

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

Unveil the unseen: Using LiDAR to capture time-lag dynamics in the herbaceous layer of European temperate forests

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:

Unveil the unseen: Using LiDAR to capture time-lag dynamics in the herbaceous layer of European temperate forests / Lenoir, Jonathan; Gril, Eva; Durrieu, Sylvie; Horen, Hélène; Laslier, Marianne; Lembrechts, Jonas J.; Zellweger, Florian; Alleaume, Samuel; Brasseur, Boris; Buridant, Jérôme; Dayal, Karun; De Frenne, Pieter; Gallet-Moron, Emilie; Marrec, Ronan; Meeussen, Camille; Rocchini, Duccio; Van Meerbeek, Koenraad; Decocq, Guillaume. - In: JOURNAL OF ECOLOGY. - ISSN 0022-0477. - STAMPA. - ANGRADA), pp. 282-300. [10.1111/1365-2745.13837]

This version is available at: https://hdl.handle.net/11585/857764 since: 2022-02-18

Published:

DOI: http://doi.org/10.1111/1365-2745.13837

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version.

(Article begins on next page)

This is the final peer-reviewed accepted manuscript of:

Lenoir, Jonathan; Gril, Eva; Durrieu, Sylvie; Horen, Hélène; Laslier, Marianne; Lembrechts, Jonas J.; Zellweger, Florian; Alleaume, Samuel; Brasseur, Boris; Buridant, Jérôme; Dayal, Karun; De Frenne, Pieter; Gallet-Moron, Emilie; Marrec, Ronan; Meeussen, Camille; Rocchini, Duccio; Van Meerbeek, Koenraad; Decocq, Guillaume: *Unveil the unseen: Using LiDAR to capture time-lag dynamics in the herbaceous layer of European temperate forests*

JOURNAL OF ECOLOGY VOL. 110 ISSN 0022-0477

DOI: 10.1111/1365-2745.13837

The final published version is available online at:

https://dx.doi.org/10.1111/1365-2745.13837

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

1 Article type: Essay Review submitted for the Grime Reviews series

- 2 Unveil the unseen: Using LiDAR to capture time-lag dynamics in the
- **3 herbaceous layer of European temperate forests**
- 4 Preliminary author list
- Jonathan Lenoir¹, Eva Gril¹, Sylvie Durrieu², Hélène Horen¹, Marianne Laslier¹, Jonas Lembrechts³,
- 6 Florian Zellweger⁴, Samuel Alleaume², Boris Brasseur¹, Jérôme Buridant¹, Karun Dayal², Pieter De
- 7 Frenne⁵, Emilie Gallet-Moron¹, Ronan Marrec¹, Camille Meeussen⁵, Duccio Rocchini^{6,7}, Koenraad
- 8 Van Meerbeek⁸, Guillaume Decocq¹
- 9 Affiliations
- 10 ¹Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR 7058 CNRS), Université de Picardie Jules Verne, 1
- 11 rue des Louvels, 80000 Amiens, France
- 12 ²UMR TETIS, Univ Montpellier, AgroParisTech, CIRAD, CNRS, INRAE, Montpellier, France
- 13 ³Centre of Excellence on Plants and Ecosystems, University of Antwerp, Belgium
- ⁴Institut fédéral de recherches sur la forêt, la neige et le paysage WSL, Zürcherstrasse 111, 8903 Birmensdorf, Suisse
- 15 Forest & Nature Lab, Ghent University, Geraardsbergsesteenweg 267, 9000 Gent, Belgium
- 16 ⁶BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of
- 17 Bologna, via Irnerio 42, 40126, Bologna, Italy
- ⁷Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Spatial Sciences, Kamýcka
- 19 129, Praha-Suchdol, 16500, Czech Republic
- 20 8Department of Earth and Environmental Sciences, Division Forest, Nature and Landscape, KU Leuven, Belgium

Abstract

- 1. To understand time-lag dynamics in the response of biodiversity to macro-environmental changes (e.g., macroclimate warming and atmospheric pollution), we need to consider other anthropogenic forcing factors such as land-use changes and changes in management practices that can have both compounding and confounding effects. This is especially true in European temperate forests, where legacies from past human activities have left strong imprints on today's understory plant species composition, generating long-term lagging effects which can be mistakenly attributed to more recent macro-environmental changes.
- 2. By combining the expertise of plant, soil, and historical ecologists together with remote sensing scientists, we review the potential of light detection and ranging (LiDAR) to unveil ghosts from the past in terms of former land uses and management practices.
- 3. We show that imprints from past land uses and management practices can still be captured today throughout well-chosen LiDAR-derived variables describing, at sub-decimetre scale, the vertical and horizontal micro-variations of vegetation and terrain structure hidden below treetops.
- 4. Synthesis. We encourage plant and soil ecologists to use LiDAR data and to work with historians, archaeologists, and remote sensing scientists in order to select meaningful LiDAR-derived variables to account for time-lagged biotic responses to long-term macroenvironmental changes.

Keywords

- Archaeology, biodiversity, climate change, climatic debt, disequilibrium dynamics, forest management, historical ecology, legacy effects, microclimate, nitrogen deposition, remote
- 43 sensing, understory layer

- 44 "When light encounters a strong magical field it loses all sense of urgency. It slows right down." –
- 45 Terry Pratchett, The Light Fantastic (1986)

Introduction

46

47 The current warming of the climate system is unprecedented in terms of its speed and spatial extent within the context of the past 2,000 years (Neukom et al., 2019), leading to important 48 regional, continental, and global biodiversity changes: species range shifts (Lenoir et al., 2020); 49 50 shifts in the phenological synchrony of species interactions (Kharouba et al., 2018); community 51 thermophilization (i.e., increasing dominance of warm-adapted species) (Gottfried et al., 2012); 52 biotic homogenization (Staude et al., 2020); and even species extinction (Panetta et al., 2018). Yet, the velocity at which these biotic responses happen is generally lower than the velocity at which 53 54 the macroclimate is warming (Bertrand et al., 2011; Dullinger et al., 2012; Rumpf et al., 2019; Vitasse et al., 2021), leading to disequilibrium or lagging dynamics (Alexander et al., 2018; 55 Svenning & Sandel, 2013) sometimes also referred as the (macro)climatic debt in the scientific 56 57 literature (Bertrand et al., 2016; Devictor et al., 2012; Richard et al., 2021). Likewise, delayed recovery of plant species richness and composition in response to the decreased inputs of 58 atmospheric pollutants, after the peak in Europe during the 1970s for sulphur and during the 59 1980s for nitrogen, have been reported for both forest and grassland habitats (Riofrío-Dillon et al., 60 61 2012; Storkey et al., 2015). 62 Lagging dynamics in response to macroclimate warming and the reduction in atmospheric 63 deposition, among other macro-environmental change drivers, are especially pronounced within the herbaceous layer of temperate deciduous forests (Bertrand et al., 2011, 2016; De Frenne et al., 64 2013; Richard et al., 2021; Riofrío-Dillon et al., 2012; van Dobben & de Vries, 2017), which is the 65 66 most biodiversity-rich vegetation layer in these ecosystems (Gilliam, 2007; Landuyt et al., 2019). In terms of biotic responses to macroclimate warming, thermophilization rates are ranging from 0.01 67

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

to 0.05°C per decade within understory plant communities of temperate forests, which is several orders of magnitude lower (cf. greater lags) than the rates observed in other groups such as trees (0.11°C per decade), bumblebees (0.14°C per decade), freshwater invertebrates (up to 0.22°C per decade), or marine fishes and invertebrates (up to 0.38°C per decade) (see Table S5 in Richard et al. (2021), and references therein, for a more exhaustive description). For comparative purposes, mean annual temperature increased at a rate of 0.23°C per decade between 1995 and 2015 in France (Richard et al., 2021). As for the recovery time following the reduction in atmospheric deposition in Europe, lagging effects seem also more pronounced in the herbaceous layer of forests than in grassland communities (Schmitz et al., 2019; Storkey et al., 2015; van Dobben & de Vries, 2017). However, whether or not the magnitude of these time-lagged biotic responses in temperate forests can be attributed solely to macroclimatic warming or atmospheric deposition remains an open question. To resolve this, it is of utmost importance to also consider other anthropogenic forcing factors such as past land-use changes and historical changes in forest management practices that can have both compounding and confounding effects with other more recent environmental change drivers (Forister et al., 2010; Guo et al., 2018; Larsen, 2012; Warren et al., 2001). Indeed, the scientific literature is full of examples, detailed below, illustrating how the history of forest management practices and land uses can interact, synergistically or antagonistically, with either macroclimate warming or atmospheric deposition, to delay or sometimes speedup changes in the understory of European temperate forests. As macroclimate warming accelerates, it is assumed that mean annual temperatures below treetops increase as well but at lower rates than outside forests due to the lower coupling between macroclimate and microclimate inside the forest understory (Lenoir et al., 2017). Accordingly, De Lombaerde et al. (2021) predicted that maximum temperatures will, on average for the 2060-2080 period, warm less inside (+0.27°C) than outside (+0.60°C) forests if the local forest cover is maintained. However, maximum temperatures may also warm faster inside the

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

forest understory than outside if canopy cover is reduced due to, for instance, management interventions or forest dieback related to drought and pest damages. Such forest microclimate dynamics driven by changes in canopy cover could explain part of what seems to be a delayed biotic response to macroclimate warming, meaning that the so-called macroclimatic debt involves microclimatic processes (De Frenne et al., 2021; Zellweger et al., 2020). Accordingly, Richard et al. (2021) have recently demonstrated that lags in community thermophilization are accumulating over time in the herbaceous layer of denser and older forest stands in France, while anthropogenic and natural disturbances generating canopy gaps above the herbaceous layer tended to reduce these lags. Hence, stand characteristics are important determinants of time-lag dynamics observed in the herbaceous layer of temperate forests in response to macroclimate warming (Brice et al., 2019; Richard et al., 2021). Besides, changes in stand characteristics over time interact with long-term environmental changes through complex historical trajectories of forest management practices and natural disturbances (e.g., fire, drought, wind storm). For instance, in Europe, Perring et al. (2018) have shown that the trajectories of changes in forest plant community composition over 40 years were clearly influenced by complex interactions between management legacies from over 200 years ago and long-term environmental changes, in terms of both the rate of nitrogen deposition and the rate of temperature change. Time-lagged biotic responses that we attribute today to macroclimatic warming or to the reduction in atmospheric deposition may also involve other long-term processes, such as legacy effects of soil compaction due to mechanized timber harvesting as well as more ancient legacy effects of past land uses (Bürgi et al., 2017), operating through microclimate and soil memory effects. For instance, it has been recently demonstrated that old skid trails left by forestry vehicles more than 50 years ago locally increase soil compaction and alter microclimatic conditions in the soil (humidity and temperature), which leaves a strong imprint on contemporary community composition and diversity in the herbaceous layer of temperate forests (Wei et al., 2015). More

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

precisely, by limiting water infiltration, skid trails locally increase the proportion of wetland plant species in the community (Buckley et al., 2003), which alters community composition such that the community may not only indicate wetter but also cooler conditions over time when analysed through the lens of thermophilization indices solely. Indeed, a cooling effect is usually concomitant with the humidifying effect of vegetation (Zhang et al., 2013). In such a case, time-lagged biotic responses to soil compaction by skid trail may be mistakenly attributed to an inflated macroclimatic debt.

The field of historical ecology (Szabó, 2015) is full of examples showing that current local

biodiversity continues to be influenced by past management practices and land uses, including fire regimes, through complex biotic lags usually involving long-lasting effects of changes (or absence of changes) in landscape configuration and soil abiotic conditions (Dambrine et al., 2007; Dupouey et al., 2002; Jung et al., 2019; Metzger et al., 2009). For instance, time since afforestation, and thus land-use history, has left a strong imprint on the herbaceous layer of temperate deciduous forests in Europe, with several forest plant species (i.e., forest specialists) clearly associated with ancient forests (land continuously forested for several centuries) (Rackham, 2008) as opposed to more recent forests (Hermy et al., 1999; Peterken & Game, 1984; Valdés et al., 2015; Verheyen et al., 2003). Similarly, historical landscape connectivity can strongly affect the present distribution pattern of herbaceous forest plants in fragmented forests and hedgerows through changes in habitat configuration and composition (Lenoir et al., 2021; Lindborg & Eriksson, 2004; Metzger et al., 2009). Perhaps more surprisingly, former Roman agricultural practices throughout Europe can still have irreversible impacts on forest biogeochemical cycles and biodiversity by increasing today's soil pH, available phosphorus and nitrogen, and consequently the frequency of nitrogendemanding species (Dambrine et al., 2007; Plue et al., 2008; Vanwalleghem et al., 2004). In such a case, without considering historical information on past land uses, one may mistakenly interpret todays' occurrence of nitrogen-demanding species in the community as a response to the high

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

nitrogen deposition during the 1980s while part of it may actually be due to longer-term lagging effects induced by former Roman agricultural practices. By looking at terrain morphology and micro-topographic variations in today's landscapes, archaeologists and geo-historians can read such long-term legacies from past land uses, unearth artefacts of former human occupations, and provide invaluable information to explain current biodiversity patterns (Briggs et al., 2006; Closset-Kopp & Decocq, 2015; Dambrine et al., 2007; Dupouey et al., 2002; Plue et al., 2008). Hence, to decipher the main determinants of time-lag dynamics in the herbaceous layer of temperate forests it is necessary to analyse the response of species population and community dynamics to contemporary macro-environmental changes (e.g., macroclimate warming or nitrogen deposition) in the light of historical management practices and past land uses. Vertical and horizontal micro-variations at sub-decimetre scale in both vegetation and terrain structure can bear the imprints of historical management practices and land-use legacies which are still contributing to today's biodiversity, and thus to time-lagged biotic responses to macroenvironmental changes, by locally altering microclimatic conditions near the soil surface as well as edaphic conditions (Fig. 1). Light detection and ranging (LiDAR) data (Box 1) can capture these vertical and horizontal micro-variations (i.e., structural traits) below treetops (Fig. 2). Indeed, LiDAR data can provide quantitative metrics of both stand characteristics and micro-topographic variations below the canopy at unprecedented detail, often impossible to perceive for the human eye or to describe with traditional field measurement methods (Chase et al., 2012; Dassot et al., 2011). To illustrate this, we first put on our plant-ecologist hat to show how LiDAR data can capture detailed stand characteristics to unveil recent but also historical forest management practices that affect current forest microclimates and thus the time-lag dynamics of understory plants' responses to long-term environmental changes. Then, we put on our soil-ecologist hat to illustrate how LiDAR data can unveil the imprints of former skid trails left by forestry vehicles that are still affecting current plant community composition through soil compaction. Third, we take a

historical-ecologist viewpoint to demonstrate how LiDAR data can unveil long-term land use history that may still affect contemporary plant community composition in the herbaceous layer. Finally, we discuss research perspectives in light of the most recent advances in LiDAR technology and its combination with other remote sensing technologies as well as with recent developments in computer science. We conclude that LiDAR can be used as a tool to boost trans-disciplinary research between plant ecologists, foresters, soil ecologists, archaeologists, historical ecologists, and remote sensing scientists to advance our knowledge of time lags in the response of understory plant communities to long-term macro-environmental changes.

Box 1: LiDAR principles

Measurement principles

Light detection and ranging (LiDAR) is an active remote-sensing technology based on emission-reception of a laser beam. LiDAR can be divided into two main categories (Durrieu et al., 2015; Grotti et al., 2020): (1) time-of-flight LiDAR (Fig. 2) assessing distances by measuring the roundtrip time for a short laser pulse, in general emitted by a near-infrared or visible (green) laser, to travel between the sensor and a target; versus (2) phase-shift LiDAR emitting a continuous wave laser with intensity modulated at a series of frequencies to determine distances through shifts in phase of the returned modulations. Phase-shift LiDAR have higher measurement rates and can thus collect data at a much faster speed than time-of-flight LiDAR. They also measure distance with a precision of up to few millimetres against few centimetres for time-of-flight LiDAR. However, their maximum measurement range is much shorter, which makes phase-shift LiDAR more adapted for terrestrial LiDAR systems (TLS) than for airborne LiDAR systems (ALS) (Fig. 2). Additionally, phase-shift LiDAR is more prone to artefacts, for example those caused by range averaging, when a beam partially intercepts more than one object.

Scanning and geolocating principles

In order to acquire LiDAR data across a given area or landscape, a scanning system is used to deflect the emitted laser beams in different directions throughout the target scenery (**Fig. 2**). This is achieved thanks to: (1) the combination of a moving (e.g., rotating) mirror and the movement of either the scan head for static TLS or the vehicle on which the LiDAR is embedded for non-stationary systems like ALS (Tan et al., 2018); and (2) the multiplication of standpoints for TLS or flight lines for ALS. When both the scanning angles and the position of the LiDAR in a geographic reference system are known at the time of range measurements, the absolute position of the targets on the Earth's surface can be inferred. For mobile ALS, real-time sensor position and

orientation are obtained thanks to a differential global navigation satellite system (DGNSS) and an inertial measurement unit on-board the platform. For static TLS, point cloud geolocation can be achieved by measuring either scan positions or the positions of a set of high reflective targets distributed in the field, which are clearly identifiable in the point clouds and used for the merging of several scans. Positions can again be measured using a DGNSS. To improve location accuracy in forest environments, it is recommended to use a DGNSS in a neighbouring open area as well or coupled with a total station (cf. tacheometer).

Spatial distribution of LiDAR measurements and occlusions

The spatial distribution of LiDAR measurements results from the combination of several factors, such as laser emission rate, scanning system, and vector velocity for non-stationary ALS. However, a major phenomenon impacts the spatial distribution of LiDAR measurements in forested environments: occlusions. Like natural light, laser beams can penetrate through vegetation openings but, when intercepted by vegetation elements, it is mostly reflected or absorbed, generating shadows or occluded areas behind these elements (e.g., foliage, stems, flowers).

Besides, the quantity of light continuing its path through vegetation decreases each time part of a laser beam hits a vegetation element. As a result, vegetation sampling is getting sparser when the laser beam goes deeper inside the vegetation (Fig. 2). For TLS, point density decreases with the distance from scan positions below the canopy, leading to sparser point clouds towards the top of the canopy and generating occlusion areas behind large tree trunks located very close to the scanning position. For ALS, the understory vegetation and the ground surface, including deadwood and litter lying on the ground, are less densely measured than the top of the canopy, especially after leaf-out and tree canopy closure in temperate deciduous forests.

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Using LiDAR-derived metrics of vegetation structure to capture time-lag dynamics in the response of herbaceous plant communities to long-term environmental changes Forest structure is acknowledged to be a key factor to explain current plant species diversity and community composition in the understory (Oettel & Lapin, 2021; Walter et al., 2021). LiDAR technology allows the description of complex aspects of the forest structure that are complementary to those observed by foresters during field surveys (Box 2) (Bouvier et al., 2015; Venier et al., 2019). Primarily underpinned by objectives of forest resource inventory and management, the capacity to remotely assess stand characteristics such as basal area, stem density, dominant height, wood volume, and biomass distribution, has been widely studied and is operationalized in a variety of forest contexts (Moeslund et al., 2019; White et al., 2016; Wulder et al., 2013). Among those descriptors of stand attributes routinely used by foresters to assess forest resources, some, like stand structure (e.g., basal area, diameter diversity, tree height), management intensity, and tree species composition have proven to be useful to model current plant diversity in the forest understory (Oettel & Lapin, 2021; Wei et al., 2020). However, many other complementary metrics (e.g., canopy volume, vertical leaf density profile, understory shrub cover), not routinely used by foresters to assess vegetation structure because they are difficult to measure in the field, can be derived from LiDAR data (Fig. 3). In this review, we argue that LiDAR data can be used to derive variables describing the complexity of the vertical layering of vegetation in temperate forests, including subtle vertical structures bearing the imprints of extreme weather conditions as well as the memory of past forest management practices for which we have good records in Europe. It is widely acknowledged that historical forest management practices, such as coppicing which was widespread in European temperate forests before World War II (WWII), are major drivers of current plant community composition and distribution in the forest understory (Bartha et al.,

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

2008; Becker et al., 2017a; Bricca et al., 2020; Decocq et al., 2004; Della Longa et al., 2020; Müllerová et al., 2015). For instance, former coppice-with-standards (CWS) have left a visible signature on current stand structure as well as on current plant species composition in the herbaceous layer, even after conversion to high forests (HF), a very common practice in Europe after WWII. Importantly, these changes in forest management practices in Europe happened somewhat concomitantly with climate change and increased inputs of nitrogen via atmospheric deposition, leading to complex compounding and confounding effects on the observed changes in plant species composition in the herbaceous layer (Becker et al., 2017b; Perring et al., 2018). Traditionally, CWS were managed as multi-storied stands consisting of a matrix of even-aged stems (coppice) in the lower storey – cut down for firewood production in short rotations – and single-stem (emergent) trees (i.e., standards) in the upper storey – left standing during longer rotations for timber production. Whether or not CWS casts more shade at the forest floor than HF remains unclear, but conversion from CWS to HF implies more regular thinning operations over time, potentially leading to more frequent light pulses enhancing microclimate warming and community thermophilization in the understory, ultimately compounding and confounding the impact of macroclimate warming on understory plant communities (Zellweger et al., 2020). Changing socio-economic conditions throughout history have also led to the complete abandonment of active timber management in some regions of Europe (see Perring et al., 2018), generating prolonged absence of high light conditions in the forest understory. Such trajectories may have led to a loss of light-demanding plant species from open habitats and an increase of typical shade-tolerant plant species (i.e., forest specialists) (Baeten et al., 2009), reducing community thermophilization and contributing to the lagging response of understory forest plant to macroclimate warming (Richard et al., 2021).

Using LiDAR technology to scan the vertical layering of vegetation and better capture the understory structure hidden below treetops (Box 2), as a mean to identify the complex trajectories

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

outlined above, holds untapped potential to understand time-lag dynamics that depends upon past management legacies (Perring et al., 2018). For instance, a set of airborne LiDAR-derived variables describing the vertical distribution of canopy height and cover was successfully applied to identify old coppices in a Mediterranean context (Bottalico et al., 2014). The most straightforward metrics to describe the vertical structure of vegetation within a given spatial grid cell include the mean and standard deviation of height values above the ground surface for all the points classified as vegetation and belonging to the focal grid cell. Yet, these raw summary statistics aggregated in a 2D pixelated space may not fully capture the complex layering of vegetation in the understory (see **Box 2**). Refined approaches to assess the effective number of vegetation layers below treetops consist in computing height percentiles and the number of echoes or point density at several heights (Frey et al., 2016; Stickley & Fraterrigo, 2021). Using airborne LiDAR data, Stickley & Fraterrigo (2021) summarized the vertical structure of temperate deciduous forests in the Great Smoky Mountains National Park into five height classes and found that variation in maximum temperature in the understory was best explained by the buffering effects of the low-understory (below 5 m height) and low-canopy (from 10 to 15 m height) layers. Finally, it is possible to compute more advanced LiDAR-derived metrics per unit of volume (see Box 2) by relying on the resolution of the transmittance equation using the Beer-Lambert Law, which relates the attenuation of light through a turbid medium – in this case, leaves and branches - to the properties of that medium, or on the maximum likelihood theory (Soma et al., 2018). For instance, plant area density (PAD) (in m² m⁻³) can first be computed for each single voxel, a 3D cell unit, from the local transmittance values by applying Beer-Lambert's turbid medium approximation (Vincent et al., 2017) (Fig. 3e). Thus, PAD values better reflect the amount of plant material participating to light occlusion in the canopy than the above-mentioned metrics based on point density. From vertical profiles of PAD values (Fig. 3f), it is then possible to summarize the entire vertical structure of vegetation, including the understory, by computing the plant area index

297

298

299

300

301

302

303

304

305

306

307

308

309

310

(PAI), which is the integral (area under the curve) of PAD profiles. Hence, PAI describes the entire column of plant material participating to light occlusion and thus indirectly reflects the amount of light reaching the forest floor. Figure 4 shows that a denser forest with a complex shrub layer and thus a higher PAI value (e.g., PAI = 6.28) than a less vertically complex and more open forest (e.g., PAI = 4.72) provides a higher buffering capacity during spring and summer, reducing daily mean temperature by more than 5°C (against 3°C for the open forest). It is also possible to compute PAI within a restricted vegetation layer, such as the shrub layer (e.g., below 7 m). This way, it is possible to partition PAI values among vegetation layers and focus on the additional insulating effect provided by shrubs (Fig. 4), which may bear the imprints of historical management practices contributing to time-lag dynamics in the herbaceous layer. Spatially contiguous maps of forest microclimate predictions (e.g., Frey et al., 2016; George et al., 2015) integrating the buffering effects of the understory shrub layer through the use of PAI values are especially promising as they may reflect the complex trajectories of forest management changes, and explain time-lag dynamics in the response of the herbaceous layer to long-term environmental changes (Richard et al., 2021; Zellweger et al., 2020).

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

Box 2: The potential of LiDAR-derived variables to capture vertical structures in the understory Traditional forest inventory methods to measure forest structure in the field cannot be easily applied contiguously at fine spatial resolutions and across large spatial extents. Moreover, traditional forest surveys cannot extract the accurate three-dimensional structure of forests, including tree cover rate, gap distribution, and a detailed vertical description of the understory. Using LiDAR data can help to overcome these limitations (Almeida et al., 2019) (Fig. 3). Once the digital terrain model (DTM) (Fig. 3a) of a given area has been computed from the set of points classified as "ground", it is possible to compute the exact height, relative to the ground surface, of each point classified as "vegetation" across the area. This information can then be exploited to extract very simple metrics of the vertical structure of vegetation, such as canopy density above a specific height (Fig. 3b) or maximum canopy height (Fig. 3c). The level of details provided by LiDAR data, and especially TLS data (Figs. 3d), to quantitatively describe the vertical layering of vegetation in the understory of temperate forests (Fig. 3e,f) is unprecedented compared to traditional field approaches (Venier et al., 2019). Foresters usually start recording and measuring trees in the field above a minimum diameter at breast height (DHB) of 7.5 cm. Yet, individuals of less than 7.5 cm DBH are also an important component of the understory shrub layer that can be partly captured depending on the quality of the raw LiDAR point cloud. The quality not only depends on the point density, which can be high in case of TLS data (Fig. 3d-f), but also on the intensity of the return and the number of echoes registered. For ALS data, full-waveform laser scanning allows to digitize the complete waveform of each backscattered pulse and extract more small echoes – even during leaf-on conditions – that may hold key information on the structure of the understory shrub layer. From the raw LiDAR point cloud, the most intuitive approach to capture the understory shrub layer is to separate points classified as "vegetation" into different vertical strata and extract summary statistics aggregated in a 2D pixelated space describing either

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

the mean, minimum, maximum, standard deviation, skewness, kurtosis, or relative percentage of the distribution of the points within a vertical stratum (e.g., Frey et al., 2016; Stickley & Fraterrigo, 2021). To avoid using too many summary statistics for each vertical layer separately, LiDAR point clouds classified as vegetation can also be aggregated in a 3D voxelated space to compute metrics per unit of volume, like the 3D distribution of plant or leaf area density (PAD or LAD) (Fig. 3e). For instance, Almeida et al. (2019) showed that LAD profiles have the capacity to track changes in forest structure under different forest management practices. This biophysical information can be further analysed to provide vertical vegetation profiles or information on gap size and distribution (Fig. 3f). Vertical profiles and gap fraction together can better describe the 3D characteristics of the forest. Venier et al. (2019) identified several metrics that are expected to directly capture vegetation density in the understory: fractional cover (FRAC); plant or leaf area density (PAD or LAD) profiles; voxel cover (VOX); and normalized cover (NORM). Additionally, the Gini coefficient is a reliable descriptor of variation in tree sizes (Knox et al., 1989). Valbuena et al. (2016) demonstrated the potential of LiDAR-derived estimations of the Gini coefficient to highlight structural differences between forests that have been protected since the beginning of the 20th century vs. forests presently under intense management.

Using LiDAR data to highlight soil compaction from skid trails affecting current biodiversity

patterns in the forest understory

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

Numerous studies have highlighted the long-lasting effects of heavy forestry vehicles on soil processes and forest herb composition (Closset-Kopp et al., 2019; Godefroid & Koedam, 2004; Wei et al., 2015). These effects include: (i) diaspore dispersal via the mud attached to tires and wheels (i.e., agestochory) and air displacement induced by the vehicle's movements, which facilitates anemochory; (ii) the creation of microreliefs within, beside, and between wheel tracks, generating a complex mosaic of microenvironments; and (iii) local changes in soil abiotic (e.g., porosity, microclimate, chemistry) and biotic (e.g., microbial activity) conditions. In particular, soil compaction and the formation of deep ruts on the soil surface often impede water infiltration, oxygen supply, nutrient bioavailability, as well as root development (Arocena, 2000; Cambi et al., 2018; Kozlowski, 1999). This provides regeneration niches and suitable habitat conditions to a range of (non-forest) plant species, such as aquatic weeds, sedges and rushes, as well as ferns (Closset-Kopp et al., 2019) but on the other hand can negatively affect recruitment of other species (e.g., trees). These three processes can lead to an increase in local species richness, yet also a process of homogenization among forest habitats, by facilitating the colonization of the same suite of wetland and ruderal species (Closset-Kopp et al., 2019; Godefroid & Koedam, 2004; Kozlowski, 1999). Ruts and soil compaction can be measured in the field, via rut depth, bulk density, or penetration resistance, but the methods are time consuming to apply across large areas. Recently, several studies highlighted the efficiency of remote sensing in the evaluation of rutting intensity and spatial distribution (Marra et al., 2018; Mohieddinne et al., 2019; Niemi et al., 2017). Some of

them, using unmanned aerial vehicles equipped with digital cameras for high resolution

photogrammetry, returned a fine description of rut density associated with forest harvesting

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

(Marra et al., 2018; Talbot et al., 2018). However, this approach is only applicable to recently clearcut areas. In contrast, LiDAR data offers an interesting alternative to map skid trails below treetops (Fig. 5) (Koren et al., 2015; Mohieddinne et al., 2019; Niemi et al., 2017). Indeed, points classified as "ground" in the LiDAR point cloud can be used to generate a digital terrain model (DTM) at subdecimetre resolution so as to detect microrelief variations due to skid trails. The most straightforward approach to highlight skid trails from a DTM is to use local relief models (LRMs) that are widely used in archaeology to capture local, small-scale elevation differences after removing the large-scale landscape forms from the data (Hesse, 2010). While TLS data can yield LRMs at a very high accuracy over limited spatial extents (Koren et al., 2015), ALS data allows assessing the impact of skid trails over much larger areas in a spatially contiguous manner (Niemi et al., 2017). Figure 5 clearly shows how ALS data can shed light on skid trails in the Compiegne forest, a managed state forest in Northern France. The LRM reveals small-scale topographic variations such as ruts, which sometimes appear as parallel paths following permanent skid trails as delineated by forest managers (Fig. 5a, bottom panels) but also as numerous meandering paths crossing each other (Fig. 5b, bottom panel). Yet, LRMs only highlight ruts resulting from the traffic intensity without providing the means for an automatic detection of these linear small-scale topographic elements in the landscape. Indeed, one still needs to digitize, manually, the illuminated ruts in the LRM image in order to analyse these elements afterwards. By doing so across the entire Compiegne forest, we found that the surface area covered by skid trails can reach 40 to 80% in several of the forest management units. Noteworthy, in some of these units, many ruts intersect (Fig. 5b). This suggests that either vehicles travel unevenly during a given operation or that older ruts resulting from several successive forestry operations persist for a very long time (at least 50 years) (Ebeling et al., 2016; Mohieddinne et al., 2019) with potential longlasting effects still visible on today's plant species composition and diversity in the herbaceous layer (Wei et al., 2015). More specifically, the cumulated effect of soil compaction due to repeated

traffic of heavy forest harvesters and forwarders contribute to local increases in the proportion of wetland plant species in the community (Buckley et al., 2003) and to the homogenization of plant communities in the forest understory (Closset-Kopp et al., 2019), most likely with a lagging effect. Without considering skid trails, such time-lag dynamics can be misattributed to other concomitant drivers of change in environmental conditions, such as nitrogen deposition known for being also responsible for the biotic homogenisation of understory plant communities (Staude et al., 2020). Currently, the main challenge to account for the impact of skid trails on understory vegetation at large spatial extents is to automatize the detection of ruts from LRM images. More research is still needed to achieve that but one possibility is to train a model with LRM data using machine learning or deep learning algorithms such as convolutional neural networks (CNNs), which is widely used in the field of computer vision (Ren et al., 2017).

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

Using LiDAR data to unveil past land uses affecting current biodiversity patterns in the forest understory

One leading research question in historical ecology is (Plue et al., 2009): what did past human societies leave behind and how does this influence present ecosystem functioning? For ecologists, this question can be difficult to answer without a comprehensive knowledge of past interactions between human societies and the environment at various spatial and temporal scales. LiDAR technology has prompted an "archaeological revolution" by making it possible to identify, map, and analyse hidden objects and structures (Costa et al., 2020; Hesse, 2010). In terms of historical ecology, this is especially true for forested lands, where traditional remote sensing techniques such as aerial photography cannot unveil archaeological features hidden below treetops. In such situations, ALS can help to spot thousands of artefacts in a much shorter time frame than the decades of pedestrian field surveys that would have been otherwise necessary to discover only the most visible part of these artefacts (Chase et al., 2012; Štular et al., 2021). In many cases, ALS has revealed previously unrecorded archaeological features. Spectacular examples of unexpected findings are the medieval landscape planning by the classical Khmer civilization at Angkor (Evans et al., 2013) and the early Maya metropolises in Guatemala (Canuto et al., 2018) and Mexico (Inomata et al., 2020). Recent advances in deep learning algorithms may even allow to automatize the inventory of archaeological remains (Oliveira et al., 2021; Trier et al., 2021). For instance, Oliveira et al. (2021) applied CNNs on ALS data to automatically detect charcoal kilns dating back to the industrial development period (17th-19th century) in North-eastern France. However, remote and automatic detection still requires confirmation, either by field observations or through the experienced eyes of archaeologists and geo-historians who can read and interpret images processed from LiDAR data.

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

In Western Europe, many big woodlands have been continuously mapped or mentioned in archives since the Middle Ages, so that they have long been considered as relicts of prehistoric forests (Maury, 1850). This hypothesis was first challenged by the discovery of former Roman settlements in these forests (Cauchemé, 1912; Desbordes, 1973; Laffite et al., 2002) and it is now largely invalidated by ALS data which has revealed that these ancient forests were established on former agricultural lands, often intensively cultivated during the Middle Ages and Antiquity (Fig. 6) (Fruchart, 2020; Georges-Leroy et al., 2011; Rassat & Hugonnier, 2017). Figure 6 illustrates this phenomenon by unveiling past land uses hidden below treetops of the Compiègne forest in Northern France, questioning the existence of prehistoric forest remnants in the Gallo-Roman lowlands. With the increasing amount of land covered by ALS data (Fruchart, 2020), it becomes obvious that what we today consider to be very ancient forests can result from recolonization of abandoned Roman farmlands (Georges-Leroy et al., 2011). Also in Eastern Europe, ALS unveiled more than 300 km of field boundaries and many (pre-)Roman settlements in the iconic "primary" forest of Bialowieza in Poland, indicating that the present forest has largely established on former Celtic, Roman, and medieval fields, towards the 13th century AD (Stereńczak et al., 2020). Beyond the reconstruction of the past landscapes, ALS renders it possible to assess the impact of past land uses on current vegetation patterns and ecosystem processes. For example, buried former Roman settlements typically host a species-rich, nitrogen-demanding understory, which often strongly contrasts with the surrounding species-poor, acidophilous forest vegetation (Dambrine et al., 2007; Dupouey et al., 2002; Plue et al., 2008). Interestingly, the soil seed bank in the Compiègne forest indicates that plant communities associated with these former settlements can selfperpetuate over time (Plue et al., 2008). This has been related to long-lasting alterations of biogeochemical cycles, which extend far beyond the settlement, thereby creating strong ecological gradients with different species assemblages (Dambrine et al., 2007).

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

Airborne LiDAR data also revealed the recurrence of certain human artefacts, even outside ancient settlements located in formerly cultivated land, and highlight their possible ecological significance in forests. We hereafter give three examples. Firstly, in North-eastern France, closed depressions found on calcareous substratum have long been supposed to be of natural origin, but archaeological research has suggested that they were rather artificial excavations from the late Iron Age and Roman times, used to (i) extract marls (i.e., calcium carbonate or lime-rich mud) to amend agricultural lands and/or to (ii) create local depression to collect water for livestock (Etienne et al., 2011). Since this early publication, similar closed depressions have been recorded thanks to ALS data in many "post-Roman" ancient forests elsewhere in Northern France (see Fig. 6 for an illustration in the Compiègne forest), suggesting that liming was a common practice during Gallo-Roman times. Long-lasting effects on soil properties, plant communities, tree growth, and forest health are thus expected (Brasseur et al., 2018; Dambrine et al., 2007; Dupouey et al., 2002; Moore & Ouimet, 2021). For instance, the effect of ancient liming practices is still visible on today's soil pH profile of post-agricultural forests, albeit this effect diminishes with the age since afforestation (Brasseur et al., 2018). Being able to date the approximate age of the last agricultural practices before afforestation makes it possible to estimate the magnitude of the imprint left by former agricultural practices in the soil, and thus the effect on forest biodiversity and ecosystem processes. The last agricultural practices are precisely those that most impacted the microrelief preserved under the canopy of post-agricultural forests. Because of these microreliefs' imprints, geo-historians and archaeologists are able to read images from processed ALS data, such as a DTM with hillshade (Fig. 6), and interpret characteristic microreliefs to identify Middle Ages strip fields with cultivation ridges (Fig. 6b), Gallo-Roman linear agrarian fields (Fig. 6c), or even Celtic fields (Meylemans et al., 2015). The approximate age since afforestation as well as the type of former agricultural practices can be key explanatory variables to capture time-lag dynamics in the

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

response of understory plant communities to the acidification rates of afforested soils that were formerly cultivated (De Schrijver et al., 2012). Secondly, another insight from ALS data is the evidence of an incredibly high density of former charcoal kilns (i.e., chambers or ovens to turn wood into choarcal) in several forests across Europe, from North-eastern France to Norway (Oliveira et al., 2021; Trier et al., 2021). This not only indicates the huge intensity at which European forests used to be managed from the Middle Ages to the end of the 19th century when humans started to mine and drill fossil fuels (Oliveira et al., 2021), often as short-rotation coppice woodlands, but also that soils have been considerably enriched in organic matter, carbon, and ash (Bonhage et al., 2020; Rutkiewicz et al., 2019). As a result, these former "charcoal-producing coppices", that are often managed as high forests nowadays, harbour different plant communities and soil properties compared to woodlands that have been continuously managed as high forests. For instance, the Bernadouze forest in the French Pyrenees was initially managed as a beech coppice with fir standard before being progressively transformed, during the 15th-17th century, into a monospecific beech coppice for charcoal production, inducing long lasting effects on today's biodiversity and soli processes (Fouédjeu et al., 2021). Charcoal-producing coppices may contain an additional 4.9 to 8.9 Mg ha⁻¹ of soil carbon, and even more (Bonhage et al., 2020). In regions where former charcoal kilns were associated with metal furnaces to forge weapons during medieval times, it may further explain local soil pollution and its persisting effect on biodiversity and ecosystem processes (Karlsson et al., 2015). Thirdly, still in the Compiègne forest, ALS data also unveiled a number of raised, circular structures that concentrated along a curved line into the forest, a few hundreds of meters from the current edge. Field surveys identified them as rabbit warrens, that are artificial earth clods, also called "mottes à conils" in French, erected at the end of the Middle Ages to rear rabbits for royal hunting

parties (Germond et al., 1988; Williamson, 2008; Zadora-Rio, 1986). This finding allows not only to date the introduction of rabbit in Northern France somewhere between the 12th and 13th century, and hence determine when forest dynamics started to be influenced by this invasive rodent species, but also to locate the forest edge at that time (Fig. 6). It is therefore possible to distinguish between the medieval forest and the modern one, providing an explanation for differences of soil and vegetation characteristics.

In sum, LiDAR data not only prompted an "archaeological revolution" by revealing unexpected past human activities and their intensity, but also play a crucial role to unravel the effects of these (pre)historical activities on current biodiversity and ecosystem functioning. More than ever, present ecosystems and landscapes must be viewed as a legacy of past interactions between humans and their environment.

Perspectives

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

Although we focused our review on the lagging dynamics of vegetation changes in the understory of European temperate forests, we suggest that the exact same suite of LiDAR-derived variables can also be used to study time-lag dynamics in the response of other taxonomic groups to macroenvironmental changes. Indeed, plants in the understory layer provide food resources and microhabitats (i.e., microclimatic conditions) for other organisms living in, on, or near the soil surface. Therefore, time lags in vegetation changes can perpetuate and generate a domino effect on other taxa and interaction networks throughout complex aboveground-belowground linkages (Bardgett & Wardle, 2010). Such cascading effects not only involve bottom-up chain reactions across trophic levels (e.g., from primary producers to primary consumers or soil decomposers) (Valencia et al., 2018) but also top-down chain reactions. Indeed, changes in herbivore density or composition (e.g., ungulates or insects), sometimes driven by macroclimate warming and disrupted plant-herbivore interactions (Rasmann et al., 2014; Vitasse et al., 2021), can have longterm biological legacies on aboveground plant community composition (Hamann et al., 2021; Nuttle et al., 2014). For instance, Nuttle et al. (2014) showed that the initial density in white-tailed deer (Odocoileus virginianus) in Pennsylvania still influences current understory vegetation in 30year-old, closed-canopy forests. In the meantime, LiDAR-derived variables have been successfully incorporated as predictor variables into models of species diversity and distribution across a wide range of taxonomic groups (de Vries et al., 2021; Farrell et al., 2013; Hattab et al., 2017; Moeslund et al., 2019; Simonson et al., 2014), often as a mean to capture local processes such as microclimates and biotic interactions (Lembrechts et al., 2019; Zellweger et al., 2019). Hence, LiDAR-derived variables have the potential to significantly improve species distribution modelling across a wide range of taxa, inform us on the structure of trophic webs, and therefore help us better understand time-lag dynamics perpetuating across trophic levels.

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

Remote sensing science continues to innovate and thus some research perspectives should be highlighted here. Innovations can come either from the LiDAR sensor itself, the combination with other sensors (e.g., coupling LiDAR data with hyperspectral images) or from other technologies. Typical LiDAR data retrieve discrete echoes in only one wavelength. Today, the two big new innovations in LiDAR technology are (1) the analysis on the full-waveform laser information and (2) the use of multispectral lasers, which bring both high resolution 3D point clouds and classical multispectral information. The first one allows much more precise information of surfaces than typical multi-echo LiDAR, especially for forest structure and composition (Fassnacht et al., 2016; Koenig & Höfle, 2016). The second allows the remote identification of tree species (Amiri et al., 2019) as well as the production of typical remote sensing indicators, such as normalized difference vegetation index (NDVI), for understory conditions not easily accessible with classical multispectral images that do not penetrate forest canopy cover. Additionally, data fusion remains one of the main interests in remote sensing technology. For example, hyperspectral data has proven its complementarity with LiDAR data to better understand ecosystem functioning (Ewald et al., 2018). While LiDAR data gives precise information about the 3D structure of surfaces, hyperspectral images give more precise information of surface reflectance (hundreds of spectral bands) than classical multispectral images. Hyperspectral data is thus more relevant than LiDAR data to provide information on stand composition and can help detect foliar traits and leaf chemical composition (Ewald et al., 2018). For instance, in terms of lagging dynamics involving past land uses, hyperspectral data could be used to locate particular pollutants in the upper canopy layer (for example perchlorates that affect photosynthesis and thus surface reflectance) as an indirect indicator of pollutant concentration in the soil (Wang et al., 2018) likely affecting plant species composition in the understory. Coupling LiDAR and hyperspectral data could therefore be of high interest and could give precious information of time-lag dynamics in biodiversity changes. Additionally, it is possible to combine LiDAR data from a single survey with other types of

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

technologies to monitor changes in forest structure over time and thus better understand time-lag dynamics in the forest understory. For example, photogrammetry can retrieve 3D surfaces to generate digital surface models (DSMs) at different time periods using time series of RGB images. Such time series of DSMs derived from photogrammetry could then be coupled with a single LiDAR-derived DTM to monitor changes in maximum canopy height over time (Michez et al., 2016). Pleiades satellites are interesting in this regard as they allow to produce DSMs across large spatial extents at a relatively low price. In line with Pleiades, the CO3D mission is a pioneer mission, planned to be launched by the CNES (the French Spatial Agency) in mid-2023. Ultimately, the CO3D mission will provide a worldwide high (1-m) resolution DSM in 2025. Combining past photogrammetric data sets, where available, with more recent time series of DSMs, from either airborne or spaceborne data, would also allow obtaining the longer-term data necessary to observe temporal dynamics. Finally, there are exiting recent advances and open-source tools to overcome challenges associated with LiDAR data handling and processing (Atkins et al., 2022). First, recent packages developed for the R statistical software (R Core Team, 2021), such as the lidR (Roussel et al., 2020) and forestr package (Atkins et al., 2018) for ALS and TLS data, respectively, have greatly advanced the handling and processing of LiDAR data. Second, it is now possible to call programming languages such as Python, which is chiefly used by the remote sensing community, directly within the R environment, thanks to the reticulate package (Ushey et al., 2021). It is also possible and quite usual to wrap C/C++ functions within R. Using a compiled language allows a speedier execution when processing huge point cloud data sets. This, will allow ecologists – that are often most familiar with R – to better access the recent open-source tools developed and used by the remote sensing community. Third, recent advances in R and Python to use machine learning and deep learning algorithms (e.g., the keras Python library) (Kalinowski et al., 2021) will help to lift technical barriers in linking LiDAR data with ecological data from field observations. Finally, data

- 591 processing facilities continue to develop steadily, with increased access to data and computer
- 592 centres.

Conclusion

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

The Light Fantastic (1986)

To conclude, LiDAR data can unveil past forest management interventions and even past land uses within temperate deciduous forests. LiDAR technology has the capacity to monitor and determine fine-grained structural information – namely: the vertical complexity of vegetation layering and the micro-topographic variations at the ground surface – invisible to the naked eye, providing far more information than conventional field surveys. Yet, LiDAR data alone is insufficient and still requires to be coupled with field surveys to calibrate models, validate predictions, and correct misclassifications of items. Besides, LiDAR technology needs a highly diverse set of expertise to unveil any useful information hidden in the data. Hence, LiDAR is a transdisciplinary tool for plant, soil, and historical ecologists as well as for foresters, archaeologists, and remote sensing scientists to work together and help each other advance their respective fields of research. With this in mind, we encourage plant and soil ecologists to work with historians, archaeologists, and remote sensing scientists in order to use meaningful LiDAR-derived variables, such as the ones we featured in this review (Figs. 3-6), as surrogates to capture time-lag dynamics in biotic responses to long-term macro-environmental changes. Doing so will ultimately help us better predict the current and future distribution of forest biodiversity. "Inside every sane person there's a madman struggling to get out," said the shopkeeper. "That's what I've always thought. No one goes mad quicker than a totally sane person." -Terry Pratchett,

Acknowledgements

JL and EVG received funding from the Agence Nationale de la Recherche (ANR), under the framework of the young investigators (JCJC) funding instrument (ANR JCJC Grant project N°ANR-19-CE32-0005-01: IMPRINT). JL also acknowledges funding from the Centre National de la Recherche Scientifique (CNRS) (Défi INFINITI 2018: MORFO). CM and PDF received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC Starting Grant FORMICA 757833). FZ received funding from the Swiss National Science Foundation (grant number 193645). DR was partially supported by the H2020 Project SHOWCASE (Grant agreement No 862480) and by the H2020 COST Action CA17134 'Optical synergies for spatiotemporal sensing of scalable ecophysiological traits' (SENSECO).

- 622 Conflict of interest
- No conflict of interest to declare.

Authors' contributions

JL conceptualized the project, designed the review paper, wrote the introduction and conclusion sections, and led the writing. FZ and JJL co-led the writing of section 1 on using LiDAR to unveil past forest management practices with contributions from PDF, KVM, CM, RM, EVG, and DR. HH led the writing of section 2 on using LiDAR data to highlight soil compaction from skid trails with contributions from BB and GD. GD led the writing of section 3 on using LiDAR data to unveil past land uses with contributions from BB and JB. ML led the writing of section 4 on the perspectives with contribution from RM. SD, led the writing of Boxes 1 and 2 with contributions from SA and KD. EVG designed Fig. 1 with contribution from JL. SD designed Figs. 2 and 3 with contribution from JL. CM designed Fig. 4 with contribution from JL. EGM designed Fig. 5 with contribution from HH and JL. EGM & BB designed Fig. 6 with contribution from JL. All authors significantly revised the manuscript and approved it for submission.

- 636 **Data availability**
- No data was used in this essay review.

References

639	Alexander, J. M., Chalmandrier, L., Lenoir, J., Burgess, T. I., Essl, F., Haider, S., Kueffer, C., McDougall, K.,
640	Milbau, A., Nuñez, M. A., Pauchard, A., Rabitsch, W., Rew, L. J., Sanders, N. J., & Pellissier, L. (2018)
641	Lags in the response of mountain plant communities to climate change. Global Change Biology,
642	24(2), 563–579. https://doi.org/10.1111/gcb.13976
643	Almeida, D. R. A., Broadbent, E. N., Zambrano, A. M. A., Wilkinson, B. E., Ferreira, M. E., Chazdon, R., Meli,
644	P., Gorgens, E. B., Silva, C. A., Stark, S. C., Valbuena, R., Papa, D. A., & Brancalion, P. H. S. (2019).
645	Monitoring the structure of forest restoration plantations with a drone-lidar system. <i>International</i>
646	Journal of Applied Earth Observation and Geoinformation, 79, 192–198.
647	https://doi.org/10.1016/j.jag.2019.03.014
648	Amiri, N., Krzystek, P., Heurich, M., & Skidmore, A. (2019). Classification of tree species as well as standing
649	dead trees using triple wavelength ALS in a temperate forest. Remote Sensing, 11(22), 2614.
650	https://doi.org/10.3390/rs11222614
651	Arocena, J. M. (2000). Cations in solution from forest soils subjected to forest floor removal and
652	compaction treatments. Forest Ecology and Management, 133(1), 71–80.
653	https://doi.org/10.1016/S0378-1127(99)00299-6
654	Atkins, J. W., Bohrer, G., Fahey, R. T., Hardiman, B. S., Morin, T. H., Stovall, A. E. L., Zimmerman, N., &
655	Gough, C. M. (2018). Quantifying vegetation and canopy structural complexity from terrestrial
656	LiDAR data using the forestr r package. Methods in Ecology and Evolution, 9(10), 2057–2066.
657	https://doi.org/10.1111/2041-210X.13061
658	Atkins, J. W., Stovall, A. E. L., & Alberto Silva, C. (2022). Open-Source tools in R for forestry and forest
659	ecology. Forest Ecology and Management, 503, 119813.
660	https://doi.org/10.1016/j.foreco.2021.119813
661	Baeten, L., Bauwens, B., Schrijver, A. D., Keersmaeker, L. D., Calster, H. V., Vandekerkhove, K., Roelandt, B.,
662	Beeckman, H., & Verheyen, K. (2009). Herb layer changes (1954-2000) related to the conversion of
663	coppice-with-standards forest and soil acidification. Applied Vegetation Science, 12(2), 187–197.
664	https://doi.org/10.1111/j.1654-109X.2009.01013.x

003	balagett, R. D., & Wardie, D. A. (2010). Aboveground-belowground linkages. blotic interactions, ecosystem
666	processes, and global change. Oxford University Press.
667	Bartha, S., Merolli, A., Campetella, G., & Canullo, R. (2008). Changes of vascular plant diversity along a
668	chronosequence of beech coppice stands, central Apennines, Italy. Plant Biosystems - An
669	International Journal Dealing with All Aspects of Plant Biology, 142(3), 572–583.
670	https://doi.org/10.1080/11263500802410926
671	Becker, T., Spanka, J., Schröder, L., & Leuschner, C. (2017a). Forty years of vegetation change in former
672	coppice-with-standards woodlands as a result of management change and N deposition. Applied
673	Vegetation Science, 20(2), 304–313. https://doi.org/10.1111/avsc.12282
674	Becker, T., Spanka, J., Schröder, L., & Leuschner, C. (2017b). Forty years of vegetation change in former
675	coppice-with-standards woodlands as a result of management change and N deposition. Applied
676	Vegetation Science, 20(2), 304–313. https://doi.org/10.1111/avsc.12282
677	Bertrand, R., Lenoir, J., Piedallu, C., Riofrío-Dillon, G., de Ruffray, P., Vidal, C., Pierrat, JC., & Gégout, JC.
678	(2011). Changes in plant community composition lag behind climate warming in lowland forests.
679	Nature, 479(7374), 517-520. https://doi.org/10.1038/nature10548
680	Bertrand, R., Riofrío-Dillon, G., Lenoir, J., Drapier, J., de Ruffray, P., Gégout, JC., & Loreau, M. (2016).
681	Ecological constraints increase the climatic debt in forests. <i>Nature Communications</i> , 7, 12643.
682	https://doi.org/10.1038/ncomms12643
683	Bonhage, A., Hirsch, F., Schneider, A., Raab, A., Raab, T., & Donovan, S. (2020). Long term anthropogenic
684	enrichment of soil organic matter stocks in forest soils – Detecting a legacy of historical charcoal
685	production. Forest Ecology and Management, 459, 117814.
686	https://doi.org/10.1016/j.foreco.2019.117814
687	Bottalico, F., Travaglini, D., Chirici, G., Marchetti, M., Marchi, E., Nocentini, S., & Corona, P. (2014).
688	Classifying silvicultural systems (coppices vs. high forests) in Mediterranean oak forests by Airborne
689	Laser Scanning data. European Journal of Remote Sensing, 47(1), 437–460.
690	https://doi.org/10.5721/EuJRS20144725

691	Bouvier, M., Durrieu, S., Fournier, R. A., & Renaud, JP. (2015). Generalizing predictive models of forest
692	inventory attributes using an area-based approach with airborne LiDAR data. Remote Sensing of
693	Environment, 156(Supplement C), 322–334. https://doi.org/10.1016/j.rse.2014.10.004
694	Brasseur, B., Spicher, F., Lenoir, J., Gallet-Moron, E., Buridant, J., & Horen, H. (2018). What deep-soil
695	profiles can teach us on deep-time pH dynamics after land use change? Land Degradation &
696	Development, 29(9), 2951–2961. https://doi.org/10.1002/ldr.3065
697	Bricca, A., Chelli, S., Canullo, R., & Cutini, M. (2020). The legacy of the past logging: how forest structure
698	affects different facets of understory plant diversity in abandoned coppice forests. Diversity, 12(3),
699	109. https://doi.org/10.3390/d12030109
700	Brice, MH., Cazelles, K., Legendre, P., & Fortin, MJ. (2019). Disturbances amplify tree community
701	responses to climate change in the temperate-boreal ecotone. Global Ecology and Biogeography,
702	28(11), 1668–1681. https://doi.org/10.1111/geb.12971
703	Briggs, J. M., Spielmann, K. A., Schaafsma, H., Kintigh, K. W., Kruse, M., Morehouse, K., & Schollmeyer, K.
704	(2006). Why ecology needs archaeologists and archaeology needs ecologists. Frontiers in Ecology
705	and the Environment, 4(4), 180–188. https://doi.org/10.1890/1540-
706	9295(2006)004[0180:WENAAA]2.0.CO;2
707	Buckley, D. S., Crow, T. R., Nauertz, E. A., & Schulz, K. E. (2003). Influence of skid trails and haul roads on
708	understory plant richness and composition in managed forest landscapes in Upper Michigan, USA.
709	Forest Ecology and Management, 175(1), 509–520. https://doi.org/10.1016/S0378-1127(02)00185-
710	8
711	Bürgi, M., Östlund, L., & Mladenoff, D. J. (2017). Legacy effects of human land use: ecosystems as time-
712	lagged systems. <i>Ecosystems</i> , 20(1), 94–103. https://doi.org/10.1007/s10021-016-0051-6
713	Cambi, M., Mariotti, B., Fabiano, F., Maltoni, A., Tani, A., Foderi, C., Laschi, A., & Marchi, E. (2018). Early
714	response of Quercus robur seedlings to soil compaction following germination. Land Degradation &
715	Development, 29(4), 916-925. https://doi.org/10.1002/ldr.2912
716	Canuto, M. A., Estrada-Belli, F., Garrison, T. G., Houston, S. D., Acuña, M. J., Kováč, M., Marken, D.,
717	Nondédéo, P., Auld-Thomas, L., Castanet, C., Chatelain, D., Chiriboga, C. R., Drápela, T., Lieskovský,

718	T., Tokovinine, A., Velasquez, A., Fernández-Díaz, J. C., & Shrestha, R. (2018). Ancient lowland Maya
719	complexity as revealed by airborne laser scanning of northern Guatemala. Science, 361(6409).
720	https://doi.org/10.1126/science.aau0137
721	Cauchemé, V. (1912). Description des fouilles archéologiques exécutées dans la forêt de Compiègne.
722	https://gallica.bnf.fr/ark:/12148/bpt6k5746626z
723	Chase, A. F., Chase, D. Z., Fisher, C. T., Leisz, S. J., & Weishampel, J. F. (2012). Geospatial revolution and
724	remote sensing LiDAR in Mesoamerican archaeology. Proceedings of the National Academy of
725	Sciences, 109(32), 12916–12921. https://doi.org/10.1073/pnas.1205198109
726	Closset-Kopp, D., & Decocq, G. (2015). Remnant Artificial Habitats as Biodiversity Islets into Forest Oceans.
727	Ecosystems, 18(3), 507–519. https://doi.org/10.1007/s10021-015-9843-3
728	Closset-Kopp, D., Hattab, T., & Decocq, G. (2019). Do drivers of forestry vehicles also drive herb layer
729	changes (1970–2015) in a temperate forest with contrasting habitat and management conditions?
730	Journal of Ecology, 107(3), 1439–1456. https://doi.org/10.1111/1365-2745.13118
731	Costa, L., Laüt, L., & Petit, C. (2020). Archéologie, forêt et Lidar : une recherche qui a du relief!
732	Introduction. Archéologies Numériques, 1(4), 1–7. https://doi.org/10.21494/ISTE.OP.2020.0536
733	Dambrine, E., Dupouey, JL., Laüt, L., Humbert, L., Thinon, M., Beaufils, T., & Richard, H. (2007). Present
734	forest biodiversity patterns in France related to former Roman agriculture. Ecology, 88(6), 1430–
735	1439. https://doi.org/10.1890/05-1314
736	Dassot, M., Constant, T., & Fournier, M. (2011). The use of terrestrial LiDAR technology in forest science:
737	application fields, benefits and challenges. Annals of Forest Science, 68(5), 959–974.
738	https://doi.org/10.1007/s13595-011-0102-2
739	De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B. R., Zellweger, F., Aalto, J., Ashcroft, M. B., Christiansen, D.
740	M., Decocq, G., Pauw, K. D., Govaert, S., Greiser, C., Gril, E., Hampe, A., Jucker, T., Klinges, D. H.,
741	Koelemeijer, I. A., Lembrechts, J. J., Marrec, R., Hylander, K. (2021). Forest microclimates and
742	climate change: Importance, drivers and future research agenda. Global Change Biology, 27(11),
743	2279–2297. https://doi.org/10.1111/gcb.15569

744	De Frenne, P., Rodríguez-Sánchez, F., Coomes, D. A., Baeten, L., Verstraeten, G., Vellend, M., Bernhardt-
745	Römermann, M., Brown, C. D., Brunet, J., Cornelis, J., Decocq, G. M., Dierschke, H., Eriksson, O.,
746	Gilliam, F. S., Hédl, R., Heinken, T., Hermy, M., Hommel, P., Jenkins, M. A., Verheyen, K. (2013).
747	Microclimate moderates plant responses to macroclimate warming. Proceedings of the National
748	Academy of Sciences, 110(46), 18561–18565. https://doi.org/10.1073/pnas.1311190110
749	De Lombaerde, E., Vangansbeke, P., Lenoir, J., Van Meerbeek, K., Lembrechts, J., Rodríguez-Sánchez, F.,
750	Luoto, M., Scheffers, B., Haesen, S., Aalto, J., Christiansen, D. M., De Pauw, K., Depauw, L., Govaert,
751	S., Greiser, C., Hampe, A., Hylander, K., Klinges, D., Koelemeijer, I., De Frenne, P. (2021).
752	Maintaining forest cover to enhance temperature buffering under future climate change. Science of
753	The Total Environment, 151338. https://doi.org/10.1016/j.scitotenv.2021.151338
754	De Schrijver, A., De Frenne, P., Staelens, J., Verstraeten, G., Muys, B., Vesterdal, L., Wuyts, K., van Nevel, L.,
755	Schelfhout, S., de Neve, S., & Verheyen, K. (2012). Tree species traits cause divergence in soil
756	acidification during four decades of postagricultural forest development. Global Change Biology,
757	18(3), 1127–1140. https://doi.org/10.1111/j.1365-2486.2011.02572.x
758	de Vries, J. P. R., Koma, Z., WallisDeVries, M. F., & Kissling, W. D. (2021). Identifying fine-scale habitat
759	preferences of threatened butterflies using airborne laser scanning. Diversity and Distributions,
760	27(7), 1251–1264. https://doi.org/10.1111/ddi.13272
761	Decocq, G., Aubert, M., Dupont, F., Alard, D., Saguez, R., Wattez-Franger, A., Foucault, B. D., Delelis-
762	Dusollier, A., & Bardat, J. (2004). Plant diversity in a managed temperate deciduous forest:
763	understorey response to two silvicultural systems. Journal of Applied Ecology, 41(6), 1065–1079.
764	https://doi.org/10.1111/j.0021-8901.2004.00960.x
765	Della Longa, G., Boscutti, F., Marini, L., & Alberti, G. (2020). Coppicing and plant diversity in a lowland wood
766	remnant in North–East Italy. Plant Biosystems - An International Journal Dealing with All Aspects of
767	Plant Biology, 154(2), 173–180. https://doi.org/10.1080/11263504.2019.1578276
768	Desbordes, JM. (1973). La recherche archéologique sous-bois. Revue archéologique de Picardie, 3(1), 12–
769	12. https://doi.org/10.3406/pica.1973.1169

770 Devictor, V., van Swaay, C., Brereton, T., Brotons, L., Chamberlain, D., Heliölä, J., Herrando, S., Julliard, R., 771 Kuussaari, M., Lindström, Å., Reif, J., Roy, D. B., Schweiger, O., Settele, J., Stefanescu, C., Van Strien, 772 A., Van Turnhout, C., Vermouzek, Z., WallisDeVries, M., ... Jiguet, F. (2012). Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2(2), 121–124. 773 774 https://doi.org/10.1038/nclimate1347 775 Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N. E., Guisan, A., Willner, W., Plutzar, C., 776 Leitner, M., Mang, T., Caccianiga, M., Dirnböck, T., Ertl, S., Fischer, A., Lenoir, J., Svenning, J.-C., 777 Psomas, A., Schmatz, D. R., Silc, U., ... Hülber, K. (2012). Extinction debt of high-mountain plants 778 under twenty-first-century climate change. Nature Climate Change, 2(8), 619–622. https://doi.org/10.1038/nclimate1514 779 780 Dupouey, J. L., Dambrine, E., Laffite, J. D., & Moares, C. (2002). Irreversible impact of past land use on forest 781 soils and biodiversity. Ecology, 83(11), 2978–2984. https://doi.org/10.2307/3071833 782 Durrieu, S., Véga, C., Bouvier, M., Gosselin, F., Renaud, J. P., & Saint-André, L. (2015). Optical remote 783 sensing of tree and stand heights. In Land Resources Monitoring, Modeling, and Mapping with Remote Sensing (1st Edition, pp. 449–485). CRC Press. 784 Ebeling, C., Lang, F., & Gaertig, T. (2016). Structural recovery in three selected forest soils after compaction 785 786 by forest machines in Lower Saxony, Germany. Forest Ecology and Management, 359, 74–82. 787 https://doi.org/10.1016/j.foreco.2015.09.045 788 Etienne, D., Ruffaldi, P., Goepp, S., Ritz, F., Georges-Leroy, M., Pollier, B., & Dambrine, E. (2011). The origin 789 of closed depressions in Northeastern France: A new assessment. Geomorphology, 126(1), 121-790 131. https://doi.org/10.1016/j.geomorph.2010.10.036 791 Evans, D. H., Fletcher, R. J., Pottier, C., Chevance, J.-B., Soutif, D., Tan, B. S., Im, S., Ea, D., Tin, T., Kim, S., 792 Cromarty, C., De Greef, S., Hanus, K., Bâty, P., Kuszinger, R., Shimoda, I., & Boornazian, G. (2013). 793 Uncovering archaeological landscapes at Angkor using lidar. Proceedings of the National Academy 794 of Sciences, 110(31), 12595-12600. 795 Ewald, M., Aerts, R., Lenoir, J., Fassnacht, F. E., Nicolas, M., Skowronek, S., Piat, J., Honnay, O., Garzón-796 López, C. X., Feilhauer, H., Van De Kerchove, R., Somers, B., Hattab, T., Rocchini, D., & Schmidtlein,

797	S. (2018). LiDAR derived forest structure data improves predictions of canopy N and P
798	concentrations from imaging spectroscopy. Remote Sensing of Environment, 211, 13–25.
799	https://doi.org/10.1016/j.rse.2018.03.038
800	Farrell, S. L., Collier, B. A., Skow, K. L., Long, A. M., Campomizzi, A. J., Morrison, M. L., Hays, K. B., & Wilkins,
801	R. N. (2013). Using LiDAR-derived vegetation metrics for high-resolution, species distribution
802	models for conservation planning. Ecosphere, 4(3), art42. https://doi.org/10.1890/ES12-000352.1
803	Fassnacht, F. E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L. T., Straub, C., & Ghosh, A.
804	(2016). Review of studies on tree species classification from remotely sensed data. Remote Sensing
805	of Environment, 186, 64-87. https://doi.org/10.1016/j.rse.2016.08.013
806	Forister, M. L., McCall, A. C., Sanders, N. J., Fordyce, J. A., Thorne, J. H., O'Brien, J., Waetjen, D. P., &
807	Shapiro, A. M. (2010). Compounded effects of climate change and habitat alteration shift patterns
808	of butterfly diversity. <i>Proceedings of the National Academy of Sciences</i> , 107(5), 2088–2092.
809	https://doi.org/10.1073/pnas.0909686107
810	Fouédjeu, L., Paradis-Grenouillet, S., Larrieu, L., Saulnier, M., Burri, S., & Py-Saragaglia, V. (2021). The socio-
811	ecological legacies of centuries-old charcoal making practices in a mountain forest of the northern
812	Pyrenees. Forest Ecology and Management, 502, 119717.
813	https://doi.org/10.1016/j.foreco.2021.119717
814	Frey, S. J. K., Hadley, A. S., Johnson, S. L., Schulze, M., Jones, J. A., & Betts, M. G. (2016). Spatial models
815	reveal the microclimatic buffering capacity of old-growth forests. Science Advances, 2(4),
816	e1501392. https://doi.org/10.1126/sciadv.1501392
817	Fruchart, C. (2020). Le LiDAR : un outil pour l'étude archéologique des usages anciens des sols. Archéologies
818	Numériques, 4(1), 1–17. https://doi.org/10.21494/ISTE.OP.2020.0520
819	George, A. D., III, F. R. T., & Faaborg, J. (2015). Using LiDAR and remote microclimate loggers to downscale
820	near-surface air temperatures for site-level studies. Remote Sensing Letters, 6(12), 924–932.
821	https://doi.org/10.1080/2150704X.2015.1088671

822	Georges-Leroy, M., Bock, J., Dambrine, E., & Dupouey, JL. (2011). Apport du ildar à la connaissance de
823	l'histoire de l'occupation du sol en forêt de Haye. ArcheoSciences. Revue d'archéométrie, 35, 117-
824	129. https://doi.org/10.4000/archeosciences.3015
825	Germond, G., Champême, LM., & Fernandez, L. (1988). Le problème archéologique des Garennes.
826	Archéologie Médiévale, 18(1), 239–254. https://doi.org/10.3406/arcme.1988.1211
827	Gilliam, F. S. (2007). The Ecological Significance of the Herbaceous Layer in Temperate Forest Ecosystems.
828	BioScience, 57(10), 845–858. https://doi.org/10.1641/B571007
829	Godefroid, S., & Koedam, N. (2004). The impact of forest paths upon adjacent vegetation: effects of the
830	path surfacing material on the species composition and soil compaction. Biological Conservation,
831	119(3), 405–419. https://doi.org/10.1016/j.biocon.2004.01.003
832	Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barančok, P., Benito Alonso, J. L., Coldea, G., Dick, J.,
833	Erschbamer, B., Fernández Calzado, M. R., Kazakis, G., Krajči, J., Larsson, P., Mallaun, M., Michelsen,
834	O., Moiseev, D., Moiseev, P., Molau, U., Merzouki, A., Grabherr, G. (2012). Continent-wide
835	response of mountain vegetation to climate change. Nature Climate Change, 2(2), 111–115.
836	https://doi.org/10.1038/nclimate1329
837	Grotti, M., Calders, K., Origo, N., Puletti, N., Alivernini, A., Ferrara, C., & Chianucci, F. (2020). An intensity,
838	image-based method to estimate gap fraction, canopy openness and effective leaf area index from
839	phase-shift terrestrial laser scanning. Agricultural and Forest Meteorology, 280, 107766.
840	https://doi.org/10.1016/j.agrformet.2019.107766
841	Guo, F., Lenoir, J., & Bonebrake, T. C. (2018). Land-use change interacts with climate to determine
842	elevational species redistribution. Nature Communications, 9(1), 1315.
843	https://doi.org/10.1038/s41467-018-03786-9
844	Hamann, E., Blevins, C., Franks, S. J., Jameel, M. I., & Anderson, J. T. (2021). Climate change alters plant—
845	herbivore interactions. New Phytologist, 229(4), 1894–1910. https://doi.org/10.1111/nph.17036
846	Hattab, T., Garzón-López, C. X., Ewald, M., Skowronek, S., Aerts, R., Horen, H., Brasseur, B., Gallet-Moron,
847	E., Spicher, F., Decocq, G., Feilhauer, H., Honnay, O., Kempeneers, P., Schmidtlein, S., Somers, B.,
2/12	Van De Kerchove, R. Rocchini, D. & Lenoir, J. (2017). A unified framework to model the notential

849	and realized distributions of invasive species within the invaded range. <i>Diversity and Distributions</i> ,
850	23(7), 806–819. https://doi.org/10.1111/ddi.12566
851	Hermy, M., Honnay, O., Firbank, L., Grashof-Bokdam, C., & Lawesson, J. E. (1999). An ecological comparisor
852	between ancient and other forest plant species of Europe, and the implications for forest
853	conservation. Biological Conservation, 91(1), 9–22. https://doi.org/10.1016/S0006-3207(99)00045-
854	2
855	Hesse, R. (2010). LiDAR-derived Local Relief Models – a new tool for archaeological prospection.
856	Archaeological Prospection, 17(2), 67–72. https://doi.org/10.1002/arp.374
857	Inomata, T., Triadan, D., Vázquez López, V. A., Fernandez-Diaz, J. C., Omori, T., Méndez Bauer, M. B., García
858	Hernández, M., Beach, T., Cagnato, C., Aoyama, K., & Nasu, H. (2020). Monumental architecture at
859	Aguada Fénix and the rise of Maya civilization. <i>Nature</i> , 582(7813), 530–533.
860	https://doi.org/10.1038/s41586-020-2343-4
861	Jung, M., Rowhani, P., & Scharlemann, J. P. W. (2019). Impacts of past abrupt land change on local
862	biodiversity globally. Nature Communications, 10(1), 5474. https://doi.org/10.1038/s41467-019-
863	13452-3
864	Kalinowski, T., Falbel, D., Allaire, J. J., Chollet, F., RStudio, Google, Tang [ctb, Y., cph, Bijl, W. V. D., Studer,
865	M., & Keydana, S. (2021). keras: R Interface to "Keras" (Version 2.7.0) [Computer software].
866	https://CRAN.R-project.org/package=keras
867	Karlsson, J., Segerström, U., Berg, A., Mattielli, N., & Bindler, R. (2015). Tracing modern environmental
868	conditions to their roots in early mining, metallurgy, and settlement in Gladhammar, southeast
869	Sweden: Vegetation and pollution history outside the traditional Bergslagen mining region. The
870	Holocene, 25(6), 944–955. https://doi.org/10.1177/0959683615574586
871	Kharouba, H. M., Ehrlén, J., Gelman, A., Bolmgren, K., Allen, J. M., Travers, S. E., & Wolkovich, E. M. (2018).
872	Global shifts in the phenological synchrony of species interactions over recent decades.
873	Proceedings of the National Academy of Sciences, 115(20), 5211–5216.
874	Knox, R. G., Peet, R. K., & Christensen, N. L. (1989). Population Dynamics in Loblolly Pine Stands: Changes in
875	Skewness and Size Inequality. <i>Ecology</i> , 70(4), 1153–1166. https://doi.org/10.2307/1941383

370	Roenig, R., & Horie, B. (2010). Full-waveform all borne laser scanning in vegetation studies — a review of
877	point cloud and waveform features for tree species classification. Forests, 7(9), 198.
878	https://doi.org/10.3390/f7090198
379	Koren, M., Slančík, M., Suchomel, J., & Dubina, J. (2015). Use of terrestrial laser scanning to evaluate the
880	spatial distribution of soil disturbance by skidding operations. IForest - Biogeosciences and Forestry
881	8(3), 386. https://doi.org/10.3832/ifor1165-007
882	Kozlowski, T. T. (1999). Soil compaction and growth of woody plants. Scandinavian Journal of Forest
883	Research, 14(6), 596–619. https://doi.org/10.1080/02827589908540825
884	Laffite, J., Dambrine, É., Dupouey, J., & Georges-Leroy, M. (2002). Le parcellaire gallo-romain de la forêt
885	domaniale de Saint-Amond à Favières (Meurthe-et-Moselle) : Relevé et étude du parcellaire du
886	« Grand Rinchard ». Revue Archéologique de l'Est, 51, 465–476.
887	Landuyt, D., Lombaerde, E. D., Perring, M. P., Hertzog, L. R., Ampoorter, E., Maes, S. L., Frenne, P. D., Ma, S.
888	Proesmans, W., Blondeel, H., Sercu, B. K., Wang, B., Wasof, S., & Verheyen, K. (2019). The
889	functional role of temperate forest understorey vegetation in a changing world. Global Change
390	Biology, 25(11), 3625–3641. https://doi.org/10.1111/gcb.14756
891	Larsen, T. H. (2012). Upslope range shifts of Andean dung beetles in response to deforestation:
892	compounding and confounding effects of microclimatic change. Biotropica, 44(1), 82–89.
893	https://doi.org/10.1111/j.1744-7429.2011.00768.x
394	Lembrechts, J. J., Nijs, I., & Lenoir, J. (2019). Incorporating microclimate into species distribution models.
395	Ecography, 42(7), 1267–1279. https://doi.org/10.1111/ecog.03947
896	Lenoir, J., Bertrand, R., Comte, L., Bourgeaud, L., Hattab, T., Murienne, J., & Grenouillet, G. (2020). Species
897	better track climate warming in the oceans than on land. Nature Ecology & Evolution, 4(8), 1044–
898	1059. https://doi.org/10.1038/s41559-020-1198-2
399	Lenoir, J., Decocq, G., Spicher, F., Gallet-Moron, E., Buridant, J., & Closset-Kopp, D. (2021). Historical
900	continuity and spatial connectivity ensure hedgerows are effective corridors for forest plants:
901	Evidence from the species-time-area relationship. Journal of Vegetation Science, 32(1), e12845.
902	https://doi.org/10.1111/jvs.12845

903	Lenoir, J., Hattab, T., & Pierre, G. (2017). Climatic microrefugia under anthropogenic climate change:
904	implications for species redistribution. <i>Ecography</i> , 40(2), 253–266.
905	https://doi.org/10.1111/ecog.02788
906	Lindborg, R., & Eriksson, O. (2004). Historical landscape connectivity affects present plant species diversity.
907	Ecology, 85(7), 1840–1845.
908	Marra, E., Cambi, M., Fernandez-Lacruz, R., Giannetti, F., Marchi, E., & Nordfjell, T. (2018).
909	Photogrammetric estimation of wheel rut dimensions and soil compaction after increasing
910	numbers of forwarder passes. Scandinavian Journal of Forest Research, 33(6), 613–620.
911	https://doi.org/10.1080/02827581.2018.1427789
912	Maury, A. (1850). Histoire des grandes forêts de la Gaule et de l'ancienne France.
913	https://gallica.bnf.fr/ark:/12148/bpt6k695760
914	Metzger, J. P., Martensen, A. C., Dixo, M., Bernacci, L. C., Ribeiro, M. C., Teixeira, A. M. G., & Pardini, R.
915	(2009). Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest
916	region. Biological Conservation, 142(6), 1166–1177. https://doi.org/10.1016/j.biocon.2009.01.033
917	Meylemans, E., De Bie, M., Creemers, G., & Paesen, J. (2015). Revealing extensive protohistoric field
918	systems through high resolution lidar data in the northern part of Belgium. Archäeologisches
919	Korrespondenzblatt.
920	https://www.academia.edu/37167453/Revealing_extensive_protohistoric_field_systems_through_
921	high_resolution_lidar_data_in_the_northern_part_of_Belgium
922	Michez, A., Piégay, H., Lisein, J., Claessens, H., & Lejeune, P. (2016). Classification of riparian forest species
923	and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system.
924	Environmental Monitoring and Assessment, 188(3), 146. https://doi.org/10.1007/s10661-015-4996-
925	2
926	Moeslund, J. E., Zlinszky, A., Ejrnæs, R., Brunbjerg, A. K., Bøcher, P. K., Svenning, JC., & Normand, S. (2019)
927	Light detection and ranging explains diversity of plants, fungi, lichens, and bryophytes across
928	multiple habitats and large geographic extent. Ecological Applications, 29(5), e01907.
929	https://doi.org/10.1002/eap.1907

930	Mohieddinne, H., Brasseur, B., Spicher, F., Gallet-Moron, E., Buridant, J., Kobaissi, A., & Horen, H. (2019).
931	Physical recovery of forest soil after compaction by heavy machines, revealed by penetration
932	resistance over multiple decades. Forest Ecology and Management, 449, 117472.
933	https://doi.org/10.1016/j.foreco.2019.117472
934	Moore, JD., & Ouimet, R. (2021). Liming still positively influences sugar maple nutrition, vigor and growth,
935	20 years after a single application. Forest Ecology and Management, 490, 119103.
936	https://doi.org/10.1016/j.foreco.2021.119103
937	Müllerová, J., Hédl, R., & Szabó, P. (2015). Coppice abandonment and its implications for species diversity in
938	forest vegetation. Forest Ecology and Management, 343, 88–100.
939	https://doi.org/10.1016/j.foreco.2015.02.003
940	Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J., & Werner, J. P. (2019). No evidence for globally
941	coherent warm and cold periods over the preindustrial Common Era. <i>Nature</i> , <i>571</i> (7766), 550–554.
942	https://doi.org/10.1038/s41586-019-1401-2
943	Niemi, M. T., Vastaranta, M., Vauhkonen, J., Melkas, T., & Holopainen, M. (2017). Airborne LiDAR-derived
944	elevation data in terrain trafficability mapping. Scandinavian Journal of Forest Research, 32(8), 762–
945	773. https://doi.org/10.1080/02827581.2017.1296181
946	Nuttle, T., Ristau, T. E., & Royo, A. A. (2014). Long-term biological legacies of herbivore density in a
947	landscape-scale experiment: forest understoreys reflect past deer density treatments for at least 20
948	years. Journal of Ecology, 102(1), 221–228. https://doi.org/10.1111/1365-2745.12175
949	Oettel, J., & Lapin, K. (2021). Linking forest management and biodiversity indicators to strengthen
950	sustainable forest management in Europe. Ecological Indicators, 122, 107275.
951	
JJ1	https://doi.org/10.1016/j.ecolind.2020.107275
952	https://doi.org/10.1016/j.ecolind.2020.107275 Oliveira, C., Aravecchia, S., Pradalier, C., Robin, V., & Devin, S. (2021). The use of remote sensing tools for
952	Oliveira, C., Aravecchia, S., Pradalier, C., Robin, V., & Devin, S. (2021). The use of remote sensing tools for

956	Panetta, A. M., Stanton, M. L., & Harte, J. (2018). Climate warming drives local extinction: Evidence from
957	observation and experimentation. Science Advances, 4(2), eaaq1819.
958	https://doi.org/10.1126/sciadv.aaq1819
959	Perring, M. P., Bernhardt-Römermann, M., Baeten, L., Midolo, G., Blondeel, H., Depauw, L., Landuyt, D.,
960	Maes, S. L., Lombaerde, E. D., Carón, M. M., Vellend, M., Brunet, J., Chudomelová, M., Decocq, G.,
961	Diekmann, M., Dirnböck, T., Dörfler, I., Durak, T., Frenne, P. D., Verheyen, K. (2018). Global
962	environmental change effects on plant community composition trajectories depend upon
963	management legacies. Global Change Biology, 24(4), 1722–1740.
964	https://doi.org/10.1111/gcb.14030
965	Peterken, G. F., & Game, M. (1984). Historical factors affecting the number and distribution of vascular
966	plant species in the woodlands of central Lincolnshire. Journal of Ecology, 72(1), 155–182.
967	https://doi.org/10.2307/2260011
968	Plue, J., Hermy, M., Verheyen, K., Thuillier, P., Saguez, R., & Decocq, G. (2008). Persistent changes in forest
969	vegetation and seed bank 1,600 years after human occupation. Landscape Ecology, 23(6), 673–688.
970	https://doi.org/10.1007/s10980-008-9229-4
971	Plue, J., Meuris, S., Verheyen, K., & Hermy, M. (2009). The importance of artefacts of ancient land use on
972	plant communities in Meerdaal forest, Belgium. Belgian Journal of Botany, 142(1), 3–18.
973	R Core Team. (2021). R: A Language and Environment for Statistical Computing. https://www.R-project.org/
974	Rackham, O. (2008). Ancient woodlands: modern threats. New Phytologist, 180(3), 571–586.
975	https://doi.org/10.1111/j.1469-8137.2008.02579.x
976	Rasmann, S., Pellissier, L., Defossez, E., Jactel, H., & Kunstler, G. (2014). Climate-driven change in plant—
977	insect interactions along elevation gradients. Functional Ecology, 28(1), 46–54.
978	https://doi.org/10.1111/1365-2435.12135
979	Rassat, S., & Hugonnier, L. (2017). Atteindre l'histoire de la forêt de Compiègne par la télédétection
980	aérienne et l'exploration des archives du sol. Histoire & Mesure, XXXII(XXXII–2), 67–102.
921	https://doi.org/10.4000/histoiremesure 6136

902	Ken, 3., He, K., Ghanick, K., & Sun, J. (2017). Faster K-Civin. Towards Real-Time Object Detection with region
983	proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(06), 1137–
984	1149. https://doi.org/10.1109/TPAMI.2016.2577031
985	Richard, B., Dupouey, JL., Corcket, E., Alard, D., Archaux, F., Aubert, M., Boulanger, V., Gillet, F., Langlois,
986	E., Macé, S., Montpied, P., Beaufils, T., Begeot, C., Behr, P., Boissier, JM., Camaret, S., Chevalier,
987	R., Decocq, G., Dumas, Y., Lenoir, J. (2021). The climatic debt is growing in the understorey of
988	temperate forests: Stand characteristics matter. Global Ecology and Biogeography, n/a(n/a).
989	https://doi.org/10.1111/geb.13312
990	Riofrío-Dillon, G., Bertrand, R., & Gégout, JC. (2012). Toward a recovery time: forest herbs insight related
991	to anthropogenic acidification. Global Change Biology, 18(11), 3383–3394.
992	https://doi.org/10.1111/gcb.12002
993	Roussel, JR., Auty, D., Coops, N. C., Tompalski, P., Goodbody, T. R. H., Meador, A. S., Bourdon, JF., de
994	Boissieu, F., & Achim, A. (2020). lidR: An R package for analysis of Airborne Laser Scanning (ALS)
995	data. Remote Sensing of Environment, 251, 112061. https://doi.org/10.1016/j.rse.2020.112061
996	Rumpf, S. B., Hülber, K., Wessely, J., Willner, W., Moser, D., Gattringer, A., Klonner, G., Zimmermann, N. E.,
997	& Dullinger, S. (2019). Extinction debts and colonization credits of non-forest plants in the
998	European Alps. Nature Communications, 10(1), 4293. https://doi.org/10.1038/s41467-019-12343-x
999	Rutkiewicz, P., Malik, I., Wistuba, M., & Osika, A. (2019). High concentration of charcoal hearth remains as
1000	legacy of historical ferrous metallurgy in southern Poland. Quaternary International, 512, 133–143.
1001	https://doi.org/10.1016/j.quaint.2019.04.015
1002	Schmitz, A., Sanders, T. G. M., Bolte, A., Bussotti, F., Dirnböck, T., Johnson, J., Peñuelas, J., Pollastrini, M.,
1003	Prescher, AK., Sardans, J., Verstraeten, A., & de Vries, W. (2019). Responses of forest ecosystems
1004	in Europe to decreasing nitrogen deposition. Environmental Pollution, 244, 980–994.
1005	https://doi.org/10.1016/j.envpol.2018.09.101
1006	Simonson, W. D., Allen, H. D., & Coomes, D. A. (2014). Applications of airborne lidar for the assessment of
1007	animal species diversity. Methods in Ecology and Evolution, 5(8), 719–729.
1008	https://doi.org/10.1111/2041-210X.12219

1009	Soma, M., Pimont, F., Durrieu, S., & Dupuy, JL. (2018). Enhanced measurements of leaf area density with
1010	T-LiDAR: Evaluating and calibrating the effects of vegetation heterogeneity and scanner properties.
1011	Remote Sensing, 10(10), 1580. https://doi.org/10.3390/rs10101580
1012	Staude, I. R., Waller, D. M., Bernhardt-Römermann, M., Bjorkman, A. D., Brunet, J., De Frenne, P., Hédl, R.,
1013	Jandt, U., Lenoir, J., Máliš, F., Verheyen, K., Wulf, M., Pereira, H. M., Vangansbeke, P., Ortmann-
1014	Ajkai, A., Pielech, R., Berki, I., Chudomelová, M., Decocq, G., Baeten, L. (2020). Replacements of
1015	small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome. Nature
1016	Ecology & Evolution, 4(6), 802-808. https://doi.org/10.1038/s41559-020-1176-8
1017	Stereńczak, K., Zapłata, R., Wójcik, J., Kraszewski, B., Mielcarek, M., Mitelsztedt, K., Białczak, M., Krok, G.,
1018	Kuberski, Ł., Markiewicz, A., Modzelewska, A., Parkitna, K., Piasecka, Ż., Pilch, K., Rzeczycki, K.,
1019	Sadkowski, R., Wietecha, M., Rysiak, P., von Gadow, K., & Cieszewski, C. J. (2020). ALS-based
1020	detection of past human activities in the Białowieża forest — new evidence of unknown remains of
1021	past agricultural systems. Remote Sensing, 12(16), 2657. https://doi.org/10.3390/rs12162657
1022	Stickley, S. F., & Fraterrigo, J. M. (2021). Understory vegetation contributes to microclimatic buffering of
1023	near-surface temperatures in temperate deciduous forests. Landscape Ecology, 36(4), 1197–1213.
1024	https://doi.org/10.1007/s10980-021-01195-w
1025	Storkey, J., Macdonald, A. J., Poulton, P. R., Scott, T., Köhler, I. H., Schnyder, H., Goulding, K. W. T., &
1026	Crawley, M. J. (2015). Grassland biodiversity bounces back from long-term nitrogen addition.
1027	Nature, 528(7582), 401–404. https://doi.org/10.1038/nature16444
1028	Štular, B., Lozić, E., & Eichert, S. (2021). Airborne LiDAR-derived digital elevation model for archaeology.
1029	Remote Sensing, 13(9), 1855. https://doi.org/10.3390/rs13091855
1030	Svenning, JC., & Sandel, B. (2013). Disequilibrium vegetation dynamics under future climate change.
1031	American Journal of Botany, 100(7), 1266–1286. https://doi.org/10.3732/ajb.1200469
1032	Szabó, P. (2015). Historical ecology: past, present and future. <i>Biological Reviews</i> , 90(4), 997–1014.
1033	https://doi.org/10.1111/brv.12141

1034	Talbot, B., Rahlf, J., & Astrup, R. (2018). An operational UAV-based approach for stand-level assessment of
1035	soil disturbance after forest harvesting. Scandinavian Journal of Forest Research, 33(4), 387–396.
1036	https://doi.org/10.1080/02827581.2017.1418421
1037	Tan, K., Zhang, W., Shen, F., & Cheng, X. (2018). Investigation of TLS Intensity Data and Distance
1038	Measurement Errors from Target Specular Reflections. Remote Sensing, 10(7), 1077.
1039	https://doi.org/10.3390/rs10071077
1040	Trier, Ø. D., Reksten, J. H., & Løseth, K. (2021). Automated mapping of cultural heritage in Norway from
1041	airborne lidar data using faster R-CNN. International Journal of Applied Earth Observation and
1042	Geoinformation, 95, 102241. https://doi.org/10.1016/j.jag.2020.102241
1043	Ushey, K., Allaire, J. J., Tang, Y., Eddelbuettel, D., Lewis, B., Keydana, S., Hafen, R., & Geelnard, M. (2021).
1044	reticulate: Interface to "Python" version 1.22 from CRAN (Version 1.22) [Computer software].
1045	https://CRAN.R-project.org/package=reticulate. https://github.com/rstudio/reticulate
1046	Valbuena, R., Eerikäinen, K., Packalen, P., & Maltamo, M. (2016). Gini coefficient predictions from airborne
1047	lidar remote sensing display the effect of management intensity on forest structure. Ecological
1048	Indicators, 60, 574-585. https://doi.org/10.1016/j.ecolind.2015.08.001
1049	Valdés, A., Lenoir, J., Gallet-Moron, E., Andrieu, E., Brunet, J., Chabrerie, O., Closset-Kopp, D., Cousins, S. A.
1050	O., Deconchat, M., Frenne, P. D., Smedt, P. D., Diekmann, M., Hansen, K., Hermy, M., Kolb, A., Liira,
1051	J., Lindgren, J., Naaf, T., Paal, T., Decocq, G. (2015). The contribution of patch-scale conditions is
1052	greater than that of macroclimate in explaining local plant diversity in fragmented forests across
1053	Europe. Global Ecology and Biogeography, 24(9), 1094–1105. https://doi.org/10.1111/geb.12345
1054	Valencia, E., Gross, N., Quero, J. L., Carmona, C. P., Ochoa, V., Gozalo, B., Delgado-Baquerizo, M., Dumack,
1055	K., Hamonts, K., Singh, B. K., Bonkowski, M., & Maestre, F. T. (2018). Cascading effects from plants
1056	to soil microorganisms explain how plant species richness and simulated climate change affect soil
1057	multifunctionality. Global Change Biology, 24(12), 5642–5654. https://doi.org/10.1111/gcb.14440
1058	van Dobben, H. F., & de Vries, W. (2017). The contribution of nitrogen deposition to the eutrophication
1059	signal in understorey plant communities of European forests. Ecology and Evolution, 7(1), 214–227
1060	https://doi.org/10.1002/ece3.2485

1061	Vanwalleghem, T., Verheyen, K., Hermy, M., Poesen, J., & Deckers, J. (2004). Legacies of Roman land-use in
1062	the present-day vegetation in Meerdaal Forest (Belgium)? Belgian Journal of Botany, 137(2), 181–
1063	187.
1064	Venier, L. A., Swystun, T., Mazerolle, M. J., Kreutzweiser, D. P., Wainio-Keizer, K. L., McIlwrick, K. A., Woods,
1065	M. E., & Wang, X. (2019). Modelling vegetation understory cover using LiDAR metrics. PLOS ONE,
1066	14(11), e0220096. https://doi.org/10.1371/journal.pone.0220096
1067	Verheyen, K., Bossuyt, B., Honnay, O., & Hermy, M. (2003). Herbaceous plant community structure of
1068	ancient and recent forests in two contrasting forest types. Basic and Applied Ecology, 4(6), 537–
1069	546. https://doi.org/10.1078/1439-1791-00210
1070	Vincent, G., Antin, C., Laurans, M., Heurtebize, J., Durrieu, S., Lavalley, C., & Dauzat, J. (2017). Mapping
1071	plant area index of tropical evergreen forest by airborne laser scanning. A cross-validation study
1072	using LAI2200 optical sensor. Remote Sensing of Environment, 198, 254–266.
1073	https://doi.org/10.1016/j.rse.2017.05.034
1074	Vitasse, Y., Ursenbacher, S., Klein, G., Bohnenstengel, T., Chittaro, Y., Delestrade, A., Monnerat, C., Rebetez,
1075	M., Rixen, C., Strebel, N., Schmidt, B. R., Wipf, S., Wohlgemuth, T., Yoccoz, N. G., & Lenoir, J. (2021).
1076	Phenological and elevational shifts of plants, animals and fungi under climate change in the
1077	European Alps. Biological Reviews, n/a(n/a). https://doi.org/10.1111/brv.12727
1078	Walter, J. A., Stovall, A. E. L., & Atkins, J. W. (2021). Vegetation structural complexity and biodiversity in the
1079	Great Smoky Mountains. <i>Ecosphere</i> , 12(3), e03390. https://doi.org/10.1002/ecs2.3390
1080	Wang, F., Gao, J., & Zha, Y. (2018). Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility
1081	and challenges. ISPRS Journal of Photogrammetry and Remote Sensing, 136, 73–84.
1082	https://doi.org/10.1016/j.isprsjprs.2017.12.003
1083	Warren, M. S., Hill, J. K., Thomas, J. A., Asher, J., Fox, R., Huntley, B., Roy, D. B., Telfer, M. G., Jeffcoate, S.,
1084	Harding, P., Jeffcoate, G., Willis, S. G., Greatorex-Davies, J. N., Moss, D., & Thomas, C. D. (2001).
1085	Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature,
1086	414(6859), 65. https://doi.org/10.1038/35102054

1087	Wei, L., Archaux, F., Hulin, F., Bilger, I., & Gosselin, F. (2020). Stand attributes or soil micro-environment
1088	exert greater influence than management type on understory plant diversity in even-aged oak high
1089	forests. Forest Ecology and Management, 460, 117897.
1090	https://doi.org/10.1016/j.foreco.2020.117897
1091	Wei, L., Villemey, A., Hulin, F., Bilger, I., Yann, D., Chevalier, R., Archaux, F., & Gosselin, F. (2015). Plant
1092	diversity on skid trails in oak high forests: A matter of disturbance, micro-environmental conditions
1093	or forest age? Forest Ecology and Management, 338, 20–31.
1094	https://doi.org/10.1016/j.foreco.2014.11.018
1095	White, J. C., Coops, N. C., Wulder, M. A., Vastaranta, M., Hilker, T., & Tompalski, P. (2016). Remote sensing
1096	technologies for enhancing forest inventories: a review. Canadian Journal of Remote Sensing, 42(5),
1097	619-641. https://doi.org/10.1080/07038992.2016.1207484
1098	Williamson, T. (2008). The archaeology of rabbit warrens. Bloomsbury USA.
1099	Wulder, M. A., Coops, N. C., Hudak, A. T., Morsdorf, F., Nelson, R., Newnham, G., & Vastaranta, M. (2013).
1100	Status and prospects for LiDAR remote sensing of forested ecosystems. Canadian Journal of Remote
1101	Sensing, 39(sup1), S1–S5. https://doi.org/10.5589/m13-051
1102	Zadora-Rio, E. (1986). Parcs à gibier et garennes à lapins : contribution à une étude archéologique des
1103	territoires de chasse dans le paysage médiéval. Hommes et Terres du Nord, 2(1), 133–139.
1104	https://doi.org/10.3406/htn.1986.2054
1105	Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D., & Coomes, D. (2019). Advances in microclimate ecology
1106	arising from remote sensing. Trends in Ecology & Evolution, 34(4), 327–341.
1107	https://doi.org/10.1016/j.tree.2018.12.012
1108	Zellweger, F., Frenne, P. D., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-Römermann, M., Baeten,
1109	L., Hédl, R., Berki, I., Brunet, J., Calster, H. V., Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T.,
1110	Heinken, T., Jaroszewicz, B., Kopecký, M., Máliš, F., Coomes, D. (2020). Forest microclimate
1110 1111	Heinken, T., Jaroszewicz, B., Kopecký, M., Máliš, F., Coomes, D. (2020). Forest microclimate dynamics drive plant responses to warming. <i>Science</i> , <i>368</i> (6492), 772–775.

1113	Zhang, Z., Lv, Y., & Pan, H. (2013). Cooling and humidifying effect of plant communities in subtropical urban
1114	parks. Urban Forestry & Urban Greening, 12(3), 323–329.
1115	https://doi.org/10.1016/j.ufug.2013.03.010
1116	

1117 Figure **1**

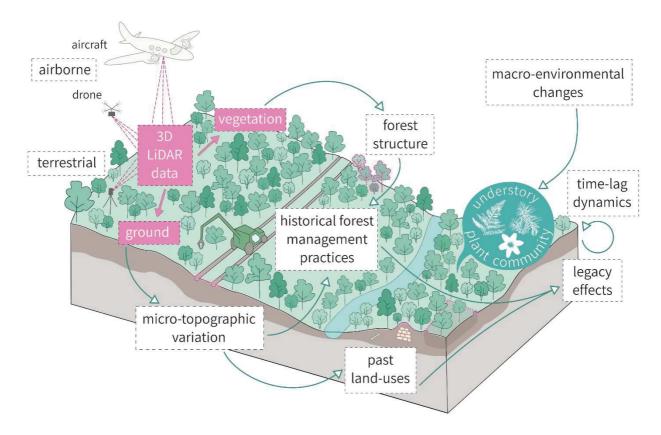


Fig. 1: Conceptual figure illustrating how light detection and ranging (LiDAR) data can be used to assess micro-topographic variation (e.g., skid trails) and forest structure (e.g., vertical layering of vegetation) at a landscape level, and thus highlight legacy effects still affecting the current composition of understory plant communities and their responses to macro-environmental changes through time-lag dynamics. For instance, using well-chosen LiDAR-derived variables (see the main text and subsequent figures), it is possible to not only capture the imprints of historical forest management practices (e.g., ancient coppice-with-standards converted to high forests after World War II or the more recent intensification of heavy vehicles' traffic to harvest timber) but also to unveil past land uses (e.g., ancient settlements or agricultural fields).

1127 Figure 2

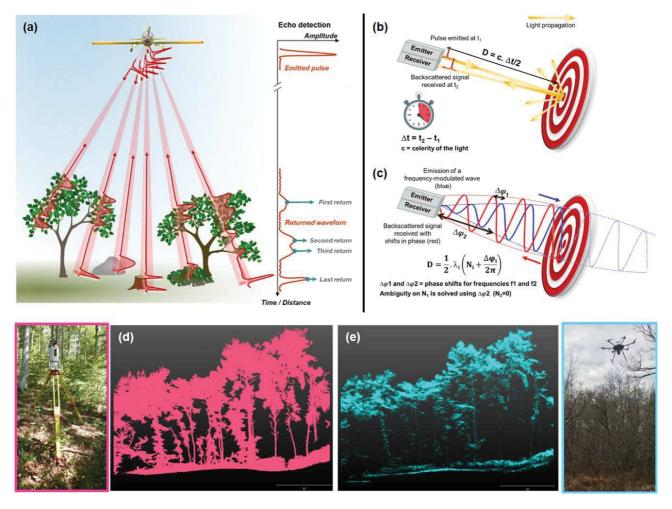


Fig. 2: How light detection and ranging (LiDAR) works (a, b, c) and the mean to acquire LiDAR data from below or from above treetops (d, e). Upper-left panel (a): example of a non-stationary airborne LiDAR system (ALS) on board an aircraft. Upper-right panels (b, c): basic principles of time-of-flight vs. phase-shift LiDAR. Lower panels (d, e): data visualization of raw LiDAR point clouds extracted from both a stationary terrestrial LiDAR system (TLS) (Riegl VZ400) and a non-stationary ALS (YellowScan Vx20) covering the exact same study area in the Aigoual forest (France).

Figure 3

Vx20) (cf. Fig. 2e).

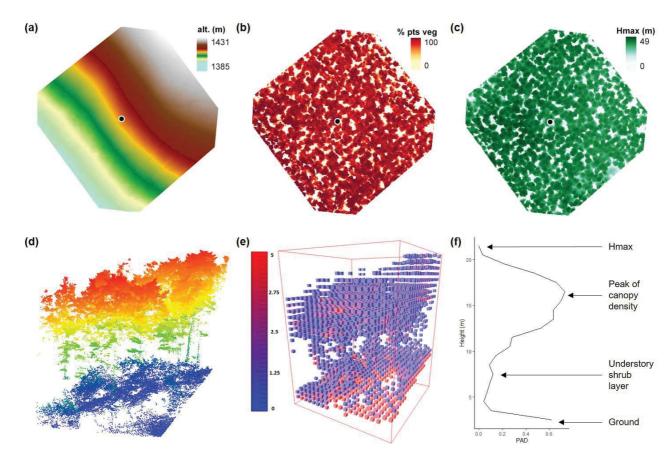


Fig. 3: Examples of LiDAR-derived variables to assess the vertical complexity below treetops.

Upper panels (a, b, c): raster layers, at 50 cm × 50 cm resolution, showing the digital terrain model (DTM) (a), the percentage of points classified as "vegetation" (a proxy for canopy density) (b), and maximum canopy height (Hmax) (c) across a 0.5 ha area (ca. 70 m × 70 m) in the Aigoual forest (France). Lower panels (d, e, f): close-up on the raw 3D LiDAR point cloud across an area of 20 m × 20 m size (d) to derive plant or leaf area density (PAD or LAD) computed for small volume units or voxels of 50 cm × 50 cm × 50 cm size (e) further aggregated by height layer to generate a vegetation profile of PAD values (f). Data were acquired with a non-stationary ALS (YellowScan

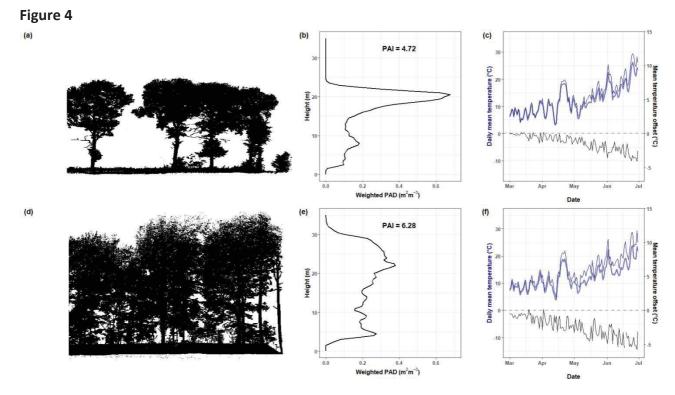


Fig. 4: Using terrestrial LiDAR systems (TLS) to derive variables explaining the variation in forest microclimates in an open (a, b, c) vs. dense (d, e, f) oak forest located in Belgium. Left panels (a, d): cross section of the raw lidar point cloud data. Central panels (b, e): vertical profiles of plant area density (PAD) (m² m³) values as a function of the height of the same point clouds used to compute the total plant area index (PAI), which is the integral of the PAVD-profile over the canopy height. Right panels (c, f): daily mean temperature (°C, blue lines) collected both inside (light-blue lines) and outside (dark-blue lines) the respective forest stands. The daily mean temperature offset, determined as the temperature inside the forest minus the temperature outside the forest, is shown in black as well. The LiDAR data was acquired using a RIEGL VZ400 (RIEGL Laser Measurement Systems GmbH, Horn, Austria). Single-scan position TLS was carried out in a dense and open forest in Belgium during the summer of 2018.

Figure 5

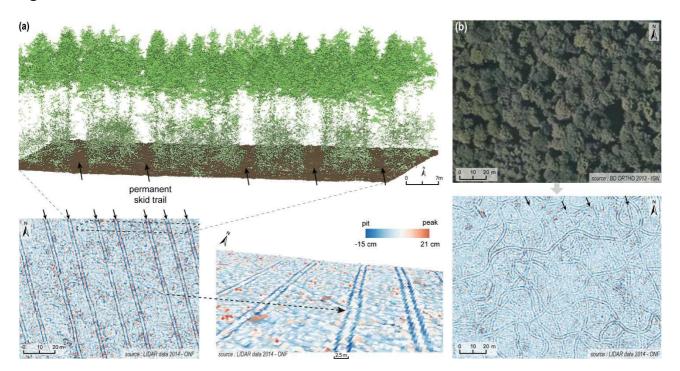


Fig. 5: Using airborne LiDAR systems (ALS) to unveil regular (a) and irregular (b) skid trails below treetops. A local relief model (LRM), at 50 cm resolution, was derived from the digital terrain model (DTM) of the Compiègne forest in Northern France. Left panel (a): a 3D view of the raw LiDAR point cloud with regular skid trails, illuminated in dark blue colors by the LRM, below the canopy cover of a young forest stand. Right panel (b): irregular and meandering patterns of skid trails, likely from different ages, below the canopy cover of a more mature forest stand. Green and brown points represent points classified as vegetation and soil, respectively. Bluish and reddish colours in the LRM refer to the micro-variation of the terrain microrelief and represent hollows (ruts here) and bumps, respectively. The LiDAR data was acquired by the Office National des Forêts (ONF) across the entire lowland forest of Compiègne (144 km²). The AERODATA Company used a Riegl LMS-680i LiDAR installed on-board an aircraft and performed flights in February 2014 to get an average density of 12 points per m².

Figure 6

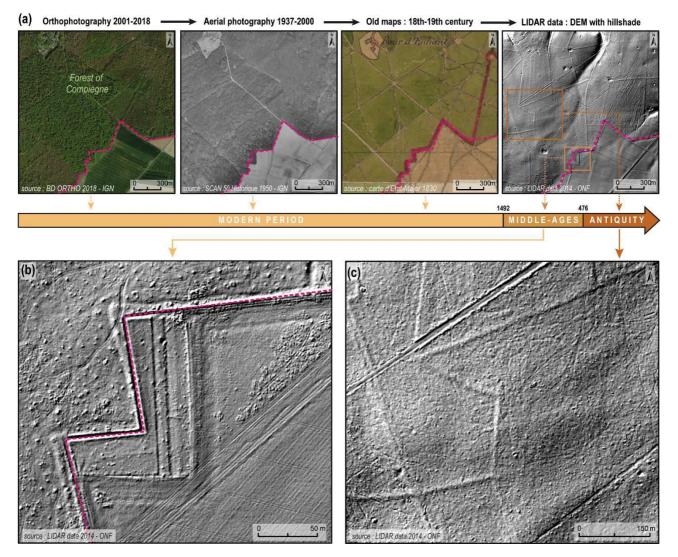


Fig. 6: Using airborne LiDAR systems (ALS) to extend a chronosequence (a) and unveil past land uses (b, c). Upper panel (a): chronosequence of land uses at the southern edge of the Compiègne forest in Northern France reconstructed with the help of modern orthophotography, historical aerial photography, old archives from Cassini maps, and LiDAR data allowing us to extend the chronosequence until the Middle Ages and Antiquity. We used a digital terrain model (DTM), at 50 cm resolution, with hillshade to unveil former agricultural practices inside the study area. The DEM with hillshade on the right-hand side of panel (a) clearly highlights artificial excavations (i.e., see the closed depressions) likely originating from the late Iron Age and Roman times and suggesting marling/liming practices to enrich agricultural fields. Bottom panels (b, c): close-up across two sites near the southern edge of the forest: evidence of (b) a typical late Middle Ages strip field

with cultivation ridges and (c) linear microreliefs corresponding to a network of Gallo-Roman agrarian fields and secondary roads. The LiDAR data was acquired by the Office National des Forêts (ONF) across the entire lowland forest of Compiègne (144 km²). The AERODATA Company used a Riegl LMS-680i LiDAR installed on-board an aircraft and performed flights in February 2014 to get an average density of 12 points per m².

1181

1182

1183

1184