
01 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Linda Altieri, D.C. (2021). Spatial entropy for biodiversity and environmental data: The R-package
SpatEntropy. ENVIRONMENTAL MODELLING & SOFTWARE, 144, 1-12 [10.1016/j.envsoft.2021.105149].

Published Version:

Spatial entropy for biodiversity and environmental data: The R-package SpatEntropy

Published:
DOI: http://doi.org/10.1016/j.envsoft.2021.105149

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/856460 since: 2022-02-22

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.envsoft.2021.105149
https://hdl.handle.net/11585/856460


Spatial entropy for biodiversity and environmental data:

the R-package SpatEntropy

Linda Altieri, Daniela Cocchi, Giulia Roli

Department of Statistical Sciences, University of Bologna, via Belle Arti, 41, 40126, Bologna, Italy.

{linda.altieri; daniela.cocchi; g.roli}@unibo.it

Abstract

Entropy measures are standard tools in environmental and ecological sciences to describe

the heterogenity of data. This paper reviews a selection of spatial entropy indices, some of

which are very recent, suitable to deal with spatial data on variables presenting a finite number

of categories. A special focus is given on biodiversity data, but methods can be applied to

any other environmental phenomena. The new R package SpatEntropy is here introduced to

compute spatial entropy measures in practice. The extension from traditional entropy measures

to their spatial version is a unique feature of the package, which is able to work with both areal

and point data. A practical part is also presented, where two types of environmental data

are considered, regarding trees biodiversity and urban expansion, respectively. The package

SpatEntropy is run over these dataset and shown to represent a user-friendly and helpful tool

for new package users.

Keywords: Spatial entropy; Shannon’s entropy; biodiversity; tree species; urban ex-

pansion; R package
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1 Software and data availability

Name of Package/Software: SpatEntropy package of R software.

Title of Package: Spatial Entropy Measures.

Date First Available: 2018-02-28 (Version 0.1.0).

Date Updated Version: 2021-04-07 (Version 2.0-1).

Developers: Linda Altieri, Daniela Cocchi, Giulia Roli.

Maintainer: Linda Altieri.

Contact: linda.altieri@unibo.it

Required Software: R (>= 3.5.0), a free software environment for statistical computing and graph-

ics, available at https://cran.r-project.org/.

Required Package: spatstat (>= 2.0-0), available at

https://cran.R-project.org/package=spatstat.

Automatically Imported Packages: spatstat.geom, spatstat.core, spatstat.linnet.

Package Availability: the SpatEntropy package is free and downloadable from the CRAN repos-

itory at https://cran.R-project.org/package=SpatEntropy.

Package Reference Manual: available for Version 2.0-1 at

https://cran.r-project.org/web/packages/SpatEntropy/SpatEntropy.pdf

Package Description: The heterogeneity of spatial data presenting a finite number of categories

can be measured via computation of spatial entropy. Functions are available for the computation of

the main entropy and spatial entropy measures in the literature. They include the traditional version

of Shannon’s entropy (Shannon, 1948), Batty’s spatial entropy (Batty, 1974), Batty’s LISA entropy

(O’Neill et al., 1988), Li and Reynolds’ contagion index (Li and Reynolds, 1993), Karlstrom and

Ceccato’s entropy (Karlström and Ceccato, 2002), Leibovici’s entropy Leibovici (2009), Parresol

and Edwards’ entropy (Parresol and Edwards, 2014) and Altieri’s entropy (Altieri et al., 2018a).

Full references for all measures can be found under the topic ’SpatEntropy’. The package is able

to work with lattice and point data. The updated version works with the updated spatstat pack-

age (>= 2.0- 0). It also provides a more intuitive framework for all functions, including improved

examples, and new data. The speed of most functions has also been substantially increased.
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Data Availability: the SpatEntropy package includes two datasets. The first one, raintrees, is a

marked point pattern dataset about four rainforest tree species available at http://www.ctfs.si.edu.

It is a ppp object (see package spatstat) with 7251 points, containing: window, an object of

type owin (see package spatstat), i.e. the 1000x500 metres observation area, x, y, the nu-

meric vectors with points’ coordinates, marks, a character vector matching the tree species to

the data points. This dataset documents the presence of tree species over Barro Colorado Island,

Panama. Barro Colorado Island has been the focus of intensive research on lowland tropical rain-

forest since 1923 (http://www.ctfs.si.edu). Research identified several tree species over a

rectangular observation window of size 1000x500 metres; the tree species constitute the point

data categorical mark. This dataset presents 4 species with different spatial configurations: Aca-

lypha diversifolia, Chamguava schippii, Inga pezizifera and Rinorea sylvatica. The second dataset

included in the package, turin, is a lattice dataset with Turin Urban Morphological Zones. Val-

ues are either 0 (non-urban) or 1 (urban). Pixels outside the administrative borders are classified

as NA. This raster/pixel/lattice dataset comes from the EU CORINE Land Cover project (EEA,

2011) and is dated 2011. It is the result of classifying the original land cover data into urbanised

and nonurbanised zones, known as Urban Morphological Zones (UMZ). UMZ data are useful to

identify shapes and patterns of urban areas, and thus to detect what is known as urban sprawl.

Turin’s metropolitan area is extracted from the European dataset and is composed by the munici-

pality of Turin and the surrounding municipalities: Beinasco, Venaria Reale, San Mauro Torinese,

Grugliasco, Borgaro Torinese, Collegno, Pecetto Torinese, Pino Torinese, Moncalieri, Nichelino,

Settimo Torinese, Baldissero Torinese, Rivoli, Orbassano. The dataset is made of 111x113 pixels

of size 250x250 metres. Many other data examples can be found in the just mentioned package

spatstat, as well as in other R packages devoted to biodiversity and environmental studies (e.g.

vegan).
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2 Introduction

2.1 Entropy as a biodiversity and environmental measure

Measuring biodiversity with appropriate syntheses is a challenging task (see, e.g., Hoskins et al.,

2020, and Drechsler, 2020). The proposals of indicators range from the simplest indices denoting

species richness (see, e.g., Fisher et al., 2012) towards more articulated proposals related to the

abundance of species in ecological communities (see, e.g., Scarnati et al., 2009). Under this per-

spective, entropy indices certainly represent an important and efficient tool widely used for prop-

erly measuring biological diversity (Leinster and Cobbold, 2012). Shannon’s entropy (Shannon,

1948) is the most common and successful formulation, as it is able to synthesize several concepts

in a single number: entropy, information, heterogeneity, surprise, contagion. The flexibility of

such index and its ability to describe any kind of data, including categorical variables, motivate its

diffusion across several applied fields for data description and interpretation (Frosini, 2004). Over

the last decades, the concept of entropy has been further developed and generalized in engineering

and statistics (Cover and Thomas, 2006), also extending to the case of continuous variables, firstly

dealt by Rényi (1961) and Batty (1974, 1976, 2010, 2014).

In the wide context of environmental studies, such as geography, ecology, biology and land-

scape analyses, a large use of entropy measures has been made. In such cases, the researcher often

deals with spatial data, i.e., data that are georeferenced as points or areas, and, as a consequence,

also entropy measures need to be revised to include this spatial information. At this regard, a num-

ber of works are available in the literature, aiming at building a spatial entropy index. They can be

ascribed to three main approaches. The first starts with Batty (1974, 1976, 2010, 2014) who de-

fined a spatial entropy measure which evaluates the distribution of an event over an area, allowing

for the unequal space partition into sub-areas. Later, Karlström and Ceccato (2002) modified the

initial proposal in order to satisfy the property of additivity in terms of decomposition of the global

index into local components, firstly introduced by Theil (1972) and then defined by Local Indices

of Spatial Association (LISA) criteria (Anselin, 1995). The second approach to spatial entropy

includes space based on a suitable transformation of the study variable to account for the distance
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between realizations (co-occurrences); the first proposal was made by O’Neill et al. (1988) for

contiguous couples of realizations, then extended by Leibovici (2009) and Leibovici et al. (2014)

to further distances and general degrees of co-occurrences. Contagion indices (Li and Reynolds,

1993; Parresol and Edwards, 2014) are also based on this view: spatial contagion is the opposite of

entropy. As for the third approach, a set of spatial entropy measures has been presented by Altieri

et al. (2018a, 2019a,b), starting from the co-occurrence approach but overcoming some undesir-

able features of the previous measures. According to this framework, Shannon’s entropy of the

transformed variable is decomposed into the information due to space and the remaining one, once

space is considered. The proposal solves the problem of preserving additivity and disaggregating

results, allowing for partial and global syntheses.

2.2 Available software packages for entropy

The R software (R Core Team, 2017) is certainly one of the most flexible options for performing

statistical analysis, in particular when spatial data have to be managed. R is employed by a wide

part of the global community of statisticians and has the great advantage of being open source,

i.e. it can be downloaded freely and anyone can contribute to the software by submitting pack-

ages of functions for additional features. Packages undergo severe checks by the R-team, which

ensure the quality of the available material. The software main drawback is that its traditional

interface is not very user-friendly; this can be solved by installing an interface such as RStudio

(https://www.rstudio.com/).

As far as entropy measures are concerned, several R packages on CRAN

(https://cran.r-project.org) are available. The most common ones are entropart, entropy

and EntropyEstimation. They all allow traditional entropy computation and decomposition into

its two terms known as mutual information and conditional entropy, generally referred to in infor-

mation theory applications (Cover and Thomas, 2006). In particular, entropart provides func-

tions to calculate the alpha, beta and gamma diversity indices of communities, typical of ecological

studies, together with Simpson’s evenness index. The package also offers an example dataset about

tree species, but its data format is very specific of the package and not easy to understand for R
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beginners. The further package entropy is more focused on various estimators of entropy, a topic

which does not constitute the core of the present work, nor of many biodiversity studies. In partic-

ular, it allows to compute the Hausser and Strimmer shrinkage estimator, the maximum likelihood

estimator and its Miller-Madow correction, various Bayesian estimators including the NSB esti-

mator and the Chao-Shen estimator. It also provides functions for estimating the Kullback-Leibler

divergence, and for the partition of entropy between mutual information and residual entropy. Its

functions start from the observed counts of species, without any considerations about the spatial

location of data; the package does not offer any data example. Lastly, EntropyEstimation par-

tially overlaps with both the aforementioned packages, as it includes functions for the estimation of

Shannon’s entropy, variants of Renyi’s entropy, mutual information, Kullback-Leibler divergence

and generalized Simpson’s indices; no data example is available. Further R packages, though con-

taining the word “entropy” in the description, all deal with different data contexts or different fields

of study (e.g. sampling entropy, see Altieri and Cocchi, 2021a).

Despite a wide literature on spatial entropy measures, as illustrated in Section 2.1, to our knowl-

edge there is no R package offering an automatic computation of these indices. Given the potential

and the crucial role of spatial entropy measures in real applications, this lack needs to be overcome

by providing a practical and intuitive support for new users in managing spatial information, in

form of point or areal data, and obtaining fast and interpretable results in the contexts of biodiver-

sity and environmental studies.

2.3 SpatEntropy: a tool for easy computation of spatial entropy measures

This work aims at introducing the new R package SpatEntropy (an improved version of the orig-

inal Altieri et al., 2018b), which collects functions for the computation of all the spatial entropy

indices mentioned in Section 2.1. They include the traditional version of Shannon’s entropy and

Shannon’s entropy of a transformation of the study variable X , known in the literature as Z, which

considers pairs of observations at a given distance over space. Moreover, if offers computation of

Batty’s spatial entropy and its modified LISA version. Following the observation pairs approach,

the package provides functions for computing O’Neill’s entropy for adjacent couples and its trans-
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formations: Li and Reynolds’ relative contagion index and Parresol and Edwards’ entropy. In

addition, the generalized version of Leibovici’s entropy can be computed, together with the further

generalization to a set of spatial entropy indices that we call Altieri’s entropies. The package is able

to work with both grid and point data, and makes extensive use of the widely known spatstat

package (version ≥ 2.0− 0) functions and data structures (Baddeley et al., 2015). SpatEntropy

allows usage by non-statisticians, provided they have basic knowledge of R; the minimum effort is

requested from the user, and all functions are sided by data examples. Additionally, real datasets

are provided for performing, as examples, the studies introduced in the present paper. Many other

data examples can be found in the just mentioned package spatstat, as well as in other R packages

devoted to biodiversity and environmental studies (e.g. vegan).

The present paper illustrates how to make use of SpatEntropy focusing on a main example

concerning ecological data and witnessing the need to assess biodiversity via an entropy index

that includes information about the data spatial structure. This example, consisting of a marked

point pattern dataset about four rainforest tree species, is available in the SpatEntropy package

under the name raintrees. This dataset documents the presence of tropical tree species over

Barro Colorado Island, Panama. Barro Colorado Island has been the focus of intensive research on

lowland tropical rainforest since 1923 (http://www.ctfs.si.edu). Research identified several

tree species over a rectangular observation window of size 1000× 500 meters; the tree species

constitute the point data categorical mark, i.e. a label attached to each point of the pattern. The

raintrees dataset presents 4 species with different spatial configurations: Acalypha diversifolia

(acaldi), Chamguava schippii (cha2sc), Inga pezizifera (ingape) and Rinorea sylvatica (rinosy).

The overall dataset has a total number of 7251 points and is shown in Figure 1.

One further example, which is synthetically presented along the paper, highlights both the

ability of the measures proposed in this paper to deal with different types of spatial data, and

the wide potential of using properly calibrated entropy measures. The package SpatEntropy

offers the binary areal dataset turin, which comes from the EU CORINE Land Cover project

(EEA, 2011). Turin’s metropolitan area is composed by the main municipality of Turin and its 15

surrounding municipalities, that constitute its commuting belt. The dataset is a rectangular matrix
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rinosy

ingape

cha2sc

acaldi

Figure 1: Rainforest tree data.

Figure 2: Turin urban data.

of 111× 113 observations, each corresponding to a pixel of size 250× 250 meters. Pixels within

the area administrative borders are classified as 1 (urban) or 0 (non-urban), while pixels outside the

border are missing values. The dataset is shown in Figure 2, where a dark pixel is urban and a light

gray pixel is non-urban. In the package, the dataset is accompanied by the objects turinW, i.e.

the enclosing rectangular window, and turinTess, which contains the names and administrative

borders of all municipalities.
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The paper develops as follows. In Section 3, the principles for introducing space in traditional

entropy measures are presented to review the leading spatial entropy indices available in the liter-

ature. The application of the new R package SpatEntropy on the main running example of trees’

biodiversity is carried on in Section 4. Section 5 uses SpatEntropy and illustrates the results on

the second example, i.e. areal data of urban sprawl. Finally, Section 6 concludes the work.

3 From traditional to spatial entropy measures

The traditional concept of entropy dates back to Shannon’s formula (Shannon, 1948), which in In-

formation Theory (Cover and Thomas, 2006) quantifies the average amount of information brought

by a discrete random variable X , taking values xi in a set of I outcomes, according to the probability

mass function (pmf) pX . In biodiversity applications, X represents the variety of life considered,

i.e., the levels of biodiversity commonly discussed (genetic, species and ecosystem diversity). As

an example, in the rainforest tree data introduced above, X classifies the trees into the I = 4 differ-

ent species x1 to x4, i.e. Acalypha diversifolia, Chamguava schippii, Inga pezizifera and Rinorea

sylvatica.

Shannon’s entropy of X is then defined as

H(X) =
I

∑
i=1

p(xi) log
(

1
p(xi)

)
(1)

and represents the expected value of the so-called information function I(p(xi)) = log(1/p(xi));

entropy measures the information or, in other words, the surprise, coming from observing real-

izations. Intuitively, outcomes with a very low probability of occurrence (i.e., hardly observable

species) increase the entropy value, while outcomes very likely to occur (i.e., more observable

species) give a small contribution to entropy. Thus, entropy, or analogously information and

surprise, will be larger when the observed outcomes are not likely to occur. Entropy ranges in

[0, log(I)] and its maximum value is achieved when X is uniformly distributed.

In many situations, entropy is seen as a descriptive measure and the pmf of X is built using

the relative frequencies of the observed categories. When the goal is to make inference on the
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underlying process determining the observed outcomes, entropy can also be seen as an estimator

Ĥ(X).

In its standard use, the pmf is estimated by the so-called plug-in estimator (Paninski, 2003). In

such case the descriptive measure and the estimator coincide: p̂(xi) = ni/n substitutes the prob-

abilities p(xi) with the observed relative frequencies over n realizations. In particular, referring

to the rainforest tree example the frequencies are the ratios of the count of each species over the

total number of observed trees. In the pllied part of the paper, all entropy measures are computed

by substituting the elements of the unknown probability distribution with the observed relative

frequencies.

A major drawback of Shannon’s entropy is that it does not account for the spatial location

of occurrences, so that datasets with identical pmf but very different spatial configurations share

the same entropy value. In biodiversity this point is crucial, as the location of the variety of life

considered is available (often as point coordinates), as well as strongly related to the research

questions (the main aim is to quantify the spread of biodiversity over a certain space). Indeed, in

the rainforest tree data example the interest lies in measuring the diversity across species but also

in quantifying the spread of species according to the spatial location of the trees.

The following Sections present the mainstream approaches to build spatial entropy measures.

Most indices imply the formal definition of a neighbourhood (Cressie, 1993). The simplest way

of representing a neighbourhood system over n spatial units is via an adjacency matrix A (Anselin,

1995), i.e., a square matrix whose elements indicate whether pairs of units are neighbours: auu′ = 1

if u′ ∈ N (u), that is the neighbourhood of area u, auu′ = 0 otherwise, and auu = 0 by definition.

Spatial units may be points, defined via precise coordinate pairs, or, alternatively, areas, identified

via common representative coordinate pairs, such as the area centroids. In biodiversity, the con-

cept of spatial neighbourhood generalizes to an idea of similarity, so that some species are closer

(e.g. in a biological, taxonomic or logical sense) than others (Leinster and Cobbold, 2012). Once

the adjacency matrix is suitably specified, computations proceed the same way for any similarity

system.

10



3.1 Batty’s entropy

Batty’s spatial entropy (Batty, 1974, 1976, 2010, 2014) is useful for evaluating the heterogeneity in

the distribution of a phenomenon over an area. It is particularly appropriate when the observation

area is exogenously partitioned into sub-areas (such as municipality administrative boundaries for

a region). The use of a meaningful exogenous area partition is very important, since conclusions

are heavily affected by the partition itself.

Let a phenomenon of interest F occur over an observation window of size T partitioned into

G areas of size Tg. This defines G dummy variables identifying the occurrence of F over a

generic area g, with g = 1, . . . ,G. Note that the phenomenon is denoted by the symbol F , a pres-

ence/absence variable, different from X , a generic categorical variable. Examples of F are: the

presence of a single species in biodiversity studies, like in the case of point data on rainforest trees,

or the observation of urban versus non-urban patches in city expansion studies, like in areal data on

binary Turin’s dataset. Given that F occurs over the whole window, its occurrence in area g takes

place with probability pg, where 1− pg = ∑g′ 6=g pg′ and ∑g pg = 1. The phenomenon intensity

is obtained as λg = pg/Tg, where Tg is the area size, and is assumed constant within each area.

Batty’s spatial entropy is then defined with respect to these quantities as

HB(F) =
G

∑
g=1

pg log
(

Tg

pg

)
. (2)

It expresses the average amount of information brought by the occurrence of F in any area in the

observation window, accounting for unequal space partition through the multiplicative component

Tg. Note that pg 6= p(xi) as the latter is the probability of occurrence of a category (i.e. a species)

anywhere over the window, while pg expresses the probability of occurrence of the phenomenon

under study over a sub-area.

Analogously to Shannon’s entropy, which is high when the I categories of X are equally rep-

resented over a (non spatial) data collection, Batty’s entropy is high when F is equally intense

over the G areas partitioning the observation window (i.e., when λg = λ for all g). Batty’s entropy

HB(F) reaches a minimum value equal to log(Tg∗) when pg∗ = 1 and pg = 0 for all g 6= g∗, with g∗

denoting the area with the smallest size. The maximum value of Batty’s entropy is log(T ), reached
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Figure 3: Example of partition into 10 sub-areas for rainforest tree dataset.

when the intensity of F is the same over all areas, i.e., λg = 1/T for all g.

In the case of point data, Batty’s spatial entropy aggregates information over each sub-area into

a single number pg, thus neglecting the detailed information about the points coordinates. This

represents an unpleasant pitfall.

For the rainforest tree data, Batty’s entropy may be computed if the aim lies on measuring

the entropy observed across sub-areas of interests, controlling for their dimensions. In such case,

entropy is computed either on the overall dataset, discarding the information about the different

kinds of species (see, e.g., Figure 3, where G = 10), or by considering each category of species

separately. In the latter case, the starting variable X , covering I = 4 species, is transformed into

a dummy variable indicating the presence/absence of one species of interest over the sub-areas; if

the interest lies in the entropy levels of each species over the sub-areas, 4 dummy variables are

needed and 4 Batty’s entropies are obtained and compared, without the possibility to have a unique

measure.

3.2 Batty’s LISA entropy

Karlström and Ceccato (2002) made a challenging proposal to exploit the contribution of neigh-

bourhood in Batty’s entropy index, following the Local Indices of Spatial Association (LISA)

theory (Anselin, 1995). They consider an adjacency matrix for each of the G sub-areas introduced
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in Section 3.1, i.e. A = {agg′}g,g′=1,...,G. The elements on the diagonal of the adjacency matrix A

are agg = 1, i.e., each area neighbours itself. Then, the elements agg′ of this matrix are included to

weight the probability of occurrence of F in a given spatial unit g:

p̃g =
G

∑
g′=1

agg′ pg′. (3)

Mimicking Batty’s entropy, Batty’s LISA entropy index is then defined as

HLISA(F) =
G

∑
g=1

pg log
(

1
p̃g

)
. (4)

i.e. it fixes Tg = 1 and defines the information function as I(p̃g) = log(1/p̃g).

The main purpose of Batty’s LISA index lies again on measuring and comparing entropies at

different levels of biodiversity (e.g., separately by species) across the sub-areas of interests, but,

instead of controlling for their dimensions, a sub-area neighbourhood is included in the computa-

tion (where, again, neighbourhood can be extended to a more general meaning than purely spatial

adjacency). This approach further allows to obtain local entropies

Lg = pg log
(

1
p̃g

)
(5)

which represent the specific contribution of each sub-area and preserve the additive properties of

LISA theory in deriving the global index HLISA(F).

The maximum of HLISA(F) does not depend on the choice of the neighbourhood and is log(G).

As A tends to the identity matrix, HLISA(F) tends to Batty’s spatial entropy (2), with equality in the

case of Tg = 1 for all g.

3.3 O’Neill’s entropy and contagion indices

Another way to build a spatial entropy measure relies on defining a new categorical variable Z,

where each realization identifies ordered couples (xi,x j) of occurrences of X over space. Order

preservation within couples regards considering the relative spatial location of the observations.

Conventionally, if order is preserved the couple (xi,x j) implies that the observation carrying the

j-th category occurs at the right or below the observation carrying the i-th category. Under this
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criterion, such couple is different from (x j,xi). For I categories of X , the new variable Z has R = I2

categories. The attention moves from the computation of (1), namely H(X), to an index of the

same form, i.e. Shannon’s entropy of Z, H(Z), based on the pmf pZ .

In biodiversity, entropy measures based on Z are useful when the variable of interest has two

or more categories, e.g. species, and when the goal is to understand how the presence of a species

at one location affects neighbouring outcomes, i.e. the adjacent presence of the same or a different

species. Intuitively, when the variable is strongly spatially associated, neighbouring outcomes are

closely related and the surprise (and thus, the entropy) in observing data decreases. Defining the

type of neighbourhood to consider is crucial, so that different proposals based on this choice are

available in the literature.

O’Neill et al. (1988) proposed an early spatial entropy index by defining a neighbourhood based

on contiguity, i.e. areal units sharing a border. Shannon’s entropy (1) is computed in this case for

the subset of values of the variable Z made of contiguous couples. Such couples are identified by

non-zero elements in a suitable adjacency matrix, the contiguity matrix C. The subset of couples of

contiguous realizations is denoted by Z|C, with pmf pZ|C. Then, the associated Shannon’s entropy

is

HO(Z|C) =
I2

∑
r=1

p(zr|C) log
(

1
p(zr|C)

)
. (6)

This measure ranges from 0 to log(I2) and quantifies the residual amount of entropy associated

to the variable of interest, once the influence of the spatial configuration in terms of contiguity

has been taken into account. When it is close to 0, the heterogeneity of data mostly depends on

its spatial structure and the residual entropy is low. When it is close to its maximum, data do

not present a strong (positive or negative) spatial correlation and are more similar to a randomly

scattered scheme.

A direct derivation of this approach is based on the concept of contagion, which is the opposite

of entropy. Indeed, the Relative Contagion index RC (Li and Reynolds, 1993) is

HRC(Z|C) = 1−Hnorm
O (Z|C) = 1− 1

log(I2)

I2

∑
r=1

p(zr|C) log
(

1
p(zr|C)

)
(7)

where the second term is the normalized entropy of Z|C, obtained via the multiplication of (6) by
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1/ log(I2). Its complement to 1 measures relative contagion: the higher the spatial contagion be-

tween categories of Z|C, the lower the spatial entropy. Normalization has the advantage of allowing

comparison across datasets presenting a different number of categories. giusto non andare a capo?

If one wants to account for the number of categories of X when computing the contagion index,

non-normalized measures should be computed in order to distinguish among contexts with differ-

ent numbers of categories. For this reason, Parresol and Edwards (2014) suggest an unnormalized

version of (7):

HP(Z|C) =−HO(Z|C) =
I2

∑
r=1

p(zr|C) log(p(zr|C)) (8)

thus ranging from − log(I2) to 0. Both the Relative Contagion and Parresol-Edward’s index have

an opposite interpretation than O’Neill’s entropy: increasing departures from 0 denote a stronger

spatial structure in the data which affects the heterogeneity.

O’Neill’s entropy and its modified versions are conceived for areal data, as they require infor-

mation on sharing a border. A practical example on entropy measures based on contiguity relies

on Turin’s urban data. In the case of biodiversity point data, such as the tree species dataset, this

approach implies a pixelization of the observations, which is a sensible choice, as it arbitrarily

assignes a spatial dimension and a block structure to points, with great loss of information. Point

data may be analysed using the proposal of distance, rather than contiguity, between observations.

In such a situation, more suitable measures can be actually applied, such as the ones presented in

the next Sections.

3.4 Leibovici’s entropy

Following the idea of O’Neill, Leibovici (2009) and Leibovici et al. (2014) propose a richer mea-

sure of entropy by extending HO(Z|C) in two directions. Firstly, Z can now represent not only

couples, but also triples and further degrees m of co-occurrences. The authors develop the case of

ordered co-occurrences, so that the number of categories of Z is Rm = Im. Secondly, space is now

allowed to be continuous, so that areal as well as point data may be considered and associations

may not coincide with contiguity: the concept of distance between occurrences generalizes the
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concept of contiguity.

Once a distance d of interest is fixed, then co-occurrences are defined for each m and d as the

m-th degree simultaneous realizations of X at any distance d∗ ≤ d, i.e., distances are considered

according to a cumulative perspective. To this aim, an adjacency hypercube Ad is built and a subset

of all co-occurrences Z is selected conditional on it, i.e. Z|Ad or, for the sake of simplicity, Z|d.

Then, Leibovici’s spatial entropy is again a version of Shannon’s entropy defined on the pmf pZ|d

HL(Z|d) =
Im

∑
r=1

p(zr|d) log
(

1
p(zr|d)

)
. (9)

The derivation of O’Neill’s entropy (6) is straightforward as it is the special case when m = 2 and

d is defined for contiguous co-occurrences. In applications, only co-occurrences of degree m = 2,

i.e. couples of realizations, are usually considered; therefore, unless otherwise specified, from

now on we refer to the case of couples (m = 2). Leibovici’s approach finally allows to include the

coordinates’ information for point data in the computation of the entropy. If we again consider

the example about the spatial pattern of the species, 16 couples can be observed: (Acalypha, Aca-

lypha), (Acalypha, Chamguava), (Acalypha, Inga), (Acalypha, Rinorea), (Chamguava, Acalypha),

. . . and so on. Once a distance d has been fixed, only couples of species (xi,x j) located at a distance

lower than d are isolated and enter the computation of HL(Z|d). Clearly, the choice of d affects

this measure of entropy. Thus, in real applications, different scenarios for d need to be explored

and compared. Overcoming this feature is among the reasons why a further generalization of this

approach has been proposed by Altieri et al. (2018a) and described in the following Section.

3.5 Altieri’s set of entropy measures

Altieri et al. (2018a, 2019a, 2019b) developed a more general approach defining a set of spatial en-

tropy measures starting from O’Neill and Leibovici’s indices. Such set should be employed when

the interest lies in understanding the role of the spatial configuration in determining the entropy of

a (biodiversity) variable, not only at one isolated specific distance but also at a global level or at

several distance ranges simultaneously. In addition, it should be used when the influence of space

needs to be quantified as a percentage of the entropy (e.g., in the rainforest tree example, how
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much the global entropy across species is due to the spatial location of the trees). From a statisti-

cal perspective this approach constitutes a more sophisticated tool that allows more flexibility and

interpretability than other available measures of entropy.

The important starting point is a different way of computing the variable Z with respect to pre-

viuos definitions: the general degree m of co-occurrences is defined discarding the order within

co-occurrences. For the sake of simplicity, let’s consider only the case of m = 2, where, under this

approach, pairs, not couples, of realizations are considered, i.e., the relative spatial location of the

two realizations is irrelevant. The reason for this choice is two-fold. Firstly, ordering occurrences

is not sensible in spatial statistics, where spatial configurations are not generally assumed to have a

direction. Secondly, discarding the order ensures a one-to-one correspondence between Shannon’s

entropy of X and Z. Note that, when order is discarded, the number of categories of Z is smaller.

See Altieri et al. (2019a) for further details on discarding the order. The gap between the two op-

tions grows as I increases, and induces a different computational burden for large datasets, adding

a practical advantage to the choice of discarding the order.

The second step of this approach to spatial entropy is to introduce a discrete variable W , that

represents space by classifying the distances at which the two occurrences of a pair take place.

Classes wk are defined, with k = 1, . . . ,K, covering all possible distances within the observation

window. Each distance class wk implies the choice of a corresponding adjacency matrix Ak, which

identifies pairs where the two realizations of X lie at a distance belonging to the range wk.

In biodiversity contexts, considering different choices of distances at which pairs (e.g., pairs of

observable species) occur is crucial, as well as quantifying the whole contribution of space on the

global entropy measure.

Thanks to the introduction of W and following the basis of Information Theory (Cover and

Thomas, 2006), the total entropy of Z may be decomposed as

H(Z) =
R

∑
r=1

p(zr) log
(

1
p(zr)

)
= MI(Z,W )+H(Z)W (10)

where, in the spatial context defined by the variable W , MI(Z,W ) is the spatial mutual information

and is the part of entropy of Z due to the spatial configuration W , while H(Z)W is the spatial

global residual entropy and represents the remaining information brought by Z after space has
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been taken into account. The more Z depends on W , i.e. the more the realizations of X are

spatially associated (e.g., nearby observations of the same species), the higher the spatial mutual

information. Conversely, when the spatial association among the realizations of X is weak (e.g.,

observations of a species tend to have neighbours of different species), the entropy of Z is mainly

due to spatial global residual entropy.

The entropy H(Z) is a stable reference value, while its two components MI(Z,W ) and H(Z)W

vary and are able to assess the role of space for datasets with different spatial configurations. For

the sake of interpretation and diffusion of the results, a proportional measure of spatial mutual

information is:

MIprop(Z,W ) = MI(Z,W )/H(Z) (11)

which ranges in [0,1] and quantifies the contribution of space according to the total entropy of Z.

The overall value of MI(Z,W ), however, is often negatively influenced by what happens at

large distance ranges, where scarce spatial correlation is usually present. Hence, spatial mutual

information for the whole dataset may be low even when a clustered pattern occurs (e.g., groups of

nearby realizations belonging to same species are observed). The variable W helps in overcoming

this drawback, since K subsets of realizations of Z, denoted by Z|wk, are available and spatial

mutual information can be also decomposed as

MI(Z,W ) =
K

∑
k=1

p(wk)PI(Z|wk) (12)

that is a weighted sum of partial terms PI(Z|wk), each denoted spatial partial information and

defined as

PI(Z|wk) =
R

∑
r=1

p(zr|wk) log
(

p(zr|wk)

p(zr)

)
. (13)

Each partial term PI(Z|wk) quantifies the contribution to the departure from independence of each

conditional distribution pZ|wk , i.e. the contribution of the k-th distance range to the global mutual

information between Z and W . As regards biodiversity, each partial term measures the degree of

association across species over space at each distance range. If this association is high, then pairs

of observations belonging to the same species are more likely, that is a low level of biodiversity

is detected. Conversely, a high biodiversity situation is revealed when the spatial associations of
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species is low, i.e. pairs of different species are more often observed. The interest usually lies on

short distance ranges, but all depends on research focus and on the definition/dimensions of the

observation window.

Analogously to (12), for spatial residual entropy the following additive decomposition holds:

H(Z)W =
K

∑
k=1

p(wk)H(Z|wk), (14)

where the terms H(Z|wk), denoted as partial residual entropies, measure the partial contributions

to the enmtropy of Z once the spatial configuration is controlled:

H(Z|wk) =
R

∑
r=1

p(zr|wk) log
(

1
p(zr|wk)

)
. (15)

Each term H(Z|wk) thus represents a Leibovici’s entropy index (9) on unordered couples, which

is now included in a wider and complete framework for spatial entropy measures. In biodiversity,

a high value for H(Z|wk), especially at short distance ranges, is a hint for declaring large levels of

biodiversity.

4 A biodiversity study with SpatEntropy: the rainforest tree

data

This Section offers a practical guide to the SpatEntropy package via the rainforest tree data exam-

ple. In what follows, the functions and the possible options are described following the application;

more detailed information is available in the package manual downloadable at https://CRAN.R-

project.org/package=SpatEntropy, where a number of toy examples are included to further

practice of the package. For simplicity, many results are presented by rounding to two decimal

places, while R provides more precise values.

After SpatEntropy and its dependence package spatstat (>2.0-0) are installed from CRAN

(https://cran.r-project.org), the graphical representation of data (as in Figure 1) may be

produced with the commands
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R> data(raintrees)

R> plot(raintrees, main="", pch=16, cols=1:4)

As introduced in Section 1, the variable X here represents the tree species, with I = 4 categories,

briefly coded as x1 = acaldi, x2 = cha2sc, x3 = ingape and x4 = rinosy. Consequently, the variable

Z has 42 = 16 categories when ordering within species couples is considered, or
(5

2

)
= 10 categories

when unordered pairs are built. The total number of trees is N = 7251, where n1 = 2678 trees

belong to species x1, n2 = 544 to species x2, n3 = 311 to species x3 and n4 = 3718 to species x4.

The relative amounts for each species are the frequencies that enter entropy computations (the input

for Batty’s entropy is different, as explained in Section 4.1). The four species have different spatial

configurations: acaldi is evenly distributed over the region, cha2sc has a clustered configuration,

ingape shows a tendency to grow on the right hand side of the area, and rinosy is multiclustered.

Therefore, space is likely to play a role in the data heterogeneity.

As a starting point, the traditional version of Shannon’s entropy is easily computed by

R> shannon(raintrees)

The function produces three output elements. The core information is returned by

$shann

[1] 1.04

which gives the value of Shannon’s entropy for the four tree species. A comment on the entropy

value may be facilitated by the relative value, obtained in the second element of output by the

command

$rel.shann

[1] 0.75

This value states that the overall data entropy is 75% of the maximum possible entropy, in this case

equal to log(4). Such measure is easier to interpret across disciplines and allows comparison to

other datasets. A low value for the relative heterogeneity hints at a structure in the data, possibly

of spatial nature, that decreases the level of chaoticity, but no deeper exploration is allowed by this

traditional Shannon’s entropy. The third element of the output is a table with the relative frequen-

cies that enter the computation of H(X) in place of the unknown probabilities:
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$probabilities

category frequency

1 acaldi 0.37

2 cha2sc 0.08

3 ingape 0.04

4 rinosy 0.51

The entropy that is obtained as a first output is an estimate Ĥ(X) of H(X). If an uncertainty assess-

ment is requested, the variance of Shannon’s entropy can be estimated as V̂ [Ĥ(X)] = Ĥ(X)(2)−

(Ĥ(X))2 (Paninski, 2003), where Ĥ(X)(2) = ∑
I
i=1

ni
n log

(
n
ni

)2
. In the package, such variance is

obtained with

R> varshannon(raintrees)

[1] 0.44

Afterwards, we illustrate what the different spatial entropy measures bring to the study of the

biodiversity of rainforest tree data.

4.1 Results for Batty’s entropy

As introduced in Section 3.1, the computation of Batty’s entropy imposes two exogenous decisions:

first, the definition of the phenomenon of interest, and second, the choice of suitable sub-areas. As

a running example, let us compute entropy on all rainforest trees, i.e. on the presence/absence of

trees without distinction among the 4 species. When there are no reasons for fixing a specific area

partition, the package allows to randomly partition the observation window into G portions (and

we propose the former G = 10 of Figure 3) by using

R> batty.ent=batty(unmark(raintrees), partition=10)

The function unmark discards the information about the species. The argument partition allows

to choose G. In the function output, we first see

$areas.freq

area.id abs.freq rel.freq area.size

1 1 1160 0.16 56466.98
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2 2 351 0.05 26545.91

3 3 704 0.10 77000.24

4 4 72 0.01 24134.30
...

reporting descriptive information about each sub-area: the number of trees (abs.freq), the corre-

sponding relative frequency (rel.freq), which stands for pg, and the sub-area size area.size,

i.e. Tg. Then, the outputs

$batty

[1] 13.07

$rel.batty

[1] 0.99

provide Batty’s entropy and its relative version, respectively. These results approach the maximum

possible heterogeneity and are different from Shannon’s entropy values. This happens because

they take different perspectives: Batty’s entropy says that, with the given area partition, rainforest

trees are (almost) equally intensely distributed over the sub-areas.

For plotting the data according to the area partition (obtaining Figure 3), the following code is

used:

R> plot(unmark(raintrees), pch=16, cex=0.6, main="")

R> plot(batty.ent$areas.tess, add=TRUE, border=2)

If the interest lies in focusing on a specific tree species, e.g. Chamguava, Batty’s entropy can be

computed by including the argument category into the command and by removing the function

unmark

R>batty.ent=batty(raintrees, category="cha2sc", partition=10)

$batty

[1] 11.84

$rel.batty

[1] 0.90
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In this case, the entropy value is lower than the one referred to all species, meaning that this

particular species is not as evenly distributed as the overall dataset according to the area partition.

A more interesting approach is based on partitioning the area according to a covariate. Rain-

forest trees dataset is accompanied by the object raintreesCOV, i.e. a list of two environmental

covariates: soil elevation and slope. These variables may affect the degree of biodiversity of

species. Therefore, they can be used to define sub-areas based on their values. As an example, let’s

consider slope, which is a continuous variable, and 4 intervals according to its values. The cate-

gories of soil to derive these intervals are here obtained by using quantiles as breakpoints through

the following code:

R> slopecut=cut(raintreesCOV$grad, breaks = quantile(raintreesCOV$grad,

probs = (0:4)/4), labels = 1:4) # discretize the covariate

R> maskv=tiles=list(); for(ii in 1:nlevels(slopecut)) {

R> maskv[[ii]]=as.logical(c(slopecut$v)==levels(slopecut)[ii])

R> tiles[[ii]]=owin(xrange=data$window$xrange, yrange=data$window$yrange,

mask=matrix(maskv[[ii]], nrow(slopecut$v))) }

The map of the original covariate slope for the whole area is shown in Figure 4, left panel, and is

produced by:

R> par(mfrow=c(1,2))

R> plot(raintreesCOV$grad, main="", col=gray(seq(1,0,l=100)))

Figure 4, right panel, shows the area partition based on the above discretization of the covariate

slope together with species Chamguava. It is obtained by running the following code:

R> plot(slopecut, main = "")

R> plot(split.ppp(raintrees)$cha2sc, add=TRUE, pch=16, cex=0.6, main="")

Once the partition is built, the relative frequencies of trees are computed for each discretized level

of the variable slope, and Batty’s entropy is derived by using the same command batty() and

specifying the area partition. The following commands refer to species Chamguava:

R> slopetess=list(tiles=tiles, n=nlevels(slopecut))

R> batty(raintrees, category="cha2sc", partition=slopetess)
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Figure 4: Left panel: original covariate slope. Right panel: discretized version of the covariate

slope into 4 levels, together with species Chamguava.

$batty

[1] 12.83

$rel.batty

[1] 0.98

Interpretation is analogous to the former one, but something more can be said here. Firstly, the

two partition options for Batty’s entropy on the same species show how sensible the measure is

to the chosen area partition: any interpretation must be carried out accounting for the choice. In

addition, despite the evident tendency to spatial clustering, species Chamguava does not seem to

have any dependence on the covariate slope: its entropy computed over the slope partition is high,

close to the maximum, denoting that trees grow evenly across all covariate levels. A computation

of Batty’s entropy under a covariate-based partition can give hints on how biodiversity can be due

to environmental covariates.

4.2 Results for Batty’s LISA entropy

The LISA version of Batty’s entropy can be built in the package SpatEntropy by using the same

commands as before to obtain an area partition of interest. Moreover, this version needs a defini-
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tion for the neighbourhood, that can be done by choosing either the number of neighbours for each

sub-area, or a neighbourhood distance measured over the sub-areas’ centroids. In the former case,

consider as an example the case of 3 neighbours, a random partition in G = 10 sub-areas and the

species Chamguava. Then, running the following command, one obtains

R> KC.ent=karlstrom(raintrees, category="cha2sc", partition=10, neigh=3)

$karlstrom

[1] 1.88

$rel.karl

[1] 0.82.

The following part of the output with details on the area partition is

$areas.freq

area.id abs.freq rel.freq neigh.mean area.size

1 1 0 0.00 0.01 57581.30

2 2 0 0.00 0.01 54517.04

3 3 307 0.56 0.20 101940.22

4 4 3 0.01 0.02 33719.95
...

that, with respect to the function output of Batty’s entropy, has one new column with the average

frequencies over the neighbouring areas, which stand for p̃g in the computations. Compared to

Batty’s entropy, given the area partition the consideration of the neighbouring probabilities de-

creases the relative entropy level. Other neighbourhood options may be tried for further compari-

son.

4.3 Results for Leibovici’s entropy

Leibovici’s entropy refers to Z, i.e. the variable which defines co-occurrences of rainforest trees.

As anticipated in Section 3.3, O’Neill’s entropy, that was the first entropy measure based on such

variable, is unsuitable when point data are considered. The computation of Shannon’s entropy of

Z for unordered pairs of rainforest trees:
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R> shannonZ(raintrees)

produces the same output of shannon(), but in this case the probability table reports the 10 fre-

quencies of all unordered pairs of tree categories runs as:

$probabilities

pair abs.freq rel.freq

1 acaldiacaldi 3584503 0.14

2 cha2sccha2sc 147696 0.01

3 ingapeingape 48205 0.002
...

$shannZ

[1] 1.67

$rel.shannZ

[1] 0.72

Again, the entropy value is far from the maximum value, as can be seen from the relative version,

and hints at a data structure that cannot be captured without spatial information. On the contrary,

Leibovici’s entropy, which, by default, works with ordered couples and needs the specification of

a distance of interest d among the trees forming each pair, is much more appropriate. An example

with d = 10 meters follows. The command is

R> leibovici(raintrees, ccdist=10)

where the argument ccdist allows to specify the value of d in the same unit of measurement as

the observation area (metres in the case of raintrees). Results are in the output

$leib

[1] 1.12

$rel.leib

[1] 0.40

The value for Leibovici’s entropy for d = 10 is quite low and different both from Shannon’s entropy

and from Batty’s entropies: they measure different aspects of entropy. For Leibovici’s entropy, a

low value detects an important role of space for the heterogeneity of the tree species, when the po-
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tential spatial relationship is measured up to 10 metres. This measure is very interesting but offers

a picture limited to the chosen distance, so that computations should be repeated for a number of

different values for ds to get a general understanding of the data behaviour.

4.4 Results for Altieri’s set of entropy measures

The recent set of entropy measures proposed by Altieri et al. (2018a) defines an exhaustive frame-

work which overcomes the drawbacks of Leibovici’s entropy. This approach considers several

ranges which cover all the obsevation window in order to gain information on the spatial data het-

erogeneity at all distances. As a starting point, the distance classes are chosen. In this example, 4

ranges are considered for the variable W as w1 = [0,1[; w2 = [1,2[; w3 = [2,10[; w4 = [10,dmax],

where dmax = 1118.03 (in metres), in coherence with the observation area. Then, the spatial en-

tropy measures are obtained by running the following code

R> outp=altieri(raintrees, distbreak=c(1,2,10), verbose=TRUE)

where the argument distbreak fixes the internal breaks of the distance classes and verbose

controls whether information about the computation progress is printed in the output (TRUE) or

not (FALSE). This function is the most sophisticated of the package and, even if very efficient,

may take up to a few minutes for large datasets. Therefore, we recommend to use the command

verbose=TRUE in order to check the progress of the computation. At the end of the process, the

generated output is very detailed. First, it provides the quantities used to compute the set of entropy

measures: distance breaks, the distribution of the distance classes, the number of pairs (in total and

per class) and tables with the absolute and relative frequencies for all distance classes. Then, the

global values for Spatial Mutual Information MI(Z,W ), Spatial Residual Entropy H(Z)W , and their

sum, i.e. Shannon’s entropy H(Z) are returned. The ilustration of his part is omitted in the present

text, and we refer to the package manual for further details.

Finally, partial entropies are yielded, in both absolute and relative terms:

$SPI.terms

class [0, 1] class [1, 2] class [2, 10] class [10, 100] class [100, 1118.03]

0.70 0.64 0.56 0.09 0.001
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$rel.SPI.terms

class [0, 1] class [1, 2] class [2, 10] class [10, 100] class [100, 1118.03]

0.39 0.37 0.33 0.05 0.0007

$RES.terms

class [0, 1] class [1, 2] class [2, 10] class [10, 100] class [100, 1118.03]

1.10 1.07 1.12 1.77 1.65

$rel.RES.terms

class [0, 1] class [1, 2] class [2, 10] class [10, 100] class [100, 1118.03]

0.61 0.63 0.67 0.95 0.9993.

The SPI.terms are the spatial partial information terms PI(Z|wk) and show the contribution

of space to the data heterogeneity, i.e. to biodiversity, at each distance class; the RES.terms are

the partial residual entropies H(Z|wk) and measure the biodiversity of trees due to other sources of

heterogeneity, once space is controlled. These quantities represent the most interesting output to

interpret. In particular, focusing on each distance range and on relative versions (rel.SPI.terms

and rel.RES.terms), where the two components sum to 1 for each distance range, we can iden-

tify the role of space. For instance, for trees lying at most 1 metre apart, 39% of the heterogeneity

is due to the spatial correlation, i.e. to pairs of trees belonging to the same species; conversely,

the remaining percentage (61%) detects the part of entropy attributable to pairs of tree of differ-

ent species, i.e. the biodiversity level conditional on this distance. The residual terms H(Z|wk)s

increase when the distance ranges rise (because the role of space naturally decreases at higher dis-

tances); when they assume high and leading values also at lower distances, this implies that data

do not present a strong spatial structure and that we can expect high levels of biodiversity in small

sites too. Therefore, partial residual entropies represent the main goal as they measure biodiversity

once the effect of space is controlled. To conclude, the several tools proposed by Altieri et al.

assess a remarkable biodiversity across the rainforest trees of Barro Colorado Island by exploring

the phenomenon under a complete and very flexible framework.
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5 SpatEntropy in other environmental applications: Turin’s

urbanization study

Entropy measures are not only a standard tool in biodiversity studies, but also may be widely

employed in environmental applications such as landscape, land cover and land use data. As a

further example of usage of the SpatEntropy package, an environmental study for the binary grid

data about urbanization in Turin is considered. As introduced in Section 2, land cover data X are

managed and dichotomized into urbanized (x1 = 1) and non-urbanized (x2 = 0) zones, i.e. pixels

of size 250× 250 metres (see Figure 2). The aim is to measure the urban dispersion of the city

by highlighting the differences in the use of both spatial entropy indices and SpatEntropy with

respect to the previous application in biodiversity field. The main functions, already described in

Section 4 are only briefly cited in what follow. A command is added regarding the computation of

O’Neill’s entropy, since the concept of contiguity is well-defined for grid data, while it could not

be used in the previous data example.

R> shannon(turin)

R> shannonZ(turin)

R> batty(turin, cell.size=250, partition=turinTess)

R> karlstrom(turin, cell.size=250, partition=turinTess, neigh=2)

R> oneill(turin)

R> leibovici(turin, cell.size=250, ccdist=400)

R> altieri(turin, cell.size=250, distbreak=c(1,2,5)*cell.size)

The main results are collected in Table 1, where in the left-hand side the absolute entropy values are

reported, while the right-hand side shows the relative versions which are straightforward to com-

ment. Firstly, the two non-spatial Shannon entropies are computed: H(X) and H(Z). These both

take values close to their maximum (log(2) and log(3), respectively), identifying the metropolitan

area of Turin as a highly chaotic area.

The sub-areas for the computation of Batty’s entropy are the administrative borders of the

15 municipalities forming the metropolitan area (object turinTess, introduced in Section 2.3);
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Entropy Relative entropy

Shannon of X H(X) 0.688 0.993

Shannon of Z H(Z) 1.033 0.941

Batty HB(F) 16.295 0.821

Batty+LISA HLISA(F) 2 neigh 1.923 0.710

Batty+LISA HLISA(F) 4 neigh 2.140 0.790

Batty+LISA HLISA(F) 12 neigh 2.243 0.828

O’Neill HO(Z|C) 1.060 0.764

Leibovici HL(Z|d) d = 400 1.094 0.789

Leibovici HL(Z|d) d = 1000 1.224 0.883

Leibovici HL(Z|d) d = 10000 1.377 0.993

Altieri PI(H|wk) Option 1

w1=[0; 250] 0.321 0.247

w2=]250; 500] 0.223 0.177

w3=]500; 1250] 0.113 0.094

w4=]1250; dmax] <0.001 <0.001

Altieri PI(H|wk) Option 2

w1=[0; 400] 0.288 0.224

w2=]400; 1000] 0.142 0.116

w3=]1000; 10000] 0.019 0.018

w4=]10000; dmax] 0.015 0.015

Table 1: Results for all entropy measures on Turin data. Batty’s and Batty’s LISA entropies are

computed using the municipalities’ administrative borders as partition

Batty’s LISA entropy is obtained by further considering the 2, 4 or 12 nearest neighbours based on

the pixels’ centroids. The argument cell.size, to be ignored for point data, defines the dimen-

sion of the pixels in the area measurement unit (250× 250 metres). The relative versions of all

indices can be compared: Batty’s entropy is similar to Batty’s LISA entropy with the most exten-
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sive neighbourhood (12 neighbours), while smaller neighbourhood systems decrease the level of

entropy. These values are below their maximum compared to Shannon’s entropies, likely because

the main municipality of Turin is more intensely urbanized than the municipalities of its belt.

O’Neill’s and Leibovici’s entropies can be commented together, as the former is a special case

of the latter when d equals the cell width (in this case 250 metres). The option ccdist defines

the distance between pixel centroids considered for building pairs. Three versions of Leibovici’s

entropy are computed, for d = 400,1000,10000 metres. O’Neill’s entropy takes a relatively small

value, equal to 76% of its maximum, meaning that, when considering adjacent couples, the differ-

ent categories are not evenly distributed, so the spatial configuration is not random. By exploring

the output of oneill, which has a similar structure to the other functions’ outputs, and in particular

the table of relative frequencies, the majority of couples are shown to be homogeneous, of type (ur-

ban, urban) (48% of the total) or (non-urban, non-urban) (39% of the total), while heterogeneous

couples are a minority. Consequently, the index shows that the urban tissue tends to be compact,

with a different conclusion with respect to the traditional Shannon’s entropy. As d increases, the

entropy value approaches its maximum as couples of pixels lying farther apart are included and the

measure becomes more similar to Shannon’s entropy.

As regards Altieri’s set of entropy measures, the spatial partial information terms PI(H|wk)

here represent the quantities of interest, as they measure the urban dispersion or compactness for

Turin’s area: a high value for PI(H|wk), especially at short distance ranges, is a hint for a com-

pact urban expansion, which is a desirable feature as dispersed cities are proved to be inefficient

and may impede sustainable development (Altieri et al., 2019b). We explore two options of dis-

tance ranges with respect to spatial information terms, in order to show the sensitivity of results

based on such choice. The first one defines W as w1 = [0,250]; w2 =]250,500]; w3 =]500,1250];

w4 =]1250,dmax]. For the second option W is w1 = [0,400]; w2 =]400,1000]; w3 =]1000,10000];

w4 =]10000,dmax]. Over the small distance ranges, a relevant role of the spatial structure in deter-

mining the data heterogeneity can be appreciated, that decreases for larger distances. In particular,

focusing on the first distance class of the first option [0,250], i.e. pixels’ contiguity, and on the rela-

tive version of PI(H|wk), we quantify a 24.7% of entropy due to the spatial correlation. If we move
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to the first class of the second option [0,400] this percentage is 22.4%. The higher these values, the

closer we get to maximum urban compactness. When medium distance ranges are considered, e.g.

]1000,10000] or ]500,1250], the relative spatial partial information terms become small, denoting

the possibility of a future urban expansion in the metropolitan area. As a conclusion, this set of

entropy measures reveals as altogether very exhaustive in explaining the urban structure of Turin’s

metropolitan area, which is characterized by a substantive and non-negligible compactness of the

urban patches at distances up to 1/1.25 kilometres. Once more, the package SpatEntropy effi-

ciently supported the analysis in a rapid and suitable way. The potential and applicability of this

study on urbanization may be highlighted by works that compare entropy measures across urban

areas over a region or country, so that results can be commented both in absolute and relative terms

(Altieri and Cocchi, 2021b).

6 Concluding remarks

In this work, the R package SpatEntropy is first introduced as the unique and efficient statistical

tool to compute a large set of spatial entropy measures. After a review of the measures available

in the literature, SpatEntropy is applied to real data from biodiversity and environmental fields.

In particular, a first dataset on rainforest trees of Barro Colorado Island has been considered in

order to quantify the biodiversity of trees’ species over space. The spatial entropy indices are

then employed for measuring the urban sprawl of Turin’s metropolitan area. The potential of

the package we propose is shown on these examples in terms of computational efficiency and

simplicity of use. These features make SpatEntropy a suitable toolkit to be exploited also by

non-statisticians and new users.

The package SpatEntropy is able to easily deal with different kinds of variables and of spa-

tial data: the rainforest tree example refers to point data over an observation window with respect

to a multicategorical variable (the 4 species), while urbanization data on Turin are areal, i.e. it

considers a grid of pixels is considered, and a binary variable (urbanized/non-urbanized) charac-

terizes each pixel. The ability of the package in managing space comes from the integration and
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exploitation of the widely known R package spatstat, which also offers the possibility of experi-

menting SpatEntropy on additional available dataset. Point data are more precise than areal ones

and this implies different ways of defining the neighbourhood: we show how to fix distances for

grids, which are automatically built by SpatEntropy using pixel centroids. Multicategorical and

dichotomic variables can be equally analyzed for both point and areal data.

The different spatial entropy measures can be easily built by the SpatEntropy package and

then carefully compared as shown in the two applications’ Sections. We focus on the flexible and

complete perspective offered by Altieri’s set of spatial entropy measures. Despite the approach of

SpatEntropy implies a larger, but still feasible, computational effort, results are very exhaustive

and informative of the phenomenon, at both global and local levels. In particular, we showed how

for the rainforest tree data the leading quantities are the partial residual terms, which increase when

biodiversity of species rises at appropriate distance ranges, i.e. by considering space. In particular,

we observed a percentage equal to 61% of residual entropy at the smallest distance range (up to 1

metre), denoting a remarkable biodiversity level even when considering small portions of the whole

observation area. Conversely, for land cover data on Turin’s urbanization, the most informative

quantities are the spatial partial terms measuring the degree of compactness of the metropolitan

area, which is a desirable feature for an efficient and sustainable development: the city of Turin

is shown to have a compact urban structure. The choice of the distance ranges depends on the

research aim; different options might be easily and quickly tested thanks to the package flexibility.

Results can be enriched by a comparison to the findings on similar datasets (e.g., other tree species

or different cities), exploiting the corresponding versions of all indices provided by the package.

Other fields of applications cover any spatial dataset where syntethic measures of heterogeneity

may be of interest. They span over natural phenomena such as earthquakes (Altieri et al., 2016)

and wildfires (Leuenberger et al., 2018; Gelfand and Monteiro, 2014), polluting agents (Cameletti

et al., 2014), meteorological events (De Caceres et al., 2018) and epidemiological data (Blangiardo

et al., 2016; Greco and Trivisano, 2009). Several dataset on these contexts of application are also

available in the SpatEntropy package as additional toy examples.
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