
08 February 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Audrito G., Casadei R., Damiani F., Stolz V., Viroli M. (2021). Adaptive distributed monitors of spatial
properties for cyber–physical systems. THE JOURNAL OF SYSTEMS AND SOFTWARE, 175, 1-22
[10.1016/j.jss.2021.110908].

Published Version:

Adaptive distributed monitors of spatial properties for cyber–physical systems

Published:
DOI: http://doi.org/10.1016/j.jss.2021.110908

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/858380 since: 2022-02-14

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.jss.2021.110908
https://hdl.handle.net/11585/858380

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Volker Stolz, Mirko Viroli,
Adaptive distributed monitors of spatial properties for cyber–physical systems,
Journal of Systems and Software, Volume 175, 2021, 110908, ISSN 0164-1212,

The final published version is available online at:
https://doi.org/10.1016/j.jss.2021.110908

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://doi.org/10.1016/j.jss.2021.110908

Adaptive distributed monitors of spatial properties for
cyber-physical systems

Giorgio Audritoa, Roberto Casadeib, Ferruccio Damiania, Volker Stolzc, Mirko
Virolib

aDipartimento di Informatica, University of Turin, Turin, Italy
bDISI, Alma Mater Studiorum – Università di Bologna, Cesena, Italy

cDepartment of Computing, Mathematics and Physics, Western Norway University of
Applied Sciences, Bergen, Norway

Abstract

Cyber-physical systems increasingly feature highly-distributed and mobile de-
ployments of devices spread over large physical environments: in these contexts,
it is generally very difficult to engineer trustworthy critical services, mostly
because formal methods generally hardly scale with the number of involved
devices, especially when faults, continuous changes, and dynamic topologies
are the norm. To start addressing this problem, in this paper we devise a
formally correct and self-adaptive implementation of distributed monitors for
spatial properties. We start from the Spatial Logic of Closure Spaces, and pro-
vide a compositional translation that takes a formula and yields a distributed
program that provides runtime verification of its validity. Such programs are
expressed in terms of the field calculus, a recently emerged computational model
that focusses on global-level outcomes instead of single-device behaviour, and
expresses distributed computations by pure functions and the functional compo-
sition mechanism. By reusing previous results and tools of the field calculus, we
prove correctness of the translation, self-stabilisation of the derived monitors,
and empirically evaluate adaptivity of such monitors in a realistic smart city
scenario of safe crowd monitoring and control.

Keywords: Spatial Logics, Runtime verification, Self-adaptive systems, Field
Calculus

1. Introduction

Cyber-physical systems (CPSs) are typically constructed by deploying a va-
riety of computational devices of various sorts (sensors, actuators, computers)

?Corresponding author.
Email addresses: giorgio.audrito@unito.it (Giorgio Audrito?),

roby.casadei@unibo.it (Roberto Casadei), ferruccio.damiani@unito.it (Ferruccio
Damiani), volker.stolz@hvl.no (Volker Stolz), mirko.viroli@unibo.it (Mirko Viroli)

Preprint submitted to Journal of Systems and Software March 13, 2021

into the physical environment, e.g., in scenarios like smart cities, intelligent
buildings and factories, transportation, and wide-area monitoring and control.5

Such systems increasingly feature large-scale, intrinsic distribution of compu-
tation, dynamism, mobility, and unpredictability due to faults, adversarial be-
haviour, and unknown patterns of human behaviour and data production. As
such, engineering trustworthy computational services over CPSs is particularly
challenging, especially when there is need of facing critical functional and non-10

functional requirements. In principle, one would seek for formal methods and
tools by which a system design can be verified against the validity of certain
properties, such that these properties can be transferred to system execution:
unfortunately, the complexity of CPSs deployment scenarios typically makes the
problem intractable (Bennaceur et al., 2019).15

As a contribution towards facing this issue in a significant class of cases, in
this paper we focus on the problem of decentralised distributed runtime verifica-
tion of spatial properties. Runtime verification is a computing analysis paradigm
based on observing a system at runtime (to check its expected behaviour) by
means of monitors generated from formal specifications, so as to precisely state20

the properties to check as well as providing formal guarantees about the results
of monitoring (Bauer et al., 2011; Leucker and Schallhart, 2009): distributed
runtime verification is runtime verification in connection with distributed sys-
tems, hence it comprises both monitoring of distributed systems and using dis-
tributed systems for monitoring in an asynchronous setting. Approaches to25

distributed runtime verification typically rely on simplifying assumptions such
as absence of failures and mobility (Francalanza et al., 2018). Here, we specif-
ically aim at open systems of agents, where the number of participants, their
communication topology, and the performance of (broadcast) messages is un-
reliable. According to the above survey, there is no comparative work in this30

regard.
In a further departure from other approaches to runtime verification, we are

specifically not interested in a global verdict (and hence a global monitor), but
rather in each agent’s view, which in a slight departure from the terminology
we call the decentralised setting. In our application area we specifically want to35

avoid a centralised monitor (observer), as nodes e.g. in a wireless sensor network
can only communicate with neighbours, and we see distribution also as a way
to tolerate failures such as network partitioning, in addition to a pragmatic
motivation.

We address this problem of an open system by careful selection of a compu-40

tational model for distributed systems that provides inherent support to large-
scale and open scenarios, scalability with the complexity of the distributed al-
gorithms to implement, and compositionality with respect to spatial logical
connectives. Namely, we adopt the aggregate computing paradigm (Beal et al.,
2015; Viroli et al., 2019), and especially its incarnation into the field calculus45

language (Audrito et al., 2019), where agents are programmed in an abstract
computational environment and make use also of spatial and temporal data
constructs in their region through proximity-based interactions. Programs ex-
pressed in field calculus focus on global-level outcomes of a computation in-

2

stead of single-device behaviour, they express highly-distributed computations50

by pure functions, and finally rely on functional composition as key mechanism
to combine libraries of reusable and correct building blocks into higher-level ap-
plications services Viroli et al. (2018). At the modelling level, the field calculus
expresses computations as transformation of computational fields (or fields for
short), namely, space-time distributed data structures mapping computational55

events (occurring at a given position of space and time) to computational values.
As an example, a set of temperature sensors spread over a building forms a field
of temperature values (a field of reals), and a monitor alerting areas where the
temperature was above a threshold for the last 10 minutes is a function from
the temperature field to a field of Booleans.60

We take as reference the Spatial Logic of Closure Spaces (SLCS) (Ciancia
et al., 2014), a modal logic proposed to describe and verify topological prop-
erties over spatially-situated systems, and formally grounding the concepts of
proximity, propagation and surroundedness. By the field calculus, we are able
to define a translation of formulas of the Spatial Logic of Closure Spaces (SLCS)65

into distributed systems that act as monitors for such formulas, namely, making
all nodes of the system collaborate by local interaction to establish the validity
of the formula at each point of space. By reusing previous results and tools of the
field calculus, then, we prove correctness of the translation, and self-stabilisation
of the derived monitors, hence their robustness to transient changes. Finally,70

we empirically evaluate self-adaptivity of the generated monitors in a realistic
smart city scenario of safe crowd monitoring. In such a case study, we consider a
target SLCS property and compare a corresponding decentralised field calculus
monitor (straightforwardly obtained by applying the formula mappings) with an
ideal, oracle monitor having direct complete knowledge of the entire distributed75

system. We show that the former monitor, despite the adversarial conditions
of nearly-continuous topology change, is able to approximate the ideal moni-
tor with reasonable precision. This demonstrates the practical viability of the
approach (though, of course, its suitability ultimately depends on the relative
reactivity and precision requirements of the application at hand) as well as its80

significance especially in scenarios where centralised services are not practicable
(e.g., because of missing infrastructure) or temporarily unavailable (c.f. graceful
degradation).

The remainder of this paper is organised as follows: Section 2 provides the
necessary background; Section 3 illustrates how the field calculus can be used to85

implement distributed monitors of spatial logic properties; Section 4 presents
the case study; Section 5 discusses some related work; and Section 6 concludes.

2. Background

In this section we provide the necessary background to introduce the key
contribution of the paper in next section. In particular, Section 2.1 describes90

distributed runtime verification and how our approach relates to it, Section 2.2
introduces aggregate computing and the field calculus, and finally Section 2.3
discusses spatial logics and introduces the SLCS logics.

3

2.1. Distributed runtime verification

Runtime verification is a lightweight verification technique concerned with95

observing the execution of a system with respect to a specification (Leucker
and Schallhart, 2009). Specifications are generally trace- or stream-based, with
events that are mapped to atomic propositions in the underlying logic of the
specification language. Popular specification languages include variations on
the Linear Time Logic LTL, and regular expressions. Events may be generated100

through state changes or execution flow, such as method calls.
Most specifically, this paper focusses on the sub-case of so-called distributed

runtime verification (Francalanza et al., 2018), aiming at defining logics to
express properties of space and time, and corresponding monitors for such
properties—which may or may not be distributed. In distributed runtime veri-105

fication, agents (representing the system to verify at each device) are generally
considered remote to each other: as constituents of the whole system, they are
assumed to execute independently and occasionally synchronise or communicate
with each other via the underlying communication platform. A local trace of
events corresponds to a sequence of sets of values for observables, as defined110

through the sensors of an agent, or derived values from those. Since agents may
appear or disappear over time from the overall system, traces from different
processes are not aligned in time in the sense that for a particular index/posi-
tion in each trace, these events did not necessarily happen at the same time.
Accordingly, logic formulas cannot state properties over single traces, but one115

should naturally adopt an “event structure” viewpoint (Winskel, 1982), where
a partial order relation between events is introduced to model causality (com-
munication across agents, or agent internal computation steps) (Audrito et al.,
2019).

Monitoring is performed by computation entities that check properties of the120

system under analysis by analysing traces representing partial system evolutions.
Similar to the agents carrying on system execution, each monitor is hosted at
a given location and may communicate with other monitors, though in general
there is no strict correspondence between locations of agents and monitors.
Additionally, failures, such as lost or corrupt messages, are typically ignored,125

for they would make the overall distributed monitor unable to carry on the
verification process in a meaningful way.

The distributed monitoring approach we shall introduce in this paper is in a
sense a more natural transition from traditional runtime verification. It is based
on the idea of locating monitors on each device and make them execute the same130

local program, which amounts to evaluate single traces that include all local
events as well as events from neighbouring nodes (perceived by communication).
Given that the formula of a spatial logic may have a validity result that varies at
each point of space, the local monitor at a device will naturally give the validity
result of its location: each local result, however, has been derived through the135

collaboration of all local monitors through broadcast communication, hence, in
a distributed way. Accordingly, unexpected changes in the system configuration
(node/device faults, changes in topology, permanent loss of communications),

4

affect the executing system in the same way they affect the distributed monitor,
which will then behave accordingly and coherently. Namely, any change will140

be considered as a new network configuration, in which the distributed monitor
will continue its verification process, taking into account the changed set of
neighbours in subsequent communication rounds.

2.2. Aggregate computing

Aggregate computing (Beal et al., 2015; Viroli et al., 2019) aims at support-145

ing reusability and composability of collective adaptive behaviour. Following the
inspiration of “fields” of physics (e.g., gravitational fields), this is achieved by
the notion of computational field (simply called field) (Mamei and Zambonelli,
2009), defined as a global data structure mapping devices of the distributed
system to computational values. Computing with fields means deriving in a150

computable way an output field from a set of input fields. Field computations
can be understood both locally, in terms of interactions with neighbours, or
globally in terms of composition of functions on fields.

2.2.1. Computational model

In aggregate computing, the global evolution of a computing network is155

carried out by periodically and asynchronously executing on every device a
same program P according to a cyclic schedule. Thus, every device δ in the
network independently performs a sequence ε1, ε2, . . . of firings, each of them
consisting of the following actions:

1. the device perceives contextual information formed by data provided by160

sensors, local information stored in the previous firing, and messages re-
cently collected from neighbours1 (discarding older messages after a cer-
tain timeout), the latter in the form of a so-called neighbouring value
φ—essentially a map φ = δ1 7→ v1, . . . , δn 7→ vn (n ≥ 1) from neighbour
devices’ identifiers δ1, . . . , δn to corresponding values v1, . . . , vn.165

2. then, the device evaluates the program P, considering as input the contex-
tual information gathered as described above;

3. the result of the local computation is a data structure that is stored locally,
broadcast to neighbours, and possibly fed to actuators producing output
values;170

4. finally, the device goes to sleep waiting for its next firing, while gathering
messages from neighbours.

Firings and their mutual relationships are modelled formally through the es-
tablished notion of event structures (Lamport, 1978) and its augmented variant
with device identifiers (Audrito et al., 2018a, 2019). This representation focuses175

1Typically, the neighbouring relation reflects spatial proximity, but it could also be a logical
relationship, e.g., connecting master devices to slave devices independently of their position.

5

1

2

3

4

5

d
ev
ic
e

time

1 2 3 4 5

1 2 1 2 3 4

1 2 3 4

1 2 3 4 5 6

1 2 3

Figure 1: Example of an event structure (which is also a LUIC augmented event structure,
c.f. Def.2), comprising events (circles), neighbour relations (arrows), devices (ordinate axis).
Colours indicate causal structure with respect to the doubly-circled event (magenta), splitting
events into causal past (red), causal future (cyan) and concurrent (non-ordered, in black). The
numbers written within events represent a sample space-time value (c.f. Def. 3) associated
with that event structure. Note that the doubly-circled event has three neighbouring events:
event 1 at the same device (its previous firing), event 3 at device 4, and event 1 at device 2.
Figure taken from (Audrito et al., 2018a).

on the communication between devices, which is the main aspect distinguishing
a distributed system from a sequential one: the relation of this representation
with the physical neighbour-relationship of devices at each point in time will be
discussed later (c.f. Section 2.2.2).

Definition 1 (Event Structure). An event structure 〈E, , <〉 is a finite or180

countably infinite2 set of events E together with a neighbouring relation ⊆
E × E and a causality relation <⊆ E × E, such that the transitive closure of
 forms the irreflexive partial order <, and the set Xε = {ε′ ∈ E | ε′ < ε} ∪
{ε′ ∈ E | ε ε′}3 is finite for all ε (i.e., < and are locally finite).

Thus, we say that ε′ is a neighbour of ε iff ε′ ε, and that N (ε) =185

{ε′ ∈ E | ε′ ε} is the set of neighbours of ε.

Figure 1 depicts a sample event structure, showing how the <-relation par-
titions events into “causal past” (red), “causal future” (cyan), and non-ordered
“concurrent” subspaces (black) with respect to any given event (in Figure 1,
colours reflect causality with respect to the doubly-circled event in magenta).190

In principle, an execution at ε can depend on information from any event in its
past and its results can influence any event in its future. Causality is uniquely

2Although infinite event structures are not a representation of a realistic system execution,
they are a useful theoretical tool to study eventual behaviour of networks.

3In the remainder of this paper, we use the infix notation for binary relations, so that
e.g. ε ε′ stands for (ε, ε′) ∈ .

6

induced by neighbouring (the relation), dictating when an event can directly
influence (by message-passing) another. Intuitively, every relation correspond
to the send and receive of a message: in order for ε1 ε2 to hold, event ε1 on195

a device δ1 must result in a message which reaches a device δ2 before its execu-
tion of ε2. The name neighbouring reflects that message exchanges happen on
devices that are close to each other (in some physical or logical sense).

Any sequence of computation events and message exchanges between them
can be represented as an event structure, however, not all event structures are200

physically realisable by a distributed system following the firing model described
at the beginning of this section. The subset of realisable event structures is
characterised by the following definition.

Definition 2 (LUIC Augmented Event Structure). An augmented event struc-
ture is a tuple E = 〈E, , <, d〉 such that 〈E, , <〉 is an event structure and205

d : E → D is a mapping from events to the devices where they happened. We
define:

� next : E 7→ E as the partial function4 mapping an event ε to the unique
event next(ε) such that ε next(ε) and d(ε) = d(next(ε)), if such an
event exists and is unique (i.e., next(ε) is the computation performed210

immediately after ε on the same device d(ε)); and

� 99K⊆ E × E as the relation such that ε 99K ε′ (ε implicitly precedes ε′) if
and only if ε′ next(ε) and not ε′ ε.

We say that E is a LUIC augmented event structure if the following coherence
constraints are satisfied:215

� Linearity: if ε εi for i = 1, 2 and d(ε) = d(ε1) = d(ε2), then ε1 = ε2 =
next(ε) (i.e., every event ε is a neighbour of at most another one on the
same device);

� Uniqueness: if εi ε for i = 1, 2 and d(ε1) = d(ε2), then ε1 = ε2 (i.e.,
neighbours of an event all happened on different devices);220

� Impersistence: if ε εi for i = 1, 2 and d(ε1) = d(ε2) = δ, then either
ε2 = nextn(ε1) and ε nextk(ε1) for all k ≤ n, or the same happens
swapping ε1 with ε2 (i.e., an event reaches a contiguous set of events on a
same device);

� Computation immediacy: the relation ∪ 99K is acyclic on E (i.e.,225

explicit causal dependencies < are consistent with implicit time depen-
dencies 99K).

The first two constraints are necessary for defining the semantics of an ag-
gregate program (denotational semantics in Audrito et al. (2019); Viroli et al.

4With A 7→ B we denote the space of partial functions from A into B.

7

(2019)). The third reflects that messages are not retrieved after they are first230

dropped (and in particular, they are all dropped on device reboots). The last
constraint reflects the assumption that computation and communication are
modeled as happening instantaneously. In this scenario, the explicit causal de-
pendencies imply additional time dependencies ε 99K ε′: if ε′ was able to reach
next(ε) but not ε, the firing of ε′ must have happened after ε (additional details235

on this point may be found in the proof of Theorem 1 in Appendix B.1).

Remark 1 (On Augmented Event Structures). Augmented event structures were
first implicitly used in Audrito et al. (2019) for defining the denotational se-
mantics (with the linearity and uniqueness constraints only), then formalised
in Audrito et al. (2018a) (without any explicit constraint embedded in the def-240

inition). In this paper, we gathered all necessary constraints to capture exactly
which augmented event structures correspond to physically plausible executions
of an aggregate system (see Theorem 1): this includes both the linearity and
uniqueness from Audrito et al. (2019), together with the new impersistence and
computation immediacy constraints.245

Notice that the event structure in Figure 1 satisfies the LUIC constraints
with the represented device assignment. Interpreting this structure in terms of
physical devices and message passing, a physical device is instantiated as a chain
of events connected by relations (representing evolution of state over time
with the device carrying state from one event to the next), and any relation250

between devices represents information exchange from the tail neighbour to the
head neighbour. Notice that this is a very flexible and permissive model: there
are no assumptions about synchronisation, shared identifiers or clocks, or even
regularity of events (though of course these things are not prohibited either).

Through the repetitive execution of firings (modelled by events), across space255

(where devices are located) and time (when devices fire), a global behaviour
emerges. This global behaviour is defined in terms of global data structures
called space-time values (also depicted in Figure 1) mapping events to values
for each event in an event structure.

Definition 3 (Space-Time Value). Let V be any domain of computational260

values and E = 〈E, , <, d〉 be an augmented event structure. A space-time
value Φ = 〈E, f〉 is a pair comprising the event structure and a function f :
E → V that maps the events ε ∈ E to values v ∈ V. With abuse of notation,
in the remainder of this paper we use Φ(ε) to denote f(ε) where Φ = 〈E, f〉.

A space-time value Φ represents a quantity that is distributed across space265

end evolving through time, so that its value Φ(ε) may be different on different
events ε. For example, Φ may associate events to the corresponding measure-
ments of a sensor Φ(ε) available in them, or to the current local result Φ(ε) of a
distributed computation. These quantities can be manipulated by distributed
computations (i.e., consumed as inputs) and can also be created by them (i.e.,270

produced as outputs). Thus, an aggregate computer is a “collective” device
manipulating such space-time values, modelled as a space-time function.

8

Definition 4 (Space-Time Function). Let V(E) = {〈E, f〉 | f : E → V} be the
set of all possible space-time values in a augmented event structure E. Then,
an n-ary space-time function in E is a partial map f : V(E)n 7→ V(E).275

Notice that the definition of a space-time function f requires every input
and output space-time value to exist in the same augmented event structure E.
However, it does not specify how the output space-time values are obtained from
the inputs, and in fact not all space-time functions f are physically realisable
by a program, as f may violate either causality or Turing-computability (see280

Audrito et al. (2018a) for further details).
The specification of a space-time function can be either done at a low-

level (i.e. through local interactions), in order to define programming language
constructs and general-purpose building blocks of reusable behaviour (c.f. Sec-
tion 2.2.3 for such a programming language), or at a high-level (i.e. by com-285

position of other space-time functions with a global interpretation) in order to
design collective adaptive services and whole distributed applications—which ul-
timately work by getting input fields from sensors and process them to produce
output fields to actuators. However, in aggregate computing a distributed pro-
gram P always has both the local and global interpretations, dually linked: the290

global interpretation as a space-time function (obtained through a denotational
semantics (Audrito et al., 2019; Viroli et al., 2019)), and the local interpretation
as a procedure performed in a firing (defined by an operational semantics, see
Appendix A).

2.2.2. Stabilisation and spatial model295

Even though the global interpretation of a program has to be given in spatio-
temporal terms in general, for a relevant class of programs a space-only repre-
sentation is also possible. In this representation, event structures, space-time
values and space-time functions are replaced by network graphs, computational
fields and field functions.300

Definition 5 (Network Graph). A network graph G = 〈D,�〉 is a finite set D
of devices δ together with a reflexive neighbouring relation�⊆ D×D, i.e., such
that δ� δ for each δ ∈ D. Thus, we say that δ′ is a neighbour of δ iff δ′ � δ,
and that N (δ) = {δ′ ∈ D | δ′� δ} is the set of neighbours of δ.

Intuitively, an instance element δ1 � δ2 that belongs to the neighbouring305

relation � on devices (in a certain specific instant of time) represents the pos-
sibility for a device δ1 to successfully send a message to another device δ2, thus
creating corresponding instance elements ε1 ε2 of the neighbouring relation
 on events for events εi on devices δi. Notice that� does not necessarily have
to be symmetric, since e.g. an high-power device may be able to send messages310

to a distant device with not enough power to reply. The formal relationship
between relations � and will be captured by Definition 8 below.

Definition 6 (Computational Field). Let V be any domain of computational
values and G = 〈D,�〉 be a network graph. A computational field Ψ = 〈G, g〉

9

is a pair comprising the network graph and a function g : D → V mapping315

devices δ ∈ D to values v ∈ V.

Definition 7 (Field Function). Let V(G) = {〈G, g〉 | g : D → V} be the set
of all possible computational fields in a network graph G. Then, an n-ary field
function in G is a partial map g : V(G)n 7→ V(G).

These space-only, time-independent representations are to be interpreted as320

“limits for time going to infinity” of their traditional time-dependent counter-
parts, where the limit is defined as in the following.

Definition 8 (Stabilising Augmented Event Structure and Limit). Let E =
〈E, , <, d〉 be a countably infinite augmented event structure. We say that E is
stabilising to its limit G = 〈D,�〉 = lim E iffD = {δ | {ε ∈ E. d(ε) = δ} is infinite}
is the set of devices appearing infinitely often in E, and for all except finitely
many ε ∈ E, the devices of neighbours are the neighbours of the device of ε:

{d(ε′) | ε′ ε} = {δ′ | δ′� d(ε)}

Although the notion of limit of an event structure provided by Definition 8, it
is not identical to the notion of limit in analysis; they are intimately connected,
justifying the usage of the same name. In concrete deployments, the augmented325

event structure representing a distributed computation performed over time and
across space arises from a network graph (evolving over time) which represents
the possible connections across devices in every instant of time. Then, the limit
of the event structure is (intuitively) the network graph that is obtained for the
time that goes to infinity. A similar notion of limit (and stabilisation) can also330

be applied to space-time values as shown in the following.

Definition 9 (Stabilising Space-Time Value and Limit). Let Φ = 〈E, f〉 be a
space-time value on a stabilising augmented event structure E = 〈E, , <, d〉
with limit G = lim E. We say that Φ is stabilising to its limit Ψ = 〈G, g〉 = lim Φ
iff for all except finitely many ε ∈ E, f(ε) = g(d(ε)).335

Notice that G is not a parameter of the definition above, by being uniquely
determined by E.

Definition 10 (Self-Stabilising Space-Time Function and Limit). Let f : V(E)n 7→
V(E) be an n-ary space-time function in a stabilising E with limit G. We say
that f is self-stabilising with limit g : V(G)n 7→ V(G) iff for any 〈Φ1, . . . ,Φn〉340

with limit 〈Ψ1, . . . ,Ψn〉, f(Φ1, . . . ,Φn) = Φ with limit Ψ = g(Ψ1, . . . ,Ψn) =
lim Φ.

Many of the most commonly used routines in aggregate computing are indeed
self-stabilising, and in fact belong to a class of self-stabilising functions identified
in Viroli et al. (2018). In the remainder of this paper, we shall relate aggregate345

functions with spatial logical formulas, expressing their relationship in terms of
their self-stabilising limit (see Theorem 3).

10

P ::= F e program

F ::= def d(x) {e} function declaration

e ::= x
∣∣ f(e)

∣∣ v ∣∣ if(e){e}else{e}
∣∣ nbr{e} ∣∣ share(e){(x)=>e} expression

f ::= d
∣∣ b function name

v ::= `
∣∣ φ value

` ::= c(`) local value

φ ::= δ 7→ ` neighbouring value

Figure 2: Syntax of the field calculus language.

2.2.3. The field calculus

The field calculus (Audrito et al., 2019) is a minimal functional language
that identifies basic constructs to manipulate aggregate fields, and whose oper-350

ational semantics can act as blueprint for developing toolchains to design and
deploy systems of possibly myriad devices interacting via local (e.g., proximity-
based) broadcasts. The field calculus provides the necessary mechanisms to
express and compose such distributed computations, by a level of abstraction
that intentionally neglects explicit management of synchronisation, message ex-355

changes between devices, position and quantity of devices, and so on. Each field
calculus function comes with both a global interpretation (through a denota-
tional semantics in terms of space-time functions and/or field functions (Audrito
et al., 2019; Viroli et al., 2019)), and a local interpretation (through an opera-
tional semantics defining the operations performed in a firing, see Appendix A)360

which provides a practical and correct implementation of the global interpreta-
tion. These interpretations are so that compositionality holds, that is, function
composition in the language translate to space-time function composition.

The syntax of field calculus is presented in Figure 2, following the presen-
tation by Audrito et al. (2020), simplified to fit the needs of this paper. The365

overbar notation e is a shorthand for sequences of elements, and multiple over-
bars are intended to be expanded together, e.g., e stands for e1, . . . , en and
δ 7→ ` for δ1 7→ `1, . . . , δn 7→ `n. Operator share and nbr are the main pecu-
liar constructs of the field calculus, the former responsible for both interaction
and field dynamics, the latter for observing neighbouring values; while def and370

if correspond to the standard function definition and the branching expression
constructs, properly adapted to fit computational fields. We remark that the
field calculus comes with a type system, which performs standard checks on
function calls, ensures that the arguments of share and nbr have the proper
type, and guards of branches have Boolean type—a detailed presentation of the375

field calculus type system can be found in Audrito et al. (2019). In this pa-
per, we use bool (Boolean values) and num (numbers with infinity) as primitive
types T , together with types field[T] for neighbouring fields built from values
of type T , and types (T)→ T for functions.

A program P consists of a list of function definitions F, each written as380

11

“def d(x1, . . . , xn) {e}”, followed by a main expression e that is the one exe-
cuted at each firing (as well as the one representing the overall field computation,
in the global viewpoint). An expression e can be:

� A variable x, used e.g. as formal parameter of functions.

� A value v, which can be of the following two kinds:385

– A local value `, with structure c(`) or simply c when ` is empty
(defined via data constructor c and arguments `), can be, e.g., a
Boolean (true or false), a number, a string, or a structured value
(e.g., a pair or a list).

– A neighbouring value φ that associates neighbour devices δ to lo-390

cal values `, e.g., it could be the neighbouring value of distances of
neighbours—note that neighbouring values are not part of the sur-
face syntax, they are produced at runtime by evaluating expressions,
as described below.

� A function call f(e), where f can be of two kinds: a user-declared function395

d (declared by the keyword def, as illustrated above) or a built-in function
b, such as a mathematical or logical operator, a data structure operation,
or a function returning the value of a sensor. The built-in functions and
data constructors used in this paper are listed in Figure 3 together with
their types and formal interpretations—all of these operators are natively400

available in existing implementations of the field calculus, including Pro-
telis (used in the case study presented in Section 4).

� A branching expression if(e1){e2}else{e3}, used to split field computa-
tion in two isolated sub-networks, where/when e1 evaluates to true or
false: the result is computation of e2 in the former area, and e3 in the405

latter.

� A neighbouring expression nbr{e}, where e evaluates to a local value.
It evaluates to a neighbouring value mapping neighbours to their latest
available result of evaluating e. Each device δ:

1. shares its value of e with its neighbours, and410

2. evaluates the expression into a neighbouring value φ mapping each
neighbour δ′ of δ to the latest value that δ′ has shared for e.

Note that within an if branch, nbr is restricted to work on device events
within the subspace of the branch. I.e., the evaluation by a device δ of an
nbr-expression within a branch of some if(e1){...}else{...} expression,415

is affected only by the neighbours of δ that, during their last computa-
tion cycle, evaluated the same value for the guard e1 (domain restriction,
Audrito et al., 2016).

12

Constructors:
true, false = ()→ bool >, ⊥
0, 1, infinity = ()→ num 0, 1, ∞
Built-ins:
! = (bool)→ bool ¬
||, && = (bool, bool)→ bool ∨, ∧
<=, == = (T ,T)→ T for T ∈ bool, num ≤, =
+, - = (num, num)→ num +, −
mux = (bool, num, num)→ num (b, x, y) 7→ x if b else y
minHood = (field[num])→ num φ 7→ min {φ(δ′) | δ′ ∈ dom(φ) \ {δ}}
anyHoodPlusSelf = (field[bool])→ bool φ 7→

∨
{φ(δ′) | δ′ ∈ dom(φ)}

allHoodPlusSelf = (field[bool])→ bool φ 7→
∧
{φ(δ′) | δ′ ∈ dom(φ)}

Figure 3: Types and interpretations of the data constructors and built-in functions used
throughout this paper. We use the notation dom(φ) above to denote the domain δ of a
function φ = δ 7→ `.

� A share expression e = share(e1){(x)=>e2}, where e1 and e2 evaluate to
a local values. It incorporates message passing and local state evolution.420

The result of such expression is obtained by:

– Gathering the results obtained by neighbours for the whole expression
e in their last firings into a neighbouring field value φ.

– Such φ may also contain a value for the current device (if it is not
the first firing it executes e). If not, the result of evaluating e1 is425

used as value for the current device and incorporated into φ.

– Expression e2 is evaluated by substituting φ to x, obtaining the over-
all value v for e.

– Value v is broadcast to neighbours, allowing them to use it in con-
structing their following neighbours’ observation φ.430

Note that within an if branch, share (like nbr as described above) is
restricted to work on device events within the subspace of the branch.
This construct can be used both for structuring device interaction and for
evolving a local state, by using the built-in operator locHood(φ) which
extracts the value φ(δ) relative to the current device from a neighbouring435

field value φ.

Notice that δ (the current device where the computation takes place) is ex-
cluded from minHood but included in anyHoodPlusSelf and allHoodPlusSelf;
and that mux(e, e>, e⊥) is not equivalent to if(e){e>}else{e⊥} since in the
former both expressions e> and e⊥ are evaluated independently of the value of440

e (and thus there is no splitting into independent sub-networks). In order to
enhance readability, in the remainder of this paper we shall avoid parentheses
for nullary constructors (e.g. write 0 for 0()); follow common infix notation
and operator precedence for operators (e.g. write x && !y for &&(x, !(y)));

13

write mux(e){e>}else{e⊥} for mux(e, e>, e⊥); and use syntax highlighting on445

snippets of field calculus code.

Example 1. As an example illustrating the constructs of field calculus, con-
sider the problem – typical in sensor networks – of locally detecting dangerous
situations in a working area and propagating alarms to all the devices in the
same area. Assume workingArea is a Boolean built-in sensor identifying an450

area to be monitored (i.e., which is true in the devices within that very work-
ing area, and false elsewhere) and danger is a Boolean built-in sensor which
holds true if some threat is detected. The goal is to build a Boolean field of
alarms such that it becomes true in the workingArea whenever any device
located there perceives some danger. The main expression uses construct if455

to limit the computation to the space-time region where workingArea() gives
true (simply returning false elsewhere):

if (workingArea()) { gossipEver(danger()) } else { false }

We have made use of abstraction and specified the logic of alarm propagation
through a function gossipEver, defined as follows:460

def gossipEver(alarm) {
share (false) { (old) => alarm || anyHoodPlusSelf(old) }

}

This function takes a Boolean field alarm and, whenever it holds a true value
in a device, this gets propagated throughout the network by gossiping. This465

is achieved by using share to handle state and communication: a device is
alarmed if it is currently perceiving some danger (alarm is true) or any of
its neighbours, including itself, have perceived danger in their previous round
(anyHoodPlusSelf(old)). Notice that when a device is alarmed, it continues
to be so indefinitely (unless changes in the working area cause the computation470

to be skipped, hence refreshing the corresponding state).

A formal account of the field calculus operational semantics, formalising the
behaviour of a firing, is given in Appendix A. Essentially, each expression eval-
uation creates a tree of “values” (corresponding to the unfolding of expression
evaluation), containing values to be exported to neighbours (due to operators475

nbr and share): at the end of a firing, the resulting tree is packed and sent to
neighbours, which will use it locally to support the semantics of nbr and share.

The computation within a single device is modeled by judgement “δ; Θ;σ `
emain ⇓ θ”, to be read “expression emain evaluates to θ on device δ with respect
to the value-tree environment Θ and sensor state σ”, where θ is the evalua-480

tion result of emain as a value-tree, Θ is a map from each neighbour device δi
(including δ itself) to the value-tree θi produced in its last firing, and σ is a
data structure containing sensor information required to compute built-ins (like
workingArea and danger of Example 1) related to sensors.

The overall evolution of the network is then modeled by a transition sys-485

tem
act−−→ on network configurations N = 〈Env; Ψ〉. Env = 〈�,Σ〉 models the

environmental conditions, where the device neighbouring relation � (c.f. Def-
inition 5) models network connection topology and the computational field Σ

14

X

C(C(A))
C(A)

A

Figure 4: Pictorial representation of a closure space X induced by a graph.

(c.f. Definition 6) models sensor values on each device (see Appendix A.2 for
further details). Ψ models the overall status of the devices in the network at a490

given time (as a map from device identifiers to value-tree environments Θ), and
actions act can either be firings of a device (δ) or network configuration changes
(env).

The system evolution formalised as a sequence of transition S = N0
act1−−→

N1
act2−−→ . . . can then be modeled through the more abstract notion of aug-495

mented event structure and space-time value (c.f. Section 2.2.1). In fact, every
system evolution S induces a unique LUIC augmented event structure E (i.e., E
is completely determined by S), whereas every LUIC augmented event structure
is induced by multiple system evolutions, as shown in the following theorem.

Theorem 1 (Semantic Completeness). Let E be a LUIC augmented event struc-500

ture. Then there exist (infinitely many) system evolutions S that induce E.

Proof. See Appendix B.1.

This result ensures that the linearity, uniqueness, impersistence, and com-
putation immediacy constraints characterise exactly the set of event structures
that can arise from the execution of such a system.505

2.3. Spatial logics and SLCS

In traditional model checking and runtime verification of distributed and
concurrent systems, properties expressed as a temporal logic formula (see for
instance Ben-Ari et al. (1983); Emerson (1990)) are either statically or dynam-
ically checked for satisfaction. Thus, properties of the temporal evolution of510

a system are considered, but properties of (physical) space typically are not.
Spatial logics (van Benthem and Bezhanishvili, 2007) are topological interpre-
tations of modal logics, whose purpose is to enable reasoning about the spatial
dimension. These logics are based on two main modalities: �φ (holds in the
interior of points where φ holds) and ♦φ (holds in the closure of points where515

φ holds). Other modalities have been considered during the years: of particular
interest to us is a spatial surrounded operator—inspired by the temporal weak
until operator—that first appeared for topological spaces in (Aiello, 2002).

15

In Ciancia et al. (2014), a Spatial Logic of Closure Spaces (SLCS in short)
based on the above mentioned operators has been formalised for the more gen-520

eral setting of closure spaces, which can be formalised as a set X together with
a closure operator C : 2X → 2X mapping set of points to their closure.5 These
spaces include the category of quasi-discrete closure spaces, which are conve-
niently characterised as the topologies arising from discrete directed graphs
G = (D,�) with �⊆ D2, 〈δ, δ〉 ∈� for all δ ∈ D (c.f. network graphs as in525

Definition 5): in this case, the set of points is X = D and closure is interpreted
as “proximity”: C(A) = {x ∈ D | ∃a ∈ A. x� a}.6

A logic on quasi-discrete closure spaces is thus able to express properties of
discrete networks of devices: a pictorial representation of this concept is given
in Figure 4. In Ciancia et al. (2014), an efficient proof-of-concept model checker530

for SLCS on quasi-discrete closure spaces has been implemented.7 In Section 3
we shall investigate how to perform distributed runtime verification on SLCS
properties through aggregate computing techniques (in particular, devising a
translation of properties into field calculus programs computing their truth in
every node of the network of computing devices). In Ciancia et al. (2014), the535

presentation of the SLCS logic was first given in terms of the closure operator;
then, for the special case of quasi-discrete closure spaces, formulations of SLCS
operators in terms of paths in a graph were devised and proven equivalent. In
the remainder of this paper, we shall only consider quasi-discrete closure spaces,
modelled through network graphs, using the equivalent formulations of SLCS540

operators in terms of paths in a graph as their primitive definition.
Figure 5 (top) presents the full syntax of SLCS, comprising five “local”

modalities and five “global” ones. The local modalities are:

� �φ (interior) which is true at points with all neighbours satisfying φ;8

� ♦φ (closure) which is true at points with some neighbour satisfying φ;545

� ∂ φ (boundary) which is true at points with some (but not all) neighbours
satisfying φ;

� ∂- φ (interior boundary) which is true at points satisfying φ with some
neighbour not satisfying it;

� ∂+ φ (closure boundary) which is true at points not satisfying φ with some550

neighbour satisfying it.

The global modalities are:

� φRψ (reaches) which is true at the ending points of paths (i.e., sequences
δ1 � . . .� δn in the directed graph G inducing the quasi-discrete closure
space) whose starting point satisfy ψ and where φ holds;555

5The closure operator has to satisfy C(∅) = ∅, A ⊆ C(A), and C(A ∪B) = C(A) ∪ C(B).
6Notice that C(A) ⊇ A since a� a for each a ∈ A.
7Available at https://github.com/vincenzoml/slcs.
8Recall that every point is a neighbour of itself, since 〈δ, δ〉 ∈� for all δ ∈ D.

16

https://github.com/vincenzoml/slcs

φ ::= ⊥
∣∣ > ∣∣ q ∣∣ (¬φ)

∣∣ (φ ∧ φ)
∣∣ (φ ∨ φ)

∣∣ (φ⇒ φ)
∣∣ (φ⇔ φ) logical operators∣∣ (�φ)

∣∣ (♦φ)
∣∣ (∂ φ)

∣∣ (∂- φ)
∣∣ (∂+ φ) spatial operators∣∣ (φRφ)

∣∣ (φ T φ)
∣∣ (φU φ)

∣∣ (G φ)
∣∣ (F φ)

M, δ |= > ⇔ true
M, δ |= q ⇔ δ ∈ V(q)
M, δ |= ¬φ ⇔M, δ 6|= φ
M, δ |= φ ∧ ψ ⇔M, δ |= φ andM, δ |= ψ
M, δ |= ♦φ ⇔∃δ′ � δ.M, δ′ |= φ

M, δ |= φRψ⇔∃p ∈ PG(δ).M, p|p| |= ψ and ∀i ≤ |p| .M, pi |= φ
M, δ |= φ T ψ ⇔∃p ∈ PG(δ).M, p|p| |= ψ and ∀i < |p| .M, pi |= φ and |p| ≥ 2
M, δ |= φU ψ ⇔M, δ |= φ and ∀p ∈ PG(δ) ifM, p|p| 6|= φ then ∃i ≤ |p| .M, pi |= ψ
M, δ |= G φ ⇔∀p ∈ PG(δ). ∀i ≤ |p| .M, pi |= φ
M, δ |= F φ ⇔∃p ∈ PG(δ). ∃i ≤ |p| .M, pi |= φ

�φ , ¬(♦(¬φ)) ∂ φ , (♦φ) ∧ ¬(�φ)

∂- φ , φ ∧ ¬(�φ) ∂+ φ , (♦φ) ∧ ¬φ
φ T ψ , φR(♦ψ) φU ψ , φ ∧�¬(¬ψR¬φ)

F φ , >Rφ G φ , ¬F ¬φ

Figure 5: Syntax (top) and semantics (centre) of SLCS; together with a reduction to a minimal
set of modalities {♦,R} (bottom).

� φ T ψ (touches) which is true at the ending points of paths whose starting
point satisfy ψ and where φ holds in the rest of the path;

� φU ψ (surrounded by) which is true at points in an area A satisfying φ,
whose neighbours satisfy ψ;

� G φ (everywhere) which is true at points where φ holds in every incoming560

path;

� F φ (somewhere) which is true at points where φ holds in a point of an
incoming path.

The whole list of modalities is redundant, meaning that they can all be ex-
pressed through ♦ and R only, by means of the equivalences expressed in Figure565

5 (bottom). Figure 5 (centre) presents a semantics for a minimal set of logi-
cal connectives and local modalities, and for every global modality. Semantics
models are of the formM = 〈G,V〉, where G = 〈D,�〉 is a network graph and
V : Q → 2D maps every propositional variable q ∈ Q to the subset of devices
where q holds. Semantics for global modalities is defined through properties570

of paths in graph G towards δ, defined as sequences p = 〈δ1, . . . , δn〉 such that
δn� . . .� δ1 = δ. We use PG(δ) to denote the set of such paths.

SLCS being a spatial logics, it is worth noticing that its formulas generally
have different values in different points of space. A notable exception is the
case of formulas that are a logical combination (i.e., via non-modal operators)575

17

of formulas that have G or F as top connective, in a strongly connected9 graph:
in these cases they are either true or false in all points of space—so, the specified
monitors emit a global verdict.

Remark 2 (On the Relation with Ciancia et al. (2014)). The presentation of
SLCS in Ciancia et al. (2014) differs in many relevant though not fundamental580

ways.
Firstly, semantics was primitively given for closure spaces, substituting G

with pairs 〈X,C〉 where C : 2X → 2X , and only afterwards a semantic interpre-
tation on graphs through paths was derived (Ciancia et al., 2014, Theorem 3
and Remark 3). Even though the semantics on closure spaces is more general, it585

is not exploited by the model checker in Ciancia et al. (2014), which only applies
to quasi-discrete closure spaces defined in terms of graphs. Since the generality
of closure spaces does not seem to translate into additional applicability, we
opted for a presentation natively rooted on graphs.

Secondly, the primitive global modality in Ciancia et al. (2014) is U instead590

of R, since U has a cleaner definition in terms of closure spaces: φU ψ holds in
x iff ∃A such that x ∈ A, φ holds in A and ψ holds in ∂+A. Conversely, in our
presentation rooted on graphs R has a simpler definition than U (and is more
easily computable), and thus was chosen as a primitive modality.

Thirdly, and most importantly, the operator R̃ called reach in Ciancia et al.
(2014) is similar but not identical to ours. There, M, δ |= φ R̃ψ if and only if:

∃p ∈ PG(δ).M, p|p| |= ψ and ∀i = 2, . . . , |p| .M, pi |= φ

In particular, the difference is in that φ is not required to hold in δ. Although595

this choice being counter-intuitive (and inconvenient in practice), this version
of the reachability operator was preferred since it is the dual of the U operator:
φ R̃ψ , ¬(¬ψ U ¬φ). We opted for a presentation tailored for formulas on
graphs, for which operator R is more relevant (and easily computable) than R̃.
Notice also that the two operators are interchangeable through the equivalences600

φRψ = φ ∧ (φ R̃ψ) and φ R̃ψ = ψ ∨ ♦(φRψ).
Finally, the touch operator is not present in Ciancia et al. (2014). However,

it is defined in Ciancia et al. (2018) as φ T ψ , φ ∧
(

(φ ∨ ψ) R̃ψ
)

, which can

be proven equivalent to our definition.

Remark 3 (On Modality Equivalences). Since we both gave a direct semantic
interpretation of T , U , G, F and a definition of them in terms of R, the two
must be proven equivalent. For G, it boils down to an easy substitution exercise.
For F , substitution gives ∃p ∈ PG(δ). M, p|p| |= φ; and if a path satisfies the
direct interpretation of F , the restricted path p′ = 〈p1, . . . , pi〉 satisfies the
interpretation through R. For T , substitution gives the following:

∃p ∈ PG(δ). ∃δ′� p|p|.M, δ′ |= ψ and ∀i ≤ |p| .M, pi |= φ

9A directed graph G is strongly connected iff for every two points δ1, δ2 in G there exists
a path from δ1 to δ2 in G.

18

which is satisfied whenever the direct interpretation of T is satisfied with the605

extended path p′ = 〈p1, . . . , pn, δ
′〉.

For U , we use the result from Ciancia et al. (2014) that φU ψ = ¬(¬ψ R̃ ¬φ)
(with the semantic interpretation of U in Figure 5 (centre) and the semantic
interpretation of R̃ in Remark 2). We can then use the equivalence φ R̃ψ = ψ∨
♦(φRψ) in order to obtain that:

φU ψ = ¬ (¬φ ∨ ♦(¬ψR¬φ)) = φ ∧�¬(¬ψR¬φ).

Example 2 (Smart Home). As sample application of SLCS in a smart home
scenario, consider the following property to monitor: air conditioning and lights
are on whenever the room is not empty, off otherwise. Consider the atomic
propositions:610

� P is true on points that are sensing the presence of people;

� D is true on points that are the monitored electrical devices (air condi-
tioning, lights);

� O is true on electrical devices that are on.

If we only want to consider the presence of people in the immediate vicinity, the615

considered property can be written as ¬D∨ (O ⇔ ♦P). When also considering
people farther away, the property can be written as ¬D ∨ (O ⇔ F P). In the
sample closure space of Figure 4, a possible evaluation of these properties could
be the following, where different colours are used for points where D is false
(grey), D is true and O is false (black), D and O are true (yellow):620

FP

♦P

P

The green area denotes the nodes for which P is true, i.e., the nodes that do
perceive at least a person in the room. The cyan area (♦P) is given by the nodes
that have at least a neighbour within the green area. The blue area (F P) is
given by the nodes for which there exists a path to a node in P (“somewhere”);625

this includes all the nodes of the example.

Example 3 (Sensor Network). As sample application of SLCS in a sensor net-
work scenario, consider the following property to monitor: internet is reachable
through non-busy devices. Consider the atomic propositions:

� B is true on busy devices;630

19

� I is true on devices that have an internet connection.

The considered property can then be written as ¬BR I. An evaluation of this
formula is represented in the following picture, where the purple area marks
points where the formula is false and different colours are used for points where
B is true (red), I is true (blue), or none are true (grey).635

⊥

In the central part of the network, the property is false because there is no path
from the grey nodes inside it to a blue (Internet) node which does not pass
through a red (busy) node; i.e., the red nodes make up a perimeter which does
not contain any blue node.640

Example 4 (Emergency). As sample application of SLCS in an emergency
scenario, consider the following property to monitor: dangerous areas are sur-
rounded by non-dangerous areas from which it is possible to reach a recovery
point without crossing any other dangerous area. Consider the atomic proposi-
tions:645

� D is true on devices in dangerous areas;

� R is true on devices in recovery points.

The considered property can then be written as D ⇒ (D U(¬DRR)). An
evaluation of this formula is represented in the following picture, where the
purple area marks points where the formula is false and different colours are650

used for points where D is true (red), R is true (blue), or none are true (grey).

⊥

The property is false for the two red (dangerous area) nodes at the top left of the
network because the grey node above them is unable to reach a blue (recovery
point) node without passing through a red (dangerous) node.655

20

J>K = true Jφ1 ∨ φ2K = Jφ1K || Jφ2K
J⊥K = false Jφ1 ∧ φ2K = Jφ1K && Jφ2K
JqK = q() Jφ1 ⇒ φ2K = Jφ1K <= Jφ2K

J¬φK = !JφK Jφ1 ⇔ φ2K = Jφ1K == Jφ2K
J♦φK = anyHoodPlusSelf(nbr{JφK}) Jφ1Rφ2K = reaches(Jφ1K, Jφ2K)
J�φK = allHoodPlusSelf(nbr{JφK}) JF φK = somewhere(JφK)

Figure 6: Translation JφK of an SLCS formula φ into field calculus. Only the logical operators
and the spatial operators �, ♦, F and R are considered—the other spatial operators (∂, ∂-,
∂+, T and U) can be translated by rewriting them through the considered ones according to
Figure 5 (bottom).

def distanceTo(dest) {
share (infinity){ (d) => mux (dest) {0} else {minHood(d)+1} }

}
def somewhere(x) {
distanceTo(x) <= D

}
def reaches(x, y) {
if (x) {somewhere(y)} else {false}

}

Figure 7: Functions somewhere and reaches used in the translation of Figure 6, in turn
using the auxiliary function distanceTo.

3. Automatic generation of distributed monitors in field calculus

In this section, we provide a translation of SLCS formulas into field cal-
culus. Namely, thanks to the functional nature of field calculus, the resulting
distributed monitor will provide efficient computation of the truth value of a
formula at each device by recursion over its syntactic structure, and this will660

be achieved assuming that each participant is evaluating the same property
from its perspective with regard to any quantifiers. In particular, we translate
atomic propositions q into built-in function calls getting their value from some
external environment (which we do not detail here, since typically involving
external sensors), logical connectives into corresponding Boolean built-ins, and665

modal spatial operators into field calculus library functions that perform spa-
tial operations (such as propagating values through spanning trees to compute
distances). The functional composition character of field calculus, which works
at the global level, is the distinctive feature by which this model allows to eas-
ily express the translation, as well as to formally prove self-stabilisation of the670

resulting monitors. Section 3.1 introduces a translation of SLCS into field cal-
culus, coherently with the formal interpretation (c.f. Section 2.3). Section 3.2
discusses the correctness and efficiency properties of this translation.

3.1. Automatic translation in field calculus

Figures 6 and 7 show the translation JφK of an SLCS formula φ into field675

calculus, which essentially derives a space-time function that turns Boolean

21

space-time values for the atomic propositions (q) into a Boolean space-time
value representing the validity of the monitored formula over space and time—
validity depends on time in the transient phase, when the validity of atomic
propositions symbols change, or if network topology changes. The correspon-680

dence of the translation with the SLCS semantics (c.f. Figure 5) is formally given
by Theorem 3, which shows that the limit of the translated space-time value
always match the computational field defined by the SLCS formula (c.f. Def-
inition 8). This translation uses the data constructors and built-in functions
described in Figure 3, and assumes that:685

� false < true, as in common programming languages such as Python;

� distanceTo is a commonly used algorithm (based on Bellman-Ford algo-
rithm, available in the standard libraries of field calculus implementations)
determining the shortest distance (in network hops) to a destination point
(Viroli et al., 2018);690

� somewhere is a field calculus function which is true whenever the shortest
distance to a point where the argument holds is plausible (smaller than
the network diameter D in hops. In many cases, the parameter D can
be determined at network design time, allowing to run the translation in
Figure 6 as is. When this is not possible, the translation can still be applied695

by incorporating strategies for dynamically estimating the diameter: e.g.,
computing the maximum distance from an elected leader (Mo et al., 2020);

� reaches(x, y) is a field calculus function which is true only in connected
areas where x is true and somewhere in that area y is also true (since in
that case there must be a path staying within the area where x is true700

which reaches a point where y is true).

Remark 4 (Translation of Derived Modalities). The translation in Figure 6 is
defined also for the derived modalities �, F and all derived logical operators.
The translation given is coherent with the definition of those derived operators in
terms of the primitive ones. For logical operators, this equivalence is standard.705

For the interior modality, notice that its definition �φ , ¬(♦(¬φ)) in terms of
primitives is translated into the (valid) equivalence:

allHoodPlusSelf(JφK) ≡ !anyHoodPlusSelf(!JφK).

Similarly, the definition F φ , >Rφ of F in terms of primitives translates to
the valid equivalence:710

somewhere(JφK) ≡ if (true) \{somewhere(JφK)\} else \{false\}

≡ reaches(true, JφK)

In the next section, the coherence between translation and operator defi-
nitions explained in Remark 4 will be extended by (and be a consequence of)
Theorem 3, which proves that the translation is coherent with the semantics of715

all primitive and derived operators (c.f. Figure 5 centre).

22

It may be tempting to implement somewhere with function gossipEver
in Example 1, instead of the implementation proposed in Figure 6. However,
this function is not able to adjust its value from true to false in case all the
points satisfying the argument disappear from the network (namely, it is not720

self-stabilising c.f. Definition 10): thus, this approach would only work in a fully
static situation and could not be used in a dynamic environment for tracking the
truth value of the spatial formula over time. Several approaches could be used
for implementing a self-adjusting somewhere routine in field calculus: e.g. with
replicated gossip (Pianini et al., 2016) or by combining several commonly used725

building blocks (Beal and Viroli, 2014) (S for leader election, G for distance
estimation and broadcasting, C for data summarisation). The proposed one,
however, excels by its simplicity and efficiency (see Theorem 2) while providing
optimal reactiveness to input changes (see Theorem 3).

The reader may appreciate the simplicity of the proposed translation, which730

is compositional (i.e. defining the translation of an expression by composing
translations of sub-expressions) thanks to the functional paradigm of field com-
putations, and which hints at the power of field calculus as an implementation
technique for higher-level languages and logic frameworks. Indeed, complex be-
haviours can arise at the level of device interactions, but they are hidden under735

the hood of the computational model and the lower-level functions used in the
translation.

Example 5 (Formula Translation). The translation of the surrounded by op-
erator φ1 U φ2 is surroundedBy(Jφ1K,Jφ2K), where

def surroundedBy(x, y){740

x && allHoodPlusSelf(nbr{!reaches(!y,!x)})
}

Then, the translation of the formulas in Examples 2, 3, 4 are the following.
¬D ∨ (O ⇔ ♦P) !D() || (O() == anyHoodPlusSelf(nbr{P()}))
¬D ∨ (O ⇔ F P) !D() || (O() == somewhere(P()))

¬BR I reaches(!B(), I())

D ⇒ (D U(¬DRR)) D() <= surroundedBy(D(), reaches(!D(), R()))

3.2. Properties of the translation745

Firstly, we show that the monitors obtained from the translation of SLCS
formulas are efficient and lightweight, being able to scale to arbitrary network
sizes and easily runnable on low-end devices.

Theorem 2 (Lightweightness). The translation P of a formula φ according
to Figure 6 computes in each node using message size O(S) and computation750

time/space O(L+SN), where N is neighbourhood size and L, S are the numbers
of logical and spatial operators in φ.

Proof. See Appendix B.2.

Notice that the bounds on message size, computation time and space pro-
vided above are asymptotically optimal, and thus the translated program can755

23

be deemed efficient and lightweight. Furthermore, these bounds do not depend
on the network size, implying that the computation can scale up to arbitrarily
large networks, as long as the individual degree of nodes stays bounded. In
practice, we can expect a firing to be executed within few microseconds of CPU
time in any realistic scenario.760

We are now able to prove that the given translation is correct and optimal.
Correctness will be shown in terms of stabilisation to the correct limit, as for-
malised in Definition 8 for space-time functions. In fact, this definition can be
translated to field calculus functions and expressions by means of the following
definition:765

Definition 11 (Stabilising Expression). A field calculus expression e is stabil-

ising with limit Ψ on G iff for any system evolution S = N0
act1−−→ . . . of program

e such that for some n0 and each n ≥ n0, the environment Envn in Nn is the
same10 and has topology given by G, and there are infinitely many δ transitions
for each δ in G, then for some n1 and each n ≥ n1 the value produced in each770

firing δ is exactly Ψ(δ).

Optimality will then be measured as having the lowest bound on the number
of full rounds of execution required for stabilisation.

Definition 12 (Full round of execution). Let N0
δ0−→ N1

δ1−→ . . . be a (possibly
infinite) network evolution consisting only of device fires. We say that one full775

rounds of execution has passed at step t if t is minimal such that for each device
δ in the network, there exists an i < t such that δi = δ. Similarly, we say that
n full rounds of execution has passed at step t if n− 1 full rounds of execution
has passed at step t′, and one full round of execution has passed at step t − t′

in the reduced network evolution Nt′
δt′−−→ Nt′+1

δt′+1−−−→780

Self-stabilisation of the monitor comes as a direct consequence of the re-
sults in Viroli et al. (2018), since all expressions in Figure 6 belong to the
self-stabilising fragment of the field calculus thereby identified. In the following
theorem, however, we shall also prove that its limit is the value of the SLCS
formula (c.f. Figure 5 centre), and that it is obtained with the lowest possible785

number of full rounds of execution.

Theorem 3 (Self-Stabilisation, Correctness, Optimality). Let P be the transla-
tion of φ according to Figure 6. If the network configuration and atomic propo-
sitions stabilise, the result of P also stabilises to the interpretation of φ in that
final configuration (regardless of the evolution history of the network). Further-790

more, the time required for stabilisation is as small as possible, meaning that
no correct inductive translation can stabilise with a smaller worst case of full
rounds of execution.

Proof. See Appendix B.3.

10Notice that such a system has no env transitions after n0.

24

According to the above theorem, and assuming the network is connected,795

then:

� When the network configuration and atomic propositions become stable,
the field calculus monitor P stabilises (as fast as possible), and compute
in each device the correct value of the SLCS formula φ.

� When the network configuration and atomic propositions keep evolving,800

the field calculus monitor P keeps bringing about the correct validity of
the formula φ at each device: due to intrinsic delays in communication,
then, the snapshot of a result at a device may not be correct. However,
given the simple and natural structure of the distanceTo algorithm used
in the translation, one still expects fast reactiveness to changes in a regime805

of persistent perturbation without stable points—even though it is harder
to characterise reactiveness formally. This claim will be validated through
simulation in Section 4.

Note that, if the network is divided in two or more disconnect sub-network, then
the above bullets apply to each sub-network.810

4. Case study: crowd safety

The last section proved the correctness and self-stabilising nature of field
calculus translations of SLCS properties. Though field calculus monitors are
guaranteed to eventually converge to the correct value, it is still open the ques-
tion of whether they are reasonably reactive, i.e., whether the approach can be815

useful in application settings characterised by frequent or continuous change.
Accordingly, in this section, we demonstrate the proposed approach in a large-
scale computing scenario related to crowd safety (described in Section 4.1), by
means of simulation (as described in Section 4.2). That is, we show a concrete
example of translation from SLCS to field calculus, leading to a distributed820

monitor whose reactive behaviour is verified by means of repeated experiments.
Most specifically, we focus on the ability of such a monitor to produce an output
that eventually converges to that of an ideal monitor, implemented as an ora-
cle that checks the SLCS property exhaustively in every state of the simulated
system and accordingly provides, at each simulation step, the correct value that825

should be computed by every device participating in the system. Especially, we
will show the ability of the monitor to keep up with continuous change (change
in connection topology) in the environment. Indeed, while the oracle has instan-
taneous access to the global state of the distributed system under simulation,
the field calculus monitor runs in a decentralised fashion, where each device can830

only directly observe (by exchanging messages with neighbours) a local portion
of the overall system, and therefore it takes some time to converge to the correct
value. Notice that a single local change in the system – e.g., a single connectiv-
ity link that changes – may potentially cause a SLCS property to globally flip
(as exemplified in Figure 10). In other words, given an execution round of some835

device, the oracle provides the correct value that such a device could compute

25

if it had access to the global state of the evolving distributed system (which is
clearly an unrealistic assumption). Moreover, though convergence is eventually
guaranteed for constant input (as covered in Section 3), the monitor should also
be “enough reactive” to bring the error (measured by the difference between840

the SLCS property field and the field provided by the oracle) at acceptable
levels (which are, still, generally application-specific). Experimental results are
presented in Section 4.3, whereas further discussion about this latter aspect is
available in Section 4.4.

The source code, build infrastructure, and instructions for running and re-845

producing the experiments are publicly available online11.

4.1. Simulation scenario
The scenario leverages real-world data of a recent mass event (Anzengruber

et al., 2013), consisting of anonymised GPS traces recorded from a subset of the
visitors. This is an example where very large numbers of people move around850

the city, possibly leading to bloats or situations of danger. In this setting,
scalable crowd analysis and management algorithms can help to provide safety
and services for a better experience, e.g., by estimating the density of the crowd,
propagating information about the crowd to the surroundings, and supporting
crowd-aware dispersal and navigation.855

Aggregate programming techniques have proven to be effective in express-
ing such crowd management algorithms by a global perspective, and to make
them execute in an adaptive, resilient and decentralised fashion (Beal et al.,
2015; Casadei et al., 2019a). With this approach, each participant has a smart-
phone or another wearable device that provides sensor data (e.g., presence of860

people nearby) and outputs local information (e.g., the suggested direction of
movement to avoid overcrowded areas) for the person as computed by the col-
lectively executed aggregate program. In practice, multiple concrete deploy-
ments are possible, ranging from fully peer-to-peer to cloud-based architectural
styles (Viroli et al., 2016). Given the costs of testing new services for the pro-865

posed real-world scenario, we proceed empirically by simulation, considering a
reasonable aggregate system deployment where nodes perform their firing in a
non-synchronous fashion and interact with all the devices closer to them with
respect to a certain, configurable threshold. More details are provided in the
next section and are available at the attached repository. Finally, it is key to870

consider that this approach does not require either global knowledge (e.g., the
GPS positions of devices and locations) or global connectivity to the Internet
(which may be limited in mass events), therefore providing a viable solution for
guaranteeing (continuity of) services in situations where only minimal assump-
tions hold, through graceful degradation (if any).875

For the purpose of this paper, we focus on monitoring the safety property
represented by the SLCS formula in Example 4:

D =⇒ (D U(¬DRB))

11https://github.com/metaphori/experiments-2019-ac-slcs-monitor-vienna

26

https://github.com/metaphori/experiments-2019-ac-slcs-monitor-vienna

Figure 8: Representation of a snapshot of the simulated scenario, as a network of devices in the
city: black dots denote (the smartphones of) people corresponding to the GPS traces of the
reference mass event; grey links represent connectivity (i.e., the neighbouring relationships);
yellow, orange, and red overlays represent increasing levels of crowding; blue squares denote
safe places (these are real locations of hospital facilities); small, light blue squares represent
access points.

where D denotes a “dangerous area” (i.e., an area which is overcrowded or in
the very proximity of one) and B denotes a “base” or “safe area” (e.g., an exit
for dispersal or an area with medical facilities). The above property can be
read as “dangerous areas are surrounded by devices which can safely reach a
base”; in other words, this is to guarantee that large groups of people do not880

hinder the way to exits or other important locations to other people. A visual
representation of the scenario is provided in Figure 8 (full-size, colour pictures
are included in the provided repository).

Note that the reachability of safe points is based on connectivity paths across
the system of devices; in other words, each neighbouring link between two nodes885

should represent a valid hint for an accessible, walkable path. Therefore, in
this simulated scenario it is assumed that links can actually be followed on
foot, and that there is a sufficiently dense (but still quite sparse) network in
place—otherwise, the system would consist of multiple isolated sub-networks
with trivial results. To improve realism, for the simulations, the GPS traces890

are interpolated to place nodes on actual streets. Moreover, the system neglects
other potential paths passing through streets which are not “sampled” by any

27

/* CROWD DETECTION FUNCTIONS */

def countNearby(range) {
let human = rep(h <- env.get("role")==0) { h };
sumHood(mux(human && nbrRange() < range) { 1 } else { 0 })

}

def densityEstimation(p, range, w) {
countNearby(range) / (p * PI * range ˆ 2 * w)

}

def dangerousDensity(p, range, densityTh, groupSize, w) {
let partition = S(range, nbrRange);
let localDensity = densityEstimation(p, range, w);
let avg = summarize(partition, sum, localDensity, 0) /

summarize(partition, sum, 1, 0);
let count = summarize(partition, sum, 1 / p, 0);
avg > densityTh && count > groupSize

}

def crowdTracking(p, range, w, density,
dangerousTh, groupSize, timeFrame) {

if (isRecentEvent(densityEstimation(p, range, w) > density,
timeFrame)) {

if (dangerousDensity(p, range, dangerousTh, groupSize, w)){
OVERCROWDED

} else { AT_RISK }
} else { NONE }

}

/* SLCS FUNCTIONS */

def interior(f){ allHoodPlusSelf(nbr(f)) }
def closure(f){ anyHoodPlusSelf(nbr(f)) }
def somewhere(f){ hopDistanceTo(f) < DIAMETER }
def reaches(f1,f2) { if(f1){ somewhere(f2) } else { false } }
def surroundedBy(f1,f2){ f1 && interior(!reaches(!f2,!f1)) }
def implies(f1,f2) { f1 <= f2 }

/* PROGRAM: CROWD ESTIMATION */

let p = 0.005; let w = 0.25; let crowdRange = 30;
let crowdedDensity = 1.08; let dangerousThreshold = 2.17;
let groupSize = 300; let timeFrame = 60;
let crowding = crowdTracking(p, crowdRange, w, crowdedDensity,

dangerousThreshold, groupSize, timeFrame)

/* PROGRAM: PROPERTY TO BE MONITORED */

let D = crowding == OVERCROWDED || crowding == AT_RISK;
let B = env.get("isSafePlace");
implies(D, surroundedBy(D, reaches(!D, B)))

Figure 9: Protelis implementation of the aggregate specification executed for the case study.
Bold red symbols denote language keywords; bold blue symbols denote standard library func-
tions; bold purple symbols denote application-related functions; bold black symbols denote
SLCS functions; and bold orange symbols denote parameters, constants, or built-ins whose
declaration is not reported.

28

(a) The red-circled node has every path to a
safe node hindered by a dangerous, crowded
area—which is red-coloured to denote its col-
lective failure in satisfying the property. The
cyan circles denote nodes able to reach safety.

(b) The red-circled node walks away, detach-
ing from the network. All the remaining nodes
can reach a safe area (not shown) by passing
across the bridge: therefore, the crowded area
satisfies the property.

Figure 10: These zoomed snapshots of the scenario are meant to illustrate the property
checking. We assume safe areas are only south of the river, and there are no paths that
circumvent the Reichsbrücke bridge shown in the picture.

device; nevertheless, the presented solution also shall work when devices do not
have maps (which, anyway, should be augmented with crowding data), since a
“map” is implicitly constructed (though, of course, actual accessibility should895

be fostered with proper design decisions).

4.2. Simulation framework and setup

For these experiments, we leverage the meta-simulator Alchemist (Pianini
et al., 2013) which provides an event-driven simulation engine for scheduling
events and actions upon modelled entities as well as features for configuration900

of scenarios, visualisation and data extraction. The translated monitors are
written in Protelis (Pianini et al., 2015), an implementation of the field calculus
as a standalone domain-specific language that also provides a library of reusable
aggregate building blocks and interoperability with the Java ecosystem.

The scenario is configured as follows: a total of 1497 nodes are loaded at905

the starting positions of the corresponding available GPS traces and configured
to move according to their traces as well as to execute the aggregate program
and broadcast data to neighbours once about every TR = 1 second(s). Since
the network inferred by the data traces is quite sparse relatively to the physical
region of the city, a mesh of access points is put in place to provide a reasonable910

level of connectivity for the system. While normal devices are assumed to have
a connectivity range of 100m (i.e., around the maximum Wi-Fi range), access
points connect to each other within a 500m range; these choices have been made
as a compromise between simplicity and realism—more deployment-related con-
siderations will follow.915

29

An excerpt of the aggregate program implementation is provided in Fig-
ure 9. Dangerous areas (i.e., nodes where field D is true) are those which are
either OVERCROWDED or AT_RISK (i.e., nearby overcrowded areas by a certain
threshold), as computed by aggregate function crowdTracking, whereas safe
areas are given by predefined nodes having a corresponding property as true.920

The crowd detection functionality and its parameterisation are taken from Beal
et al. (2015). The last expression of the listing is the property to be monitored,
expressed straightforwardly through the SLCS functions: it yields a Boolean
field that is true in the nodes in which the property is satisfied, and false where
this is not the case.925

The code of Figure 9 is then extended with simulation-specific code for the
parameterised configuration of the scenario, for the oracle, and for data extrac-
tion. The oracle, whose goal is to objectively check the property by inspect-
ing the state of the system, is executed by-need when a device in D fires; its
implementation leverages JGraphT (Michail et al., 2020) for representing the930

partitioned network of non/dangerous devices and calculating connected sets in
order to check graph reachability of safe nodes. Moreover, in order to stress the
monitor, there is additional aggregate code to activate, from t = 250 to t = 500,
a simple crowd dispersal algorithm that changes network topology: nodes close
to risk are suggested to move in the direction opposite to the nearest danger-935

ous node (which performs a spatial broadcast of its GPS position). Nodes are
configured with a certain, individual probability to follow the dispersal advice;
so, when the advice is given, and they “choose” to follow it, they move in the
suggested dispersal direction, hence departing from the recorded GPS trace.

4.3. Simulation results940

The scenario described above is run 100 times, each with a different random
seed, yielding 100 different simulation instances. The random seed is given as
input to the pseudo-random generator of the Alchemist simulator, which affects
(i) the displacement of access points into random mesh-like arrangements (i.e.,
whereas the smartphones are positioned according to the GPS traces, which are945

always the same, and hospitals have precise fixed locations, the access points
are positioned along a grid with random shifts along the ideal latitude and
longitude positions in each different instance), (ii) the tendency of people to
follow the dispersal advice, and (iii) the relative ordering of the computation
rounds scheduled at the devices. These aspects may affect the dynamics of the950

system as well as the trajectory of the SLCS property in non-trivial ways, since
the appearance or the vanishing of few connectivity links could make a huge
difference. Each simulation instance is executed for 1000 seconds of simulated
time. For each run, on every second of simulated time, the following data is
exported: the number of devices which are overcrowded, at risk, and monitored955

(the monitor needs to run on all the devices, but the property is relevant only
on devices in D, so, as an optimisation, only for these the oracle is executed);
the number of devices for which the monitor and the oracle yield a positive
response, as well as the number of devices for which the monitor and the oracle
provide a different response (i.e., this is a measure of the error), detailed with960

30

(a) Number of devices that perceive a danger-
ous (red line) or moderate (orange line) over-
crowding, monitored (black line), and follow-
ing dispersal advices (green line).

(b) Number of monitored devices (black line)
that satisfy the property according to the or-
acle (red line) and the monitor (blue line).

(c) Number of monitored devices (black line)
for which the oracle and the monitor provide
a different response (red line).

(d) Detail of the error in terms of the number
of devices providing false positives (magenta
line) and false negatives (orange line).

Figure 11: Simulation results.

31

the count of false positives (i.e., erroneous monitor evaluations suggesting the
property is satisfied when it is not the case) and false negatives (i.e., erroneous
unsatisfiability claims).

The results are shown in Figure 11. In particular, Figure 11a shows how
the level of crowding varies over time, also by the effect of the crowd dispersal965

process, which makes nodes in danger and those close to risky areas disperse. It
is possible to appreciate a reduction of the dangerous areas, as well as a reduction
of devices at risk (after an initial increase due to the dispersal dynamics).

In Figure 11b, we have a view of how the property evolves in the system
and, more interestingly, we can observe how the response of the distributed,970

field calculus monitor “follows” the response of the oracle, with a certain delay
and with a varying error that can be more precisely observed in Figure 11c (by
counting the number of different individual responses) and in Figure 11d (by
counting the number of false positives and false negatives). Moreover, after the
crowd dispersal, the number of devices for which the property is true is larger975

relative to the number of monitored devices. The error for this scenario is, on
average, around 10-20%; though not bad, this figure could easily improve by
increasing system stability (the sparseness of the used dataset produces high
variability due to network fragmentation). Also, interestingly, note that the
monitor tends to provide more false negatives than false positives (i.e., it finds980

harder to claim the property is satisfied when it is actually not the case), which
may be important for safety properties.

So, in summary, the field calculus monitor provides a reasonable approxi-
mation of an ideal monitor, but works in a decentralised, self-healing fashion,
with devices providing an evaluation of the property by their local perspec-985

tive, but still achieving (eventual) collective coherence through the continuous
coordination with neighbours as regulated by the aggregate specification.

4.4. Discussion

The experiments demonstrate the technical validity of the field calculus so-
lution for the monitoring of SLCS properties. While “eventual” stabilisation of990

the monitor outcome to the expected correct values is guaranteed by the theo-
rems in previous section, this empirical evaluation actually shows that even in
systems with quite dynamic topology, the inherent error in prediction remains
to an acceptable bound. Indeed, Theorem 3 shows that a field calculus monitor
obtained by translation of a SLCS formula stabilises to the truth value of that995

logical formula, after a sufficient number of rounds with no changes. However,
in many practical application scenarios, small changes may happen almost con-
tinuously; in such circumstances, Theorem 3 does not help, since its premises
may get invalidated very soon. The experimental evaluation shows that also
in a scenario characterised by mobility and therefore continuous perturbations1000

(as induced by changes in topology), the truth values computed by the monitor
are sufficiently close to the ideal truth values at each instant (where the level
of “sufficiency” depends on the particular application). In other words, the
experimental results outlined in Section 4.3 show that the approach can cover
practical cases that go beyond the hypothesis of formal theorems.1005

32

We stress that the monitor exercised in this section is distributed (actually,
decentralised) and self-adaptive. Notice that distribution is simulated: we did
not perform an actual large-scale deployment but rather simulated a network of
smartphones and access points communicating based on spatial proximity (ac-
cording to a typical Wi-Fi range). The logical computational model of the field1010

calculus is intrinsically decentralised in control: it assumes each node repeatedly
runs the program and shares coordination messages with neighbours—there is
no centralised entity orchestrating the system. Adaptiveness is driven by the
field calculus program and stems from the specifics of the execution model (as
it may affect the relative order of operations), the environmental dynamics, and1015

the evolution of the state of the system. In a computational round, a device
executes the field calculus program against an up-to-date context that consid-
ers sensor data and recent messages received from neighbours. A change in the
context will probably cause the device to also change its state, its outputs, and
the messages it will send to neighbours—which in turn will adapt to their new1020

context. In this way, local changes propagate through neighbourhoods to affect
increasingly non-local portions of the network, ultimately affecting other local-
ities. Essentially, the field calculus program is responsible for organising local
adaptations such that they bring to the desired globally distributed state. In
the case study, a portion of the program is responsible for computing and eval-1025

uating the level of density; as the people with the smartphones move in the city,
the system topology changes, and such a density level (a distributed field, which
has potentially different values for different nodes of the network) changes as
well. The SLCS property under evaluation also adapts as the estimated density
level and the topology of the system changes.1030

Concerning performance, most specifically, the field calculus monitor neces-
sarily “follows” the oracle with some delay. The reactivity of the system can
be regulated through proper parameterisation and algorithmic optimisations.
For instance, components affecting how fast the system can respond to per-
turbations include, e.g., the frequency of firings and communications, the time1035

for which neighbour data is considered valid, the estimation of the network di-
ameter, and the particular gradient algorithm (Audrito et al., 2018b) adopted
(which is used to set up the distributed structure for information propagation
and collection). Of course, any application scenario is potentially different, and
the above parameters should be tuned accordingly to the expected levels of vari-1040

ability. Additionally, there is a sort of algorithmic inertia that should be taken
into account: for instance, non-reachability takes a number of diameter rounds
to be proved; so, countermeasures could be taken to “delay” invalidation of re-
sults. Also, network partitioning may be particularly problematic: consider an
unsafe partition whose connected set does not include a safe node. A node mov-1045

ing from such an unsafe partition to a safe partition while touching, at the same
time, a non-dangerous, safe cluster and a dangerous cluster, can compromise
the latter if stale data is not removed and is immediately used to contribute
to a property evaluation decision (c.f. interior). In this case, delaying contri-
butions and short retention windows for neighbour data could help to mitigate1050

disruptions.

33

Regarding the deployment and operational execution of aggregate systems,
various options are available (Viroli et al., 2016). Devices may locally run the
field calculus program and directly communicate with neighbours or delegate
these tasks to other (e.g., more powerful) devices—in that case, however, they1055

must, at a minimum, provide sensor data and receive output/actuation data.
So, in this latter view, access points may be useful to provide neighbourhood
connectivity extending normal Wi-Fi range of smartphones as well as fog-level
computing support.

4.5. Further considerations on applicability1060

In light of the above considerations, we can finally discuss the suitability of
the approach for various systems and scenarios. First of all, due to the delays
involved, the approach may not be adequate for applications where real-time
exact responses are expected (although preliminary results on the applicability
of aggregate computing techniques to real-time scenarios have already been in-1065

vestigated in Audrito et al. (2018c)). However, this limitation holds in general
for decentralised solutions where global knowledge has to incrementally build
up from local knowledge. Instead, the approach can be particularly useful when
some delay or error can be tolerated. Typically, such a tolerance depends on ap-
plication requirements and is related to constraints and situations to withstand.1070

For instance, scenarios characterised by adversarial conditions such as frequent
changes able to potentially affect global properties (i.e., like the one considered
in this section) require certain levels of reactivity for the monitoring system to
be usable and useful at all. In these kinds of systems, decentralised monitoring
approaches should be evaluated on a case-by-case basis.1075

On the other hand, the proposed approach nicely fits scenarios characterised
by moderate change and where approximated responses are acceptable during
transient phases. Decentralised approaches are also favourable in very large-
scale settings, to avoid single-points-of-failures, when there is no infrastructure
in place, and as fallback solutions where centralised servers become unavailable1080

(c.f. graceful degradation).
Additionally, recall that reactivity and precision of field calculus SLCS mon-

itors are related to a few network characteristics. For instance, the larger the
network diameter (i.e., number of hops of the longest shortest path), the longer
it takes for information to reach the whole network, hence directly affecting the1085

timing of somewhere and reaches. This problem could be mitigated, e.g., by
applying the divide-et-impera principle and organising the system into bounded
working areas (Casadei et al., 2019b), possibly overlapping as per Casadei et al.
(2021), to enable multiple monitoring slices, and constructed by leveraging gra-
dients originating from a selection of the safe places. The hop-by-hop propaga-1090

tion time is also affected by the frequency with which computational rounds are
executed by the devices—which, in general, may depend on device energy lev-
els, technical requirements and limitations (c.f. LoRaWAN systems (Adelantado
et al., 2017)), or design choices. The relative frequency of round executions and
environment dynamics also determines the reactivity with which inputs are con-1095

34

sidered. Last but not least, higher density (i.e., average number of neighbours)
levels can provide higher stability, as changes are less likely to be disruptive.

5. Related work

As discussed in Section 2, our idea of specifying a property in a modal logic
and then evaluating it step-wise is most closely related with the field of runtime1100

verification (Leucker and Schallhart, 2009): while in runtime verification prop-
erties are usually specified in a temporal logic with operators such as always and
eventually, here the modalities are spatial like or everywhere and somewhere.
Nonetheless, the core aspect of runtime verification, the evaluation of proper-
ties as the system runs, is preserved in our setting: from the perspective of each1105

device, the property is evaluated to a truth value every step, where a step here
corresponds to a firing on each device.

While traditionally runtime verification considers evaluating a property on
a single trace, the extension to distributed runtime verification makes the par-
ticipation of multiple entities explicit.We discuss this sub-field in the following.1110

5.1. Distributed runtime verification and spatial logics

Distributed runtime verification lifts the concept of runtime verification to
distributed systems (see (Francalanza et al., 2018) for a survey), finding ap-
plications in the following areas: (i) observing distributed computations & ex-
pressiveness (specifications over the distributed systems), (ii) analysis decom-1115

position (coupled composition of system- and monitoring components), (iii)
exploiting parallellism (in the evaluation of monitors), (iv) fault tolerance and
(v) efficiency gains (by optimising communication). In the following, we discuss
some works in this area are related to our aim, though none of them address
the dynamisms at the same level; most assume a fixed number of participants1120

and fixed communication topology.
Bauer and Falcone (2016) show a decentralised monitoring approach where

disjoint atomic propositions in a global LTL property are monitored without
a central observer in their respective components: communication overhead is
shown to be lower than the number of messages that would need to be sent to1125

a central observer. Sen et al. (2004) introduce PT-DTL to specify distributed
properties in a past time temporal logic, where subformulas in a specification are
explicitly annotated with the node (or process) where the subformula should be
evaluated: communication of results of subcomputation is handled by message
passing. Both approaches assume a total communication topology, i.e., each1130

node can send messages to everyone in the system, although causally unrelated
messages may arrive in arbitrary order.

Our work is more closely related to those that have grown out of the spatial
logics community, and moved into the area of runtime verification. In Nenzi et al.
(2018), Signal Temporal Logic (STL) for real-valued signals takes inspiration1135

from SLCS and is extended with the spatial modalities somewhere and bounded
surround into Spatio-STL (SSTL). A monitoring algorithm is presented and its

35

implementation evaluated, though, in contrast to our work, the topology of the
system is considered fixed. This is addressed by Bartocci et al. (2017) with
the Spatio-Temporal Reach and Escape Logic (STREL), which in turn extends1140

the above SSTL logic with two further modalities, reach and escape, which are
designed as local properties, only taking into account neighbours. A monitoring
algorithm is presented. To the best of our knowledge, no distributed algorithm
has been presented yet to monitor distributed properties in large-scale dynamic
networks.1145

5.2. Runtime verification of self-adaptive systems

Techniques for runtime verification have also been investigated in the con-
text of self-adaptive systems, where the related problem of monitoring is partic-
ularly crucial to drive proper adaptation. In Borda et al. (2018), specifications
expressed in a higher-order process language for adaptive CPSs are translated1150

to FDR (Failures-Divergences Refinement) to refinement-check requirement sat-
isfaction. Another approach, Lotus@Runtime (Barbosa et al., 2017) addresses
verification of self-adaptive systems, modelled as (probabilistic) labelled tran-
sition systems, by checking reachability properties on execution traces—which
must be generated, e.g., through instrumentation or aspect-oriented techniques.1155

In Tahara et al. (2017), CAMPer is proposed, a property verifier for Component
Aspect Models (CAM) UML profile that uses Maude for expressing behaviours
and verifying dynamic evolution processes; however, unlike our approach, this
is not applied to large-scale scenarios, and does not deal with decentralised
control. Calinescu et al. (2017) provide a survey of quantitative model checking1160

approaches for the (re-)verification of QoS properties after system, environment,
or requirements change. Our field-based approach to coordination, in particu-
lar, naturally addresses the challenges of “continual re-assessment” which are
stressed in the above work. Moreover, our approach captures properties to be
verified as executable specifications, and the decentralised, self-healing monitor1165

is directly “implied” from these, since their continuous, distributed interpreta-
tion yields the needed computation and communication activities for their local
evaluation.

5.3. Ensembles of devices and aggregate computing

Several foundational calculi for describing interaction of devices in distributed1170

systems have been proposed, mostly rooted on the archetype process algebra for
mobility, the π-calculus (Milner et al., 1992a,b). Approaches like ambient cal-
culus (Cardelli and Gordon, 2000), Bigraphs (Milner, 2006), 3π (Cardelli and
Gardner, 2010), SCEL (De Nicola et al., 2013), and many others, provide mathe-
matically concise foundations for capturing the interaction of groups in complex1175

environments, featuring a shared-space abstraction by which multiple processes
can interact in a decoupled way. However, they do not feature mechanisms for
capturing the overall behaviour of an ensemble by abstracting over the single
devices as with the field calculus, and for making such a behaviour composi-
tional as required by the formulation of spatial properties. This makes them1180

36

quite low level for the purpose of expressing distribute monitors automatically
generated from SLCS specifications.

The problem of finding suitable programming models for ensemble of devices
has been the subject of intensive research—see e.g. the surveys (Beal et al.,
2013; Viroli et al., 2019): works as TOTA (Mamei and Zambonelli, 2009) and1185

Hood (Whitehouse et al., 2004) provide abstractions over the single device to
facilitate construction of macro-level systems; GPL (Coore, 1999) and others are
used to express spatial and geometric patterns; Regiment (Newton and Welsh,
2004) and TinyLime (Curino et al., 2005) are information systems used to stream
and summarise information over space-time regions; while MGS (Giavitto et al.,1190

2004) and the fixpoint approach in (Lluch-Lafuente et al., 2017) provide general
purpose space-time computing models.

Aggregate computing and the field calculus have then be developed as a
generalisation of the above approaches, with the goal of defining a programming
model with sufficient expressiveness to describe complex distributed processes by1195

a functional-oriented compositional model, whose semantics is defined in terms
of gossip-like computational processes. Recent works have also adopted this
field calculus as a lingua franca to investigate formal properties of resiliency to
environment changes (Audrito et al., 2018c; Nishiwaki, 2016; Viroli et al., 2018),
and to device distribution (Beal et al., 2017).1200

6. Conclusion and future work

In this paper we provided a natural translation of properties expressed in
SLCS logic, a spatial logics with topological modal operators, into distributed
programs for monitoring such properties. Such programs define a repetitive
task to be executed by local monitors hosted in each device of the network,1205

resulting in a coordinated behaviour that altogether computes local validity of
the SLCS formula, and self-adapt optimally after changes in network topology
or of truth values of the atomic propositions in the formula. This adaptation
process is modelled through self-stabilisation and proved correct in Theorem 3.
Additionally, local monitors run using local memory, message size and computa-1210

tion time that are all linear in the size of the formula (c.f. Theorem 2). Critical
to achieve these results is the usage of aggregate computing (Beal et al., 2015)
and the field calculus model (Audrito et al., 2019), which provided: (i) a func-
tional programming model easily expressing the translation in a syntax-directed
way, (ii) operators and libraries to easily capture the ability to monitor SLCS1215

spatial operators, (iii) a programming language (Protelis, Pianini et al., 2015)
and simulator (Alchemist, Pianini et al., 2013) to perform empirical evaluation
in realistic scenarios, and finally (iv) a characterisation of self-stabilising field
calculus programs as of Viroli et al. (2018), by which we could state resiliency of
the runtime verification process. In particular, we also evaluated the approach1220

in a large-scale crowd safety scenario, and showed that, even in environments
characterised by nearly continuous and possibly disruptive change, essentially
undermining the self-stabilisation requirements, the decentralised monitor still
nicely approximates an oracle monitor.

37

Future works will be mainly devoted to capture more powerful monitoring1225

processes, by considering more expressive spatial logics, as well as logics address-
ing spatio-temporal aspects. Additionally, we will seek for platform support for
field calculus programs, encompassing the opportunistic usage of cloud as well
as edge resources, along the line of (Viroli et al., 2016).

Acknowledgements1230

We thank the JSS anonymous reviewers for insightful comments and sugges-
tions for improving the presentation.

References

Adelantado, F., Vilajosana, X., Tuset-Peiró, P., Mart́ınez, B., Melià-Segúı, J.,
Watteyne, T., 2017. Understanding the limits of LoRaWAN. IEEE Commun.1235

Mag. 55, 34–40.

Aiello, M., 2002. Spatial reasoning: theory and practice. Ph.D. thesis. Institute
for Logic, Language and Computation, University of Amsterdam.

Anzengruber, B., Pianini, D., Nieminen, J., Ferscha, A., 2013. Predicting
social density in mass events to prevent crowd disasters, in: International1240

Conference on Social Informatics, Springer. pp. 206–215. doi:10.1007/
978-3-319-03260-3_18.

Audrito, G., Beal, J., Damiani, F., Pianini, D., Viroli, M., 2020. Field-based
coordination with the share operator. Log. Methods Comput. Sci. 16. doi:10.
23638/LMCS-16(4:1)2020.1245

Audrito, G., Beal, J., Damiani, F., Viroli, M., 2018a. Space-time universality of
field calculus, in: Coordination Models and Languages (COORDINATION),
Springer. pp. 1–20. doi:10.1007/978-3-319-92408-3_1.

Audrito, G., Damiani, F., Viroli, M., 2018b. Optimal single-path information
propagation in gradient-based algorithms. Sci. Comput. Program. 166, 146–1250

166. doi:10.1016/j.scico.2018.06.002.

Audrito, G., Damiani, F., Viroli, M., Bini, E., 2018c. Distributed real-
time shortest-paths computations with the field calculus, in: IEEE Real-
Time Systems Symposium (RTSS), IEEE Computer Society. pp. 23–34.
doi:10.1109/RTSS.2018.00013.1255

Audrito, G., Damiani, F., Viroli, M., Casadei, R., 2016. Run-time manage-
ment of computation domains in field calculus, in: 1st Intl. Workshops on
Foundations and Applications of Self* Systems (FAS*W), IEEE. pp. 192–
197. doi:10.1109/FAS-W.2016.50.

38

http://dx.doi.org/10.1007/978-3-319-03260-3_18
http://dx.doi.org/10.1007/978-3-319-03260-3_18
http://dx.doi.org/10.1007/978-3-319-03260-3_18
http://dx.doi.org/10.23638/LMCS-16(4:1)2020
http://dx.doi.org/10.23638/LMCS-16(4:1)2020
http://dx.doi.org/10.23638/LMCS-16(4:1)2020
http://dx.doi.org/10.1007/978-3-319-92408-3_1
http://dx.doi.org/10.1016/j.scico.2018.06.002
http://dx.doi.org/10.1109/RTSS.2018.00013
http://dx.doi.org/10.1109/FAS-W.2016.50

Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J., 2019. A higher-order1260

calculus of computational fields. ACM Trans. Comput. Log. 20, 5:1–5:55.
doi:10.1145/3285956.

Barbosa, D.M., Lima, R.G.D.M., Maia, P.H.M., Costa, E., 2017. Lotus@ run-
time: a tool for runtime monitoring and verification of self-adaptive systems,
in: 2017 IEEE/ACM 12th International Symposium on Software Engineering1265

for Adaptive and Self-Managing Systems (SEAMS), IEEE. pp. 24–30.

Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L., 2017. Monitoring mobile
and spatially distributed cyber-physical systems, in: Talpin, J., Derler, P.,
Schneider, K. (Eds.), 15th ACM-IEEE Intl. Conf. on Formal Methods and
Models for System Design, MEMOCODE 2017, pp. 146–155. doi:10.1145/1270

3127041.3127050.

Bauer, A., Falcone, Y., 2016. Decentralised LTL monitoring. Formal Methods
in System Design 48, 46–93. doi:10.1007/s10703-016-0253-8.

Bauer, A., Leucker, M., Schallhart, C., 2011. Runtime verification for LTL and
TLTL. ACM Trans. Softw. Eng. Methodol. 20, 14:1–14:64. doi:10.1145/1275

2000799.2000800.

Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N., 2013. Organizing the
aggregate: Languages for spatial computing, in: Mernik, M. (Ed.), Formal
and Practical Aspects of Domain-Specific Languages: Recent Developments.
IGI Global. chapter 16, pp. 436–501. doi:10.4018/978-1-4666-2092-6.1280

ch016. Longer version available at: http://arxiv.org/abs/1202.
5509.

Beal, J., Pianini, D., Viroli, M., 2015. Aggregate programming for the Internet
of Things. IEEE Computer 48, 22–30. doi:10.1109/MC.2015.261.

Beal, J., Viroli, M., 2014. Building blocks for aggregate programming of1285

self-organising applications, in: 8th IEEE International Conference on Self-
Adaptive and Self-Organizing Systems Workshops (SASOW), IEEE Com-
puter Society. pp. 8–13. doi:10.1109/SASOW.2014.6.

Beal, J., Viroli, M., Pianini, D., Damiani, F., 2017. Self-adaptation to device
distribution in the Internet of Things. ACM Transaction on Autonomous and1290

Adaptive Systems 12, 12:1–12:29. doi:10.1145/3105758.

Ben-Ari, M., Pnueli, A., Manna, Z., 1983. The temporal logic of branching
time. Acta Informatica 20, 207–226. doi:10.1007/BF01257083.

Bennaceur, A., Ghezzi, C., Tei, K., Kehrer, T., Weyns, D., Calinescu, R., Dust-
dar, S., Hu, Z., Honiden, S., Ishikawa, F., Jin, Z., Kramer, J., Litoiu, M.,1295

Loreti, M., Moreno, G., Müller, H., Nenzi, L., Nuseibeh, B., Pasquale, L.,
Reisig, W., Schmidt, H., Tsigkanos, C., Zhao, H., 2019. Modelling and

39

http://dx.doi.org/10.1145/3285956
http://dx.doi.org/10.1145/3127041.3127050
http://dx.doi.org/10.1145/3127041.3127050
http://dx.doi.org/10.1145/3127041.3127050
http://dx.doi.org/10.1007/s10703-016-0253-8
http://dx.doi.org/10.1145/2000799.2000800
http://dx.doi.org/10.1145/2000799.2000800
http://dx.doi.org/10.1145/2000799.2000800
http://dx.doi.org/10.4018/978-1-4666-2092-6.ch016
http://dx.doi.org/10.4018/978-1-4666-2092-6.ch016
http://dx.doi.org/10.4018/978-1-4666-2092-6.ch016
http://arxiv.org/abs/1202.5509
http://arxiv.org/abs/1202.5509
http://arxiv.org/abs/1202.5509
http://dx.doi.org/10.1109/MC.2015.261
http://dx.doi.org/10.1109/SASOW.2014.6
http://dx.doi.org/10.1145/3105758
http://dx.doi.org/10.1007/BF01257083

analysing resilient cyber-physical systems, in: 2019 IEEE/ACM 14th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pp. 70–76. doi:10.1109/SEAMS.2019.00018.1300

van Benthem, J., Bezhanishvili, G., 2007. Modal logics of space, in: Aiello, M.,
Pratt-Hartmann, I., van Benthem, J. (Eds.), Handbook of Spatial Logics.
Springer, pp. 217–298. doi:10.1007/978-1-4020-5587-4_5.

Borda, A., Pasquale, L., Koutavas, V., Nuseibeh, B., 2018. Compositional veri-
fication of self-adaptive cyber-physical systems, in: 2018 IEEE/ACM 13th1305

International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), IEEE. pp. 1–11.

Calinescu, R., Gerasimou, S., Johnson, K., Paterson, C., 2017. Using runtime
quantitative verification to provide assurance evidence for self-adaptive soft-
ware, in: Software Engineering for Self-Adaptive Systems III. Assurances.1310

Springer, pp. 223–248.

Cardelli, L., Gardner, P., 2010. Processes in space, in: 6th Confer-
ence on Computability in Europe, Springer. pp. 78–87. doi:10.1007/
978-3-642-13962-8.

Cardelli, L., Gordon, A.D., 2000. Mobile ambients. Theoretical Computer1315

Science 240, 177 – 213. doi:10.1016/S0304-3975(99)00231-5.

Casadei, R., Fortino, G., Pianini, D., Russo, W., Savaglio, C., Viroli, M., 2019a.
A development approach for collective opportunistic edge-of-things services.
Information Sciences 498, 154–169.

Casadei, R., Pianini, D., Viroli, M., Natali, A., 2019b. Self-organising coordina-1320

tion regions: A pattern for edge computing, in: COORDINATION, Springer.
pp. 182–199.

Casadei, R., Viroli, M., 2016. Towards aggregate programming in Scala, in:
First Workshop on Programming Models and Languages for Distributed Com-
puting, ACM, New York, NY, USA. pp. 5:1–5:7. doi:10.1145/2957319.1325

2957372.

Casadei, R., Viroli, M., Audrito, G., Pianini, D., Damiani, F., 2021. Engineering
collective intelligence at the edge with aggregate processes. Eng. Appl. Artif.
Intell. 97, 104081. doi:10.1016/j.engappai.2020.104081.

Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M., 2018.1330

Spatio-temporal model checking of vehicular movement in public transport
systems. STTT 20, 289–311. doi:10.1007/s10009-018-0483-8.

Ciancia, V., Latella, D., Loreti, M., Massink, M., 2014. Specifying and verifying
properties of space, in: Dı́az, J., Lanese, I., Sangiorgi, D. (Eds.), 8th IFIP
International Conference in Theoretical Computer Science (TCS), Springer.1335

pp. 222–235. doi:10.1007/978-3-662-44602-7_18.

40

http://dx.doi.org/10.1109/SEAMS.2019.00018
http://dx.doi.org/10.1007/978-1-4020-5587-4_5
http://dx.doi.org/10.1007/978-3-642-13962-8
http://dx.doi.org/10.1007/978-3-642-13962-8
http://dx.doi.org/10.1007/978-3-642-13962-8
http://dx.doi.org/10.1016/S0304-3975(99)00231-5
http://dx.doi.org/10.1145/2957319.2957372
http://dx.doi.org/10.1145/2957319.2957372
http://dx.doi.org/10.1145/2957319.2957372
http://dx.doi.org/10.1016/j.engappai.2020.104081
http://dx.doi.org/10.1007/s10009-018-0483-8
http://dx.doi.org/10.1007/978-3-662-44602-7_18

Coore, D., 1999. Botanical Computing: A Developmental Approach to Gen-
erating Inter connect Topologies on an Amorphous Computer. Ph.D. thesis.
MIT. Cambridge, MA, USA.

Curino, C., Giani, M., Giorgetta, M., Giusti, A., Murphy, A.L., Picco, G.P.,1340

2005. Mobile data collection in sensor networks: The TinyLime middleware.
Elsevier Pervasive and Mobile Computing Journal 4, 446–469. doi:10.1016/
j.pmcj.2005.08.003.

De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R., 2013. A language-
based approach to autonomic computing, in: Formal Methods for Com-1345

ponents and Objects. FMCO 2011, Springer. pp. 25–48. doi:10.1007/
978-3-642-35887-6_2.

Emerson, E.A., 1990. Temporal and modal logic, in: Handbook of Theo-
retical Computer Science, Volume B: Formal Models and Semantics. Else-
vier and MIT Press, pp. 995–1072. doi:10.1016/b978-0-444-88074-1.1350

50021-4.

Francalanza, A., Pérez, J.A., Sánchez, C., 2018. Runtime verification for de-
centralised and distributed systems, in: Bartocci, E., Falcone, Y. (Eds.),
Lectures on Runtime Verification - Introductory and Advanced Topics.
Springer. volume 10457 of Lecture Notes in Computer Science, pp. 176–210.1355

doi:10.1007/978-3-319-75632-5_6.

Giavitto, J., Michel, O., Cohen, J., Spicher, A., 2004. Computations in space
and space in computations, in: Unconventional Programming Paradigms.
Springer. volume 3566 of Lecture Notes in Computer Science, pp. 137–152.
doi:10.1007/11527800_11.1360

Lamport, L., 1978. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 558–565. doi:10.1145/359545.359563.

Leucker, M., Schallhart, C., 2009. A brief account of runtime verification. J.
Log. Algebr. Program. 78, 293–303. doi:10.1016/j.jlap.2008.08.004.

Lluch-Lafuente, A., Loreti, M., Montanari, U., 2017. Asynchronous distributed1365

execution of fixpoint-based computational fields. Logical Methods in Com-
puter Science 13. doi:10.23638/LMCS-13(1:13)2017.

Mamei, M., Zambonelli, F., 2009. Programming pervasive and mobile comput-
ing applications: The TOTA approach. ACM Trans. on Software Engineering
Methodologies 18, 1–56. doi:10.1145/1538942.1538945.1370

Michail, D., Kinable, J., Naveh, B., Sichi, J.V., 2020. JGraphT - A Java library
for graph data structures and algorithms. ACM Trans. Math. Softw. 46,
16:1–16:29. doi:10.1145/3381449.

Milner, R., 2006. Pure bigraphs: Structure and dynamics. Information and
Computation 204, 60 – 122. doi:10.1016/j.ic.2005.07.003.1375

41

http://dx.doi.org/10.1016/j.pmcj.2005.08.003
http://dx.doi.org/10.1016/j.pmcj.2005.08.003
http://dx.doi.org/10.1016/j.pmcj.2005.08.003
http://dx.doi.org/10.1007/978-3-642-35887-6_2
http://dx.doi.org/10.1007/978-3-642-35887-6_2
http://dx.doi.org/10.1007/978-3-642-35887-6_2
http://dx.doi.org/10.1016/b978-0-444-88074-1.50021-4
http://dx.doi.org/10.1016/b978-0-444-88074-1.50021-4
http://dx.doi.org/10.1016/b978-0-444-88074-1.50021-4
http://dx.doi.org/10.1007/978-3-319-75632-5_6
http://dx.doi.org/10.1007/11527800_11
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.23638/LMCS-13(1:13)2017
http://dx.doi.org/10.1145/1538942.1538945
http://dx.doi.org/10.1145/3381449
http://dx.doi.org/10.1016/j.ic.2005.07.003

Milner, R., Parrow, J., Walker, D., 1992a. A calculus of mobile processes, i.
Information and Computation 100, 1 – 40. doi:10.1016/0890-5401(92)
90008-4.

Milner, R., Parrow, J., Walker, D., 1992b. A calculus of mobile processes, ii.
Information and Computation 100, 41 – 77. doi:10.1016/0890-5401(92)1380

90009-5.

Mo, Y., Audrito, G., Dasgupta, S., Beal, J., 2020. A resilient leader election
algorithm via aggregate computing blocks, in: Proceedings of the IFAC World
Congress. To appear.

Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M., 2018. Qualitative1385

and quantitative monitoring of spatio-temporal properties with SSTL. Logical
Methods in Computer Science 14. doi:10.23638/LMCS-14(4:2)2018.

Newton, R., Welsh, M., 2004. Region streams: Functional macroprogramming
for sensor networks, in: Workshop on Data Management for Sensor Networks,
pp. 78–87. doi:10.1145/1052199.1052213.1390

Nishiwaki, Y., 2016. F-calculus: A universal programming language of self-
stabilizing computational fields, in: 1st Intl. Workshops on Foundations and
Applications of Self* Systems (FAS*W), IEEE. pp. 198–203. doi:10.1109/
FAS-W.2016.51.

Pianini, D., Beal, J., Viroli, M., 2016. Improving gossip dynamics through1395

overlapping replicates, in: Lluch-Lafuente, A., Proença, J. (Eds.), 18th Inter-
national Conference on Coordination Models and Languages (COORDINA-
TION), Springer. pp. 192–207. doi:10.1007/978-3-319-39519-7_12.

Pianini, D., Montagna, S., Viroli, M., 2013. Chemical-oriented simulation of
computational systems with ALCHEMIST. J. Simulation 7, 202–215. doi:10.1400

1057/jos.2012.27.

Pianini, D., Viroli, M., Beal, J., 2015. Protelis: practical aggregate program-
ming, in: Proceedings of the 30th Annual ACM Symposium on Applied Com-
puting, ACM. pp. 1846–1853. doi:10.1145/2695664.2695913.

Sen, K., Vardhan, A., Agha, G., Rosu, G., 2004. Efficient decentralized moni-1405

toring of safety in distributed systems, in: 26th Intl. Conf. on Software Engi-
neering, pp. 418–427. doi:10.1109/ICSE.2004.1317464.

Tahara, Y., Ohsuga, A., Honiden, S., 2017. Formal verification of dynamic evolu-
tion processes of uml models using aspects, in: Proceedings of the 12th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing1410

Systems, IEEE Press. pp. 152–162.

Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D., 2018. Engineering re-
silient collective adaptive systems by self-stabilisation. ACM Transactions on
Modelling and Computer Simulation 28, 16:1–16:28. doi:10.1145/3177774.

42

http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/0890-5401(92)90009-5
http://dx.doi.org/10.1016/0890-5401(92)90009-5
http://dx.doi.org/10.1016/0890-5401(92)90009-5
http://dx.doi.org/10.23638/LMCS-14(4:2)2018
http://dx.doi.org/10.1145/1052199.1052213
http://dx.doi.org/10.1109/FAS-W.2016.51
http://dx.doi.org/10.1109/FAS-W.2016.51
http://dx.doi.org/10.1109/FAS-W.2016.51
http://dx.doi.org/10.1007/978-3-319-39519-7_12
http://dx.doi.org/10.1057/jos.2012.27
http://dx.doi.org/10.1057/jos.2012.27
http://dx.doi.org/10.1057/jos.2012.27
http://dx.doi.org/10.1145/2695664.2695913
http://dx.doi.org/10.1109/ICSE.2004.1317464
http://dx.doi.org/10.1145/3177774

Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D., 2019.1415

From distributed coordination to field calculus and aggregate computing.
J. Log. Algebraic Methods Program. 109. doi:10.1016/j.jlamp.2019.
100486.

Viroli, M., Casadei, R., Pianini, D., 2016. On execution platforms for large-
scale aggregate computing, in: Proceedings of the 2016 ACM International1420

Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, ACM.
pp. 1321–1326.

Whitehouse, K., Sharp, C., Culler, D.E., Brewer, E.A., 2004. Hood: A neigh-
borhood abstraction for sensor networks, in: 2nd International Conference on
Mobile Systems, Applications, and Services, ACM / USENIX. pp. 99–110.1425

doi:10.1145/990064.990079.

Winskel, G., 1982. Event structure semantics for ccs and related languages, in:
Nielsen, M., Schmidt, E.M. (Eds.), Automata, Languages and Programming,
Springer. pp. 561–576. doi:10.1007/BFb0012800.

Appendix A. Operational semantics of the field calculus1430

To simplify the notation, in the presentation we assume a fixed program
P. We say that “device δ fires” to mean that the main expression emain of P

is evaluated on δ at a particular firing. The computation that takes place on
a single device is formalised by a big-step semantics (given in Appendix A.1),
while the overall network computation is formalised by a small-step semantics1435

(given in Appendix A.2).

Appendix A.1. Device semantics

The result of a device firing is an ordered tree of values θ, called a value-tree.
It tracks the results of all evaluated subexpressions of emain. Such a value-
tree is made available to δ’s neighbours for their subsequent firing (including δ1440

itself, so as to support a form of state across firings). Each device collects the
recently-received value-trees of neighbours into a map Θ from device identifiers
to value-trees (written δ 7→ θ as short for δ1 7→ θ1, . . . , δn 7→ θn), called a
value-tree environment. The outcome of the evaluation will depend on those
value-trees. The syntax of value-trees and value-tree environments is given in1445

Figure A.12 (top).

Example 6. The graphical representation of the value trees 1〈3〈〉, 2〈〉〉 and
1〈3〈〉, 2〈7〈〉, 2〈〉, 5〈〉〉〉 is as follows:

1 1
/ \ / \1450

3 2 3 2
/|\
7 2 5

43

http://dx.doi.org/10.1016/j.jlamp.2019.100486
http://dx.doi.org/10.1016/j.jlamp.2019.100486
http://dx.doi.org/10.1016/j.jlamp.2019.100486
http://dx.doi.org/10.1145/990064.990079
http://dx.doi.org/10.1007/BFb0012800

For sake of readability, we sometimes write the value v as short for the
value-tree v〈〉. Following this convention, the value-tree 1〈3〈〉, 2〈〉〉 is shortened1455

to 1〈3, 2〉, and the value-tree 1〈3〈〉, 2〈7〈〉, 2〈〉, 5〈〉〉〉 is shortened to 1〈3, 2〈7, 2, 5〉〉.
The judgement that describes the firing of a device, defined in Figure A.12

(bottom), is δ; Θ;σ ` e ⇓ θ, where: (i) δ is the identifier of the device that
fires; (ii) Θ is the environment collecting the value-trees produced by the most
recent evaluation of (an expression corresponding to) e on δ’s neighbours; (iii)1460

e is a closed run-time expression (i.e., a closed expression that may contain
neighbouring values); (iv) θ is the value-tree representing the values computed
for all the expressions encountered during the evaluation of e—the root of the
value tree θ is the value computed for expression e. It is denoted by ρ(θ), where
ρ is the auxiliary function defined in Figure A.12 (second frame).1465

The operational semantics rules resemble standard rules for functional lan-
guages, however they are extended to ensure that each subexpression e′ of e

is evaluated with respect to the value-tree environment Θ′ obtained from Θ by
extracting (when present) the corresponding subtree in the value-trees in the
range of Θ. This process, called alignment, is modelled by the auxiliary func-1470

tion π defined in Figure A.12 (second frame). This function has two different
behaviours (specified by its subscript or superscript): πi(θ) extracts the i-th
subtree of θ; while π`(θ) extracts the last subtree of θ, if the root of the first
subtree of θ is equal to the local (Boolean) value ` (thus implementing a filter
specifically designed for the if construct). Auxiliary functions ρ and π apply1475

pointwise on value-tree environments, as defined in Figure A.12 (second frame).
Rules [E-LOC] and [E-FLD] model the evaluation of expressions that are either

a local value or a neighbouring value, respectively. In particular, rule [E-FLD]

restricts the domain of a neighbouring value to the only set of neighbour devices
as reported in Θ.1480

Rule [E-B-APP] models the application of built-in functions (including mea-
surement variables and interactions with the external world via sensors and
actuators), that is, of expressions of the form b(e1 · · · en), where n ≥ 0. The pro-
duced value-tree is v〈θ1, . . . , θn〉, where θ1, . . . , θn are the value-trees produced
by the evaluation of the actual parameters e1, . . . , en and v is the value returned1485

by the function. The rule exploits the special auxiliary function LbMδ,Θσ (whose
actual definition is abstracted away) which ensures that LbMδ,Θσ (v) computes the
result of applying built-in function b to values v in the current environment of
the device δ. The built-in 0-ary function self gets evaluated to the current
device identifier (i.e., LselfMδ,Θσ () = δ), and mathematical operators have their1490

standard meaning, which is independent from δ and Θ (e.g., L−Mδ,Θσ (3, 2) = 1).

Example 7. Evaluating the expression −(3, 2) produces the value-tree 1〈3, 2〉.
The value of the whole expression, 1, has been computed by using rule [E-B-APP]

to evaluate the application of the multiplication operator − to the values 3 (the
root of the first subtree of the value-tree) and 2 (the root of the second subtree1495

of the value-tree).

Rule [E-D-APP] models the application of a user-defined function, that is,
of expressions of the form d(e1 . . . en), where n ≥ 0. It resembles rule [E-B-

44

Value-trees and value-tree environments:

θ ::= v〈θ〉 value-tree

Θ ::= δ 7→ θ value-tree environment

Auxiliary functions:

ρ(v〈θ〉) = v

πi(v〈θ1, . . . , θn〉) = θi if 1 ≤ i ≤ n π`(v〈θ1, θ2〉) = θ2 if ρ(θ1) = `
πi(θ) = • otherwise π`(θ) = • otherwise

For aux ∈ ρ, πi, π` :

 aux(δ 7→ θ) = δ 7→ aux(θ) if aux(θ) 6= •
aux(δ 7→ θ) = • if aux(θ) = •
aux(Θ,Θ′) = aux(Θ), aux(Θ′)

args(d) = x if def d(x) {e} body(d) = e if def d(x) {e}
φ0[φ1] = φ2 where φ2(δ) =

{
φ1(δ) if δ ∈ dom(φ1)
φ0(δ) otherwise

Syntactic shorthands:

δ;π(Θ);σ ` e ⇓ θ where |e| = n for δ;π1(Θ);σ ` e1 ⇓ θ1· · ·δ;πn(Θ);σ ` en ⇓ θn
ρ(θ) where |θ| = n for ρ(θ1), . . . , ρ(θn)

x := ρ(θ) where |x| = n for x1 := ρ(θ1) . . . xn := ρ(θn)

Rules for expression evaluation: δ; Θ;σ ` e ⇓ θ

[E-LOC]

δ; Θ;σ ` ` ⇓ `〈〉
[E-FLD] φ′ = φ|dom(Θ)∪{δ}

δ; Θ;σ ` φ ⇓ φ′〈〉

[E-B-APP] δ;π(Θ);σ ` e ⇓ θ v = LbMδ,Θσ (ρ(θ))

δ; Θ;σ ` b(e) ⇓ v〈θ〉

[E-D-APP] δ;π(Θ);σ ` e ⇓ θ δ; Θ;σ ` body(d)[args(d) := ρ(θ)] ⇓ θ′
δ; Θ;σ ` d(e) ⇓ ρ(θ′)〈θ, θ′〉

[E-NBR] δ;π1(Θ);σ ` e ⇓ θ φ = ρ(π1(Θ))[δ 7→ ρ(θ)]
δ; Θ;σ ` nbr{e} ⇓ φ〈θ〉

[E-SHARE]
δ;π1(Θ);σ ` e1 ⇓ θ1 φ′ = ρ(π2(Θ)) φ = (δ 7→ ρ(θ1))[φ′]
δ;π2(Θ);σ ` e2[x := φ] ⇓ θ2

δ; Θ;σ ` share(e1){(x) => e2} ⇓ ρ(θ2)〈θ1, θ2〉

[E-IF] δ;π1(Θ);σ ` e ⇓ θ1 ρ(θ1)∈{true, false} δ;πρ(θ1)(Θ);σ ` eρ(θ1) ⇓ θ
δ; Θ;σ ` if(e){etrue} else {efalse} ⇓ ρ(θ)〈θ1, θ〉

Figure A.12: Big-step operational semantics for expression evaluation.

APP] while producing a value-tree with one more subtree θ′, which is produced
by evaluating the body of the function d (denoted by body(d)) substituting the1500

formal parameters of the function (denoted by args(d)) with the values obtained

45

evaluating e1, . . . en.
Rule [E-NBR] first collects neighbours’ values for expressions e as φ = ρ(π1(Θ)),

then evaluates e in δ and updates the corresponding entry in φ to produce its
overall value.1505

Rule [E-SHARE] uses the notation φ0[φ1], defined in Figure A.12 (second
frame), to express “neighbouring value update”: the updated neighbouring value
φ2 = φ0[φ1] has dom(φ2) = dom(φ0) ∪ dom(φ1) and coincides with φ1 on its
domain, or with φ0 otherwise. The evaluation rule [E-SHARE] produces a value-
tree with two branches (for e1 and e2 respectively). First, it evaluates e1 with1510

respect to the corresponding branches of neighbours π1(Θ) obtaining θ1. Then,
it collects the results for the construct from neighbours into the neighbouring
value φ′ = ρ(π2(Θ)). In case φ′ does not have an entry for δ, ρ(θ1) is used ob-
taining φ = (δ 7→ ρ(θ1))[φ′]. Finally, φ is substituted for x in the evaluation of
e2 (with respect to the corresponding branches of neighbours π2(Θ)) obtaining1515

θ2, setting ρ(θ2) to be the overall value.

Example 8. Consider a program consisting of the body of function gossipEver
(introduced Example 1) where the occurrence of the parameter alarm has been
replaced by the call to a built-in sense that returns the value of a Boolean
sensor:1520

share (false) { (old) => anyHoodPlusSelf(old) || sense() }

Suppose that the program runs on a network of two mutually interconnect
devices δ0 and δ1, and that device δ0 first executes a firing with an empty
environment Θ and with sense() returning false. The evaluation of the share
construct proceeds by evaluating false into θ1 = false〈〉, gathering neighbour1525

values into φ′ = • (no values are present), and adding the value for the current
device obtaining φ = (δ0 7→ false)[•] = δ0 7→ false. Finally, the evaluation
completes with the result of anyHoodPlusSelf(δ0 7→ false)||false (which is
false〈false〈δ0 7→ false〉, false〉) corresponding to θ2 in rule [E-SHARE]. At
the end of the firing, device δ0 sends a broadcast message containing the result1530

of its overall evaluation, and thus including θ0 = false〈false, θ2〉.
Suppose now that device δ1 receives the broadcast message and then ex-

ecutes a firing with Θ = (δ0 7→ θ0) and sense() returning true. The eval-
uation of the share constructs starts similarly as before with θ1 = false〈〉,
φ′ = δ0 7→ false, φ = δ0 7→ false, δ1 7→ false. Then the body of the1535

share is evaluated as anyHoodPlusSelf(δ0 7→ false, δ1 7→ false)||true into
θ2 = true〈false〈δ0 7→ false, δ1 7→ false〉, true〉. At the end of the fir-
ing, device δ1 broadcasts the result of its overall evaluation, including θ1 =
true〈false, true〈θ2〉〉.

Then, suppose that device δ0 receives the broadcast from device δ1 and then1540

performs another firing with Θ = (δ0 7→ θ0, δ1 7→ θ1) and sense() returning
false. As before, θ1 = false〈〉, φ = φ′ = δ0 7→ false, δ1 7→ true and the
body is evaluated as anyHoodPlusSelf(δ0 7→ false, δ1 7→ true)||false into
θ2 = true〈false〈δ0 7→ false, δ1 7→ true〉, false〉. Then device δ0 broadcasts
the overall result θ2 = true〈false, true〈θ〉〉.1545

46

System configurations and action labels:

Ψ ::= δ 7→ Θ status field

Env ::= 〈�,Σ〉 environment

N ::= 〈Env; Ψ〉 network configuration

act ::= δ
∣∣ env action label

Environment well-formedness:
WFE(〈�,Σ〉) holds iff �⊆ D ×D where D = dom(Σ)

Transition rules for network evolution: N
act−−→ N

[N-FIR]
Env = 〈�,Σ〉 δ = {δ′ | δ� δ′}
δ;F (Ψ)(δ); Σ(δ) ` emain ⇓ θ Ψ1 = δ 7→ {δ 7→ θ}

〈Env; Ψ〉 δ−→ 〈Env;F (Ψ)[Ψ1]〉

[N-ENV] WFE(Env′) Env′ = 〈�, δ 7→ σ〉 Ψ0 = δ 7→ ∅
〈Env; Ψ〉 env−−→ 〈Env′; Ψ0[Ψ]〉

Figure A.13: Small-step operational semantics for network evolution.

Finally, suppose that (because op a change of network topology that took
place before the last firing of device δ0) device δ1 does not receive that broadcast
and filters out δ0 from its list of neighbour before performing another firing
with sense() returning false (which is different from the value returned while
performing the previous fire of device δ1) . Then, θ1 = false〈〉, φ′ = δ1 7→ true,1550

φ = (δ1 7→ false)[δ1 7→ true] = δ1 7→ true, and the body is evaluated as
anyHoodPlusSelf(δ1 7→ true)||false which produces θ2 = true〈true〈δ1 7→
true〉, false〉 and leads to the overall result θ3 = true〈false, true〈θ2〉〉.

Rule [E-IF] is almost standard, except that it performs domain restriction
πtrue(Θ) (resp. πfalse(Θ)) in order to guarantee that subexpression etrue is not1555

matched against value-trees obtained from efalse (and vice-versa).

Appendix A.2. Network semantics

The overall network evolution is formalised by the small-step operational
semantics given in Figure A.13 as a transition system on network configurations
N . Figure A.13 (top) defines key syntactic elements to this end. Ψ models the1560

overall status of the devices in the network at a given time, as a map from device
identifiers to value-tree environments. � models network topology (a directed
neighbouring graph), as in Definition 5. Σ models sensor (distributed) state,
as a computational field δ 7→ σ (c.f. Definition 6) mapping device identifiers
to (local) sensors (i.e., sensor name/value maps denoted as σ). Then, Env (a1565

couple of topology and sensor state) models the system’s environment. Finally,
a whole network configuration N is a couple of a status field and environment.

We use the following notation for status fields. Let δ 7→ Θ denote a map from
device identifiers δ to the same value-tree environment Θ. Let Θ0[Θ1] denote
the value-tree environment with domain dom(Θ0) ∪ dom(Θ1) coinciding with1570

47

Θ1 in the domain of Θ1 and with Θ0 otherwise. Let Ψ0[Ψ1] denote the status
field with the same domain as Ψ0 made of δ 7→ Ψ0(δ)[Ψ1(δ)] for all δ in the
domain of Ψ1, δ 7→ Ψ0(δ) otherwise.

Thee are transitions N
act−−→ N ′ of two kinds: firings, where act is the cor-

responding device identifier, and environment changes, where act is the special1575

label env. This is formalised in Figure A.13 (bottom). Rule [N-FIR] models a
firing at device δ: it takes the local value-tree environment filtered out of old
values F (Ψ)(δ);12 then by the single device semantics it obtains the device’s
value-tree θ,13 which is used to update the system configuration of δ and of δ’s
neighbours.1580

Rule [N-ENV] takes into account the change of the environment to a new
well-formed environment Env′—environment well-formedness is specified by the
predicate WFE(Env) in Figure A.13 (middle). Let δ be the domain of Env′.
First, a status field Ψ0 is constructed by associating to all the devices of Env′

the empty context ∅. Then, the existing status field Ψ is adapted to the new set1585

of devices: Ψ0[Ψ] automatically handles removal of devices, map of new devices
to the empty context, and retention of existing contexts in the other devices.

Example 9. Consider a network of devices running the program

share (false) { (old) => anyHoodPlusSelf(old) || sense() }

as introduced in Example 8. The network configuration illustrated at the be-1590

ginning of Example 8 can be generated by applying rule [N-ENV] to the empty
network configuration. I.e., we have 〈〈∅, ∅〉; ∅〉 env−−→ 〈Env0; Ψ0〉 where

Env0 = 〈�0,Σ0〉,
�0= (δ0 7→ δ1, δ1 7→ δ0),

Σ0 = (δ0 7→ (sense 7→ false), δ1 7→ (sense 7→ true)), and1595

Ψ0 = (δ0 7→ ∅, δ1 7→ ∅).
Then, the four firings of devices δ0, δ1, δ0, δ1 and the change of communication
topology and sensor value (that took place between the second and the third
firing) illustrated in Example 8 are modelled by the following transitions.

1. 〈Env0; Ψ0〉 δ0−→ 〈Env0; Ψ′〉, where

Ψ′ = (δ0 7→ (δ0 7→ θ0), δ1 7→ (δ0 7→ θ0)).

2. 〈Env0; Ψ′〉 δ1−→ 〈Env0; Ψ′′〉, where

Ψ′′ = (δ0 7→ (δ0 7→ θ0, δ1 7→ θ1), δ1 7→ (δ0 7→ θ0, δ1 7→ θ1)).

12Function F (Ψ) in rule [N-FIR] models a filtering operation that clears out old stored values
from the value-tree environments in Ψ, implicitly based on space/time tags.

13Termination of a device firing is clearly not decidable. However, without loss of generality
for the results of this paper, we assume that any device firing is guaranteed to terminate in
any environmental condition.

48

3. 〈Env0; Ψ′′〉 env−−→ 〈Env1; Ψ′′〉, where1600

Env1 = 〈∅,Σ1〉,
Σ1 = (δ0 7→ (sense 7→ false), δ1 7→ (sense 7→ false)).

4. 〈Env1; Ψ′′〉 δ0−→ 〈Env1; Ψ′′′〉, where

Ψ′′′ = (δ0 7→ (δ0 7→ θ2, δ1 7→ θ1), δ1 7→ (δ0 7→ θ0, δ1 7→ θ1)).

5. 〈Env1; Ψ′′′〉 δ1−→ 〈Env1; Ψ′′′′〉, where

Ψ′′′′ = (δ0 7→ (δ0 7→ θ2, δ1 7→ θ1), δ1 7→ (δ1 7→ θ3)).

Appendix B. Proofs

Appendix B.1. Proof of Theorem 1

In this section, we prove that the operational semantics in Appendix A1605

mirrors the message passing details of any LUIC augmented event structure
(c.f. Definition 2). Namely, every system evolution S induces a Space-Time
Value Φ = 〈E, f〉 (c.f. Definition 3). Therefore, S induces a LUIC augmented
event structure E (c.f. Definition 2) describing its message passing details, as
per the following definition.1610

Definition 13 (Space-Time Value Induced by a System Evolution). Let S =

N0
act1−−→ . . .

actn−−−→ Nn with N0 = 〈∅, ∅; ∅〉 be any system evolution. We say that:

� D = {δ | ∃i. acti = δ} are the device identifiers appearing in S;

� F δ = 〈i ≤ n | acti = δ〉 are the indexes of transitions applying rule [N-FIR];

� E =
{
〈δ, i〉 | δ ∈ D ∧ 1 ≤ i ≤

∣∣F δ∣∣} is the set of events in S;1615

� d : E → D maps each event ε = 〈δ, i〉 to the device δ where it is happening;

� ε1 ε2 where εk = 〈δk, ik〉 and j1 = F δ1i1 , j2 = F δ2i2 if and only if:

– Nj1 has topology� such that δ1 � δ2 (the message from ε1 reaches
δ2),

– there is no j′ ∈ (j1; j2) with j′ ∈ F δ1 and Nj′ with topology � such1620

that δ1 � δ2 (there are no more recent messages from δ1 to ε2),

– for every j′ ∈ (j1; j2] with j′ ∈ F δ2 and Nj′ with status field Ψ, then
δ1 ∈ dom(Ψ(δ2)) (the message from ε1 to δ2 is not filtered out as
obsolete before ε2);

� < is the transitive closure of ;1625

� f : E → V is such that f(〈δ, i〉) = ρ(Ψ(δ)(δ)) where NF δi = 〈Env; Ψ〉.

49

Then we say that the system evolution S induces the space-time value Φ =
〈E, f〉, where E is the LUIC augmented event structure 〈E, , <, d〉.

Notice that the E and Φ defined above are unique given S. Furthermore,
as stated by the following theorem, the operational semantics is sufficiently1630

expressive to model every possible message interaction describable by a LUIC
augmented event structure.

Restatement of Theorem 1 (Semantic Completeness). Let E = 〈E, , <, d〉
be a LUIC augmented event structure. Then there exist (infinitely many) system
evolutions S that induce E.1635

Proof. By the computation immediacy, the relation ∪ 99K is acyclic on E.
Thus, there exists at least one ordering of E = 〈ε1, . . . , ε`〉 compatible with
and 99K, i.e. such that εi εj or εi 99K εj implies i < j. Define by induction a
system evolution Si for i ≤ ` translating the elements of E (in order), starting
from the empty system evolution without transitions S0 = 〈∅, ∅; ∅〉.1640

Consider a step i ≤ `, let δi = d(εi), and add the following three transitions

to the system Si = Si−1
env−−→ N ′

δi−−−→ N ′′
env−−→ N ′′′:

� first, an env transition changing the topology to any neighbouring relation
� such that {δ′ | δi� δ′} = {d(ε′) | εi ε′};

� secondly, a δi transition representing the computation, where the filter F1645

clears out from the value-tree environment Ψ(δi) the value trees corre-
sponding to devices not in X = {d(ε′) | ε′ εi};

� finally, another env transition, which removes δi from the domain of the
system configuration if next(εi) does not exist, or it does nothing if next(εi)
exists.1650

Then, the system evolution S` induces E (c.f. Definition 13). Notice that many
system evolutions may induce E: besides the existence of many different lin-
earisations of E according to and 99K, env transitions can be added in an
unbounded number of ways.

Appendix B.2. Proof of Theorem 21655

In Appendix A.2 we modelled the message passing resulting from a fire (rule
[N-FIR]) as a broadcast of whole value-trees θ. However, only part of that data
is actually used in computation, and practical implementations of the calculus
(Protelis (Pianini et al., 2015) and ScaFi (Casadei and Viroli, 2016)) take profit
of that for greatly reducing the amount of data exchanged. In particular, an1660

optimised implementation may:

� store only values of nodes corresponding to [E-NBR] and [E-SHARE] state-
ments;

50

� label each of them with the sequence of Boolean results of if guards
encompassed to reach them (as these are the only values needed to perform1665

alignment).

In measuring the message size required for computations, we consider the above
optimised implementation as reference.

Restatement of Theorem 2 (Lightweightness). The translation P of a for-1670

mula φ according to Figure 6 computes in each node using message size O(S)
and computation time/space O(L + SN), where N is neighbourhood size and
L, S are the numbers of logical and spatial operators in φ.

Proof. We proceed by syntactic induction on φ. Logical operators are translated
into Boolean operations that perform in constant time locally without message1675

exchanges. Thus we only need to prove that spatial operators are translated
into programs using O(1) message size and O(N) computation time/space.

Each spatial operator is expanded into a formula with at most four logical
operators, at most two occurrences of local operators � and ♦, and at most
one occurrence of global operators F or R. Each occurrence of � and ♦ is1680

translated in a program sending one bit with nbr{F} which scans the data of
the N neighbours checking if some (all) is true (thus in O(N) time/space).

Occurrences of F are translated into a call to somewhere, triggering an
execution of the distanceTo building block, which exchanges with neighbours
a single positive integer (with value up to D, which we consider to fit within one1685

word), and selects the minimum from the received values in O(N) time/space.
Finally, occurrences of R are translated as an if statement (creating a new

non-trivial node in the value-trees, for additional O(1) message size for align-
ment purposes), together with a call to somewhere (previously discussed).

Appendix B.3. Proof of Theorem 31690

In this section, we prove that the translation of an SLCS formula into a field
calculus monitor is correct and optimal. In order to prove that the translated
program is correct and optimal in stabilisation speed, we first need to inspect the
convergence properties of the distanceTo algorithm (Lemma 4, an extended
version of results in (Viroli et al., 2018)).1695

Lemma 4 (Distance-To Stabilisation). Assume that distanceTo(dest) is
computed in a stable and connected network, and let d(δ) be the hop-count dis-
tance of a device δ in the network to the closest device where dest holds (∞ if
no such device exists).

Then after n full rounds of execution, devices such that d(δ) < n stabilise to1700

d(δ), while devices such that d(δ) ≥ n satisfy distanceTo(dest) >= n.

Proof. Let N0
δ0−→ N1

δ1−→ . . . be a (possibly infinite) network evolution where
the topology and atomic proposition source are stable. Assume that N0 is a
configuration attainable from the execution of distanceTo, in particular, that
the values for d shared between neighbours are non-negative integers. Let tn be1705

51

such that n full rounds of execution has passed at step tn since start (so that
t0 = 0), and proceed by induction on n.

From the first full round of execution on, each destination device will cor-
rectly compute 0 as result of distanceTo(dest), while non-destination devices
will compute minHood(d)+1. Since values d shared between neighbours are1710

always non-negative, the result has to be ≥ 1, completing the proof for n = 1.
Assume now that the thesis holds for n − 1. Consider a device δ with

d(δ) = n− 1, which then has (at least) one neighbour with distance n− 2, and
no neighbour with distance < n− 2 (by definition of hop-count distance). From
tn−1 on, neighbours with distance n − 2 will have already stabilised to n − 2,1715

while neighbours with distance ≥ n− 1 will have computed results ≥ n− 1 (by
inductive hypothesis). It follows that minHood(d)+1 has to be n− 1 for δ from
its first fire after tn−1 on, concluding this part of the proof.

Consider now a device δ with d(δ) ≥ n, which then has no neighbour with
distance < n− 1 (by definition of hop-count distance).1720

From tn−1 on, all those neighbours will have computed results ≥ n− 1 (by
inductive hypothesis). It follows that minHood(d)+1 has to be at least n for δ
from its first fire after tn−1 on, concluding the proof.

Restatement of Theorem 3 (Self-Stabilisation, Correctness, Optimality). Let
P be the translation of φ according to Figure 6. If the network configuration and1725

atomic propositions stabilise, the result of P also stabilises to the interpretation of
φ in that final configuration (regardless of the evolution history of the network).
Furthermore, the time required for stabilisation is as small as possible, meaning
that no correct inductive translation can stabilise with a smaller worst case of
full rounds of execution).1730

Proof. We proceed by syntactic induction on formulas, assuming derived opera-

tors to be already expanded into the basic ones. As before, let N0
δ0−→ N1

δ1−→ . . .
be a (possibly infinite) network evolution where the topology and atomic propo-
sitions are stable, assuming that N0 is attainable from the execution of P. Let
t0 be minimum such that results of sub-formula have necessarily stabilised after1735

t0, and let tn be such that n full rounds of execution has passed at step tn since
t0. A formula φ can be:

� An atomic formula (>, ⊥, q), which is stable from t = 0 since atomic
propositions are stable (inductive base case).

� A logical operator, whose translation is easily checked to be correct and1740

stable since t0 when the sub-formulas are stable.

� A local operator (�φ1 or ♦φ1), whose overall translation will stabilise
at t1 after each device performed an additional firing to share the stabilised
argument result with neighbours through the nbr{F1} construct. The cor-
rectness of the result can then be easily checked: e.g., �φ1 holds on points1745

where all neighbours satisfy φ1, as the translation allHoodPlusSelf(nbr
{F1}) which holds on devices where all the values received from neigh-
bours for F1 are true. Furthermore, the one-round delay is necessary,

52

as the sub-formula values from neighbours are needed for computing the
overall result, and are not available before t1.1750

� A reaches operator φ1Rφ2. In the area where φ1 stabilises to false,
the overall result simultaneously stabilises to false which is the correct
result (achieved at t0 with minimal, zero delay). Due to the properties
of the if construct, the area where φ1 is true computes its result in
isolation, as if the devices in the complementary area where not present.1755

In particular, each connected component of the true area performs its
computation independently from the others.

Consider a connected component where at least one device satisfies φ2

(since stabilisation at t0), in which the correct result of φ1Rφ2 would then
be true. Let d(δ) be the hop-count distance of a device δ in the area to the1760

closest device where φ2 holds. By Lemma 4, the result of distanceTo(F2)
on each device δ stabilises to d(δ) after td(δ), and the result of somewhere
(F2) (hence reaches(F1, F2)) on each device δ stabilises to true after
td(δ) as well. Furthermore, no correct program could stabilise before td(δ),
since the information that a device area is a source travels one hop at a1765

time, thus is not available in δ before td(δ).

Finally, consider a connected component where no device satisfies φ2 (since
stabilisation at t0), in which the correct result of φ1Rφ2 would then be
false. By Lemma 4, the result of distanceTo(F2) on each device is
≥ n after tn. In particular, after tD+1 we will have distanceTo(F2) >1770

D so that somewhere(F2) and reaches(F1, F2) stabilise to false. In
fact, no correct program could stabilise before tD+1 in all cases, since the
information of a (plausible) point satisfying φ2 at distance D would not be
available before that moment.

� A somewhere operator F φ1. In that case, correctness and optimality1775

follow by the same reasoning as R, through the equivalent formula >Rφ1.

53

	Copertina_postprint_IRIS_UNIBO(8)
	main

