid to a

conventional JSON schema (box 1), to its corresponding temporal JSON schema (box 6),

and more precisely to its corresponding logical and physical characteristics (which are

referenced by the temporal JSON schema). A temporal document is a standard JSON

document that maintains the evolution of a non-temporal JSON document over time, by

keeping track of all the versions (or temporal slices) of the document with their

corresponding timestamps and by specifying the temporal schema associated to these

versions. This document associates a series of conventional JSON documents with logical

and physical characteristics, along with the time span during which the association was in

effect. Therefore, the temporal JSON document facilitates the support of temporal queries

involving past JSON document versions or dealing with changes between JSON

document versions. The schema for the temporal document is the JSON Schema

document TDSchema (box 9).

Notice that, whereas TCSchema (box 5), TSSchema (box 7), and TDSchema (box 9)

have been developed in this work, JSON Schema (box 0) corresponds to the existing

language endorsed by the Internet Engineering Task Force (IETF, 2013a) for specifying

the structure of JSON documents (IETF, 2014).

The temporal JSON schema (box 6) is processed by the temporal JSON schema

validator tool in order to ensure that the logical and physical characteristics are (i) valid

with respect to TCSchema, and (ii) consistent with the conventional schema. The

temporal JSON schema validator tool reports whether the temporal JSON schema

document is valid or invalid.

Once all the characteristics are found to be consistent, the JSON schema mapper tool

generates the representational JSON schema (box 11) from the temporal JSON schema

(i.e., from the conventional JSON schema plus the logical and physical characteristics); it

is the result of transforming the conventional schema according to the requirements

expressed through the different temporal characteristics. The representational JSON

schema becomes the schema for temporal JSON data instances (box 10). These temporal

instances could be obtained in four ways:

(i) automatically from the temporal JSON document (box 8) (i.e., from non-temporal

JSON instances (box 2) and the temporal JSON schema (box 6)), using the JSON

instances squasher tool;

(ii) automatically from instances stored in a JSON-based NoSQL database, that is as the

result of a “temporal query” or a “temporal view”;

(iii) automatically from a third-party tool;

(iv) manually: temporal JSON instances are directly added by the NSDBA to the

 Versioning Temporal Characteristics of JSON-based Big Data via the τJSchema
Framework

τJSchema repository.

Moreover, temporal JSON instances are validated against the representational JSON

schema through the temporal JSON instances validator tool, which reports whether the

temporal JSON instances (box 10) are valid or invalid.

The four mentioned tools (i.e., Temporal JSON Schema Validator, Temporal JSON

Instances Validator, JSON Schema Mapper, and JSON Instances Squasher) are currently

under development. For example, the temporal JSON instances validator tool is being

implemented as a temporal extension of an existing conventional JSON instances

validator (IETF, 2013b).

3 Versioning of Temporal Logical and Physical Characteristics

In this section, we describe how τJSchema logical and physical characteristics are

versioned in our approach.

The first step of a schema versioning process is the creation of the first temporal

JSON schema version: the NSDBA creates a conventional JSON Schema document (i.e.,

a classical JSON Schema file) annotated with some logical and physical characteristics in

an independent document (which is also stored as a JSON file). Consequently, the system

generates the temporal JSON schema (also stored as a JSON file) that ties together the

conventional schema and the temporal characteristics. In further steps of the versioning

process, when necessary, the NSDBA can independently change the conventional

schema, the temporal logical characteristics or the temporal physical characteristics.

Changing the conventional schema leads to a new version of it. Similarly, changing

temporal logical and/or physical characteristics leads to a new version of the whole

temporal characteristics document. Therefore, the temporal JSON schema is

automatically updated after each change to the conventional JSON schema or to the

temporal characteristics document, in order to take into account the new version of the

corresponding changed component. In this paper, we do not deal with changes to the

conventional schema.

Notice that change operations performed by the NSDBA are in general high-level,

since they are usually conceived having in mind high-level real-world object properties.

However, in this work, we focus on the definition of low-level primitive change

operations, since high-level change operation can be expressed as the composition of

low-level change operations that can be applied in sequence. To this end, we will propose

a complete set of low-level operations by means of which the NSDBA will be able to

perform any simple/complex change to the temporal characteristics document (based on

the structure of this latter).

4 Operations for Changing Temporal Logical and Physical Characteristics

In this section, we define low-level operations for changing temporal logical and physical

characteristics in τJSchema. For each one of these operations, we provide a description of

its arguments and its operational semantics. The definition of all these operations is based

on (i) the schema (or the structure) of the temporal characteristics document (TCD) that

we have constructed, as explained in the first subsection, titled “The Schema of Temporal

 S. Brahmia et al.

Characteristics Documents”, and (ii) some common design choices that we have

introduced in the second subsection, titled “Design Choices”.

4.1 The Schema of Temporal Characteristics Documents

In the architecture of our τJSchema framework (Brahmia et al., 2016), the schema for the

temporal logical and physical characteristics is given by TCSchema (box 5) which is a

JSON Schema (IETF, 2013a) file that describes the structure of any temporal

characteristics document. This schema has been only mentioned in our previous work

(Brahmia et al., 2016) without being provided. The full listing of its JSON Schema code

can be found in Figure A1 of Appendix 1.

The analysis of TCShema allows us to determine the list of components of any TCD

(e.g., logical, logicalItems, timeDimension, validTime, transactionTime, physical,

stamps, stampKind, stampBounds). Based on this list, we will propose all possible

change operations that could be executed on each component, by creating, modifying or

dropping it.

4.2 Design choices

The definition of the primitives will obey the following design choices:

• All operations must have a valid temporal characteristics document

(TCD) as input and must produce a valid TCD as output.

• All operations need to work on a JSON file storing the TCD, whose name

must be supplied as first argument.

• For all operations, arguments which are used to identify the object on

which the operation works are in the first place of the argument list.

• Components which are just containers for other components (e.g., logical,

physical) can be managed by the operations concerning the components,

without specific operations acting on them (i.e., the container is created

when the first sub-component is created and is deleted when the last sub-

component is deleted).

• Operations adding objects with possibly optional properties have the

values for all the properties as arguments; empty places in the argument

list stand for unspecified optional properties.

• We use Add…/Change… operations for all components (objects or

properties) which have multiple occurrences (e.g., “logicalItem”,

“stamp”); a single Set… operation is used for adding/changing

components with occurrences <=1 (e.g., “validTime”, “stampKind”).

By applying the design choices presented above and taking into account the different

components of the TCSchema file, we have defined a set of forty (40) low-level

operations. We have organized this set into four subsets: (i) operations acting on the

entire TCD, (ii) operations that are common to the logical and to the physical

characteristics, (iii) operations that are specific to the logical characteristics, and (iv)

operations that are specific to the physical characteristics.

For each change operation, we describe its arguments and its operational semantics.

Obviously, each operation change has an effect on the TCD. Due to space limitations, we

 Versioning Temporal Characteristics of JSON-based Big Data via the τJSchema
Framework

do not present in this paper the effects of all change operations but only of some selected

operations.

4.3 Operations Acting on the Whole Temporal Characteristics Document

We have defined two change operations, as listed in Table 1. In the following, we choose

to present only the effect of the CreateTemporalCharacteristicDocument(TCD.json)

change operation. The contents of the TCD.json file after the application of such an

operation is as follows:

{ "temporalCharacteristicSet":{ } }

Table 1 Change operations acting on the whole temporal characteristic document

Change operation Description

CreateTemporalCharacteristicDocument(

TCD.json)

It creates a valid empty TCD. The argument is

the name of the JSON file where the new TCD

is stored.

DropTemporalCharacteristicDocument(

TCD.json)

It removes the TCD.json file from the disk,

with the constraint that the argument

represents an empty TCD (i.e. like the one

above initially created by

CreateTemporalCharacteristicDocument). Any

other contents must have been removed

before.

4.4 Operations Common to the Temporal Logical and Physical Characteristics

These change operations can be applied either to the “logical” or to the “physical”

container. We have defined six change operations; we provide them in Table 2.

Table 2 Change operations common to the temporal logical and physical characteristics

Change operation Description

AddInclude(TCD.json, inWhat,

temporalCharacteristicLocation)

It adds a new object as a new item, with specified

“temporalCharacteristicLocation”, to the “include”

array in the inWhat (i.e., “logical” or “physical”)

container.

DeleteItemFromInclude(TCD.json,

inWhat,

temporalCharacteristicLocation)

It removes the item with specified

“temporalCharacteristicLocation” from the “include”

array in the inWhat (i.e., “logical” or “physical”)

container.

ChangeItemInInclude(TCD.json,

inWhat,

oldTemporalCharacteristicLocation,

newTemporalCharacteristicLocation)

It changes the value of the property

“temporalCharacteristicLocation” of the item with

specified “oldTemporalCharacteristicLocation” to the

value “newTemporalCharacteristicLocation”, in the

“include” array in the inWhat (i.e., “logical” or

“physical”) container.

 S. Brahmia et al.

Change operation Description

AddDefaultTimeFormat(TCD.json,

toWhat, plugin, granularity, calendar,

properties, valueSchema)

It adds the “defaultTimeFormat” property with

specified plugin, granularity, calendar, properties,

and valueSchema to the toWhat (i.e., “logical” or

“physical”) container.

DeleteDefaultTimeFormat(TCD.json,

fromWhat)

It removes the “defaultTimeFormat” property from

the fromWhat (i.e., “logical” or “physical”)

container.

SetDefaultTimeFormat(TCD.json,

inWhat, plugin, granularity, calendar,

properties, valueSchema)

It changes the plugin, granularity, calendar,

properties, or valueSchema of the

“defaultTimeFormat” property in the inWhat (i.e.,

“logical” or “physical”) container.

Here, we choose to present only the effect of the AddInclude change operation. The

contents of the TCD.json file after the application of such an operation is as follows:

If (inWhat == logical) Then
TCD.json:

{ "temporalCharacteristicSet":{

 "logical":{

 "include":[

 "temporalCharacteristicLocation":"temporalCharacteristicLocation"

]

 },

 "physical":{ … } } }

Else
TCD.json:

{ "temporalCharacteristicSet":{

 "logical":{ },

 "physical":{

 "include":[

 "temporalCharacteristicLocation":"temporalCharacteristicLocation"

] } } }

4.5 Operations Specific to the Temporal Logical Characteristics

These change operations can be applied to the “logical” container only. We have

identified twenty-two change operations of this kind; we provide them in Table 3. Here,

we choose to present only the effect of the AddLogicalItem change operations. The

contents of the TCD.json file after the application of such an operation is as follows:

{ "temporalCharacteristicSet":{

 "logical":{

 "logicalItems":[{ "target":"logicalItemTarget" }]

 },

 "physical":{ … } } }

Table 3 Change operations specific to the temporal logical characteristics

Change operation Description

 Versioning Temporal Characteristics of JSON-based Big Data via the τJSchema
Framework

Change operation Description

AddLogicalItem(TCD.json,

logicalItemTarget)

It adds a new item with specified “logicalItemTarget”

to the “logicalItems” array in the “logical” container.

DeleteLogicalItem(TCD.json,

logicalItemTarget)

It removes the item with specified

“logicalItemTarget” from the “logicalItems” array in

the “logical” container.

AddValidTimeToLogicalItem(

TCD.json, logicalItemTarget,

validTimeKind, validTimeContent,

validTimeExistence,

validTimeFrequency)

It adds the “validTime” property with specified

“validTimeKind”, “validTimeContent”,

“validTimeExistence” and “validTimeFrequency” to

the item with specified “logicalItemTarget” in the

“logicalItems” array in the “logical” container.

Notice that possible values of the three last

arguments are as follows:

• validTimeKind: either “state”or “event”.

• validTimeContent: either “constant” or “varying”.

• validTimeExistence: one of “constant”,

“varyingWithGaps”, “varyingWithoutGaps”.

DeleteValidTimeFromLogicalItem(

TCD.json, logicalItemTarget)

It removes the “validTime” property from the item

with specified “logicalItemTarget” in the

“logicalItems” array in the “logical” container.

SetValidTimeInLogicalItem(

TCD.json, logicalItemTarget,

validTimeKind, validTimeContent,

validTimeExistence,

validTimeFrequency)

It changes the “kind”, “content”, “existence” and/or

“frequency” properties of the “validTime” property

of the item with specified “logicalItemTarget” in the

“logicalItems” array in the “logical” container.

AddContentVaryingApplicabilityTo

ValidTimeInLogicalItem(TCD.json,

logicalItemTarget,

contentVaryingApplicabilityBegin,

contentVaryingApplicabilityEnd)

It adds a new object as a new item with specified

“contentVaryingApplicabilityBegin” and

“contentVaryingApplicabilityEnd” to the

“contentVaryingApplicabilities” array, in the

“validTime” property of the item specified with

“logicalItemTarget” in the “logicalItems” array in the

“logical” container.

DeleteContentVaryingApplicabilityF

romValidTimeInLogicalItem(

TCD.json, logicalItemTarget,

contentVaryingApplicabilityBegin,

contentVaryingApplicabilityEnd)

It removes the item with specified

“contentVaryingApplicabilityBegin” and

“contentVaryingApplicabilityEnd” from the

“contentVaryingApplicabilities” array, in the

“validTime” property of the item with specified

“logicalItemTarget” in the “logicalItems” array in the

“logical” container.

ChangeContentVaryingApplicabilityI

nValidTimeInLogicalItem(TCD.json,

logicalItemTarget,

oldContentVaryingApplicabilityBegin,

oldContentVaryingApplicabilityEnd,

newContentVaryingApplicabilityBegin,

newContentVaryingApplicabilityEnd)

It changes the value of the “begin” and/or the “end”

property of the item with specified

“oldContentVaryingApplicabilityBegin” and

“oldContentVaryingApplicabilityEnd” in the

“contentVaryingApplicabilities” array in the

“validTime” property of the item with specified

“logicalItemTarget” in the “logicalItem” array in the

 S. Brahmia et al.

Change operation Description

“logical” container.

SetMaximalExistenceInValidTimeIn

LogicalItem(TCD.json,

logicalItemTarget,

maximalExistenceBegin,

maximalExistenceEnd)

It adds or changes the “maximalExistence” property,

with specified “maximalExistenceBegin” and

“maximalExistenceEnd”, to the “validTime” property

of the item with specified “logicalItemTarget” in the

“logicalItems” array in the “logical” container.

DeleteMaximalExistenceFromValidT

imeInLogicalItem(TCD.json,

logicalItemTarget,

maximalExistenceBegin,

maximalExistenceEnd)

It removes the “maximalExistence” property, with

specified “maximalExistenceBegin” and

“maximalExistenceEnd”, from the “validTime”

property of the item with specified

“logicalItemTarget” in the “logicalItems” array in the

“logical” container.

AddTransactionTimeToLogicalItem(

TCD.json, logicalItemTarget,

transactionTimeKind,

transactionTimeContent,

transactionTimeExistence)

It adds the “transactionTime” property, with

specified “transactionTimeKind”,

“transactionTimeContent”, and

“transactionTimeExistence”, to the item with

specified “logicalItemTarget” in the “logicalItems”

array in the “logical” container. Notice here that the

four last arguments are optional.

DeleteTransactionTimeFromLogicalI

tem(TCD.json, logicalItemTarget)

It removes the “transactionTime” property from the

item with specified “logicalItemTarget” in the

“logicalItem” array in the “logical” container.

SetTransactionTimeInLogicalItem(

TCD.json, logicalItemTarget,

transactionTimeKind,

transactionTimeContent,

transactionTimeExistence)

It changes the “kind”, “content”, and/or “existence”

of the “transactionTime” property of the item with

specified “logicalItemTarget” in the “logicalItems”

array in the “logical” container.

AddItemIdentifierToLogicalItem(

TCD.json, logicalItemTarget,

itemIdentifierName,

itemIdentifierTimeDimension)

It adds the “itemIdentifier” property with specified

“itemIdentifierName” and

“itemIdentifierTimeDimension” to the item with

specified “logicalItemTarget” in the “logicalItems”

array in the “logical” container.

Possible values of the

“itemIdentifierTimeDimension” argument are:

validTime, transactionTime, or bitemporal; default is

validTime.

DeleteItemIdentifierFromLogicalIte

m(TCD.json, logicalItemTarget)

It removes the “itemIdentifier” property from the

item with specified “logicalItemTarget” in the

“logicalItems” array in the “logical” container.

SetItemIdentifierInLogicalItem(

TCD.json, logicalItemTarget,

itemIdentifierName,

itemIdentifierTimeDimension)

It changes the “name”, and/or “timeDimension” of

the “itemIdentifier” property in the item with

specified “logicalItemTarget” in the “logicalItems”

array in the “logical” container.

AddKeyrefToItemIdentifier(

TCD.json, logicalItemTarget,

keyrefName,keyrefType)

It adds an object as a new item of the array “keyrefs”,

with specified “keyrefName” and “keyrefType”, to

the “itemIdentifier” property of the item with

 Versioning Temporal Characteristics of JSON-based Big Data via the τJSchema
Framework

Change operation Description

specified logicalItemTarget of the “logicalItems”

array in the “logical” container.

DeleteKeyrefFromItemIdentifier(

TCD.json, logicalItemTarget,

keyrefName)

It removes the item with specified keyrefName in

“keyrefs” array from the “itemIdentifier” property of

the item with specified logicalItemTarget of the

“logicalItems” array in the “logical” container

ChangeKeyrefInItemIdentifier(

TCD.json, logicalItemTarget,

oldkeyrefName, newkeyrefName,

oldkeyrefType, newkeyrefType)

It changes the value of refName property and/or the

value of the refType property of the item specified

with oldkeyrefName, in the “keyrefs” array in the

“itemIdentifier” property of the item with specified

“logicalItemTarget” in the “logicalItem” array in the

“logical” container.

AddFieldToItemIdentifier(TCD.json,

logicalItemTarget, fieldPath)

It adds an object as a new item of the “fields” array,

with specified “fieldPath”, to the “itemIdentifier”

property of the item with specified

“logicalItemTarget” in the “logicalItem” array in the

“logical” container.

DeleteFieldFromItemIdentifier(

TCD.json, logicalItemTarget, fieldPath)

It removes the item, with specified “fieldPath”, from

the “fields” array in the “itemIdentifier” property of

the item with specified “logicalItemTarget” in the

“logicalItem” array, in the “logical” container.

ChangeFieldInItemIdentifier(

TCD.json, logicalItemTarget,

oldFieldPath, newFieldPath)

It changes the item, with specified “oldFieldPath”, to

“newFiledpath”, in the “fields” array in the

“itemIdentifier” property of the item with specified

“logicalItemTarget” in the “logicalItem” array, in the

“logical” container.

4.6 Operations Specific to the Temporal Physical Characteristics

These change operations can be applied to the “physical” container only. We have

defined ten change operations, which are listed in Table 4. Here, we choose to present

only the effect of the AddStamp change operations. The contents of the TCD.json file

after the application of such an operation is as follows:

{ "temporalCharacteristicSet":{

 "logical":{ … },

 "physical":{

 "stamps":[{ "target":"physicalStampTarget",

 "dataInclusion":"stampDataInclusion",

 "stampKind":{

 "timeDimension":"stampKindTimeDimension",

 "stampBounds":"stampKindStampBounds"

 } }] } } }

Table 4 Change operations specific to the temporal physical characteristics

Change operation Description

 S. Brahmia et al.

Change operation Description

AddStamp(TCD.json, stampTarget,

stampDataInclusion,

stampKindTimeDimension,

stampKindStampBounds)

It adds an object as a new item of the “stamps” array,

with specified “stampTarget” and

“stampDataInclusion”, to the “physical” container.

Moreover, it adds to this item the “stampKind”

property with specified

“stampKindTimeDimension”, and

“stampKindStampBounds”.

Possible values of some arguments are as follows:

• “stampDataInclusion”: one of expandedEntity,

referencedEntity, expandedVersion, or

referencedVersion.

• “stampKindTimeDimension”: one of validTime,

transactionTime, or bitemporal.

• “stampKindStampBounds”: either step or extent.

DeleteStamp(TCD.json,stampTarget)
It removes the item with specified “stampTarget”

from the “stamps” array in the “physical” container.

SetDataInclusionInStamp(TCD.json,

stampTarget, stampDataInclusion)

It introduces or changes the “dataInclusion” property

of the item, with specified “stampTarget”, in the

“stamps” array in the “physical” container.

SetStampKindInStamp(TCD.json,

stampTarget,

stampKindTimeDimension,

stampKindStampBounds)

It introduces or changes the “timeDimension” and/or

“stampBounds” of the “stampKind” property of the

item, with specified “stampTarget”, in the “stamps”

array in the “physical” container.

SetFormatInStampKindInStamp(

TCD.json, stampTarget, stampPlugin,

stampGranularity, stampCalendar,

stampProperties, stampValueSchema)

It adds or changes the “format” property, with

specified “stampPlugin”, “stampGranularity”,

“stampCalendar”, “stampProperties”, and

“stampValueSchema”, to the “stampKind” property

of the item, with specified “stampTarget”, in the

“stamps” array in the “physical” container.

DeleteFormatFromStampKindInSta

mp(TCD.json, stampTarget)

It removes the “format” property from the

“stampKind” property of the item, with specified

stampTarget, in the “stamps” array in the “physical”

container..

AddOrderByFieldToStamp(

TCD.json, stampTarget,

newOrderByField)

It adds a new item “newOrderByField” to the

“fields” array of the “orderBy” property of the item,

with specified “stampTarget”, in the “stamps” array

in the “physical” container.

DeleteOrderByFieldFromStamp(

TCD.json, stampTarget, orderByField)

It removes the “field” property having the value

“orderByField” from the “orderBy” property of the

item, with specified “stampTarget”, in the “stamps”

array in the “physical” container. When the last

“field” is removed, also the “orderBy” property

container is removed.

Here, “orderByField” is either the value of the

property “dimension” of a “time” property, or the

value of a “target” property in a “field” property of

 Versioning Temporal Characteristics of JSON-based Big Data via the τJSchema
Framework

Change operation Description

the “orderBy” property.

DeleteOrderByFieldFromStamp(

TCD.json, stampTarget, orderByField)

It removes the item “orderByField” from the “fields”

array of the “orderBy” property of the item, with

specified “stampTarget”, in the “stamps” array in the

“physical” container. When the last item of “fields”

is removed, also the “orderBy” property container is

removed.

ChangeOrderByFieldInStamp(

TCD.json, stampTarget,

oldOrderByField, newOrderByField)

It changes the item having the value

“oldOrderByField” in the “fields” array to the value

“newOrderByField”, in the “orderBy” property of the

item, with specified “stampTarget”, in the “stamps”

array in the “physical” container.

5 Application Example

As a motivating application example, we consider an international IT company that uses

a JSON repository for storing data concerning its employees. We assume that on January

15, 2018, the NSDBA have created the first version of the conventional JSON schema of

the employees shown in Figure 2. In particular, each employee in this company is

described by an SSN, a name, a title, and a salary. An example of a conventional JSON

document, that is an instance of this JSON schema, is provided in Figure 3.

{ "$schema":"http://json-schema.org/draft-04/schema#",

 "id": "http://jsonschema.net",

 "type": "object",

 "properties":{

 "employees":{

 "id":"http://jsonschema.net/employees",

 "type": "array",

 "items":{

 "type":"object",

 "properties":{

 "employee":{

 "type":"object",

 "properties":{

 "SSN":{"type":"string"},

 "name":{"type":"string"},

 "title":{"type":"string"},

 "salary":{"type":"number"} },

 "required":["SSN", "name", "title", "salary"] } },

 "required":["employee"] } } },

 "required": ["employees"] }

Figure 2 The first version of the conventional JSON schema of the employees

(employeesConventionalSchema_V1.json) on January 15, 2018.

 S. Brahmia et al.

{ "employees":[

 { "employee":{ "SSN":"18-X01-657A",

 "name":"Khalil",

 "title":"Developer",

 "salary":"3000" } }] }

Figure 3 The first version of the conventional JSON document of the employees

(employeesConventionalDocument_V1.json) on January 15, 2018.

Then, the NSDBA annotated this first version of the conventional JSON schema with

some temporal logical and physical characteristics. As to logical characteristics, we

assume that he/she decided to represent the contents of the “salary” property as varying in

valid-time, in order to keep the history along valid time of the changes the salary of each

employee undergoes. As to physical characteristics, we assume that he/she chose to add a

transaction-time physical timestamp to the object “employee”, which means that

whenever any property of the object “employee” changes, the entire “employee” object is

duplicated to represent a new temporal version while the previous version is retained for

archival purposes. The first version of the temporal characteristics document associated

to the conventional schema of the employees is shown in Figure 4.

{ "temporalCharacteristicSet":{

 "logical":{

 "logicalItems":[

 {"target":"$.properties.employees..employee.properties.salary",

 "validTime":{

 "kind":"state",

 "content":"varying",

 "existence":"constant" } }] },

 "physical":{

 "stamps":[

 { "target":"$.properties.employees.items.properties.employee",

 "dataInclusion":"expandedVersion",

 "stampKind":{

 "timeDimension":"transactionTime",

 "stampBounds":"extent" } }] } } }

Figure 4 The first version of the temporal characteristics document

(employeesTemporalCharacteristics_V1.json) on January 15, 2018.

Finally, when the application of changes to the conventional JSON schema has been

completed, the NSDBA asks the system to save his/her work. In response, the system

creates the temporal JSON schema in order to provide the linking information between

the conventional JSON schema and its corresponding temporal logical and physical

characteristics (stored in the temporal characteristics document), as shown in Figure 5.

Notice that the temporal schema is a standard JSON document that ties the conventional

JSON schema, logical characteristics, and physical characteristics together. The temporal

JSON schema in the τJSchema environment is the equivalent of the conventional JSON

Schema in the non-temporal JSON environment. This document contains objects (i.e.

“slice” objects) that associate a series of conventional JSON schema definitions with

 Versioning Temporal Characteristics of JSON-based Big Data via the τJSchema
Framework

logical and physical characteristics, along with the time span during which the

association was in effect.

{ "temporalJSONSchema":{

 "conventionalJSONSchema":{

 "sliceSequence":[

 { "slice":{

 "location":"employeesConventionalSchema_V1.json",

 "begin":"2018-01-15" } }] },

 "temporalCharacteristicSet":{

 "sliceSequence":[

 { "slice":{

 "location":"employeesTemporalCharacteristics_V1.json",

 "begin":"2018-01-15" } }] } } }

Figure 5 The temporal JSON schema of the employees (employeesTemporalSchema.json) on

January 15, 2018.

Furthermore, let us assume that on April 10, 2018, the NSDBA decided to keep the

history of the salary of each employee along both transaction and valid times. Hence,

he/she has to change the first version of the temporal characteristics document in order to

modify the logical item related to the “salary” property by adding a “transactionTime”

object. We assume that he/she also decided to add another physical timestamp (having a

bitemporal kind) to the property “salary”. The second version of the temporal

characteristics document is shown in Figure 6. Thus, the temporal JSON schema is also

updated by adding a new slice object related to this new version of the characteristics

document, as shown in Figure 7. Changes are presented in purple bold type.

{ "temporalCharacteristicSet":{

 "logical":{

 "logicalItems":[

 {"target":"$.properties.employees..employee.properties.salary",

 "validTime":{

 "kind":"state",

 "content":"varying",

 "existence":"constant" },

 "transactionTime":{

 "kind":"state",

 "content":"varying",

 "existence":"constant" } }] },

 "physical":{

 "stamps":[

 {"target":"$.properties.employees.items.properties.employee",

 "dataInclusion":"expandedVersion",

 "stampKind":{

 "timeDimension":"transactionTime",

 "stampBounds":"extent" } },

 {"target":"$.properties.employees..employee.properties.salary",

 S. Brahmia et al.

 "dataInclusion":"expandedVersion",

 "stampKind":{

 "timeDimension":"bitemporal",

 "stampBounds":"extent" } }] } } }

Figure 6 The second version of the temporal characteristics document

(employeesTemporalCharacteristics_V2.json) on April 10, 2018.

{ "temporalJSONSchema":{

 "conventionalJSONSchema":{

 "sliceSequence":[

 { "slice":{

 "location":"employeesConventionalSchema_V1.json",

 "begin":"2018-01-15" } }] },

 "temporalCharacteristicSet":{

 "sliceSequence":[

 { "slice":{

 "location":"employeesTemporalCharacteristics_V1.json",

 "begin":"2018-01-15" } },

 { "slice":{

 "location":"employeesTemporalCharacteristics_V2.json",

 "begin":"2018-04-10" } }] } } }

Figure 7 The temporal JSON schema of the employees (employeesTemporalSchema.json) on April

10, 2018.

The sequence of change operations that have been specified by the NSDBA and

performed on the temporal JSON schema (employeesTemporalSchema.json, Figure 5)

and on the first version of the temporal characteristics document

(employeesTemporalCharacteristics_V1.json, Figure 4) in order to update the temporal

JSON Schema (see Figure 7) and to produce the second version of the temporal

characteristics document (employeesTemporalCharacteristics_V2.json, Figure 6), can be

expressed as the body of following schema change transaction:

Begin Transaction

(i) CreateNewJSONDocumentVersion(

"employeesTemporalCharacteristics_V2.json",

"employeesTemporalCharacteristics_V1.json")

(ii) AddTransactionTimeToLogicalItem(

"employeesTemporalCharacteristics_V2.json",

"$.properties.employees..employee.properties.salary", state,

varying, constant)

(iii) AddStamp("employeesTemporalCharacteristics_V2.json",

"$.properties.employees..employee.properties.salary",

expandedVersion, bitemporal, extent)

(iv) AddSliceToTemporalJSONSchema("employeesTemporalSchema.json",

temporalCharacteristicSet, current,

"employeesTemporalCharacteristics_V2.json")

Commit

 Versioning Temporal Characteristics of JSON-based Big Data via the τJSchema
Framework

Notice that the transaction time associated to the execution of the transaction above is

April 10, 2018, which is used by the system as value of the property “begin” of the new

“slice” object corresponding to the new temporal characteristics document version, in the

temporal JSON schema file. The first operation of this schema change transaction has

been used to facilitate the creation of a new version of the characteristics document. In

fact, we assume that the operation “CreateNewJSONDocumentVersion(NewJDV.json,

ExistingJDV.json)” initially generates a new JSON document version “NewJDV.json”

from an existing one “ExistingJDV.json” as a copy of it. After that, “NewJDV.json” is

updated by the other operations of the schema change transaction in order to obtain, in

the end, a new JSON document version that is actually different from the initial one

according to the schema change specifications. As far as the last operation is concerned,

it allows the addition to the temporal JSON schema of a new “slice” object, in order to

take into account the creation of the new temporal characteristics document version.

6 Related Work

In the literature on Big Data and NoSQL databases devoted to store such data, to the best

of our knowledge, there is no work that has dealt either with versioning and temporal

aspects. However, there are some works that have separately studied temporal Big Data

or versioning of non-temporal Big Data. In the following, we briefly present them.

In his survey, Cuzzocrea (2015) presents the state-of-the-art on temporal aspects of

big data management (e.g., spatio-temporal modeling of Big Data, change detection in

temporally-evolving network Big Data), and (ii) provides several future research

directions related to this topic (e.g., indexing temporal Big Data, in-memory processing

engines for temporal Big Data management). Among these topics, “integration with

NoSQL platforms” can be found and the author claims that NoSQL systems are the most

suitable computational platforms for managing temporal Big Data.

Since NoSQL databases could be document-oriented, key-value-oriented, graph-

oriented or column-oriented, we organize the works that are related to our paper into

three sets, according to the type of NoSQL database in which the work has been done.

In document-oriented NoSQL databases, Monger et al. (2012) use four particular

properties (i.e., StartTransactionTime, EndTransactionTime, StartValidTime, and

EndValidTime) to represent and store bi-temporal data in a JSON document; they

integrate temporal aspects into conventional JSON documents. Mehmood et al. (2017)

propose an approach for modeling temporal aspects of sensor Big Data for the MongoDB

NoSQL DBMS, without dealing with the versioning/evolution issue of such data.

Furthermore, Scherzinger and her colleagues have significantly contributed to the

research done on JSON schema evolution, in JSON-based document-oriented NoSQL

data stores. Their papers (Scherzinger et al., 2013, 2015a, 2015b, 2016; Klettke et al.,

2016; Haubold et al., 2017) are presented in the following.

Scherzinger et al. (2013) propose a set of five low-level operations for adding,

modifying and removing properties of entities, in a JSON NoSQL database that supports

schema evolution (i.e., where only the last version of the structure of each entity is

maintained).

In (Scherzinger et al., 2015a), the authors describe a system prototype, named

 S. Brahmia et al.

Cleager, that supports the operations introduced in (Scherzinger et al., 2013) and

propagates changes eagerly (i.e., changes to the structure of an entity are automatically

propagated to all instances of this entity).

Scherzinger et al. (2015b) present an Ecplise plugin, named ControVol, that

propagates schema changes to instances, in a lazy manner. In fact, it (i) detects changes to

entities’ structures (e.g., removal of a property of an entity) in the program source code

that make them different from structures of entities that are already stored in the NoSQL

data store, (ii) returns warnings to application developers, and (iii) provides solutions to

overcome these warnings.

In (Scherzinger et al., 2016), the authors propose Datalution, a system that supports

the primitives of Scherzinger et al. (2013) and implements the eager and lazy strategies

for propagating schema changes . In this work, it has been shown that the lazy strategy is

more efficient than the eager one.

Klettke et al. (2016) deal with scalability of NoSQL data stores with respect to both

long-term schema evolution (i.e., considering chains of pending schema change

operations that have to be executed together) and lazy migration of underlying (Big Data)

instances. Notice that chains of operations occur when legacy entities written by an

application which then underwent multiple modifications are finally accessed by the

application. In particular, the authors propose a rule-based composition for chains of

pending schema change operations. After that, they experimentally compare four

different scalable implementation strategies for lazy schema evolution on top of

MongoDB: lazy stepwise, lazy composed, predictive, and incremental data migration.

Haubold et al. (2017) propose ControVol Flex, an extension of the ControVol plugin

(Scherzinger et al., 2015b). It allows NoSQL application developers to choose their data

migration strategy (i.e., eager or lazy) when a schema evolution is applied. Moreover, it

could provide a combination of the two strategies, that is starting an eager migration of

data in the background, while lazily migrating legacy entities, if the application requests

access and eager migration has not reached them yet.

With respect to all above mentioned related works, our work has not dealt with

change propagation strategies. We are planning to consider this issue in our future works.

In key-value NoSQL databases, Felber et al. (2014) deal with non temporal

versioning of instances in a distributed key-value store. More precisely, they study design

options that are available for implementing a versioned distributed key-value store on top

of a conventional one. Saur et al. (2016) propose an approach and a tool, named KVolve,

for managing lazy schema evolution in a JSON-based key-value NoSQL database. The

authors experimentally show that their tool reduces downtime during the schema

evolution process.

In graph-oriented NoSQL databases, Castelltort and Laurent (2014) discuss the

criteria that should be fulfilled by a system which allows managing and querying data

history in temporal graph-oriented NoSQL databases. These criteria are as follows:

history, non-intrusivity, time-independence, and pluggability.

The works that are more strictly related with the approach in this paper and in its

preliminary version (Brahmia et al., 2018a) are our previous works (Brahmia et al.,

2016), (Brahmia et al., 2017), and (Brahmia et al., 2019a, 2019b, 2019c). The present

work extends them, as they did not take into account versioning of the temporal

characteristics. In fact, in (Brahmia et al., 2016) we have presented the τJSchema

framework in its initial formulation, without any attention to the schema versioning issue,

whereas in (Brahmia et al., 2017) we have focused on the versioning of conventional

 Versioning Temporal Characteristics of JSON-based Big Data via the τJSchema
Framework

JSON schemas only, without considering the versioning of temporal characteristics. In

(Brahmia et al., 2019a), we have shown how τJSchema could be used to manage (i.e.,

create and validate) time-varying JSON documents. In (Brahmia et al., 2019b), we have

extended (Brahmia et al., 2017) by proposing high-level operations for changing

τJSchema schema, in a multi-schemaversioning environment. In (Brahmia et al., 2019c),

we have proposed an approach for managing implicit schema versioning in τJSchema,

that is schema versioning which is driven by instance updates and not by schema

changes.

7 Conclusion

In this paper, we have completed the proposal of a systematic and comprehensive

approach for managing temporal and versioning aspects of JSON-oriented data through

the τJSchema framework (Brahmia et al., 2016; Brahmia et al., 2017). Precisely, we have

dealt with versioning of temporal logical and physical characteristics that are associated

to a conventional JSON schema. This work completes our previously presented

framework and extends its functionalities to a full support of temporal JSON schema

versioning: with the proposed solutions, both conventional schemas and their temporal

characteristics can be versioned in an integrated and consistent environment.

Furthermore, our approach has been designed in order to provide the following

advantages: (i) being systematic, it avoids the complications that may otherwise arise in

the presence of Big Data, where the management of temporal characteristics evolution

without a systematic approach would rely on the skills of the NSDBA and his/her actions

could produce patchy results with ad hoc modifications cobbled together, (ii) old

temporal characteristics of Big Data as well as new ones are all kept in the same

environment (i.e., changing current temporal characteristics of Big Data leads to their

implicit versioning and not to their overwriting, as in classical approaches where

versioning is not supported) and, consequently, can all be exploited for satisfying

user/applications requirements including temporal querying and analytics.

Currently, we are developing a τJSchema-based system prototype on top of

MongoDB (a document-oriented NoSQL DBMS supporting the management of JSON

documents), in order to show the feasibility of our approach.

As a part of our future work, we will address the problem of querying temporal JSON

instance versions in the presence of multiple JSON schema versions, within the τJSchema

framework. In particular, we plan to extend in this direction the JSONiq query language

(Florescu and Fourny, 2013) that supports querying conventional JSON documents under

a single schema version. Design and deployment of suitable change propagation

strategies (e.g., eager, lazy or variants) is an issue that will also be considered in our

future work.

 S. Brahmia et al.

References

Brahmia, Z., Grandi, F., Oliboni, B. and Bouaziz, R. (2014) ‘Schema Change Operations

for Full Support of Schema Versioning in the XSchema Framework’, International

Journal of Information Technology and Web Engineering, Vol. 9, No. 2, pp. 20-46.

Brahmia, Z., Grandi, F., Oliboni, B. and Bouaziz, R. (2015) ‘Schema Versioning’, in:

Khosrow-Pour, M. (Ed.) Encyclopedia of Information Science and Technology (3rd

edition), IGI Global, Hershey, Pennsylvania, USA, pp. 7651-7661.

Brahmia, S., Brahmia, Z., Grandi, F. and Bouaziz, R. (2016) ‘τJSchema: A Framework

for Managing Temporal JSON-Based NoSQL Databases’, in: Proc. of the 27th

International Conference on Database and Expert Systems Applications

(DEXA’2016), Porto, Portugal, Part 2, pp. 167-181.

Brahmia, S., Brahmia, Z., Grandi, F., Bouaziz, R. (2017) ‘Temporal JSON Schema

Versioning in the τJSchema Framework’, Journal of Digital Information

Management, Vol. 15, No. 4, pp. 179-202.

Brahmia, S., Brahmia, Z., Grandi, F. and Bouaziz, R. (2018a) ‘Managing Temporal and

Versioning Aspects of JSON-based Big Data via the τJSchema Framework’, in: Proc.

of the International Conference on Big Data and Smart Digital Environment

(ICBDSDE’2018), Casablanca, Morocco, Studies in Big Data, Vol. 53, Springer

Nature AG, pp. 27-39.

Brahmia, Z., Grandi, F., Oliboni, B. and Bouaziz, R. (2018b) ‘Supporting Structural

Evolution of Data in Web-Based Systems via Schema Versioning in the τXSchema

Framework’, in: Elçi, A. (Ed.), Handbook of Research on Contemporary Perspectives

on Web-Based Systems, IGI Global, Hershey, PA, USA, 2018, pp. 271-307.

Brahmia, S., Brahmia, Z., Grandi, F. and Bouaziz, R. (2019a) ‘A Disciplined Approach

to Temporal Evolution and Versioning Support in JSON NoSQL Data Stores’, in: Ma,

Z. and Yan, L. (Eds.), Emerging Technologies and Applications in Data Modeling

and Processing, IGI Global, Hershey, PA, USA, 2019, pp. 114-133.

Brahmia, Z., Brahmia, S., Grandi, F. and Bouaziz, R. (2019b) ‘Versioning Schemas of

JSON-based Conventional and Temporal Big Data through High-level Operations in

the τJSchema Framework’, International Journal of Cloud Computing, in press.

Brahmia, Z., Brahmia, S., Grandi, F. and Bouaziz, R. (2019c) ‘Implicit JSON Schema

Versioning Driven By Big Data Evolution in the τJSchema Framework’, in: Proc. of

the 3rd International Conference on Big Data and Networks Technologies

(BDNT’2019), Leuven, Belgium, Lecture Notes in Networks and Systems, Vol. 81,

Springer Nature Switzerland AG, pp. 23-35.

Castelltort, A. and Laurent, A. (2014) ‘Managing and Querying Historical NoSQL

GraphDatabases: The HNTP Criteria’, International Journal of Research in

Information Technology, Vol. 2, No. 2, pp. 184-196.

Cattell, R. (2010) ‘Scalable SQL and NoSQL Data Stores’, ACM SIGMOD Record, Vol.

39, No. 4, pp. 2-27.

Chen, C.P. and Zhang, C.Y. (2014) ‘Data-intensive applications, challenges, techniques

 Versioning Temporal Characteristics of JSON-based Big Data via the τJSchema
Framework

and technologies: A survey on Big Data’, Information Sciences, Vol. 275, pp. 314-

347.

Corbellini, A., Mateos, C., Zunino, A., Godoy, D. and Schiaffino, S.N. (2017) ‘Persisting

big-data: The NoSQL landscape’, Information Systems, Vol. 63, pp. 1-23.

Currim, F., Currim, S., Dyreson, C.E. and Snodgrass, R.T. (2004) ‘A Tale of Two

Schemas: Creating a Temporal XML Schema from a Snapshot Schema with

τXSchema’, in: Proc. of the 9th International Conference on Extending Database

Technology (EDBT 2004), Heraklion, Crete, Greece, pp. 348-365.

Cuzzocrea, A. (2015) ‘Temporal Aspects of Big Data Management: State-of-the-Art

Analysis and Future Research Directions’, in: Proc. of the 22nd International

Symposium on Temporal Representation and Reasoning (TIME’2015), Kassel,

Germany, pp. 180-185.

Davoudian, A., Chen, L. and Liu, M. (2018) ‘A Survey on NoSQL Stores’, ACM

Computing Surveys, Vol. 51, No. 2, Article 40.

Felber, P., Pasin, M., Riviere, E., Schiavoni, V., Sutra, P., Coelho, F., Oliveira, R., Matos

M. and Vilaça, R.M.P. (2014) ‘On the Support of Versioning in Distributed Key-

Value Stores’, in: Proc. of the 33rd IEEE International Symposium on Reliable

Distributed Systems (SRDS 2014), Nara, Japan, pp. 95-104.

Florescu, D. and Fourny, G. (2013) ‘JSONiq: The History of a Query Language’, IEEE

Internet Computing, Vol. 17, No. 5, pp. 86-90.

Gudivada, V.N., Rao D. and Raghavan V.V. (2014) ‘NoSQL Systems for Big Data

Management’, in: Proc. of the 2014 IEEE World Congress on Services

(SERVICES’2014), Anchorage, AK, USA, pp. 190-197.

Haubold, F., Schildgen, J., Scherzinger, S. and Deßloch, S. (2017) ‘ControVol Flex:

Flexible Schema Evolution for NoSQL Application Development’, in: Proc. of the

17th Conference on Database Systems for Business, Technology, and Web

(BTW’2017), Stuttgart, Germany, pp. 601-604.

Information Resources Management Association (IRMA) (2016) Big data: Concepts,

methodologies, tools, and applications, IGI Global, Hershey, PA, USA.

Internet Engineering Task Force (IETF) (2013a) JSON Schema: core definition and

terminology, Internet-Draft, 31 January 2013. https://tools.ietf.org/html/draft-zyp-

json-schema-04 (accessed: November 20, 2019)

Internet Engineering Task Force (IETF) (2013b) JSON Schema: interactive and non

interactive validation, Internet-Draft, 1 February 2013. http://tools.ietf.org/html/draft-

fge-json-schema-validation-00 (accessed: November 20, 2019)

Internet Engineering Task Force (IETF) (2014) The JavaScript Object Notation (JSON)

Data Interchange Format, Internet Standards Track document, March 2014.

Khosla, P.K. and Kaur, A. (2018) ‘Big Data Technologies’, in: Mittal, M., Balas, V.E.,

Hemanth, D.J. and Kumar, R. (Eds.) Data Intensive Computing Applications for Big

Data, IOS Press, Amsterdam, The Netherlands, pp. 28-55.

 S. Brahmia et al.

Klettke, M., Störl, U., Shenavai, M. and Scherzinger, S. (2016) ‘NoSQL Schema

Evolution and Big Data Migration at Scale’, in: Proc. of the 2016 IEEE International

Conference on Big Data (BigData’2016), Washington DC, USA, pp. 2764-2774.

Mehmood, N.Q., Culmone, R. and Mostarda, L. (2017) ‘Modeling temporal aspects of

sensor data for MongoDB NoSQL database’, Journal of Big Data, Vol. 4, paper 8.

Monger, M.D., Mata-Toledo, R.A. and Gupta, P. (2012) ‘Temporal Data Management in

NoSQL Databases’, Journal of Information Systems & Operations Management, Vol.

6, No. 2, pp. 237-243.

Pokorný, J. (2013) ‘NoSQL databases: a step to database scalability in web environment’,

International Journal of Web Information Systems, Vol. 9, No. 1, pp. 69-82.

Saur, K., Dumitras, T. and Hicks, M.W. (2016), ‘Evolving NoSQL Databases Without

Downtime’, in: Proc. of the 32nd IEEE International Conference on Software

Maintenance and Evolution (ICSME’2016), Raleigh, North Carolina, USA, pp. 166-

176.

Scherzinger, S., Klettke, M. and Störl, U. (2013) ‘Managing Schema Evolution in

NoSQL Data Stores’, in: Proc. of the 14th International Symposium on Database

Programming Languages (DBPL’2013), Riva del Garda, Trento, Italy.

Scherzinger, S., Klettke, M. and Störl, U. (2015a) ‘Cleager: Eager Schema Evolution in

NoSQL Document Stores’, in: Proc. of the 16th Conference on Database Systems for

Business, Technology, and Web (BTW’2015), University of Hamburg, Hamburg,

Germany, pp. 659-662.

Scherzinger, S., Cerqueusy, T. and Cunha de Almeida, E. (2015b) ‘ControVol: A

Framework for Controlled Schema Evolution in NoSQL Application Development’,

in: Proc. of the 31st IEEE International Conference on Data Engineering

(ICDE’2015), Seoul, South Korea, pp. 1464-1467.

Scherzinger, S., Sombach, S., Wiech, K., Klettke, M. and Störl, U. (2016) ‘Datalution: a

tool for continuous schema evolution in NoSQL-backed web applications’, in: Proc.

of the 2nd International Workshop on Quality-Aware DevOps

(QUDOS@ISSTA’2016), Saarbrücken, Germany, pp. 38-39.

Sharma, S., Tim, U.S., Wong, J., Gadia, S.K. and Sharma, S. (2014) ‘A brief review on

leading big data models’, Data Science Journal, Vol. 13, pp. 138-157.

Sharma, S., Tim, U.S., Gadia, S.K., Wong, J., Shandilya, R. and Peddoju, S.K. (2015)

‘Classification and comparison of NoSQL big data models’, International Journal of

Big Data Intelligence, Vol. 2, No. 3, pp. 201-221.

Snodgrass, R.T. (ed.), Ahn, I., Ariav, G., Batory, D.S., Clifford, J., Dyreson, C.E.,

Elmasri, R., Grandi, F., Jensen, C.S., Käfer, W., Kline, N., Kulkarni, K., Cliff Leung,

T.Y., Lorentzos, N., Roddick, J.F., Segev, A., Soo, M.D. and Sripada, S.M. (1995)

The TSQL2 Temporal Query Language, Kluwer Academic Publishers, Norwell, MA,

USA.

Snodgrass, R.T., Dyreson, C.E., Currim, F., Currim, S. and Joshi. S. (2008) ‘Validating

quicksand: Temporal schema versioning in τXSchema’, Data and Knowledge

Engineering, Vol. 65, No. 2, pp. 223-242.

 Versioning Temporal Characteristics of JSON-based Big Data via the τJSchema
Framework

Tiwari, S. (2011) Professional NoSQL, John Wiley & Sons, Inc., Indianapolis, Indiana,

USA.

Appendix 1

This appendix provides in Figure A1 the JSON Schema code of TCSchema, the schema

of temporal characteristics documents.

{ "$schema": "http://json-schema.org/draft-04/schema#",

 "id": "http://jsonschema.net",

 "type": "object",

 "title": "TCSchema",

 "required": ["temporalCharacteristicSet"],

 "properties": {

 "temporalCharacteristicSet": {

 "id": "#/properties/temporalCharacteristicSet",

 "type": "object",

 "properties": {

 "logical": {

 "id": "#/properties/temporalCharacteristicSet/properties/

 logical",

 "type": "object",

 "properties": {

 "include": {

 "id": "#/properties/temporalCharacteristicSet/properties/

 logical/properties/include",

 "type": "array",

 "items": {

 "type": "object",

 "required": ["temporalCharacteristicLocation"],

 "properties": {

 "temporalCharacteristicLocation": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/include/

 properties/temporalCharacteristicLocation",

 "type": "string" } } } },

 "defaultTimeFormat": {

 "id": "#/properties/temporalCharacteristicSet/properties/

 logical/properties/defaultTimeFormat",

 "type": "object",

 "properties": {

 "format": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/defaultTimeFormat/

 properties/format",

 "type": "object",

 "properties": {

 "plugin": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 defaultTimeFormat/properties/format/

 properties/plugin",

 "type": "string" },

 "granularity": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 defaultTimeFormat/properties/format/

 properties/granularity",

 S. Brahmia et al.

 "type": "string" },

 "calendar": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 defaultTimeFormat/properties/format/

 properties/calendar",

 "type": "string" },

 "properties": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 defaultTimeFormat/properties/format/

 properties/properties",

 "type": "string" },

 "valueSchema": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 defaultTimeFormat/properties/format/

 properties/valueSchema",

 "type": "string" } } } } },

 "logicalItems": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/logicalItems",

 "type": "array",

 "items": {

 "type": "object",

 "required": ["target"],

 "properties": {

 "target": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/logicalItems/

 properties/target",

 "type": "string" },

 "validTime": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/logicalItems/

 properties/validTime",

 "type": "object",

 "properties": {

 "kind": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/validTime/

 properties/kind",

 "type": "string",

 "enum": ["state", "event"] },

 "content": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/validTime/

 properties/content",

 "type": "string",

 "enum": ["constant", "varying"] },

 "existence": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/validTime/

 properties/existence",

 "type": "string",

 "enum": ["constant", "varyingWithGaps",

 "varyingWithoutGaps"] },

 "contentVaryingApplicabilities": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 Versioning Temporal Characteristics of JSON-based Big Data via the τJSchema
Framework

 logicalItems/properties/validTime/

 properties/contentVaryingApplicabilities",

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "begin": {

 "id": "#/properties/

 temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/

 validTime/properties/

 contentVaryingApplicabilities/

 properties/begin",

 "type": "string" },

 "end": {

 "id": "#/properties/

 temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/

 validTime/properties/

 contentVaryingApplicabilities/

 properties/end",

 "type": "string" } } } },

 "maximalExistence": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/validTime/

 properties/maximalExistence",

 "type": "object",

 "properties": {

 "begin": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/validTime/

 properties/maximalExistence/

 properties/begin",

 "type": "string" },

 "end": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/validTime/

 properties/maximalExistence/

 properties/end",

 "type": "string" } } },

 "frequency": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/validTime/

 properties/frequency",

 "type": "string" } } },

 "transactionTime": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/logicalItems/

 properties/transactionTime",

 "type": "object",

 "properties": {

 "kind": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/transactionTime/

 properties/kind",

 S. Brahmia et al.

 "type": "string",

 "enum": ["state", "event"] },

 "content": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/transactionTime/

 properties/content",

 "type": "string",

 "enum": ["constant", "varying"] },

 "existence": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/transactionTime/

 properties/existence",

 "type": "string",

 "enum": ["constant", "varyingWithGaps",

 "varyingWithoutGaps"] },

 "frequency": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/transactionTime/

 properties/frequency",

 "type": "string" } } },

 "itemIdentifier": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/logicalItems/

 properties/itemIdentifier",

 "type": "object",

 "properties": {

 "name": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/itemIdentifier/

 properties/name",

 "type": "string" },

 "timeDimension": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/itemIdentifier/

 properties/timeDimension",

 "type": "string",

 "enum": ["validTime", "transactionTime",

 "bitemporal"],

 "default": "validTime" },

 "keyrefs": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/itemIdentifier/

 properties/keyrefs",

 "type": "array",

 "items": {

 "type": "object",

 "required": ["refName"],

 "properties": {

 "refName": {

 "id": "#/properties/

 temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/

 itemIdentifier/properties/

 keyrefs/properties/refName",

 "type": "string" },

 "refType": {

 Versioning Temporal Characteristics of JSON-based Big Data via the τJSchema
Framework

 "id": "#/properties/

 temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/

 itemIdentifier/properties/

 keyrefs/properties/refType",

 "type": "string",

 "enum": ["snapshot",

 "itemIdentifier"] } } } },

 "fields": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/itemIdentifier/

 properties/fields",

 "type": "array",

 "items": {

 "type": "object",

 "required": ["path"],

 "properties": {

 "path": {

 "id": "#/properties/

 temporalCharacteristicSet/

 properties/logical/properties/

 logicalItems/properties/

 itemIdentifier/properties/fields/

 properties/path",

 "type": "string" } } } } } } } } } } },

 "physical": {

 "id": "#/properties/temporalCharacteristicSet/properties/

 physical",

 "type": "object",

 "properties": {

 "include": {

 "id": "#/properties/temporalCharacteristicSet/properties/

 physical/properties/include",

 "type": "array",

 "items": {

 "type": "object",

 "required": ["temporalCharacteristicLocation"],

 "properties": {

 "temporalCharacteristicLocation": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/include/

 properties/temporalCharacteristicLocation",

 "type": "string" } } } },

 "defaultTimeFormat": {

 "id": "#/properties/temporalCharacteristicSet/properties/

 physical/properties/defaultTimeFormat",

 "type": "object",

 "properties": {

 "format": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/

 defaultTimeFormat/properties/format",

 "type": "object",

 "properties": {

 "plugin": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/

 defaultTimeFormat/properties/

 format/properties/plugin",

 "type": "string" },

 S. Brahmia et al.

 "granularity": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/

 defaultTimeFormat/properties/

 format/properties/granularity",

 "type": "string" },

 "calendar": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/

 defaultTimeFormat/properties/

 format/properties/calendar",

 "type": "string" },

 "properties": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/

 defaultTimeFormat/properties/

 format/properties/properties",

 "type": "string" },

 "valueSchema": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/

 defaultTimeFormat/properties/

 format/properties/valueSchema",

 "type": "string" } } } } },

 "stamps": {

 "id": "#/properties/temporalCharacteristicSet/properties/

 physical/properties/stamps",

 "type": "array",

 "items": {

 "type": "object",

 "required": ["target", "stampKind"],

 "properties": {

 "target": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/stamps/

 properties/target",

 "type": "string"

 },

 "dataInclusion": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/stamps/

 properties/dataInclusion",

 "type": "string",

 "enum": ["expandedEntity", "referencedEntity",

 "expandedVersion", "referencedVersion"] },

 "stampKind": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/stamps/

 properties/stampKind",

 "type": "object",

 "properties": {

 "timeDimension": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/stamps/

 properties/stampKind/properties/

 timeDimension",

 "type": "string",

 "enum": ["validTime", "transactionTime",

 "bitemporal"] },

 "stampBounds": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/stamps/

 properties/stampKind/properties/

 Versioning Temporal Characteristics of JSON-based Big Data via the τJSchema
Framework

 stampBounds",

 "type": "string",

 "enum": ["step", "extent"] },

 "format": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/stamps/

 properties/stampKind/properties/

 format",

 "type": "object",

 "properties": {

 "plugin": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/

 stamps/properties/stampKind/

 properties/format/properties/plugin",

 "type": "string"

 },

 "granularity": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/

 stamps/properties/stampKind/

 properties/format/properties/

 granularity",

 "type": "string" },

 "calendar": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/

 stamps/properties/stampKind/

 properties/format/properties/

 calendar",

 "type": "string" },

 "properties": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/

 stamps/properties/stampKind/

 properties/format/properties/

 properties",

 "type": "string" },

 "valueSchema": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/

 stamps/properties/stampKind/

 properties/format/properties/

 valueSchema",

 "type": "string" } } } } },

 "orderBy": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/stamps/

 properties/orderBy",

 "type": "object",

 "properties": {

 "fields": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/stamps/

 properties/orderBy/properties/fields",

 "type": "array",

 "items": {

 "id": "#/properties/temporalCharacteristicSet/

 properties/physical/properties/stamps/

 properties/orderBy/properties/fields/

 items",

 "type": "object",

 S. Brahmia et al.

 "oneOf": [

 {

 "properties": {

 "target": {

 "id": "#/properties/

 temporalCharacteristicSet/

 properties/physical/

 properties/stamps/

 properties/orderBy/

 properties/fields/

 items/properties/target",

 "type": "string" } } },

 {

 "properties": {

 "time": {

 "id": "#/properties/

 temporalCharacteristicSet/

 properties/physical/

 properties/stamps/

 properties/orderBy/

 properties/fields/

 items/properties/time",

 "type": "object",

 "required": ["dimension"],

 "properties": {

 "dimension": {

 "id": "#/properties/

 temporalCharacteristicSet/

 properties/physical/

 properties/stamps/

 properties/orderBy/

 properties/fields/

 items/properties/

 time/properties/

 dimension",

 "type": "string",

 "enum": ["validTime",

 "transactionTime",

 "bitemporal"]

 } } } } }] } } } } } } } } } } } } }

Figure A1 TCSchema: The JSON Schema for the specification of temporal logical and physical

characteristics.

	Copertina_postprint_IRIS_UNIBO (2) - Copy
	IJCC2001b_submitted

