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On the Minkowski formula for hypersurfaces in complex

space forms

Vittorio Martino(1) & Giulio Tralli(2)

Abstract In this paper we discuss various Minkowski-type formulas for real hypersurfaces

in complex space forms. In particular, we investigate the formulas suggested by the natural

splitting of the tangent space. In this direction, our main result concerns a new kind of

second Minkowski formula.

Keywords: integral formulas, horizontal distribution, Levi curvature.

2010 MSC. Primary: 32V40. Secondary: 53C55.

1 Introduction

In this paper we establish some Minkowski formulas for general real closed hyper-
surfaces M embedded in complex space forms.
Minkowski type formulas are widely studied in literature and they have a very large
number of applications (see for instance [11, 12, 13, 18, 20, 25, 28, 29, 31, 32, 35, 39]).
Typically one considers a real space form equipped with a conformal vector field as
ambient space. If (Kc, g) is a (n+ 1)-dimensional Riemannian manifold of constant
sectional curvature c, one can in fact take the standard position vector P = sc(r)∇r
as conformal vector field, namely ∇XP = cc(r)X for X ∈ TKc; here r denotes the
geodesic distance from a given base-point in Kc and the functions sc(r) and cc(r)
are defined as follows:

sc(r) =



1√
c

sin(
√
c r), c > 0

r, c = 0

1√
−c

sinh(
√
−c r), c < 0

, cc(r) =


cos(
√
c r), c > 0

1, c = 0

cosh(
√
−c r), c < 0

.

1Dipartimento di Matematica, Università di Bologna, piazza di Porta S.Donato 5, 40126 Bologna,
Italy. E-mail address: vittorio.martino3@unibo.it
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Therefore, if M is a closed hypersurface embedded in Kc with ν as unit (outward)
normal, the classical Hsiung-Minkowski [11, 12, 34] formulas read as:∫

M
cc(r)σ

M
k−1 − g(P, ν)σMk = 0, k = 1, . . . , n, (1)

where σM0 = 1 and we let, for k ≥ 1, σMk denote the normalized k-th curvature of
M (we will be more precise about such definitions later on).
The situation changes drastically when we consider a complex space form as ambient
space. Moreover, the complex structure induces a splitting of the tangent space of
the hypersurface, and this leads to consider separately the Levi horizontal curvatures
and the vertical one.
A first (k = 1) horizontal Minkowski formula, i.e. involving the Levi mean curvature,
has been proved by Miquel [25] for compact Hopf hypersurfaces, which are very
special submanifolds. If M is not Hopf, such a formula is not exact, in the sense
that there is a reminder term which is non vanishing in general: as we will show, this
term depends strongly on some mixed coefficients of the second fundamental form.
Being Hopf is only a sufficient condition for the formula to hold. We will prove,
to this aim, that any closed hypersurface in R4 can be isometrically embedded in
C2 so that the horizontal formula holds; moreover we will show in the Appendix
an explicit class of non Hopf hypersurfaces satisfying the first horizontal Minkowski
formula.
However, our main result concerns the second (k = 2) Minkowski formula. Firstly,
we will write it in full generality and then in a horizontal version, analogous to the
Miquel’s one for Hopf hypersurfaces: even in this case we will show in the Appendix
some explicit examples of non Hopf hypersurfaces satisfying such second horizontal
formula. Finally, we will prove another kind of second Minkowski formula, which is
our main theorem indeed, and we will show that, conversely to what happens in the
previous situations, it is independent of the mixed terms of the second fundamental
form and therefore it is valid for any closed hypersurface embedded in a complex
space form. To the best of our knowledge, this formula is new even in the simpler
case, namely when considering Cn+1 as ambient space.
More recently, further developments of the present study have been carried out in
[9], where it is addressed the case k = 2n.

1.1 Definitions and statement of the results

Since it requires no extra work, in order to introduce the notations let us briefly
recall some basic facts about hypersurfaces in general Kähler manifold. Then we
will give the precise statements of the results for the particular case of a complex
space form.
Let us denote by K a Kähler manifold of real dimension 2n+2. We denote by J the
complex structure and g the Riemannian metric that are compatible in the following
sense:

ω(X,Y ) = g(X, JY )
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for every pair of vector fields X,Y ∈ TK, where ω is the fundamental symplectic
2-form of K. We also denote by ∇ the Levi-Civita connection of K and we recall
that both ∇ and g are compatible with the complex structure J , i.e.

J∇ = ∇J, g(·, ·) = g(J ·, J ·). (2)

We will consider a smooth real orientable and connected embedded manifold M of
codimension 1 on K with induced metric g. We will suppose that M is closed, i.e.
compact without boundary. We denote by ν the (outward) unit normal to M and
by X0 the characteristic vector field of M , which is defined by JX0 = ν.
The horizontal distribution or Levi distribution HM is the 2n-dimensional subspace
in TM which is invariant under the action of J :

HM = TM ∩ J TM,

that is a vector field X ∈ TM belongs to HM if and only if also JX ∈ HM . Then
TM splits in the orthogonal direct sum:

TM = HM ⊕ RX0.

In addition, we denote by ϕ the endomorphism

JX = ϕX + g(X,X0)ν for X ∈ TM.

Now, let A be the Weingarten or shape operator, namely

A : TM → TM, AX := ∇Xν.

The Second Fundamental Form of M is defined by

h(·, ·) := g(A·, ·).

We recall that the induced connection ∇M satisfies:

∇UV = ∇MU V − h(U, V )ν (3)

for any U, V ∈ TM . We will also need the horizontal part of the second fundamental
form, namely:

hH(U, V ) = h(U, V ), ∀ U, V ∈ HM.

The Levi form ` can be defined on HM in the following way: for every X,Y ∈ HM ,
if Z = 1√

2
(X − iJX) and W = 1√

2
(Y − iJY ), then `(Z,W ) := 〈∇Zν,W 〉. We can

compare the Levi form with the Second Fundamental Form by using the following
identity (see [3, Chap.10, Theorem 2]):

∀X ∈ HM, `(Z,Z) =
h(X,X) + h(JX, JX)

2
. (4)

We are going to use also some standard complex notation, namely:

T1,0M := T 1,0K ∩ TCM and T0,1M := T1,0M,
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where T 1,0K is the holomorphic tangent space of K (i.e. the complex n-dimensional
subspace generated by the eigenvalue +i of J) and TCM is the complexified tangent
space of M . Moreover we set

HCM = T1,0M ⊕ T0,1M and we have TCM = HCM ⊕ CX0.

We will still denote by the same symbols the metric, the complex structure, etc.,
that we will extend by C-linearity, as no ambiguity will occur. Therefore, in complex
notations, the Levi form is then the hermitian operator

`(Z,W ) := 〈∇Zν,W 〉,

for any couple of vector fields Z,W ∈ T1,0M . M is said strictly Levi-convex if ` is
strictly positive definite as quadratic form. We can also extend the Levi form to the
whole HCM by setting

`(Z,W ) := g(∇Zν,W ) for Z,W ∈ HCM

and we will refer to the symmetric part of the Levi form if both Z and W belong to
T1,0M (or both to T0,1M).

Now, for any N × N symmetric (or Hermitian) matrix A and for any k =
1, . . . , N , we denote by σk(A) the normalized k-th elementary symmetric function
of the eigenvalues of A, that is:

σk(A) = σk(λ1, . . . , λN ) :=
1(
N
k

) ∑
1≤i1<...<ik≤N

λi1λi2 · · ·λik

where λ1, . . . , λN are the eigenvalues of A; we also put σ0(A) = 1. Thus we can
denote:

σMk := σk(h), k = 0, 1, . . . , 2n+ 1;

σHk := σk(h
H), k = 0, 1, . . . , 2n;

σ`k := σk(`), k = 0, 1, . . . , n.

We will simply denote by

H = σM1 =
trace(h)

2n+ 1
, L = σ`1 =

trace(`)

n

respectively the classical mean curvature and Levi mean curvature of M . The Levi
curvature is a sort of degenerate-elliptic analogue of the classical curvature: it was
introduced and studied in [1, 6]. The restriction of the second fundamental form
to the holomorphic tangent space involves a lack of information and hence a lack
of ellipticity in the relative operator. Under a suitable non-flatness condition, the
Levi operator can be seen as a degenerate-elliptic operator of sub-Riemannian type:
for further properties and results we address the reader to [5, 22, 23, 26], and the
references therein.
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Denoting by α := h(X0, X0) the vertical or characteristic curvature of M , we get
from (4)

L = σH1 =
trace(hH)

2n
and then

(2n+ 1)H = 2nL+ α. (5)

Now let us turn our attention to complex space forms. It is known that the models
for such manifolds are the standard complex space Cn+1 endowed with the stan-
dard hermitian metric, the complex projective space CPn+1 with the Fubini-Study
metric, and the complex hyperbolic space CHn+1 with the Bergman metric (see
for instance [16]). These three prototypes differ in the sign of the (constant) holo-
morphic sectional curvature (respectively zero, positive, and negative). The reason
why we consider the ambient space with constant holomorphic sectional curvature
relies on the fact that we are going to use the geodesic distance and the formula
for this last one is explicit in these settings. Moreover, also the Codazzi equations
become considerably simpler in this situation. Thus, from now on, we assume Kc is
a complex space form of real dimension 2n+ 2 namely a Kähler manifold with con-
stant holomorphic sectional curvature 4c, endowed with its aforementioned standard
metric (see also [30]).
Let us fix a point in Kc, that we assume as origin, and let as denote by r(p) = r
the geodesic distance of any given point p ∈ Kc from the origin. Next, we need to
distinguish the sign of the curvature c. We can handle the three different cases all
at once with the help of a potential function as follows: we define

ψ(r) =



−1

c
log
(
cos(
√
c r)
)
, c > 0

r2

2
, c = 0

−1

c
log
(
cosh(

√
−c r)

)
, c < 0.

Remark 1.1. Let us just observe that in the case of CPn+1, i.e. when c is positive,
one needs to require the domain of ψ to be contained in the geodesic ball of center
the origin and radius smaller that π/

√
4c in order to avoid conjugate points and

to ensure that the function ψ be smooth. Without further comments, in the case
c > 0 we will always tacitly assume the hypersurface M to be contained in the same
geodesic ball.

So, we can define the position vector field P ∈ TKc in the following way:

P = ∇ψ = ψ′∇r, (6)

where ∇r denotes the gradient of r.
In what follows, we will always consider an orthonormal frame for TM of the form
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E := {X0, Xk, Xn+k, k = 1, . . . , n}, where Xk ∈ HM is a unit vector field and
Xn+k = JXk. Hence, we can write the position vector P at a point p ∈M as

P =
2n∑
k=0

akXk + λν

for some smooth functions ak, with k = 0, 1, . . . , 2n. Here we have also denoted by
λ the support function

λ(p) = g(P, ν), p ∈M.

We will need also

P T = P − λν, PH = P − a0X0 − λν,

being respectively the tangential and the horizontal part of the position vector P .
With all these notations, we are in position to write the first Minkowski formula for
general hypersurfaces:

Proposition 1.1. Let M be a closed (2n+ 1)-dimensional real hypersurface in Kc.
Then it holds: ∫

M
1−Hλ =

c

2n+ 1

∫
M

(λ2 − a20).

The difference with respect to the real case in (1) is apparent. First of all, we
notice the different behaviour of the formula with respect to the curvature c, and
the dependence on the function a0 (other than just λ). We also stress that it does
not depend on the horizontal part of P .
As we mentioned, Miquel proved in [25] a horizontal version of this formula for Hopf
hypersurfaces. We recall here the definition.

Definition 1.1. A real hypersurface M in a Kähler manifold K is said to be a Hopf
hypersurface if the characteristic vector field X0 is an eigenvector for the shape
operator A.

We address the reader to the papers [2, 4, 10, 14, 17, 19, 24, 27, 30, 36, 37, 38]
concerning Hopf hypersurfaces and their classification. However, with our notations
this is exactly equivalent to say h(X0, Xj) = 0 for all j = 1, . . . , 2n. Moreover,
the vanishing of the coefficients h(X0, Xj) makes the splitting TM = HM ⊕ RX0

orthogonal with respect to h.
If one tries to write such horizontal formula for general hypersurfaces (not just the
Hopf ones), it is possible to recognize a suitable combination of the terms h(X0, Xj)
as remainder term (see Proposition 2.1 below). In particular, we can recover the
Miquel’s formula, namely

if M is a closed embedded real Hopf hypersurface in a complex space form Kc,
then it holds∫
M

1− Lλ = 0.
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Let us now turn the attention to the second Minkowski formula. It will also depend
on the horizontal part of P . In order to write the formula, we need to define the
following terms:

Θ =
1

2n+ 1

(
h(P T , P T )− h((JP )T , (JP )T )

)
,

ΘH =
1

2n

(
h(PH , PH)− h(JPH , JPH)

)
.

Remark 1.2. Let us explicitly notice that the term ΘH identically vanishes if one
assume that T1,0M is H-parallel, i.e. ∇ZW is tangent to M for any Z,W ∈ T1,0M .
Equivalently, this means that the symmetric part of the Levi form vanishes. Condi-
tions of this kind could be found for instance in [8, 15, 21, 30]. As an example, the
ellipsoids in C2 of the type M = {f = 0} where

f(z1, z2) = A|z1|2 +B|z2|2 − 1,

with A,B > 0, satisfy the previous condition; in particular they are not Hopf, unless
A = B.

The second Minkowski formula reads in full generality as:

Proposition 1.2. Let M be a closed (2n+ 1)-dimensional real hypersurface in Kc.
Then it holds: ∫

M
H − σM2 λ =

c

2n

∫
M

(
H
(
λ2 − a20

)
+ Θ

)
.

Even in this case, it is possible to write down horizontal versions of it (see Proposition
3.1 below). In particular, if one assume as in Miquel’s formula M to be Hopf,
the vanishing of the coefficients h(X0, Xj) makes the following formula (see also
Corollary 3.1) hold true:

if M is a closed embedded real Hopf hypersurface in a complex space form Kc,
then∫

M
L− σH2 λ =

c

2n− 1

∫
M

ΘH .

However, we will show as our main result that it is also possible to take a calibrated
convex combination of (L,α) and (σHk , σ

`
k) so that a new kind of Minkowski type

formula holds. We denote

H :=
nL+ α

n+ 1

S2 :=
2(2n− 1)

n+ 1
σH2 −

3(n− 1)

n+ 1
σ`2

We explicitly note that these terms are normalized, in the sense that, if the second
fundamental form h were the identity, then we would have exactly H = S2 = 1. We
also recall that there are no umbilical hypersurfaces in complex space forms with
curvature c 6= 0.
Therefore, we have the following formula valid for general hypersurfaces and, at the
same time, not depending on the mixed coefficients h(X0, Xj).
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Theorem 1.1. Let M be a closed (2n + 1)-dimensional real hypersurface in Kc.
Then it holds: ∫

M
H− S2λ =

c

2n+ 2

∫
M
L(λ2 − a20) + ΘH − 3λ.

Remark 1.3. We want to stress that, even in the flat case (c = 0), the Minkowski-
type formula in Theorem 1.1 differs in a significant way from the classical one in
Proposition 1.2.

Moreover, the formula considerably simplifies in C2, where S2 = σH2 is nothing but
the determinant of the horizontal part of the second fundamental form.

Corollary 1.1. Let M be a closed three-dimensional hypersurface in C2. Then:∫
M
L+ α− 2σH2 λ = 0.

2 First Minkowski formulas

We denote by

Γljk =
〈
∇XjXk, Xl

〉
, and hjk = h(Xj , Xk), j, k, l = 0, 1, . . . , 2n

respectively the coefficients of the Levi-Civita connection and the coefficients of the
Second Fundamental Form with respect to the frame E. We recall that

Γkij = −Γjik, for any i, j, k = 0, 1, . . . , 2n, (7)

and also, by the compatibility (2) with the complex structure J ,

Γ0
0k = 〈∇X0Xk, X0〉 = 〈∇X0Xn+k, ν〉 = −h0n+k (8)

Γ0
0n+k = 〈∇X0Xn+k, X0〉 = −〈∇X0Xk, ν〉 = h0k, for any k = 1, . . . , n.

By the very definition of geodesic distance we have

g(∇r,∇r) = 1 and ∇∇r∇r = 0.

Moreover, by a straightforward computation we get:

∇J∇r∇r =
1− c(ψ′)2

ψ′
J∇r,

and, for any vector field V ∈ TKc such that g(V,∇r) = g(V, J∇r) = 0,

∇V∇r =
1

ψ′
V.

Finally, by putting together the last three identities with (6), we have

∇V P = V + cg(V, P )P − cg(V, JP )JP, (9)
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for any vector field V ∈ TKc.
Let us now recall the Codazzi equations for a real hypersurface M in Kc (see [16, 30]):
for all U, V,W ∈ TM we have

(∇Uh)(V,W )− (∇V h)(U,W ) = (10)

= c
(
g(V,X0)g(ϕ(U),W )− g(U,X0)g(ϕ(V ),W )− 2g(U,ϕ(V ))g(X0,W )

)
where we have denoted the Bortolotti derivative by

(∇Uh)(V,W ) = U(h(V,W ))− h(∇UV,W )− h(V,∇UW ).

The aim of this section is to obtain the first Minkowski formula for a general real
hypersurface M in a complex space form Kc, and its horizontal versions. The idea
to obtain these formulas is the same as in the euclidean setting: we need to take
the laplacian of the potential function ψ, where the Laplace-Beltrami ∆ acting on
a function u is the second order operator in divergence form defined by

∆u =

2n∑
j=0

(
XjXju− (∇MXjXj)u

)
.

The derivatives of ψ along the vector fields of the basis E are given by

Xk(ψ) = g(Xk,∇ψ) = ak, k = 0, 1, . . . , 2n.

Here and in the next section, we will also need the derivatives of the functions λ and
ak.

Lemma 2.1. In our notations we have

X0(λ) = 2ca0λ+

2n∑
j=0

h0jaj ,

Xk(λ) = c(akλ+ an+ka0) +
2n∑
j=0

hkjaj ,

Xn+k(λ) = c(an+kλ− aka0) +

2n∑
j=0

hn+kjaj ,

X0(a0) = 1 + c(a20 − λ2)− αλ+

n∑
j=1

h0n+jaj − h0jan+j ,

Xk(a0) = c(aka0 − an+kλ)− h0kλ+
n∑
j=1

hkn+jaj − hkjan+j ,

Xn+k(a0) = c(an+ka0 + akλ)− h0n+kλ+

n∑
j=1

hn+kn+jaj − hn+kjan+j ,
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X0(al) = c(ala0 − an+lλ)− h0lλ− h0n+la0 +

2n∑
j=1

Γj0laj ,

Xk(al) = δkl + c(akal − an+kan+l)− hklλ− hkn+la0 +
2n∑
j=1

Γjklaj ,

Xn+k(al) = c(an+kal + akan+l)− hn+klλ− hn+kn+la0 +

2n∑
j=1

Γjn+klaj ,

X0(an+l) = c(an+la0 + alλ)− h0n+lλ+ h0la0 +
2n∑
j=1

Γj0n+laj ,

Xk(an+l) = c(an+kal + akan+l)− hkn+lλ+ hkla0 +

2n∑
j=1

Γjkn+laj ,

Xn+k(an+l) = δn+kn+l − c(akal − an+kan+l)− hn+kn+lλ+ hn+kla0 +
2n∑
j=1

Γjn+kn+laj ,

for any k, l = 1, . . . , n.

Proof. It follows by direct computation, by using (9), (2), and the symmetries of
the coefficients of the Levi-Civita connection in (7),(8).

It is now easy to deduce the first Minkowski formula.

Proposition 1.1. Let M be a closed (2n+ 1)-dimensional real hypersurface in Kc.
Then it holds: ∫

M
1−Hλ =

c

2n+ 1

∫
M

(λ2 − a20). (11)

Proof. From (3) and Lemma 2.1, we can compute the laplacian of the potential
function ψ and we get

∆ψ =
2n∑
j=0

(
XjXjψ − (∇MXjXj)ψ

)
= 2n+ 1 + c(a20 − λ2)− (2n+ 1)Hλ. (12)

The desired formula is then provided by the divergence theorem, since M is closed
and ∆ is in divergence form.

Let us now deal with the horizontal Minkowski formula. In order to do that, we
need to have a second order subelliptic operator in analogy to the Laplace-Beltrami
operator.

Definition 2.1. We define the horizontal Laplacian or sublaplacian ∆H on M the
operator acting on a function u in the following way:

∆Hu = ∆u−X2
0 u.
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Let us explicitly notice that ∆H is in divergence form. An easy way to see it is by
observing that characteristic vector field X0 is always divergence free, in fact:

divX0 =
2n∑
j=0

g(∇MXjX0, Xj) =
n∑
j=1

g(∇MXjX0, Xj) + g(∇MXn+jX0, Xn+j)

=
n∑
j=1

g(∇Xjν,Xn+j)− g(∇Xn+jν,Xj) = 0, (13)

therefore the operator ∆H is in divergence form too.
Let us also remark that in literature other definitions of sublaplacians could be found.
For instance, one can consider the trace of the horizontal Hessian of a function u:

HessH(u)(X,Y ) = XY u− (∇MX Y )u, ∀ X,Y ∈ HM.

It is worth to notice that the two definitions do not coincide as in the Riemannian
setting; the trace of the horizontal Hessian is indeed not in divergence form in
general.
For the sake of convenience, let us denote by

Q =
n∑
j=1

h0n+jaj − h0jan+j (14)

so that we can write

X2
0ψ = X0(a0) = 1 + c(a20 − λ2)− αλ+Q

and we can deduce the following horizontal first Minkowski formula:

Proposition 2.1. Let M be a closed (2n+ 1)-dimensional real hypersurface in Kc.
Then it holds:

2n

∫
M

1− Lλ =

∫
M
Q (15)

Proof. It follows from the previous computation for X2
0ψ, from (12), and (5).

We now introduce an horizontal vector field that will have a crucial role in the next
section, namely V = ∇MX0

X0. A simple computation shows that V ψ = Q, in fact we
can write V as follows:

V =

2n∑
j=0

g(∇MX0
X0, Xj)Xj =

n∑
j=1

g(∇MX0
X0, Xj)Xj + g(∇MX0

X0, Xn+j)Xn+j =

=
n∑
j=1

g(∇X0ν,Xn+j)Xj − g(∇X0ν,Xj)Xn+j =
n∑
j=1

h0n+jXj − h0jXn+j , (16)
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and the claim follows. Therefore, by mean of the divergence theorem, we can also
express the remainder term in (15) by using the divergence of V :∫

M
Q = −

∫
M
ψdivV.

We see that the term Q appearing in the formula depends linearly on the mixed
term of the second fundamental form of the type h0j , with j = 1, . . . , 2n. Thus,
if we require M to be Hopf, then Q is identically 0 and we recover from (15) the
formula obtained by Miquel in [25], i.e.∫

M
1− Lλ = 0. (17)

However, being Hopf is only a sufficient condition for (17) to hold. Here we will
show some explicit examples of hypersurface that are not Hopf, but for which (17)
still holds true.
We recall that in Cn+1 being Hopf is extremely restrictive: the spheres are in fact
the only compact Hopf hypersurfaces (see, e.g., [7]).

Example 2.1. Let us consider in C2 ' R4 the ellipsoids M = {f = 0} of the form

f(z1, z2) = A

(
x21 + (

1√
3
y1 +

√
2√
3
x2)

2

)
+B

(
(−
√

2√
3
y1 +

1√
3
x2)

2 + y22

)
− 1,

with A,B > 0, A 6= B. Denote s1 = x21 + η21 = x21 + (cy1 + sx2)
2 and s2 = η22 + y22 =

(−sy1 + cx2)
2 + y22. We have

λ = 〈(x1, y1, x2, y2), ν〉 =
As1 +Bs2

(A2s1 +B2s2)
1
2

,

H =
1

3

A3s1 +B3s2 + 2A2Bs1 + 2AB2s2

(A2s1 +B2s2)
3
2

,

L = H +

√
2

3

AB(A−B)

(A2s1 +B2s2)
3
2

(x1y2 + η1η2).

Since the term (x1y2 + η1η2) is odd with respect to the symmetry (x1, η1, η2, y2) 7→
(−x1,−η1, η2, y2), we get ∫

M
Lλ =

∫
M
Hλ =

∫
M

1

which is (17).

This is just a particular case of a more general behavior described by the following:
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Theorem 2.1. For any smooth compact hypersurface M in R4 ' C2, there exists
an isometric embedding (actually, a rotation not preserving the complex structure)
for which we have ∫

M
1− Lλ = 0.

Proof. Given a smooth compact hypersurface M ⊂ C2, suppose that
∫
M 1− Lλ 6= 0.

Let us fix the orthonormal frame for TM of the usual form E = {X0, X1, X2}, where
X0 denotes the characteristic vector field, and X1, X2 are the vector fields in (26).
In this way we can make explicit and simpler computations. We can assume that
|
∫
M 1− h11λ| ≥ |

∫
M 1− h22λ|. Thus we have

sgn

(∫
M

1− Lλ
)

= sgn

(∫
M

1− h11λ
)
. (18)

We have to perform rigid transformations in R4 which are going to change the
complex structure. We want to apply the rotations given by

Rθ =


1 0 0 0
0 cos(θ) sin(θ) 0
0 − sin(θ) cos(θ) 0
0 0 0 1

 ,

for θ ∈ R. The fact that it does not preserve the complex structure can be seen
from the non-commutation of Rθ and the standard complex structure J of C2 (if
sin (θ) 6= 0). Let us consider

I(θ) =

∫
Mθ

2− 2Lθλθ,

where M θ and Lθ denote the manifold and its Levi curvature under the change. We
want to rewrite I(θ) as an integral on the initial manifold M . This is a straightfor-
ward computation: see (27) in the Appendix for the details. We obtain

I(θ) = cos2(θ)

∫
M

1− h11λ+

∫
M

1− h22λ+

+ sin2(θ)

∫
M

1− αλ− 2 cos(θ) sin(θ)

∫
M
h01λ.

By using the classical Minkowski formula (c = 0 and n = 1 in (11)), we get

I(θ) = (cos2(θ)− sin2 (θ))

∫
M

1− h11λ+

+ cos2(θ)

∫
M

1− h22λ− 2 cos(θ) sin(θ)

∫
M
h01λ.

Hence, by (18), I(θ) assumes opposite signs at θ = 0 and θ = π
2 . There exists then

a θ = θ0 for which I(θ0) = 0. In the case |
∫
M 1− h11λ| < |

∫
M 1− h22λ|, we can

apply instead of Rθ (which basically mixes X0 and X1) the rotations involving X0

and X2. This proves the statement.
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In general the rotation we need in order to have the horizontal Minkowski formula
(17) depends on the initial manifold M . We will see in the Appendix that it is
independent of the manifold in the case special symmetries, i.e. if M is the boundary
of a Reinhardt domain in C2.

3 Second Minkowski formulas

In this section we will write several second Minkowski formulas for M , both in
classical and horizontal form. We will show at the end a special horizontal version,
which is independent of the mixed terms of the type h0j , with j = 1, . . . , 2n. Since
the formulas of horizontal type involve σH2 , the following algebraic relations are going
to be useful

2n(2n− 1)σH2 = 4n2L2 −
2n∑
j,l=1

h2jl

n(2n+ 1)σM2 = n(2n− 1)σH2 + 2nLα− |V |2, (19)

where we have denoted by

|V |2 = g(V, V ) =
2n∑
j=1

h20j

because of the expression of V = ∇MX0
X0 in (16).

The idea for obtaining the desired formulas is again the same as in the classical
case. We will in fact take the divergence of a suitable vector field and then we will
integrate over M (see for instance [33]). The vector field is the following:

W =
2n∑
j=0

(
2n∑
l=0

hljal − hllaj

)
Xj .

For future computations, it is convenient to split W into the sum of three vector
fields. Let

W1 = a0

2n∑
j=1

h0jXj − 2nLa0X0,

W2 =

 2n∑
j=1

h0jaj

X0 − α
2n∑
j=1

ajXj ,

W3 =
2n∑
j=1

(
2n∑
l=1

hljal − hllaj

)
Xj ,

so that W = W1 +W2 +W3. We want to compute the divergences separately.
First, recalling the definition of Q in (14), we denote

QJ =
2n∑
j=1

h0jaj .

14



By using (2), (7), (8), (13), and the relations in Lemma 2.1, we get

div(W2) = X0

 2n∑
j=1

h0jaj

− 2n∑
j=1

Xj(αaj)− α
2n∑
j=1

ajdiv(Xj)

=
2n∑
l=1

al

(
X0(h0l)−Xl(α)

)
+ αQ+ 2nLαλ− 2nα− |V |2λ

+ c (QJa0 +Qλ) +
n∑
k=1

2n∑
j=1

h0kΓ
j
0kaj + h0n+kΓ

j
0n+kaj .

The Codazzi equations (10) allow us to compute the terms X0(h0l)−Xl(α) and to
deduce that

2n∑
l=1

al

(
X0(h0l)−Xl(α)

)
= 3

2n∑
l=1

(
n∑
k=1

hlkh0n+k − hn+klh0k

)
al +

− αQ+

n∑
k=1

2n∑
l=1

h0kΓ
k
0lal + h0n+kΓ

n+k
0l al.

By putting together the last two expressions and denoting

Q1 =
2n∑
l=1

(
n∑
k=1

hn+klh0k − hlkh0n+k

)
al,

we have

div(W2) = −3Q1 + 2nLαλ− 2nα− |V |2λ+ c (QJa0 +Qλ) . (20)

Let us now deal with W1. Again by (2), (7), (8), (13), and Lemma 2.1, we get

div(W1) =

2n∑
j=1

(
Xj(a0h0j)− a0X0(hjj) + a0h0jdiv(Xj)

)
− 2nLX0(a0) =

= a0

2n∑
j=1

(
Xj(h0j)−X0(hjj)

)
+ a0

2n∑
j,l=1

h0jΓ
l
lj +

+ 2nLαλ− 2nL− 2nLQ− |V |2λ+ c
(
2nL(λ2 − a20) + a0QJ + λQ

)
+

+
n∑

i,k=1

ai(h0khkn+i + h0n+khn+kn+i)− an+i(h0khki + h0n+khin+k).

We can compute the terms Xj(h0j)−X0(hjj) with the Codazzi equations (10), and
we can then deduce that

2n∑
j=1

(
Xj(h0j)−X0(hjj)

)
= −

2n∑
j,l=1

h0jΓ
l
lj .

15



By putting everything together and denoting

Q2 =

n∑
i,k=1

ai(h0khkn+i + h0n+khn+kn+i)− an+i(h0khki + h0n+khin+k),

we get

div(W1) = −2nL+
(

2nLα− |V |2
)
λ+Q2 − 2nLQ+

+ c
(

2nL(λ2 − a20) + a0QJ + λQ
)
. (21)

Finally, it is the turn of W3. Always by using (2), (7), (8), and Lemma 2.1, we get

div(W3) =
2n∑
j,l=1

(
Xj(hljal − hllaj) + (hljal − hllaj)div(Xj)

)
=

=
2n∑
j,l=1

al

(
Xj(hlj)−Xl(hjj)

)
+ 2n(1− 2n)L+ 2n(2n− 1)σH2 λ+

+ 2nLQ+Q1 + 2ncΘH +

2n∑
j,l,m=1

hljΓ
m
mjal + hmlΓ

j
mlaj .

From Codazzi equations (10) we have also

2n∑
j,l=1

al

(
Xj(hlj)−Xl(hjj)

)
= 2Q1 −Q2 −

2n∑
j,l,m=1

hljΓ
m
mjal + hmlΓ

j
mlaj .

Summing up

div(W3) = 2n(1− 2n)L+ 2n(2n− 1)σH2 λ+ 2nLQ+ 3Q1 −Q2 + 2ncΘH . (22)

We are then ready to obtain the second Minkowski formula.

Proposition 1.2. Let M be a closed (2n+ 1)-dimensional real hypersurface in Kc.
Then it holds: ∫

M
H − σM2 λ =

c

2n

∫
M

(
H
(
λ2 − a20

)
+ Θ

)
.

Proof. If we sum (20), (21), and (22), we can compute div(W ). We have also to
keep in mind (5), (19), and the following easy relation

(2n+ 1)Θ = 2nΘH + 2a0QJ + 2λQ+ α(a20 − λ2)

which comes just from the definition of Θ and ΘH . Hence we get

div(W ) = −2n(2n+ 1)H + 2n(2n+ 1)σ2λ+ c
(

(2n+ 1)H
(
λ2 − a20

)
+ (2n+ 1)Θ

)
.

Since M is closed, the divergence theorem gives the desired formula.
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The computation we did for div(W3) suggests also an analogous of Proposition 2.1,
i.e. the following horizontal second Minkowski formula.

Proposition 3.1. Let M be a closed (2n+ 1)-dimensional real hypersurface in Kc.
Then it holds:

2n(2n− 1)

∫
M
L− σH2 λ− c

∫
M

2nΘH =

∫
M

2nLQ+ 3Q1 −Q2. (23)

Proof. It follows from integrating the relation in (22).

All the terms Q,Q1, Q2 appearing in the r.h.s of the last formula depend linearly
on the mixed terms h0j . Thus, they vanish identically if the hypersurface is of Hopf
type.

Corollary 3.1. Let M be a closed (2n + 1)-dimensional real hypersurface in Kc.
Suppose M is Hopf. Then∫

M
L− σH2 λ =

c

2n− 1

∫
M

ΘH .

Even in this case, being Hopf is just a sufficient condition for such a formula to hold
true: see the Appendix concerning the Reinhardt domains.
Our main aim is to prove the second horizontal Minkowski formula we have an-
nounced in the Introduction, i.e. Theorem 1.1. It holds for any real hypersuface
(not just the Hopf ones), and furthermore, differently from (23), contains no mixed
terms. For the convenience of the reader we repeat here the statement.

Theorem 1.1. Let M be a closed (2n + 1)-dimensional real hypersurface in Kc.
Then it holds: ∫

M
H− S2λ =

c

2n+ 2

∫
M
L(λ2 − a20) + ΘH − 3λ.

Proof. Recalling that V = ∇MX0
X0 =

∑n
k=1 h0n+kXk − h0kXn+k, by Lemma 2.1 we

have
V (λ) = −Q1 + c(a0QJ + λQ).

Moreover, by (2), (7), (8), we get

div(V ) =

n∑
k=1

(
Xk(h0n+k)−Xn+k(h0k)

)
+

n∑
k=1

2n∑
l=1

h0n+kΓ
l
lk − h0kΓlln+k − |V |2.

Thanks to Codazzi equations (10) we can compute the term

n∑
k=1

(
Xk(h0n+k)−Xn+k(h0k)

)
= 2nc+ 2nLα−

n∑
k=1

2n∑
l=1

h0n+kΓ
l
lk − h0kΓlln+k +

− 2
n∑

i,k=1

hikhn+in+k − hkn+ihin+k.
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Denoting by

D2 =
n∑

i,k=1

hikhn+in+k − hkn+ihin+k,

we thus have
div(V ) = 2nLα− |V |2 − 2D2 + 2nc.

By the divergence theorem we infer that −
∫
M V (λ) =

∫
M div(V )λ, which says∫

M
Q1 − (2nLα− |V |2)λ− c(a0QJ + λQ) =

∫
M

(2nc− 2D2)λ. (24)

On the other hand, the computation for div(W2) in (20) tells us∫
M
Q1 − (2nLα− |V |2)λ− c(a0QJ + λQ) = −

∫
M

2Q1 + 2nα.

Hence we deduce ∫
M
Q1 =

∫
M
−nα+ (D2 − nc)λ. (25)

Furthermore, using (21) and (22) in the identity
∫
M div(W1) + div(W3) = 0, we get∫

M
Q1 − (2nLα− |V |2)λ− c(a0QJ + λQ) =

=

∫
M

4Q1 − 4n2L+ 2n(2n− 1)σH2 λ+ c(2nL(λ2 − a20) + 2nΘH) =

=

∫
M
−4nα+ 4(D2 − nc)λ− 4n2L+ 2n(2n− 1)σH2 λ+ c(2nL(λ2 − a20) + 2nΘH)

where in the last equality we have substituted the identity we found in (25). By
comparing this relation with (24) we have∫

M
(2nc− 2D2)λ =

=

∫
M
−4n(nL+ α) + (2n(2n− 1)σH2 + 4D2)λ+ c(2nL(λ2 − a20) + 2nΘH − 4nλ)

which is the same as∫
M

4n(nL+ α)− (2n(2n− 1)σH2 + 6D2)λ = c

∫
M

2nL(λ2 − a20) + 2nΘH − 6nλ.

By recalling the definitions of H and S2, this proves the desired formula since we
have the relation

n(2n− 1)σH2 = 2n(n− 1)σ`2 +D2.

If n = 1 and c = 0, we have as particular case the conclusion of Corollary 1.1.
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Appendix: the case of Reinhardt domains

Consider a smooth hypersurface M ⊂ C2 described by

M = {p = (z1, z2) ∈ C2 : f(z1, z2) = 0}

for a smooth f such that |∇f | 6= 0 on M . We identify C2 ' R4, with zj = xj + iyj
(for j = 1, 2), and we write f(z1, z2) = f(x1, y1, x2, y2). Since for us J∂xj = ∂yj , we
have

ν =
1

|∇f |
(fx1∂x1 + fy1∂y1 + fx2∂x2 + fy2∂y2)

X0 =
1

|∇f |
(fy1∂x1 − fx1∂y1 + fy2∂x2 − fx2∂y2) .

Let us complete the tangent frame with the horizontal vector fields

X1 =
1

|∇f |
(fx2∂x1 − fy2∂y1 − fx1∂x2 + fy1∂y2)

X2 =
1

|∇f |
(fy2∂x1 + fx2∂y1 − fy1∂x2 − fx1∂y2) . (26)

We want to see what happens to the integral formulas when we rotate the manifold
M without fixing the complex structure. We want to perform the rotation

Rθ =


1 0 0 0
0 cos(θ) sin(θ) 0
0 − sin(θ) cos(θ) 0
0 0 0 1

 .

Thus we define M θ = {pθ ∈ C2 : p = Rθpθ ∈ M}. As a defining function we can
surely take fθ = f ◦ Rθ, for which |∇fθ|(pθ) = |∇f |(Rθpθ). Having fθ, we can
consider the related vector fields νθ, Xθ

0 , X
θ
1 , X

θ
2 . A straightforward computation

shows that, for any pθ ∈M θ,

λθ(pθ) = λ(Rθpθ)

aθ0(pθ) = cos(θ)a0(Rθpθ)− sin(θ)a1(Rθpθ)

aθ1(pθ) = sin(θ)a0(Rθpθ) + cos(θ)a1(Rθpθ)

aθ2(pθ) = a2(Rθpθ).

Moreover

hθ(pθ) =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 · h(Rθpθ) ·

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 (27)

where h and hθ denote (with abuse of notations) the 3×3 matrices representing the
second fundamental forms of M and M θ with respect to the frames {X0, X1, X2}
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and {Xθ
0 , X

θ
1 , X

θ
2}.

Now we have all the tools we need in order to keep track of the behavior in θ of the
following integrals ∫

Mθ

1− Lθλθ and

∫
Mθ

Lθ − σH,θ2 λθ.

About the first integral, we did it in full generality in the proof of Theorem 2.1.
Here we want to see what happens when M is the boundary of a Reinhardt domain:
we will show that there are specific rotations Rθ for which both the horizontal
Minkowski integrals vanish at the same time.
Let us fix a Reinhardt domain Ω (with respect to the origin), i.e. (z1, z2) ∈ Ω if
and only if (eiθ1z1, e

iθ2z2) ∈ Ω for every θ1, θ2 ∈ R. We can then consider a defining
function f for M = ∂Ω depending only on the radii in the following way:

f(z1, z2) = g(s1, s2) = g(s), sk =
zkz̄k

2
=
x2k + y2k

2
(k = 1, 2),

for some smooth g : R+ × R+ → R. It is useful to explicit everything in terms of g.
We shall write gk instead of ∂skg. For all p ∈M we have

|∇f |2 = 2s1g
2
1 + 2s2g

2
2

λ =
2s1g1 + 2s2g2
|∇f |

a0 = 0

a1 = (x1x2 − y1y2)
g2 − g1
|∇f |

a2 = (x1y2 + x2y1)
g2 − g1
|∇f |

.

Moreover

α =
2s1g

3
1 + 2s2g

3
2

|∇f |3

h01 = −(x1y2 + x2y1)
g1g2(g2 − g1)
|∇f |3

h02 = (x1x2 − y1y2)
g1g2(g2 − g1)
|∇f |3

h11 =
g1g2(2s1g1 + 2s2g2)

|∇f |3
+ (x1x2 − y1y2)2

g22g11 − 2g1g2g12 + g21g22
|∇f |3

h22 =
g1g2(2s1g1 + 2s2g2)

|∇f |3
+ (x1y2 + x2y1)

2 g
2
2g11 − 2g1g2g12 + g21g22

|∇f |3

h12 = (x1x2 − y1y2)(x1y2 + x2y1)
g22g11 − 2g1g2g12 + g21g22

|∇f |3
.

The functions (x1y2 +x2y1) and (x1x2−y1y2)2−(x1y2 +x2y1)
2 are odd with respect

to the symmetries (z1, z2) 7→ (−z1, z2) and (x1, y1, x2, y2) 7→ (−y1, x1, x2, y2) which
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leave unchanged the radii s1 and s2. That’s why we have in particular that∫
M
h01λ = 0 and

∫
M

(h11 − h22)λ = 0.

Hence, if we apply our rotation Rθ, we readily get from (27) that

2

∫
Mθ

1− Lθλθ =

∫
M

2−
(
cos2(θ)h11 + sin2(θ)α+ 2 cos(θ) sin(θ)h01 + h22

)
λ

=

∫
M

2− (1 + cos2(θ))Lλ− sin2(θ)αλ

=

∫
M

2− (1 + cos2(θ))Lλ− sin2(θ) (3− 2Lλ)

= (2− 3 sin2(θ))

∫
M

1− Lλ,

where we used the fact that
∫
αλ =

∫
3− 2Lλ by the classical Minkowski formula.

This says that, even if
∫
M 1− Lλ was not 0 for the Reinhardt domain under consid-

eration at the beginning, it does vanish after a rotation Rθ0 for which

sin2(θ0) =
2

3
= 2 cos2(θ0).

Let us check that, for the same θ0, also
∫
Lθ0 − σH,θ02 λθ0 = 0. It is easy to see that

in C2 (actually for the case n = 1 in our notations) we have the relation

2LQ+Q1 −Q2 = 0.

Then Proposition 3.1 (n = 1, c = 0) tells
∫
L− σH2 λ =

∫
Q1 for any real hypersur-

face. Thus, we want to show that ∫
Mθ0

Qθ01 = 0.

From (27) and the fact that a0 = 0 and a1h01 + a2h02 = 0, we see that, for any θ,∫
Mθ

Qθ1 = cos2(θ)

∫
M

(a1h12h01 − a1h11h02) +

+
(
cos2(θ)− sin2(θ)

) ∫
M

(a2h22h01 − a2h12h02) +

+ cos(θ) sin(θ)

∫
M

(
a1h12α+ a2h22α− a2h11h22 + a2h

2
12

)
.

Thanks to the explicit formulas for the involved terms and to the odd simmetry
of (x1y2 + x2y1), it is not difficult to recognize that the last integral at the r.h.s.
vanishes. Morever, when θ = θ0, we have cos2(θ0) = sin2(θ0)− cos2(θ0) = 1

3 and∫
Mθ

Qθ01 =
1

3

∫
M

(a1h12h01 − a1h11h02 − a2h22h01 + a2h12h02)

= −1

3

∫
M

(a1h11h02 + a2h22h01).
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By the odd simmetries of (x1x2 − y1y2)
2 − (x1y2 + x2y1)

2, also the last integral
vanishes. Therefore, summing up what we have just proved, we have∫

Mθ0

Lθ0 − σH,θ02 λθ0 = 0 =

∫
Mθ0

1− Lθ0λθ0 .
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