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Value of Information based Sensor Ranking for
Efficient Sensor Service Allocation in Service

Oriented Wireless Sensor Networks
Sourabh Bharti, Student Member, IEEE, K. K. Pattanaik, Senior Member, IEEE, and Paolo Bellavista,

Senior Member, IEEE

Abstract—In service oriented Wireless Sensor Networks (WSNs), a sensor service allocation mechanism should consider the usage
context of the required sensor services in the application. Recent sensor service allocation mechanisms rank a sensor service
uniformly for all incoming applications without considering its usage context in the respective application. This paper proposes a Value
of Information based Sensor service Ranking Mechanism (VoISRAM) that models the rank of a sensor service as a Value of
Information (VoI) attribute while taking into account its usage context in the corresponding application. Unlike existing research,
VoISRAM is evaluated for its ability to complement existing gateway services for VoI based sensor service selection. Performance
analysis of VoISRAM suggests its efficiency in maintaining a trade-off between application specific QoS requirements and overall
energy consumption in the network. Further comparative evaluation with existing sensor service ranking mechanisms manifests the
incremental addition made by VoISRAM in this area. Simulation results show that VoISRAM outperforms existing sensor service
ranking mechanisms in terms of meeting application QoS requirements. In addition to this, VoISRAM shows an impressive 13%
improvement in network lifetime as well.

Index Terms—Wireless Sensor Network, Value of Information, Sensor ranking, Sensing as a service

F

1 INTRODUCTION

While the data communication networks are assessed by
measuring the QoS provided by them in terms of latency,
delay, bandwidth, etc., the WSNs are evaluated in terms
of the Quality of Information (QoI) provided by them to
the applications [1]. However, the burgeoning involvement
of sensor networks in Internet of Things (IoT) necessitates
the information products’ assessment in a more diverse and
dynamic environment.

In service oriented WSN [30], an information product
is the sensed data (constituting the sensor data points from
one or more sensors) consumed by an application query. For
instance, data points from temperature and smoke sensors
constitute the information product deliverable to a fire de-
tection application. Traditionally, information products are
assessed uniformly for every application query in terms of
their associated data quality metrices such as information
accuracy [24]. However, WSN based applications have dif-
ferent QoS requirements and specifications. Thus, a require-
ment specific design i.e. no one-size-fits-all solution [2] is
required.

A sensor node can be enabled with various service
types such as temperature and humidity service. In service
oriented WSNs, a sensor service denotes one of the services
enabled on the sensor nodes. Sensor services are matched
against the application requirement so that the best avail-
able sensor service(s) can serve the application. Traditional
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matchmaking mechanisms [11][12] rank a sensor service
based on the associated QoI without considering its usage
context in the respective application. Usage context is the
requirements of the application query against which the
information product is going to be evaluated. Evaluation
of an information product in different usage contexts is
termed as Value of Information (VoI), formally defined as:
An assessment of the utility of an information product when
used in a specific usage context [1]. Value of a sensor service
or an information product associated with a sensor service
is defined as its importance in the particular usage context.
A sensor service can be more valuable in one usage context
while its importance can vary in another. Taking cue from
this, we argue that a sensor service in WSNs can not be
ranked uniformly without considering its usage context
in the respective application. We defend this hypothesis
considering spatial accuracy and staleness of data as the key
parameters in an application of environmental monitoring a
farm [4].

In this application, sensor services measuring various
environmental parameters such as temperature, humidity,
etc., are deployed in the farm as to take automated decisions
by the sensor-actuator control system. For an instance, the
temperature readings sensed by a sensor service can actuate
a water sprinkler based on the settings. We argue that a
sensor service si can be valued differently in two usage
contexts in terms of its spatial accuracy and staleness of the
information products associated with si.

Requirements associated with the area/location are
termed as spatial requirements. In one usage context, a
task of measuring the humidity level in a farm segment (a
circular region shown in Fig. 1) is injected into the WSN.
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Any sensor service (si for that matter) of the required service
type (humidity) installed in that segment can meet the
spatial requirement of the task. Thus, every humidity sensor
service is valued the same in this usage context. In another
usage context, a task to examine the working status of a
water sprinkler installed in the same segment at location
p(x,y) (specified by a triangle in Fig. 1) is injected into WSN.
In this usage context, the sensor service deployed nearest to
that water sprinkler (let it happen to be si) is valued more
than the other sensor services deployed inside the same
segment. Hence, si is valued differently in the above usage
contexts.

Fig. 1: VoI aspect of spatial accuracy

Staleness or freshness of sensed data is a time-related
quality dimension that measures to the level of synchro-
nization between the data originator (sensor node) and
the information system processing the data (gateway)[5].
In a usage context, a task to investigate the current status
of the water sprinkler is injected into WSN. This requires
immediate querying the sensor service deployed nearest
to the water sprinkler (si for that matter) and the fresh
information products from si are valued more as compared
to the stale ones. In another usage context, a task to in-
vestigate for how long the water sprinkler has been down
due to technical failure is injected into WSN. For this usage
context, the fresh information products from si are equally
valued as stale ones. Hence, the stale information products
from si are valued differently in the above usage contexts.
Thus, it can be inferred that a sensor service can not be
ranked uniformly without considering its usage context in
the respective application. Our contributions in this paper
can be summarized as follows.

1) After extensive need analysis, we associate the con-
cept of VoI with sensor service ranking and pro-
pose VoISRAM that ranks the sensor services by
considering their usage context in the respective
application.

2) We model the sensor service rank as a VoI attribute
and propose a cost function for rank assignment
(Section 3.2). The cost function is designed around
both application specific and network specific QoS
requirements to maintain the trade-off among them.
Maintaining this trade-off is crucial for resource
constrained WSN.

3) VoISRAM is executed at the gateway and requires
average 1-hop delay estimation and residual energy
information of sensor nodes. To make these pa-
rameters available beforehand at the gateway, we
develop average 1-hop delay estimation (Section 3.4)
and residual energy prediction (Section 3.5) models.

4) VoISRAM is integrated with existing gateway ser-
vice (TRAPS) [3] to evaluate its overall performance
in terms of effects on application specific and net-
work specific QoS parameters (Section 4). Later we
prove our rationale behind integrating VoISRAM
with TRAPS (Section 5). We compare VoISRAM with
state-of-the-art sensor service ranking mechanisms
in terms of network lifetime and ability to fulfill
application specific QoS requirements (Section 6).
Simulation results suggest an impressive 13% im-
provement in network lifetime.

2 RELATED WORK

Sensor search and ranking mechanisms for WSN range from
geographical indexing [6], clustering [7] to content based
searching [8] which analyzes the relevancy of available
sensor services regarding the incoming queries. Web based
sensor discovery frameworks [26-28] do not take scarce net-
work resources into consideration. These discovery frame-
works produce a limited number of semantically equivalent
services satisfying the search criteria. The discovery frame-
works are not able to differentiate between the retrieved
services and to rank them in an order that is beneficial for
the scarce network resources as well [11]. The geospatial
indexing helps the discovery engine locate the gateway(s)
that are likely to contain the services with respect to the
queries [6]. On the other hand, the ranking based resource
allocation is the next step after sensor search and discovery.
VoISRAM ranks the discovered sensor services to select
the best sensor service(s) among them such that the trade-
off between application specific and network specific QoS
requirements is maintained.

Various QoS based ranking mechanisms [9][10] are pro-
posed that are based on user feedback and ratings. Recent
energy aware sensor ranking mechanisms [11][12] estimate
the access cost of a sensor service. The cost function pro-
posed in [11] constitutes the residual energy level of the
respective sensor service and its importance in the network.
Another sensor search mechanism [12] considers data accu-
racy, reliability, availability, etc. for sensor service ranking.

The usage context of a sensor service in a particular
application plays a significant role in meeting application
specific QoS requirements. Recent user feedback based
mechanism [13] is not applicable in many remote scenarios.
All of the existing energy aware sensor ranking mechanisms
focus on network aspects but do not consider the key
application requirements (spatial accuracy and staleness of
data) discussed in the previous section. Moreover, a sensor
service is ranked uniformly without considering its usage
context in the corresponding application.

Existing methods for web services ranking [14][15] con-
sider the application specific parameters. The extensive re-
sources at hand help the ranking mechanisms designed for
web services to be more application oriented. Moreover, the
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network parameters such as residual energy are not consid-
ered while ranking a web service. In resource constrained
scenarios such as WSN, the network specific issues can not
be ignored while designing a ranking mechanism. Hence,
the ranking mechanisms proposed for web services are not
applicable in WSN.

To the best of our knowledge, none of the sensor service
ranking mechanisms [11-13] is evaluated in terms of their
effects on application QoS requirements. On the other hand,
in WSNs, the design of a gateway service for an efficient
network and system management [2] should maintain a
trade-off between application specific QoS requirements
and network resource consumption. Thus, a sensor service
ranking mechanism is required that takes into consideration
the usage contexts of sensor services and helps the gateway
service meeting applications’ QoS requirements while mini-
mizing the energy consumption.

3 VOISRAM
VoISRAM uses network specific (residual energy) and appli-
cation specific (spatio-temporal accuracy) QoS parameters
to model the sensor service as a VoI attribute. In this section,
a sensor service access cost function is proposed that serves
as a metric for the ranking. The development of proposed
cost function requires average 1-hop delay and residual
energy information beforehand at the gateway (place of
VoISRAM execution). The average 1-hop delay estimation
and residual energy prediction models are also discussed in
the following.

3.1 Preliminaries
This section discusses the application model, task model
and network model used throughout this paper. An impor-
tant attribute sensor-to-task relevancy in the context of sensing
as a service is also defined.

3.1.1 Application model
This work considers both push-based and pull-based applica-
tions. Push-based applications involve continuous or periodic
sensing and reporting of the sensed data at the gateway. On
the other hand, pull-based applications involve on-demand
querying for the fresh or stale sensor data. A pull-based
application query is decomposed into various network level
sensing tasks [29] to be scheduled inside the WSN.

3.1.2 Task model
A simple WSN query arriving at the gateway has the fol-
lowing semantics.
SELECT sensor data FROM req service types {s} WHERE
locations {L} DURATION D EVERY frequency e.

The SELECT clause specifies the data values to be
sensed, FROM clause specifies the set of required ser-
vice types such as temperature and humidity services and
WHERE clause may specify a set of locations. A location
Li either represents region of interest (xi, yi, r) or a certain
location (xi, yi) (see section 3.2.1 for details). DURATION
clause specifies the sensing time duration D [tb, te, dt] where,
tb, te are beginning and ending time instants respectively.
Real time queries requires immediate sensing and reporting

Fig. 2: Query to task derivation

of all the sensed data within a specified delivery deadline dt.
EVERY clause specifies the sensing time interval (frequency
(e) of the observations).

The query to task derivation is performed at the gateway
that is assumed to contain the sensor service meta-data such
as ID, service types and location. A query may require data
from different sensor services installed at different locations
for its successful execution. For example, an application
query may require temperature and smoke sensor services
deployed at the different locations in the monitored area.
Thus we adopt a distributed query execution strategy in
which the query is decomposed into multiple sensing tasks
inheriting the query requirements in the following manner.

Each task (Ti) is an atomic entity constituting a unique
required service type (req service type) associated with a
location (Li). Given the frequency (e) and D [tb, te, flag]
the number of data points to be sensed ( D

e ) are de-
rived for each sensing task. We characterize a task as a
4-tuple 〈req service type, number of data points,RTi

spat,R
Ti
temp〉

where RTi
spat is the required geographical (spatial require-

ment) location associated with Ti and RTi
temp is a time win-

dow with a delivery deadline (in case of real time queries).

3.1.3 Network model and topology management
The whole network is governed by multiple gateways in a
distributed manner where each gateway manages a group
of 40-50 sensor nodes constituting a sub-network. The sub-
network is modeled as a Destination Oriented Directed
Acyclic Graph (DODAG), routed at a single destination
termed as root/gateway. The sensor nodes are stationary
and homogeneous (equipped with same sensing, computing
and storage capabilities) working on IEEE 802.15.4 MAC
protocol with beacon enabled mode. DODAG follows a
parent-child topology paradigm in which every sensor node
transmits the sensed data packets to its parent that is se-
lected on the basis of predefined metrics. We choose the
distance from the root as the parent selection metric to
minimize the hop count between the gateway and the sensor
service for reduced end-to-end delay required in IoT sensory
environment.

Every time a node leaves the DODAG topology (due to
energy drain or other failures), it is maintained using control
packets called DODAG information objects (DIO) [17]. The
routing protocol in DODAG employs Trickle algorithm [25]
to efficiently maintain the routing topology, enabling quick
reaction to topological changes while minimizing overhead
during stable conditions. According to this algorithm, if a
node’s parent leaves the network due to energy drain, it
selects another node with lower rank as its new parent. The
rank of a node is decided on the basis of the pre-defined
metrics (distance from root in our case). Every gateway has
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the logical view of its respective sub-network’s topology
that gets updated every time a sensor node leaves the
sub-network. The logical view represents the connections
between sensor nodes in the form of an adjacency matrix.

3.1.4 Sensor-to-task relevancy
The first step in ranking the sensor services is to select
the sensor services that provide the same service type as
required (req service type) by the task. Based on the service
type provided by a sensor service si, its sensor-to-task rele-
vancy (rsict) (represented by equation 1) is calculated.

rsict =

{
1, if req service type == service type
0, otherwise

(1)

Based on the above equation, the suitable sensor services
are selected and termed as candidate sensor services that
participate in the ranking process.

3.1.5 Gateway storage
This work considers gateway as a powerful machine capable
to store and process a fair amount of data. Since the number
of sensor nodes in a sub-network is kept as 40-50, the size
of the storage does not go out of the bound. The sensed
data is stored at the gateway as a 4-tuple 〈sensor id, service
type, sensed value, sensing time〉 in a table named as sensor
data. The information about sensor nodes in a sub-network
is stored as 4-tuple 〈sensor id, service type, location info,
residual energy〉 in a table named as metadata that is placed
at the respective gateways at the time of deployment. sensor
data table is also placed at the respective gateways, initially
in the form a schema that is filled with the 〈sensor id, service
type, sensed value, sensing time〉 tuples as the time progresses.

3.2 Sensor service rank as VoI attribute

Quality of an information product in WSN can be deter-
mined by various parameters such data accuracy, accessibil-
ity, etc. On the other hand, quality coupled with the usage
context determines the value of an information product.
Hence, VoI is a function of QoI assessed in a specific context
(equation 2).

VoI = fcontext(QoI) (2)

In this section, we consider different usage contexts of
the required information to model VoI based spatial and
temporal accuracy parameters. The modeled parameters are
used to determine the cost of a sensor service that serves as
a basis for the ranking.

3.2.1 Spatial accuracy
The gateway extracts the usage context from the task and
identifies the candidate sensor services. It is assumed that the
sensor services and RTi

spat are in a two dimensional euclidean
space. We consider two usage contexts: (1) Cntxtspat1 , when
RTi
spat specifies a location p(x, y) and (2) Cntxtspat2 , when

RTi
spat specifies p(x, y) with a radius r > 0 and any sensor

service inside the circle with p(x, y) as center and r as radius
satisfies RTi

spat.
If the spatial accuracy (represented as QoI1) is consid-

ered to be a function fQoI1 of given usage context, it can

be represented using equation 3. For Cntxtspat1 , fQoI1 is
assigned the value of the euclidean distance d(p, q) between
a candidate sensor service q and p. For Cntxtspat2 , d(p, q) is
compared with r. In case of d(p, q) ≤ r, fQoI1 is assigned a
value of 0 and d(p, q) otherwise.

fQoI1 =


d(p, q), if Cntxtspat1

0, if Cntxtspat2 | d(p, q) ≤ r
d(p, q), if Cntxtspat2 | d(p, q) > r

(3)

Equation 3 states two spatial usage contexts of the required
sensor service. A sensor service nearest to the required
location is valued more in the Cntxtspat1 . On the other hand,
all sensor services belonging to the specified region are
valued the same in the Cntxtspat2 . However, sensor services
not belonging to the specified region are ranked on the basis
of their distance from the p. The parameters r, d(p, q) and
fQoI1 are measured in unit of length.

3.2.2 Temporal accuracy
This work considers two usage contexts: (1) Cntxttemp

1 and
(2) Cntxttemp

2 , for temporal requirements as well. Cntxttemp
1

represents real time usage context specifying the sensing
time window [tb, te] along with a delivery deadline (dt)
imposing the condition: tcurr ≤ tb < te where tcurr rep-
resents the current time. This involves immediate sensing
of the requested data points, bundling the data points into
required number of packets (pckt) and finally routing the
data packets to the gateway. If m represents the number of
sensor services between the gateway and a sensor service,
delayavg represents the average 1-hop delay occurred in
transmitting one packet, Tsense is the time taken in sensing
one packet of information, the total time (Tsi ) taken in this
process can be represented as

Tsi = (pckt)
( 2m−2∑

k=1

delayavg + Tsense

)
(4)

Cntxttemp
2 represents non real time usage context specifying

a sensing time window [tb, te] with the condition: tb < te
≤ tcurr. This does not require immediate sensing/querying
for sensed data. These tasks can be served by the stale data
stored in the sensed data table at the gateway.

This work considers a multi-application hybrid data
gathering (combination of push and pull based techniques)
scenario. The data points sensed by push based applications
are stored at the gateway. Since there are requirement over-
laps among different applications [3], tasks with Cntxttemp

2

usage context are served by the stale data stored at the
gateway and does not involve querying the sensor services.
However, this work also takes Cntxttemp

2 usage context into
consideration that is elaborated in subsequent section.
Similar to spatial accuracy, if the temporal accuracy (repre-
sented as QoI2) is considered to be a function fQoI2 of given
usage context, it can be represented using equation 5.

fQoI2 = Tsi (5)

Equation 5 states that for tasks with Cntxttemp
1 usage context,

sensor services with minimum estimated delay (Ts) are
ranked good. The parameters delayavg , Tsi , Tsense and fQoI2
are measured in unit of time.
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3.2.3 Handling tasks with non-real time usage context
This involves searching for the required data points at the
gateway storage. First of all available sensed data points
stored in the sensed data table are filtered on the basis of
the service type and req service type followed by fetching the
sensor id, sensed value and sensing time of the relevant data
points by

select sensor id, sensed value, sensing time as T from sensed
data where req service type==service type
All sensor ids in table T are matched against sensor ids
in metadata table to fetch their location information that
helps calculating fQoI1 values of the sensor services for the
tasks with Cntxttemp

2 usage contexts using equation 3. For
Cntxttemp

2 , fQoI1 value of a sensor service is calculated as
explained in Section 3.2.1.

On the other hand, fQoI2 value of a sensor service is
calculated on the basis of the staleness of its sensed data
points stored in sensed data table at the gateway. Staleness
(SD

curr) [5] of a data point D stored at the gateway varies
with time and can be defined as

SD
curr = tcurr −

tDlast × (ND + 1) − tD0
ND

(6)

where tcurr is the current time instant, tDlast is the most recent
time instant at which the D was sensed by an application,
tD0 is the time instance at which D was sensed for the first
time and ND is the total number of times D is sensed [5].
SD
curr shows the staleness of D with reference to the current

time instance (tcurr). In this case, all available data points
sensed by the relevant sensor services (Table T) recorded
between [tb, te] are valued the same (=0). If required data
points recorded between [tb, te] are not available at the
gateway storage, the data points recorded nearest to the [tb,
te] are valued more. The value (S

Dsi
[tb,te]

) of a data point Dsi

belonging to a sensor service si with respect to [tb, te] is
calculated as follows.

S
Dsi
[tb,te]

= min
{∣∣∣SDsi

b

∣∣∣, ∣∣∣SDsi
e

∣∣∣} (7)

Equation 6 defines the staleness of D with reference to the
current time instance. We use equation 6 to calculate the
staleness of Dsi (equation 7) with respect to [tb, te]. Thus
the fQoI2 value in Cntxttemp

2 is calculated as

fQoI2 =

{
0, if Cntxttemp

2 | tDsilast ∈ [tb, te]

S
Dsi
[tb,te]

, if Cntxttemp
2 | tDsilast /∈ [tb, te]

(8)

The above equation implies that sensor services associated
with the data points nearest to the specified time window
are ranked good for tasks with non-real time usage context.

3.2.4 The cost function
This section discusses the cost function for both real time
and non-real time usage contexts of a task. Since tasks with
Cntxttemp

1 involve querying the sensor service by sending
request inside the network, we propose an energy-aware
cost function that serves as the basis for sensor service rank
assignment for Cntxttemp

1 usage context. Network specific
QoS parameter should be considered in any sensor ser-
vice ranking mechanism designed for resource constrained
WSN. To address the aforementioned, we choose average

residual energy level (Resavgsi =
∑m+1
k=1 Ressk
m+1 Joules) of the

path from si to the gateway to be included in the weighted
cost function (equation 9). It is to be noted that the path
includes si as well.

Costsi = min
{
wi

(
f̂QoI1 + f̂QoI2

)}
(9)

wi =
Emax −Resavgsi

Emax − Emin
(10)

where, fQoI1 and fQoI2 are calculated using equations 3 and
5 respectively, Emax and Emin represent the maximum and
minimum energy levels of a sensor service respectively.

Tasks with Cntxttemp
2 do not involve sending the request

inside the network. Thus, wi is set as 1 in this case and
the value of fQoI2 is calculated using equation 8. A sensor
service with minimum cost value is ranked highest and so
on. For tasks with Cntxttemp

2 , the sensor services are ranked
on the basis of their location and the staleness of their
sensed data available at the gateway. This ranking does not
result in querying the highest ranked sensor service at all.
However, the available sensed data of the highest ranked
sensor service is delivered to the task. On the other hand,
the highest ranked sensor service is queried for tasks with
Cntxttemp

1 .
Since fQoI1 and fQoI2 are in different units of measure, we

normalize them as f̂QoI1 and f̂QoI2 respectively to prevent
biasing in the cost function. The ranking method proposed
in [12] uses similar normalization technique to re-scale the
context properties (e.g. accuracy, reliability, latency) in the
range of [0, 1]. For every candidate sensor service si, its
corresponding parameters: fQoI1 and fQoI2 are calculated.
Suppose xij represents the calculated value of jth parameter
corresponding to sensor service si. Min-max normalization
technique is used to re-scale the data in the range of [0,
1]. Once the data corresponding to every candidate sensor
service is available, xmin

j (minimum value corresponding to
jth parameter) and xmax

j (maximum value corresponding
to jth parameter) can be easily estimated. Every xij value in

the data is normalized as
|xij−x

min
j |

xmaxj −xminj
.

The first term of the cost function states that sensor
services closer to the requested location cost less. The second
term indicates that in case of non-real time temporal require-
ments, data points nearest to the specified time window cost
less whereas, in case of real time temporal requirements, the
hop-count between the gateway and selected sensor service
is directly proportional to the cost which helps in reducing
the end-to-end delay. The weight wi helps maintaining the
trade-off between application specific and network specific
QoS requirements. In other words, paths including sensor
services with high residual energy level help reducing the
cost.

Since the ranking is performed on the basis of a cost
function designed around the VoI aspects of spatial and
temporal accuracy it can be stated that a sensor service rank
is successfully modeled as a VoI attribute.

3.3 Ranking algorithm and time complexity
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Algorithm 1: VoISRAM
Input : tasks with QoS requirements
Output: task allocation

1 begin
2 if Task Ti has real time temporal requirement then
3 for every sensor service si do
4 if rsict == 1 then
5 candidate[j] = si;
6 j++;
7 end
8 end
9 for every candidate sensor service do

10 . compute fQoI1 , fQoI2 using equations 3, 5
11 . compute Ressi and Ressumsi
12 . compute the access cost using equation 9
13 end
14 . rank the candidate sensor services according to

lowest access cost first
15 . assign task to the highest rank candidate

sensor service
16 end
17 if Task Ti has non-real time temporal requirement then
18 // search for available data in sensed data

table
19 . filter on the basis of req service type
20 . fetch the relevant sensor ids and their

location using metadata table
21 for every relevant sensor service do
22 . compute fQoI1 , fQoI2 using equations 3, 8
23 . compute the access cost using equation 9

with wi==1
24 end
25 . rank the sensor services according to lowest

access cost first
26 . available sensed data of the highest ranked

sensor service is delivered to the task
27 end
28 end

This section explains the computational steps involved
in VoISRAM. The gateway service gathers the functional
(req service type) and QoS (spatio-temporal accuracy) re-
quirements of the incoming tasks. If the task has real time
temporal requirements, all the sensor services with same
service type as req service type are filtered and inserted
in an array named as candidate sensor service. These services
participate in the ranking process as explained in Step 10-15
of Algorithm 1.

Tasks with non-real time temporal requirements do not
require querying the sensor services. These tasks are served
by the available sensed data (sensed by a push based mech-
anism) at the gateway. For them, the sensor services whose
sensed data is available at the gateway participate in the
ranking process and the available sensed data of the highest
ranked sensor service is provided to the task (Step 25, 26 of
Algorithm 1).

The complexity of the mechanism can be estimated as
O(NCS ∗m), where NCS is the number of candidate sensor
services participating in the ranking process and m is the
number of intermediate sensor nodes between the gateway

and the sensor service in question. Let N be the total number
of sensor services in the network, then N � NCS and N �
m. Thus, the proposed ranking mechanism is computation-
ally efficient.

Following sections discuss the average 1-hop delay and
residual energy prediction models used in the process of
developing the proposed cost function.

3.4 Average 1-hop delay model
In wireless networks such as WSN, the delayavg (mentioned
in equation 4) is composed of two parts : (a) the average
waiting time a packet spends in the queue (Wq) and (b)
transmission time (Ttrans). To analyze the average waiting
time in the queue (equation 11), a queuing model of type
(M/M/1) : (GD/L/∞) [18] is considered.

Wq =
1− (λ/µ)L − (1− λ/µ)(L(λ/µ)L + 1− (λ/µ)L+1)

µ(1− λ/µ)(1− (λ/µ)L+1)
(11)

According to this model, the sensor service acts as a server
with the queue size of L. Packet arrival rate λ follows
Poisson distribution and service time µ is exponentially
distributed. Ttrans for a packet depends on various factors
such as number of re-transmissions (nR), the awake time
of the receiver (Taw), sleep time of a sensor service (Tsl)
and MAC layer back-off time (Tb). Hence, the Ttrans can be
represented as follows.

Ttrans = nR(Taw + Tsl) + E[Tb] +R(0, Tsl) (12)

where Taw and Tsl are MAC layer parameters that de-
pend upon 802.15.4 MAC protocol operating in beacon-
enabled/non beacon-enabled mode. R(0, Tsl) is a random
number distributed between 0 and Tsl for the case when
the receiver is sleeping, and the sender has to wait until
the receiver wakes up [19]. The average number of re-
transmissions can be modeled using Geometric distribution
[18] which represents the probability of number of transmis-
sion failures before first successful transmission (Pr) as

Pr = (1− p)Kp (13)

where p is the probability of successful transmission which
can be represented as

p =
1

#nodes contending for channel access
(14)

Using equations 13 and 14, the nR can be calculated as
1−p
p . According to the exponential back-off mechanism in

CSMA/CA [19], the number of slots a sensor node has to
wait for (ns) after collision detection is 2c− 1, where c is the
number of collisions occurred so far for that sensor node.
It is to be noted that c and nR are closely related and can
be used interchangeably. The expected back-off time for a
sensor node can be calculated as

E[Tb] =
1

ns + 1

ns∑
j=0

j =
ns(ns + 1)

2(ns + 1)
=
ns
2

=
2

1−p
p − 1

2

(15)
Hence, the equation 12 can be re-written as

Ttrans =
1− p
p

(Taw + Tsl) +
2

1−p
p − 1

2
+R(0, Tsl) (16)
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delayavg =Wq +
1− p
p

(Taw + Tsl) +
2

1−p
p − 1

2
+R(0, Tsl)

(17)
Equation 17 represents the average 1-hop delay in transmit-
ting a packet. IEEE 802.15.4 standard fixes the Taw as 15.36
ms (at 250 kbps in 2.4GHz band) while Tsl is calculated
in beacon-enabled mode as follows. In IEEE 802.15.4, sleep
time of a sensor node is calculated as Beacon Interval (BI) -
Super frame Duration (SD) whereas BI and SD are calculated
as

SD = BaseSuperframeduration×2superframe order (18)

BI = BaseSuperframeduration× 2beacon order (19)

TABLE 1: Simulation parameters for delayavg evaluation

Parameter Value
Taw 15.36ms
Tsl 600ms
p .25

Total number of sensor nodes 100
Arrival rate (λ) range [10-200]
Service rate (µ) range [5-30]

Queue size (L) 20
Number of sensor nodes 100

We tested the proposed delayavg model using OPNET
18.0 modeler. The experiment considers a BaseSuperframedu-
ration of 5.36 ms, superframe order as 4 and beacon order as 7.
Since DODAG network topology is considered throughout
this paper, we limit the maximum number of children for
a parent sensor node to be 3. For the experiments, λ and
µ are varied to observe the effect of Wq on delayavg while
other parameters are set as shown in Table 1. Fig. 3 depicts
the observed delayavg with varying λ and µ. To manifest the
subtle effects of Wq on delayavg , we represent the observed
delay in the normalized form. The delay in seconds can be
calculated as Normalized delay

106 +1.85. delayavg decreases with
the λ (= 200 to 50) that indicates its dependability on the
traffic intensity. The results shown are the average of 500
simulation instances.

Fig. 4 shows the comparison among delayavg estimated
using proposed model, delay model proposed in [20] and
delay observed through simulations. The 1-hop delay mod-
eled in [20] does not take Wq into account which has a
minute effect on the average 1-hop delay (see Fig. 3). Exten-
sive simulations with the simulation parameters as stated in
Table 1 are performed with λ = 50. The proposed model has
a good accuracy rate (Fig. 4) with overall Root mean square
deviation (RMSD) of 0.1438 as compared to 0.1470 of the
model proposed in [20].

3.5 Residual energy model
This section discusses estimating the residual energy (equa-
tion 10) of a sensor service with the minimum message
exchange overhead. Piggybacking is the standard approach
used for energy state information exchange. Energy con-
sumption in transmitting l- bit data from source to the
destination is represented by equation 20.

Etx(l, src, des) =
m∑

k=1

Etx(l, distance) (20)
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Fig. 3: Effect of Wq on delayavg
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Fig. 4: Accuracy evaluation of proposed delayavg model

where m represents the minimum hop count between source
and destination and l represents the size of the data being
transmitted. Though this approach is better than the previ-
ous research on energy information exchange in which the
energy information is shared using periodic control message
exchanges between sensor service and gateway, there is still
an energy overhead due to the large size of l. The size of l is
increased due to the addition of residual energy information
bits. In resource constrained WSN, energy consumption
due to every bit of communication must be taken into
consideration [3,16]. By using prediction based approach,
we minimize the value of l such that there is no need of
sharing residual energy information with the gateway. Thus
mechanism incurs no energy overhead in gathering energy
state information.

A sensor node can be in either of the three states -
idle, receiving (rcv) and transmitting (trans). A sensor node’s
state transition is modeled as Discreet Time Markov Chain
(DTMC) process. The estimation of P is a one-time offline
process to avoid any control data transmission regarding
energy information of sensor nodes. To compute P, we in-
jected over 1000 tasks with different start and stop time (see
Table 4) in the network of 100 sensor nodes and calculated
the probability of a sensor node being in a state as follows.
The probability of a sensor node being in rcv state is the
number of times the sensor node was in rcv state and went
to idle or trans state divided by the total number of time-
steps the sensor node was in rcv state. The probabilities of
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a sensor node being in trans and idle states are computed
similarly.

The expected values for a sensor node’s probability of
being in idle, rcv and trans state are estimated as PNS = (0.21,
0.45, 0.34). We use discrete time event simulation based
mechanism taking input as the PNS to estimate P. Sensor
node’s state distribution is shown in Table 2. To estimate P
we generate 100 random numbers in the range of [1, 100] for
50 slots considering 20 tasks in each slot (=1000 total tasks)
and assigned the state of a sensor node (Table 3).

TABLE 2: Sensor node’s state distribution

State Probability Cumulative
probabil-
ity

Random
digit
assign-
ment

idle 0.21 0.21 1-21
receive 0.45 0.66 22-66

transmit 0.34 1.0 67-100

TABLE 3: Sensor nodes’ generated states for each slot

Sensor
node

Random
num-
ber
(slot 1)

State (slot
1)

.. Random
num-
ber
(slot
50)

State (slot
50)

1 24 receive .. 19 idle
2 68 transmit .. 45 receive
.. .. .. .. .. ..
100 54 receive .. 9 idle

For each sensor node, the average number of transitions
from one state to another over 50 slots is estimated using
Table 3. The expected values in P exactly represent the
average number of transitions between each pair of two
states. The sample P for a sensor node is represented by
equation 21.

P =

 2/7 5/7 0
1/5 2/5 2/5
2/13 7/13 4/13

 (21)

The tasks specify their attributes including number of data
points to be sensed in a given time interval so that the
sensors can adjust their sending rate accordingly. A sample
task format is shown in Table 4. A sensor node’s initial
state probability matrix

(
pidle prcv ptrans

)
changes ac-

cording to the requirements of the tasks. Let the incoming
task in the current slot requires the service of sensor node
i. The initial state probability matrices for sensor node i
becomes P i

current slot =
(
0.0 0.5 0.5

)
. A sensor node’s

state probability matrix (P i
SPM ) gets updated after every

slot according to equation 22.

P i
SPM = P i

current slot ×P (22)

Let total energy consumption in trans, rcv and idle state is
Etrans, Ercv and Eidle respectively. The energy model is
adopted from [21] that includes B as the bit rate. In our
case B represents the info bits required by the task. The
energy consumption information along with sensor node’s
state probability matrix enables the computation of the total

energy consumed by a sensor node i (Ei
Total) in a slot

according to equation 23.

Ei
Total = P i

SPM ×

 Eidle

Ercv

Etrans

 Joules (23)

TABLE 4: A sample task format to obtain P

Attribute Value
Start time 2 seconds
Stop time 20 seconds

Required information 100 bits
Target location [45.4, 10.7]

Service type temperature data

TABLE 5: Simulation parameters for energy prediction

Parameter Value
et 50× 10−9 Joules/bit
er 50× 10−9 Joules/bit

Power index 2
eid 40× 10−9 Joules/bit

Sensing range 10 m
Transmission power 30 dBm
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Fig. 5: Energy consumption prediction accuracy

To test the correctness of the proposed energy prediction
mechanism, we tested our model for a different number
of tasks in the network. Simulation parameters used for
this module are shown in Table 5. The proposed energy
prediction mechanism is the first of its kind for IoT scenario.
Thus we could not find any other mechanism to compare
our results. We first injected our generated task graphs in the
network where sensor nodes are distributed uniformly. Each
sensor node’s residual energy levels are recorded according
to each task. To record the actual energy consumption of
a sensor node required by the incoming task, we divided
the energy consumption into three main blocks [22]: ENET

(for data communication/networking), EACQ (for data ac-
quisition) and EPRC (for data processing). Total energy
consumption is the sum of ENET , EACQ and EPRC . Once
the actual energy consumption is recorded, our prediction
mechanism is applied on the same network with same task
graphs. Fig. 5 shows that the proposed model has a good
accuracy rate with overall RMSD value of 0.00198.

Since the gateway has a virtual view of the network
topology, the intermediate sensor nodes between the gate-
way and a sensor service are identified, and their energy
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consumption in the current slot is calculated similarly.
Moreover, the residual energy prediction module keeps a
check on the residual energy level of sensor services so that
the energy drained sensor services can be prohibited from
taking part in the ranking process.

4 INTEGRATION WITH A GATEWAY SERVICE

To test the utility of VoISRAM, we integrate it with a
recent gateway service design named as TRAPS (Task Re-
quirement Aware Pre-processing and Scheduling [3]). It is
a middleware layer gateway service designed around the
information sharing among multiple sensing tasks. It groups
the similar tasks at the gateway and selects representative
tasks from each group to be executed inside WSN. The
representative tasks fetch the sensed data that is shared by
other members of the group the representative tasks belong
to. This reduces the down-link traffic in WSN and increases
the network lifetime [3]. Selection of a sensor service is
solely based on the mapping between spatial requirement
of the task and the associated geographical location of the
sensor service.

Rather than distributing the task among selected sensor
services in proportion to their residual energy levels (as
in TRAPS), VoISRAM sorts the candidate sensor services in
ascending order of their ranks. The sensor service with the
highest rank is chosen to serve the task. However, if the
highest ranked sensor service is not available (busy serving
other tasks or failed due to technical reasons), the task is
assigned to the second highest ranked sensor service and
so on. QoS requirements in IoT sensory environment can
be characterized into application specific QoS and network
specific QoS [3]. Application specific QoS requirements
include spatio-temporal accuracy of the sensed data (see
section 3.2). Network specific QoS requirements include
network lifetime that is critical for resource constrained
WSN. VoISRAM is assessed for its utility to complement
TRAPS in maintaining a trade-off between application spe-
cific and network specific QoS requirements. We simulated
a WSN environment using OPNET modeler with simulation
parameters listed in Table 6.

The experiments are performed over a network with
4 sub-networks, each having one gateway. The proposed
VoISRAM is executed on each gateway. For simplicity, the
experiments described in this section are shown for a sub-
network with different node densities (10, 20, 30 and 40
sensor nodes) and a single gateway. A multi-application sce-
nario is considered in which different applications using pull
and push based mechanisms are executed to fetch the sensed
data. The number of pull based applications are varied from
5-20 where each application consists of at-least 4 sensing
tasks. Maximum tasks that can be injected into the network
are limited to 80. Tasks with real time temporal requirements
(Cntxttemp

1 ) are considered to be critical for many IoT based
applications such as smart health-care. Similarly Cntxtspat1

tasks pose a stricter location based spatial requirements
as compared to their counterparts (Cntxtspat2 ). Thus, we
study the effect of VoISRAM on the temporal (section 4.1)
and spatial (section 4.2) requirements of the Cntxttemp

1 and
Cntxtspat1 tasks respectively.

TABLE 6: Simulation parameters

Parameter Value
Number of tasks 20-80
Simulation time 60 minutes

Number of sensor nodes (N ) 10-40
Deployment area 100×100 m2

Sensor node’s initial energy 5-15 Joules
Bit rate (B) .25Mbit/s

Sensing range 10 m
Data packet size 80 bits

4.1 Effects on Cntxttemp
1 tasks

In this experiment, we study the effect of VoISRAM on
temporal requirements of the real time tasks. A Cntxttemp

1

task (see section 3.2.2) specifies a deadline (dt) before which
all the required data points must be available at the gateway.
We generated equal number of Cntxttemp

1 and Cntxttemp
2

tasks and measured the percentage of Cntxttemp
1 tasks able

to meet their deadlines. Experiments shown in this section
are performed while varying the following network param-
eters: node density, initial energy level of a sensor node and
number of tasks in the network (see Table 6). Fig. 6(a) shows
the percentage of Cntxttemp

1 tasks meeting their temporal
requirements out of 80 tasks injected into the network with
varying node density and initial energy level of a sensor
node. For initial energy level of 5 Joules, the percentage
of Cntxttemp

1 tasks meeting their temporal requirements
is less. This is because the low initial energy level of sen-
sor nodes causes early node failure due to energy drain.
This leads to increased end-to-end delay causing Cntxttemp

1

tasks miss their respective deadlines. As the initial energy
level of nodes increases, the percentage of Cntxttemp

1 tasks
meeting their temporal requirements increases sharply for
node density of 10, 20 and 30. Interestingly this increment
is rather gradual for node density of 40 due to the increased
number of hops contributing to the end-to-end delay. As
the initial energy level of nodes reaches 15 Joules, node
density does not affect much the performance of the mech-
anism. However, with less number of tasks (=40) in the
network, the scenario with node density of 30 results in
high percentage (Fig. 6(c)) of Cntxttemp

1 tasks meeting their
temporal requirements when initial energy level of sensor
nodes is 15 Joules. This indicates that a dense network
(node density = 40) with the high initial energy level of
sensor nodes (=15 Joules) results in increased percentage of
Cntxttemp

1 tasks meeting their temporal deadlines. On the
contrary, high node density (=40 nodes) increases the end-
to-end delay causing Cntxttemp

1 tasks miss their respective
temporal deadlines. Similarly, scenarios with low node den-
sities (=10 and 20) perform poorly for low initial energy
level (=5 Joules) of sensor nodes. This is due to the network
partition caused by low initial energy level of sensor nodes.
On the other hand, the scenario with node density of 30
succeeds in maintaining the trade-off between network wide
energy consumption and end-to-end delay that results in the
high percentage of Cntxttemp

1 tasks meeting their respective
temporal deadlines.

4.2 Effects on Cntxtspat1 tasks
In this experiment, we study the effect of VoISRAM on the
spatial requirements of the location specific tasks. Equal
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Fig. 6: Percentage of real time tasks meeting their temporal requirements with different network conditions.
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Fig. 7: Effect on location specific tasks with different network conditions

number of Cntxtspat1 and Cntxtspat2 (see Section 3.2.1) tasks
are injected into WSN. Since the Cntxtspat1 specifies a loca-
tion in the form of coordinates, there may be a possibility
that no sensor node is deployed at that location. In this
case, sensor nodes nearest to the required location serve the
task (see equation 3). VoISRAM’s ability to meet the spatial
requirement of Cntxtspat1 tasks is measured using Deviation
from Spatial Requirement (DSR) metric defined as follows.
Suppose there are n Cntxtspat1 tasks injected into the WSN.
If a task Ti specifies the required location such as (xi, yi)
whereas it is assigned to a sensor node located at (pi, qi), the
DSR value for n such tasks is calculated using equation 24.

DSR =
√
(|x1 − p1|+ |y1 − q1|)2 + ...+ (|xn − pn|+ |yn − qn|)2

(24)
DSR is the collective measure for n tasks and represents the
sum of distances that indicates the deviation in Cntxtspat1

tasks’ spatial requirements from the locations of sensor
nodes such tasks are assigned to. Fig. 7 shows the obtained
DSR values for various network conditions. The scenario
with node density of 40 observes low DSR throughout
the experiments (Fig. 7(a)-(c)). This indicates that a dense
network helps Cntxtspat1 tasks meeting their spatial require-
ments. The effect of different initial energy levels shows the
availability of a sensor node at the required location since
a sensor node with low initial energy level (=5 Joules) can
drain out quickly as compared to the one with high initial
energy level (=10 and 15 Joules).

It can be inferred from the above experiments (Fig. 6
and 7) that scenario with network density of 30 outper-

forms others in terms of meeting Cntxttemp
1 tasks’ temporal

requirements. Moreover, it performs reasonably good in
terms of meeting Cntxtspat1 tasks’ spatial requirements as
well. Scenario with node density of 40 outperforms others
in terms of meeting the spatial requirements of Cntxtspat1

tasks. However, it performs poorly in terms of meeting the
temporal requirements of Cntxttemp

1 tasks when the initial
energy of sensor nodes is low (=5, 10 Joules). Experiments
in the following sections are performed on the scenario with
node density of 30 while keeping the initial energy level of
nodes as 10 Joules.

5 JUSTIFICATION FOR INTEGRATION WITH TRAPS
In this section, we compare the performance of TRAPS with
other gateway services such as SACHSEN [16] and Semi-
random [16] when integrated with VoISRAM. We integrate
VoISRAM with mentioned gateway services and compare
the results in terms of application end-to-end delay and
MTTF. The end-to-end delay is measured using M/G/1
queuing model that includes service time, network trans-
mission time and waiting time in the queue. The simulation
is performed for 30 minutes with node density of 30, and
initial energy of sensor nodes as 10 Joules. Other simulation
parameters are same as mentioned in Table 6.

SACHSEN is a QoS aware gateway service similar to
TRAPS with the objective of minimizing the number of
tasks entering the network. Unlike TRAPS, SACHSEN does
not consider the temporal requirements of real time tasks
before assigning them to the appropriate sensor services.
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Fig. 8: End-to-end delay and MTTF comparison when VoISRAM is integrated with Semi-random, SACHSEN and TRAPS.

Moreover, SACHSEN uses piggybacking to get the residual
energy information from the sensor nodes that results in in-
creased energy consumption (see Section 3.5). On the other
hand, Semi-random approach randomly selects a sensor
service from the list of candidate sensor services. Fig. 8(a)
shows the comparison of mentioned approaches in terms
of application end-to-end delay when integrated with VoIS-
RAM. For this experiment, we injected 80 tasks in the net-
work with an equal number of real time and non-real time
tasks. The recorded end-to-end delay is the average of over
100 simulations. Initially all three gateway services perform
equally well (Fig. 8(a)) due to control message exchanges for
network stabilization. However, as the network stabilizes
TRAPS outperforms SACHSEN and Semi-random. This is
because VoISRAM enables TRAPS to further reduce the end-
to-end delay by taking the hop count between gateway and
sensor service into consideration. This reduces overall end-
to-end delay experienced by the application.

Fig. 8(b) shows the comparison among TRAPS, SACH-
SEN and Semi-random in terms of network lifetime. Semi-
random gateway service does not prevent redundant tasks
from entering into the network, thus results in low net-
work lifetime. TRAPS and SACHSEN experience the similar
amount of energy consumption while working in stan-
dalone manner [3]. Network lifetime is a function of over-
all energy consumption and the number of messages ex-
changes. However, the amount of energy consumption and
network lifetime are two different parameters. The amount
of energy consumption depends upon the number of mes-
sage exchanges in the network. On the other hand, network
lifetime depends upon the fair and balanced allocation
of tasks to the sensor services. Unlike SACHSEN, TRAPS
does not use piggybacking to gather the residual energy
information from sensor services. This results in reduced
energy consumption and leads to high network lifetime.
Moreover, VoISRAM further boosts the network lifetime
by considering the residual energy of intermediate sensor
nodes between the gateway and a sensor service before
scheduling a task. Since end-to-end delay and network
lifetime are the crucial evaluation parameters for IoT based
applications, the experimental results shown this section
justify the integration of VoISRAM with TRAPS.

6 COMPARATIVE EVALUATION

In an attempt to manifest the incremental addition towards
the state-of-the-art solutions in the area of sensor service
ranking, this section compares the VoISRAM with other
energy aware sensor service ranking mechanisms such as
CASSARAM [12] and the mechanism proposed in [11].
For notation purpose, we represent mechanism proposed
in [11] as Energy Aware Ranking Mechanism (EARM).
Similar to the earlier experiments, spatio-temporal accu-
racy (application specific QoS parameters) and network
lifetime (network specific QoS parameter) are considered as
evaluation parameters to compare VoISRAM, CASSARAM,
and EARM. Neither EARM nor CASSARAM provides any
mechanism to serve the non real time tasks requiring stale
data (Cntxttemp

2 ). Thus, we choose only real time tasks for
the comparative evaluation. CASSARAM addresses location
specific (Cntxtspat1 ) tasks and do not take Cntxtspat2 tasks
into consideration. On the other hand, EARM does not take
spatial accuracy into consideration and assigns the tasks to
the gateway that contains the required sensor service. The
gateway assigns the task to the sensor service on the basis of
the path length between the gateway and the sensor node.
We choose DSR value as the spatial accuracy measurement
metric for VoISRAM, EARM and CASSARAM.

EARM models a sensor service access cost as a function
of its residual energy level. CASSARAM calculates Com-
parative Priority-based Weighted Index (CPWI) to rank the
sensor services. Though CASSARAM has no limitation on
number of parameters, we consider residual energy (net-
work specific), response time (temporal requirement) and
precision (spatial requirement) as the specified parameters
with weights α1, α2 and α3, respectively to calculate the
CPWI so that it can be reasonably comparable with VoIS-
RAM and EARM. Response time in CASSARAM is defined
as the time taken by a task to fetch the required sensed
data and is used as the measured parameter to evaluate
mechanism’s temporal accuracy. Thus, only real time tasks
with delivery deadlines are considered for the temporal
accuracy assessment.

The experiments are performed on a network size of 40
sensor nodes with initial energy level of 15 Joules. Other
simulation parameters are same as mentioned in Table 6.
Since EARM does not use a weighted cost function and
mostly focuses on energy efficiency, α1 in CASSARAM is
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Fig. 9: Network lifetime comparison among VoISRAM,
EARM and CASSARAM

set as 0.8 (α2 = 0.1, α3 = 0.1) (assigning highest priority to
residual energy) for a fair comparison in terms of MTTF.
To assess the application specific QoS parameters α2 in
CASSARAM is set as 0.8 (α1 = 0.1, α3 = 0.1) for temporal
requirements assessment and α3 is set as 0.8 (α1 = 0.1, α2 =
0.1) for spatial requirements assessment. Fig. 9 shows the
comparison among VoISRAM, EARM and CASSARAM in
terms of MTTF of a sensor node while varying the number
of tasks in the network. Unlike CASSARAM, VoIRSAM
and EARM include residual energy levels of sensor nodes
along the best probable path in their cost functions. It
is observed that VoISRAM outperforms CASSARAM and
shows upto 13% improvement in the MTTF when compared
with EARM. This improvement in the MTTF is caused
due to following reasons. EARM involves the exchange of
periodical updates about the sensor service residual energy
information that contributes to the overall energy consump-
tion. On the other hand, VoISRAM uses prediction based
residual energy estimation mechanism that involves zero
message exchange once the network is initialized. Moreover,
fQoI2 helps selecting paths with minimum hop counts that
results in reduced overall energy consumption and leads
to increased network lifetime. CASSARAM considers the
residual energy level of the sensor service but does not take
into account the residual energy levels of the intermediate
sensor nodes between the gateway and the sensor service in
question that results in low MTTF.

Due to the topological management overhead, MTTF
dips further as the number of tasks increases (Fig. 9) in the
network. A large number of tasks causes more energy con-
sumption that may possibly result in topological changes.
The sensor services may leave at any point due to low resid-
ual energy levels. On the other hand, new sensor services
may discover their parents and join the network in between.
In both the cases, the VoISRAM follows DODAG topology
management protocol [17] according to which, when a sen-
sor service discovers a new child/parent it communicates
this information to the gateway so that the logical view of
the topology can be updated. However, these topological
updations will be more frequent in mobile scenarios that
have the following implications on the VoISRAM. In mobile
scenario, suppose a sensor node leaves the network owned
by the gateway it belongs to and moves to an area owned

by another gateway. This causes the change in sensor service
location that has to be updated at the gateway (assumed to
contain the sensor service location information). Moreover,
due to the joining/leaving of the sensor service(s), various
procedures such as route discovery will be invoked to
maintain the logical view of the network topology at the
gateway. These updations contribute to the overall network
traffic that leads to the increased energy consumption in
the network. Since residual energy is the key attribute in
the VoISRAM, the tasks are assigned to the sensor services
with low residual energy levels compared to that of in static
scenario. This can affect the overall QoS experience of the
application.

Since the sensor services considered in this paper are
static, there are sporadic topological changes observed.
Moreover, residual energy prediction module is linked with
the metadata information and timely informs it about the
status of a sensor service so that the energy drained sensor
services can be prohibited from participating in the ranking
process. Energy consumption in other cases such as retrans-
mission and re-issuing route discovery is beyond the scope
of this paper.

Fig. 10 and 11 show the comparison among VoISRAM,
EARM and CASSARAM in terms of the temporal and
spatial accuracy respectively. EARM and CASSARAM treat
every task uniformly, and the VoI aspect is ignored. Though
EARM outperforms VoISRAM initially, its performance de-
grades as the number of tasks increases in the network
(see Fig. 10). EARM completely ignores the temporal re-
quirement part at the time of ranking. However, its energy
aware mechanism contributes in reducing the number of
intermediate sensor nodes that results in reduced end-to-
end delay and more number of tasks meeting their temporal
requirements. CASSARAM ranks the sensor service on the
basis of response time that is proportional to the amount
of traffic in the network. VoISRAM considers response time
along with the usage context in which the received informa-
tion is going to be used. The degradation in CASSARAM’s
performance as the number of tasks increases in the network
is the direct outcome of increased network traffic.

Since CASSARAM addresses the location based spa-
tial requirements of the task, we consider both Cntxtspat1

and Cntxtspat2 tasks for spatial accuracy assessment. CAS-
SARAM performs equally well as VoISRAM in terms of
meeting spatial requirements (see Fig. 11). This is because
CASSARAM considers precise location in the cost function.
Similar to the temporal requirement, the VoI aspect of the
spatial requirement is completely ignored in EARM and
CASSARAM. Usually Cntxtspat1 tasks are considered to
be stricter than their Cntxtspat2 counterparts. CASSARAM
considers the Cntxtspat1 tasks that help Cntxtspat2 tasks
meeting their spatial requirement as well (low DSR value).
On the other hand, EARM simply assigns the task to the
gateway that contains the required sensor service. Ignoring
the spatial usage context, EARM assigns the task to the
sensor service near to the gateway. This results in high DSR
value in case of EARM.
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Fig. 10: Temporal accuracy comparison among VoISRAM,
EARM and CASSARAM
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7 CONCLUSION

This paper addressed the issue of VoI based sensor service
ranking for the first time and proposed a novel energy aware
sensor service ranking mechanism named as VoISRAM.
Mathematical model of VoISRAM states that a sensor service
ranking can be modeled as VoI attribute. The proposed
VoISRAM is evaluated for its ability in meeting applica-
tion specific and network specific QoS requirements when
integrated with existing state-of-the-art gateway services.
The comparison with recent state-of-the-art service ranking
mechanisms manifests the incremental addition made by
VoISRAM in the area of sensor service ranking. Moreover,
the low time complexity of VoISRAM indicates its suitability
for resource constrained WSNs.

The future work includes integrating VoISRAM with a
mobility-aware sensor indexing mechanism to test the im-
plications of mobility on its performance. The cost function
can also be improved by developing model to measure the
workload of a sensor service as to incorporate this in the
cost function. This will reduce the incurred communication
cost in determining if the highest ranked sensor service is
busy.
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