
07 February 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Al Jawarneh I.M., Bellavista P., Corradi A., Foschini L., Montanari R. (2021). Efficient QoS-Aware Spatial
Join Processing for Scalable NoSQL Storage Frameworks. IEEE TRANSACTIONS ON NETWORK AND SERVICE
MANAGEMENT, 18(2), 2437-2449 [10.1109/TNSM.2020.3034150].

Published Version:

Efficient QoS-Aware Spatial Join Processing for Scalable NoSQL Storage Frameworks

Published:
DOI: http://doi.org/10.1109/TNSM.2020.3034150

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/855163 since: 2022-02-10

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TNSM.2020.3034150
https://hdl.handle.net/11585/855163

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini and R. Montanari, "Efficient
QoS-Aware Spatial Join Processing for Scalable NoSQL Storage Frameworks," in IEEE
Transactions on Network and Service Management, vol. 18, no. 2, pp. 2437-2449,
June 2021

The final published version is available online at:
https://dx.doi.org/10.1109/TNSM.2020.3034150

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/TNSM.2020.3034150

Efficient QoS-Aware Spatial Join Processing for

Scalable NoSQL Storage Frameworks
Isam Mashhour Al Jawarneh, Paolo Bellavista, Antonio Corradi, Luca Foschini, Rebecca Montanari

Dipartimento di Informatica – Scienza e Ingegneria, University of Bologna

Viale Risorgimento 2, 40136 Bologna, Italy

{isam.aljawarneh3, paolo.bellavista, antonio.corradi, luca.foschini, rebecca.montanari}@unibo.it

Abstract — Current cloud-enabled NoSQL database

frameworks support flexible and scalable storage of huge

amounts of data arriving through various and often

heterogeneous channels. However, they do not natively

provide optimised processing of spatial data, thus making it

more difficult to perform accurate data analytics needed in

many smart city application scenarios. To improve the

performance of spatial data computation in the NoSQL

MongoDB storage framework, this paper proposes a novel

data partitioning method based on dimensionality

reduction. The underlying key idea is to reduce a spatial

data representation from multi to single dimensionality, by

still maintaining its geometrical meaning and by employing

a specific geo-encoding scheme, i.e., a geohash string. In

particular, the geohash string is used as a sharding key in

order to store geometrically-nearby objects into the same

chunks (and consequently into the same shard). In addition,

as a distinctive feature, we have extended the MongoDB

framework with a custom spatial QoS-aware optimizer that

exploits our novel partitioning scheme to support two,

typically expensive, types of spatial queries with QoS

guarantees. Those queries are containment (and

consequently top-N) and proximity. The paper also

contributes to the existing literature with extensive

experimental results about the performance of both our

partitioning method and query optimizer; the reported

results show that our solutions outperform baselines by

orders of magnitude.

Keywords — Spatial Join, NoSQL, MongoDB, Point in

Polygon, Containment, Proximity.

I. INTRODUCTION

Highly dynamic smart city application scenarios require,

more than often, to collect massive amounts of geo-referenced

datasets from heterogeneous sources [1]. In addition, these data

processing workloads typically require storing historical data

for future deeper analytics that normally cannot be performed

online.

Currently, the most effective way of unifying large and

heterogeneous datasets in a consolidated structure is to use

NoSQL scalable storage frameworks, such as MongoDB. A

drawback, however, is that those systems do not have a native

support for effective spatial data partitioning (sharding in

MongoDB terms) that enable to distribute spatial data to

multiple processing units according to specific application-

dependent spatial data criteria. Current NoSQL storage

frameworks are general and focus mostly on load balancing by

dispatching roughly equal data loads to the storage shards (a.k.a.

partitions) regardless of spatial data relationships.

To outline the importance of a proper partitioning support

for spatial data, let us consider the case of the collection and

analysis of mobility data related to taxicabs, cars, ambulances,

and shared bikes within a metropolitan city. That data

constitutes a deluge of geo-referenced data (encompassing

location representations that incorporate geographical

meaning). Interesting analytics include traffic city planning,

where decision makers may try to uncover hidden patterns by

generating heatmaps (visualized in special dashboards)

showing how vehicles move on a daily/weekly/monthly basis

during different timeslots. Depending on the analytics results,

decision makers can, for instance, “estimate the volume of cars

driving in the same city district at the same time” or can “find

all taxi trips originated from a given neighbourhood within a

city”. Such kind of analytics need to know and preserve the real

geometrical co-locality of spatial objects during mobility data

processing.

Sending those massive amounts of georeferenced mobility

datasets to parallel processing and storage computing resources

regardless of their spatial characteristic, as in current stock

versions of NoSQL storage frameworks, may cause

geometrically-nearby objects to be forwarded to potentially far

apart processing nodes. As an undesired consequence,

aggregating back spatial data for interesting insights (by

applying spatial join predicates) requires applying scatter-

gather exhaustive searches. On the contrary, sending

geographically-close-by objects to the same processing and

storage nodes can achieve better time-based QoS goals, i.e., a

lower latency and higher throughput, when data need to be

correlated for analysis.

In addition, being storage-oriented, NoSQL systems (such

as MongoDB) are I/O-intensive. Therefore, minimizing the

number of rounds the CPU requires to access the external

memory for I/O can significantly improve the overall

performance of the spatial query processing algorithm. Other

major factors that influence spatial join performance include

the availability of spatial indexes.

Along those guidelines, this paper reports the design of

efficient methods that act on three factors that may significantly

determine the overall performance of spatial joins in distributed

NoSQL (i.e., spatial sharding, indexing, and I/O ratio).

Specifically, we have designed an efficient spatial sharding

method and a novel query processing optimizer to overcome

the difficulty of current NoSQL storage frameworks to

efficiently address time-based QoS goals for spatial analytics

that intrinsically incorporate spatial joins at scale. Our

partitioning method exploits dimensionality reduction,

enabling the spatial data structure to be reduced from a multi-

to one-dimensional representation (based on geohash

encoding). For example, in our solution parametrized

longitude/latitude pairs are transformed into geohashes, which

are simple strings maintaining the underlying positional

information (not precisely but approximately). Spatial points

that have the same geohash value are located geometrically in

the same location (apart from approximation errors). As a key

and original feature of our method, the geohash string is used

as a sharding key. Spatial data are split and stored into shards

based on their geohash values, thus increasing the probability

that geometrically close-by objects end up in the same shard

and even chunks (a chunk resembles a bucket that contains

many spatial points in MongoDB parlance). This feature

contributes to reduce the I/O journeys that the CPU is making

to the external memory. An integral part of our sharding

scheme is a prefiltering stage that selects the geohash precision

that causes a minimal skewness in the sharding key distribution.

That geohash precision then will be used for sharding. Another

main contribution of the paper is the design of a custom spatial

query optimizer specifically for supporting efficient processing

of spatial queries that incorporate spatial joins.

Also, we have designed a two-level indexing scheme based

on a combined use of geohashes and Google’s S2 that

significantly improves the performance of spatial joins in

NoSQL distributed systems. Our join algorithm resorts to a

filter-and-refine approach that is, by far, the most common

well-performing spatial join approach for big data at-scale [2,

3]. Our method focuses on optimizing the operation of the

‘filter’ stage: it is recognized that reducing the ‘candidate set

resulted from the ‘filter’ stage’ is crucial to improve the overall

spatial join query performance [3]. This is exactly one of the

main goals of our original proposal. In short, we aim at reducing

the ‘candidate set’ so that we can improve the overall

performance of our spatial join. Our optimizer incorporates a

method for selecting the geohash that maximizes the ‘index

selectivity’, thus enabling faster targeted scans.

Our novel partitioning, indexing, and query optimizers,

originally presented in this paper, support complex classes of

spatial analytics that intrinsically incorporate a spatial join

predicate. Those optimizations are intended for dynamic

application scenarios that, more than often, require reducing

data volumes by means of spatial aggregations. A typical

scenario is the case where huge volumes of GPS mobility data

arrive every day to a distributed storage and computing cluster.

The persistence storage of all values is unnecessary (for

example, storing GPS coordinates of a taxi every 10 s), whereas

what is required is storing data summaries (e.g., ensembles such

as Top-N, and statistics such as ‘averages’, ‘sums’, and ‘counts’)

showing the trends of how mobility in a city is changing as time

ticks forward. Our solution is unique in its ability to support

spatial aggregations natively based on a spatial join that is

optimized by our retrofitted multi-level indexing-based ‘filter-

and-refine’ method.

Our optimizer outperforms the plain implementations of the

MongoDB NoSQL system for answering spatial queries, such

as containment and proximity, and, thus, achieves better time-

based QoS goals. We have incorporated those optimizations

transparently within the layers of best-in-breed NoSQL system

(specifically MongoDB). We term our novel system

collectively as SpatialNoSQL, indicating the novel support of

an optimized QoS-aware spatial data processing in NoSQL

systems.

To simplify the description and discussion of our original

solutions, in the following we assume that data are two-

dimensional and that the goal is to determine whether an object

is contained within another object (a ‘within’ spatial predicate).

This applies to both containment and nearness (proximity)

predicates. This applies also for proximity predicates because

the problem of finding whether an object falls within a specific

distance from another object can be reduced to a containment

equivalent (as shown rapidly in Section II.C). It is also assumed

that one part of the join operation contains spatial points and

the other part contains spatial objects with extents (i.e.,

polygons). Those assumptions are common in the related

literature and do not affect the generality of our solution

proposals (see Section III.B).

The remainder of the paper is organized as follows. We first

provide a focused background on spatial processing and then,

we present the design guidelines and the primary

implementation insights of our SpatialNoSQL prototype, by

reporting an extensive set of in-the-field performance

measurements. We conclude by drawing some remarks and

recommend future perspectives.

II. SPATIAL PROCESSING: A BRIEF BACKGROUND

A. Data sharding in NoSQL systems

The limitations of single server-based processing for big

data has led to the emergence of distributed processing and

storage systems that depend on parallelization. Those systems

rely on infrastructures that serve internetworked multiple

devices connected as computing clusters on-premises or in a

Cloud.

A notable example of scalable big data storage framework

is MongoDB that is a NoSQL document-oriented framework

that operates on such deployments. In MongoDB terms, a

collection corresponds to a table in relational database

management systems (RDBMSs) and a document is analogous

to a record or a tuple in RDBMSs. MongoDB relies on data

parallelization, which simply means splitting the big data into

chunks, based on a key (known as sharding key in MongoDB),

and sending them to various partitions (hosted in various

computing machines of the Cloud known as shards in

MongoDB terms). The process is known as sharding. A

collection may span several shards and, therefore, is referred to

as a sharded collection. A collection can also fully reside in one

single shard. Documents within a collection are represented in

a JSON format. Upon receiving a query, a MongoDB

component (hosted normally in a separate machine), known as

router, forwards the query request to specific shards depending

on the query plan that has been selected based on a sharding

key, if specified. Otherwise, if the query does not contain a

sharding key as an index, then the router exhaustively

broadcasts (i.e., scatter-gather) the request to every shard in the

cluster, waiting for receiving a response from every shard, then

merges the results. The stock version of MongoDB supports

two advanced sharding schemes. Hashed sharding generates a

hash key for a single filed and use it as a shard key. This

guarantees more even distribution. However, it reduces the

targeted scans, where most queries need to scan most shards

(broadcast scan). This is attributed to the fact that post-hash

documents that have ‘close’ values for the shard key are

forwarded to different chunks or shards. Having said that, a

range search will mostly need a broadcast scan. On the contrary,

range-based sharding depends on aggregating data of a

contiguous range on the values of the shard key, thus

guaranteeing to a good extent that documents with ‘close’

values on the shard key will end up in the same chunk or shard.

It is worth mentioning that load balancing is enabled by default

in MongoDB and is performed by a balancer that periodically

monitors the number of chunks in every shard, then it

automatically migrates chunks from overloaded shards (based

on a set threshold), until it reaches roughly equal number of

chunks per shard. Most importantly, selecting a shard key with

enough variations (i.e., high cardinality) is pivotal.

The choice of an appropriate sharding key is crucial to

optimise spatial query processing. The sharding key should

help, on the one hand, the MongoDB router to route query

requests only to the specific shards that contain chunks with the

shard key value and, on the other hand, to prune the search

space within each shard according to the specified key in the

query.

The current MongoDB stock version allows to use only

number values or text values as a sharding key, but not spatial

fields that are indexed with spatial indexes, such as 2d and

2dsphere. The negative effect is that geometrically nearby

objects can be stored into different chunks and even different

shards.

B. Spatial Join

Spatial join is a crucial primitive in dynamic application

scenarios that normally require intermixing geo-referenced

datasets for deeper analytics. It is specifically becoming more

important to improve the performance of spatial join processing

because spatial data are typically stored in separate files. For

instance, in our smart city example scenario, taxi trips in New

York city may be stored, for privacy purposes, in one file as

GPS coordinates without exhibiting to which neighbourhood

(i.e., polygon) each trip belongs. On the other hand, a separate

file can contain the municipality administrative

neighbourhoods of New York City. This means that in order to

find to which polygon a taxi trip belongs, it is necessary to join

the two files and to solve a computationally-intensive spatial

predicate known as the Point-In-Polygon (PIP) test for each trip

(i.e., spatial point).

In its general form, a spatial join is a set obtained by pairing

two geo-referenced datasets while applying a spatial predicate

(e.g., intersection, inclusion, and nearness) [3]. The two

participating sets can represent multidimensional spatial

objects. An example of spatial join query in our application

example is “finding boroughs in NY city to which each GPS-

represented spatial point (e.g., taxi pickup) belongs”. This is an

example spatial join with a within (i.e., inclusion) predicate that

requires joining spatial points with a master table representing

boroughs (an administrative synonym for geometrical polygons

that divide the city).

Spatial objects are typically represented by using a specific

structure that reflects the way they exist in real geometry. For

example, if we consider the Earth as a planar object, each

spatial point is represented by the two longitude and latitude

coordinates. Even spatial objects with extents (e.g., an area

forming a polygonal-alike shape or a line representing a river

for example) can be represented as set of several spatial points.

For example, for polygonal areas, the set consists of those

points representing the vertices of the polygon. Hence, a point

is a primitive type that can be used to represent other more

complex spatial objects. In this way, spatial data can be

parametrized and saved in tables as normal fields (e.g.,

longitude and latitude coordinates that may be assigned values

of a float data type). This is a common practice normally

because transferring parametrized values over the network (in

addition to storing them) is cheaper than transforming the full

objects (shapes). A limitation, however, is that this

transformation leads to losing the inherent geometry of spatial

objects. In addition, ordering spatial parametrized data in a way

that preserves their proximity is intractable [3]. Therefore, it is

necessary for computer programs to reconstruct those points

into their original formats at query run time. This requires

solving expensive spatial predicates and geometrical equations

(e.g., PIP test). Therefore, the related literature recognizes that

spatial joins run into complexities that do not normally affect

standard relational joins. Relational join methods, such as sort-

merge or equijoin are inapplicable in our context because, for

example, sort-merge join is a sorting-based method: given that

parametrized IoT spatial data is two-dimensional, it cannot be

sorted in both dimensions (longitude and latitude) [3]. Similarly,

also equijoin is generally inapplicable because it depends on

grouping objects that have equal values, which is impossible in

cases where one side of the join has spatial objects with a multi-

dimensional representation (a.k.a. spatial extent). Moreover, in

equijoin, GPS coordinate accuracies may differ for different

participating devices. What is instead needed is a spatial join

operator that can join spatial points and objects within a

tolerable mutual distance. Furthermore, other more complex

approaches such as plane-sweep technique are inapplicable.

Interested readers can refer to a reference comprehensive

seminal survey on spatial join processing for more detailed and

extensive explanation regarding the inapplicability of the join

methods mentioned above [3].

Calculating the spatial predicate on multidimensional

spatial objects is a compute-intensive and I/O-dominant

operation, which requires query processors to make several

rounds in/out the memory (for example, to bring complex

spatial objects, such as polygons represented with thousands of

points). Having said that, minimizing the number of such

operations can significantly improve the overall performance

of a spatial query [2, 3]. Thus, to address the significant

performance overhead of join operations on spatial objects,

most well-performing geospatial-oriented algorithms employ a

two-stage approach known as filter-and-refine [2-5]. In

particular, the first filter stage aims at pruning the search space

by first applying a quick-and-dirty filter, then performing a

spatial join on approximations of the objects (normally the

MBRs of spatial objects with extents); this generates a

candidate set that contains false positives (those with MBRs

that render the join condition true, but geometrically do not).

Filter-and-refine is a general approach that can be tailored

depending on the spatial data structures that underly the spatial

join processing algorithm. This is a more tractable and scalable

approach as it means joining on MBRs (considering also that

spatial points from the other join side are approximated to

geohashes that cover the MBRs). In the refinement stage,

incorrect results (i.e., false positives) caused by the

approximations are removed using the exact geometry

processor (i.e., the expensive predicate) that is applied on the

original objects. This predicate is also known as Point in

Polygon test (PIP hereafter for short), which is a spatial

predicate that seeks whether a spatial point is contained within

the boundaries of an embedding space (often known as

polygon), an expensive operation that is also referred to as

‘within’, ‘inclusion’ or ‘enclosure’ predicate.

Filter-and-refine is a general approach that can be tailored

depending on the spatial data structures that underlie spatial

join processing algorithm [6]. As an example, in the case of

Earth flattened out and overlayed with a uniform grid, an

ordering structure such as Z-order curves can be imposed on

the grid cells, aiming at specifying the direction and ordering

of visiting the cells during query processing. As a special case,

each grid cell can be represented by a string that is resulting

from a geohash encoding. All spatial points that are fenced

within the boundaries of each grid cell then share the same

geohash value. Geohash can be considered a quick-dirty filter.

It is quick as it does not have to apply a costly PIP test. This is

a more tractable and scalable approach as it means joining on

MBRs (considering also that spatial points from the other join

side are approximated to geohashes that cover the MBRs).

However, it is dirty as it may not be accurate for all spatial

points in the input set. This is because geohash values for

neighbouring cells overlap (a phenomena known as ‘edge cases’

or ‘false positives’). For those false positives, the costly PIP test

is then necessary to verify to which exact cell a spatial point in

real geometries belongs, which is part of the refinement stage.

Spatial refinement dominates the cost of the whole join

1 https://s2geometry.io/

procedure; thus, designers should consider minimizing false

positives to reduce the cost induced by applying it [7, 8].

C. Spatial Join Processing in MongoDB

MongoDB employs mostly two kinds of spatial indexes for

processing spatial queries, i.e., 2d and 2dsphere, where the

former is used for flat geometric queries, whereas the latter is

used for spherical ones (i.e., an Earth-like sphere) [9] . Several

geospatial queries are supported, including proximity (through

the $geoNear and $nearSphere operators) and containment

(through the $geoWithin operator utilized to search for

geospatial points within a shape represented on a flat surface,

such as a rectangle, polygon, or a circle). Those queries are

supported for geospatial points and shapes (i.e., line, polygon).

Containment and proximity queries in MongoDB require

applying a ‘within’ predicate. For operators that require a

‘within’ predicate, if no spatial index is imposed on the data,

MongoDB needs to perform a more expensive exhaustive

spatial join, and the costly PIP test needs to be calculated for all

points in each shard exhaustively by applying a

computationally-intensive algorithm known as ray casting.

To cut off such performance penalties to some degree,

MongoDB natively allows exploiting spatial indexing

(2dsphere and 2d) but only locally within each shard

independently. More interesting for our work is the 2dsphere

index as it is the indexing structure that we exploit for the

spatial specifiers that we are optimizing. 2dpshere is based on

google S21 and relies on generating non-equal-sized cells that

together cover a geometry indexed in 2dsphere (i.e., the

embedding space). Thereafter, a B-tree access structure is

imposed on the non-uniform grid-cells specifying the order at

which grid cells will be visited upon query time, thus speeding

up the access. More in details, spatial join in MongoDB is

performed by using the $geoWithin operator with a polygonal

geometry specifier. The join with a spatial index in MongoDB

resembles a filter-and-refine approach, where an S2 list is

computed for the cells that are covering the geometry specifier.

Thereafter, for each cell, B-tree is used to retrieve points that

interact with the covering cells. This works as a dirty-and-quick

sieve, which returns a list of interacting spatial objects that

potentially contain false positives. The refinement step then is

responsible for applying the costly PIP test to each object in the

false positives list to exclude them from the result set.

However, there are still two limitations with the current

MongoDB design. On the one hand, 2dsphere is not allowed to

be used as a sharding key for sharded collections. Spatial data

locality (SDL) preservation is not achieved during the

partitioning stage, thus missing an important optimization.

Spatial data is distributed randomly, which typically results in

sending geometrically nearby objects to different chunks, and

consequently shards. This increases the probability of false

positives (i.e., BSO objects), requiring thus to perform more

expensive PIP spatial joins within each shard. On the other

hand, it is not possible to use the 2dsphere as a cross-shard

indexing excluding the possibility for the MongoDB query

router to route the query request to specific shards only (those

that contain the values in the query specifier). Let us recall that

sending geometrically co-located objects to the same shards can

boost up significantly the system performance. This is in part

due to the fact that spatial queries mostly depend on real

geometrical proximity. Then, being able to clump

geometrically-nearby objects in same shards increases chances

that a local copy of the query processor (within each shard) will

be applied to an increased number of proximate objects that are

hosted within each shard independently, thus reducing the

overall running costs.

Both containment and proximity searches in MongoDB

require spatial join predicate. For example, a containment query

that seeks to “find all taxi trips that have been originated in a

given neighborhood in NY City during a two months period”

requires joining two collections (recap that collections in

MongoDB are analogous to tables in RDBMSs), the first one

containing the spatial points of taxi trips as set of pairs of

longitudes and latitudes, and the second one including the

neighborhoods in NYC in USA, served as polygons.

Proximity queries in MongoDB (such as those applying $near

and $nearSphere operators) also require applying a spatial join

predicate. They basically perform a ‘within’ search (spatial join

predicate) on circular areas (regularly shaped polygons). This

is because for example $nearSphere (a proximity operator in

MongoDB) requires a ‘centre point’ and a ‘radius’. Then

MongoDB will construct a circle with the specified radius

centred around the centre point. This circle is then considered a

polygon (regularly shaped polygon) and the task would be then

applying a containment operator (for example, $geoWithin) to

find all points contained within the circle. This way, proximity

resorts to a special kind of containment, which then requires

applying a spatial join.

We have selected MongoDB in this paper as a representative

baseline because of the spatially-oriented overarching support

that it offers natively. We have stacked-up our SpatialNoSQL

prototype (described below) specifically over MongoDB.

III. SPATIALNOSQL: A NOVEL SPATIAL-AWARE FRAMEWORK

FOR NOSQL SYSTEMS

Our SpatialNoSQL system provides a novel sharding

scheme and an optimised spatial-aware join query support for

NoSQL solutions. SpatialNoSQL basically comprises two

components: a spatial aware novel sharding scheme that is

based on dimensionality reduction (specifically geohashing),

which we term as geospatial sharding scheme (GSS for short);

and a custom spatial query optimizer that exploits GSS in

addition to a novel two-level indexing scheme. Our indexing

scheme adopts a geohash index at a cross-shard level to operate

over different shards and a 2dsphere index at an intra-shard

level to operate locally in each shard independently. We have

designed this scheme in order to optimize the execution of

costly spatial queries that incorporate a spatial join predicate

(such as containment searches based on arbitrarily-shaped

2 http://geohash.org/

embedding areas (i.e., polygons), which requires solving the

costly PIP test). We explain those two components thoroughly

in the next two sub-sections.

A. Geospatial Sharding Scheme

Accounting only for load balancing while distributing big

spatial data to computing cluster shards is not enough. Spatial

data loads often show co-location continuum relations that need

to be considered. Therefore, it is also necessary to address SDL

preservation to improve geospatial data analytics performance

[10]. By achieving SDL preservation while splitting data, the

sharding strategy enables the spatial data query processing

system to send requests potentially to a reduced number of

shards (and consequently chunks within each shard).

Current version of plain MongoDB does not achieve SDL

preservation. As MongoDB does not allow using spatial

indexes as sharding keys.

To overcome the limitations of spatial support in the current

version of MongoDB, we have designed a novel simple, yet,

effective sharding scheme that we dub as GSS (short for

Geohash Sharding Scheme) based on a dimensionality

reduction approach that represents multidimensional spatial

points as strings. Specifically spatial objects are represented in

terms of geohash2 strings and geohashes guide the sharding

strategy. The underlying idea is that every set of points sharing

the same geohash value (intrinsically meaning that they are co-

located in real geography) can be sent to the same shards. The

fact that a geohash is a string that encompasses a geographical

meaning allows us to use it in MongoDB as a sharding key, thus

achieving the SDL preservation goal while respecting the

underlying MongoDB sharding engine rule.

Algorithm 1 explains how works GSS as it follows. It first

receives geo-referenced tuples and applies a mapper on them to

 Algorithm 1. GSS Sharding scheme

 /* input: pointsUpdate (longitude, latitude)

collection*/

chunk[max_chunks] = {}

 //selecting geohash precession that minimize

skewness

 1: min-skewness = INF

geoPrec = 30 //initial geohash precision

Foreach gp in geohashes

 skew = calculateSkewness(gp)

 If (skew < min-skewness)

 geoPrec = gp

 //geocode points

2: Foreach point p in pointsUpdate collection

3: geoPoint  geoEncode(p, geoPrec)

4: groupID  mapper (geoPoint)

5: chunk [groupID]. add (geoPoint)

6: End foreach

 7: bulk_load_chunks (shards [1…i])

inject a geohash field, transforming the parametrized GPS

coordinates (specifically longitude/latitude) into a one-

dimensional geohash value. Thereafter, we specify to

MongoDB that the geohash field is the sharding key. MongoDB

then proceeds by clumping documents that have the same

geohash value into same chunks since geohash has been used

as a sharding key. This is possible because the default sharding

in MongoDB is range sharding, where documents with similar

(or equal) sharding key values end up in the same chunk.

Contiguous chunks have more probability to be inserted into

same shards. By doing so, we preserve SDL at a low-cost. The

only cost associated with our method is the geohash encoding

for which we apply a cheap algorithm with a constant

complexity. Having said that, the extra overhead introduced by

our method can be easily mitigated by the benefits we can reap

thereafter from being able to preserve SDL. It is worth

mentioning that spatial data coming from IoT is normally

highly skewed. Stated another way, spatial instances are

clumped into few patches (being city neighbourhoods, districts,

boroughs etc.,). This means that specific geohashes will have

frequency that may far exceed other geohashes. The extreme

case may happen when spatial instances gather only in specific

areas of the city during rush hours (for example taxis and

human mobility data). This may lead to congest specific shards

by sending more chunks to them, leaving the cluster lopsided

and may devalue the gains from distributed storage and

analytics. This can be solved in two directions, first, an

important tweakable parameter in our algorithm is the geohash

precision. To increase the probability that better load balancing

is achieved, and this extreme worst-case scenario is avoided by

design, we have incorporated a prefiltering stage that calculates

the skewness of the distribution of data based on the following

equation:

𝑁. ∑ (𝑦𝑘 𝑁
𝑘 = 1 − y̅)3

((𝑁−1). (𝑁 − 2). 𝑆3)
⁄

Where 𝑦𝑘 is the count of each geohash distinct value, y̅ is

the average count of geohash values, 𝑁 is the data size and 𝑆 is

the sample standard deviation. Our sharding algorithm then

selects the geohash size with the minimum skewness. We

calculate the sample skewness instead of the population

skewness because the data we have is considered a sample (data

keeps arriving from the IoT sources, so the term of population

vanishes). This way, we guarantee that the geohash values are

more normally distributed and we have fair amount of

variations. The imbalance however will persist, but it will have

less effect on the migration during the auto load balancing. The

other direction is based on enabling the auto-balancing by

MongoDB. This will be able to achieve a plausible balance of

load balancing even with skewed spatial data distribution as the

following. Our sharding scheme is based on the idea of

dimensionality reduction where geometrically-nearby spatial

share the same geohash string value. Bordering geohashes have

‘similar’ values because the geohash value will slightly change,

so they are considered ‘close’ in their shard key values. Since

we specify the geohash key as the shard key, we recover the

range-based sharding which will act as follows. It will take

instances with same (or ‘close’, thus geometrically-nearby)

geohash values and clump them in same chunks. What’s more,

since we are enabling the auto-balancing, MongoDB migrates

data as ‘chunks’ between shards to achieve load balancing.

Since spatial-co-locality is already preserved within the

boundaries of chunks, then migrated chunks are already

optimized for this dimension, in addition to the load balancing

that will be achieved automatically.

B. Spatial NoSQL join Optimizer

We have optimized the plain MongoDB spatial join query
optimizer along two directions. First, we incorporate a
prefiltering stage as a new specifier that is based on the geohash
key, taking thus full advantage of the fact that the geohash key
has also been used as a sharding key. Second, we have designed
a two-stage indexing scheme that works at a global cross-shard
level and at a local inter-shard level.

 Our global index is the geohash that enables to select the
shards that contain the specific geohash list specified in the
query. The geohash acts also on a local level as a pruner within
each shard independently because it enables MongoDB to
retrieve only points within each shard that interact with the
geohash covering (considering that those shards may contain
other geohashes that are not included in the query prefiltering
geohash specifier). The second level index is a local index that
is provided by MongoDB, which is the 2dSphere, that is applied
on the result obtained from the higher indexing stage.

 Algorithm 2. NoSQL spatial join optimizer workflow

1: Input: two versions

 Either Query: q, points: p, r: radius, qp (longitude,

latitude): query point for proximity through $nearSphere
 OR Query: q, points: p, neighbourhoods: nb for

containment-PIP through $geoWithin with a geometry

specifier

2 maxIS = 0 // maxIS: maximum index selectivity

geoPrec = 30

//select geohash precision that maximize the index

selectivity

If (latency-awareness == true)

 Foreach gp in geohashes

 is = indexSelectivity(geohashValue)

 if (is > maxIS)

 geoPrec = gp //selected geohash precision

 /* List of geohashes covering region (irregular

polygon),

3: coverGeo  getCoverGeo (embedding_area, geoPrec)

4: coverGeoSp = “geoPrec”: {“$in”: [coverGeo]}

5: //adding the geohash specifier to the plain MongoDB

operator

newOperator = add (coverGeoSp, MongoDB_operator)

 //enforcing our multi-level indexing scheme

6: p.createIndexes(({"geoPrec",2dsphere"})

 /*Query q is a spatial query (containment-PIP,

proximity, Top-N) that intrinsically requires a spatial

join */

7: executeQuery (q, newOperator,p) //execute the query

using the new operator

Algorithm 2 (which is shown also in Figure 1) explains our

spatial join query optimizer for NoSQL based on a filter-and-

refine approach. More in details, if the user expresses latency-

awareness as a QoS goal, then we apply an index selectivity

measurement to calculate the best geohash precision (e.g., 25,

30, and 35) that has a higher index selectivity, by narrowing the

search for values during a query scan. We specifically apply the

following equation:

𝑖𝑛𝑑𝑒𝑥𝑆𝑒𝑙𝑒𝑐𝑡 =
𝑑𝑖𝑠𝑡_𝑔𝑒𝑜_𝑘𝑒𝑦𝑠

𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑟𝑜𝑤𝑠⁄

where 𝑑𝑖𝑠𝑡_𝑔𝑒𝑜_𝑘𝑒𝑦𝑠 is the ‘distinct geohash keys’ and

𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑟𝑜𝑤𝑠 is the ‘total number of rows in the

collection’. Having selected the appropriate geohash precision.

The algorithm proceeds as it follows. For proximity queries, the

optimizer first constructs a circle (given the radius and a query

point), then a grid structure known normally as Minimum

Bounding Rectangle (MBR) for the circle is imposed and

thereafter a list of covering geohashes is generated based on the

MBR. For containment query processing with irregularly

shaped polygons (e.g., neighbourhoods), the filter-and-refine

approach works as follows. The optimizer works on

precalculated geohash coverings for the embedding space. The

embedding space (the space that is hosting spatial points) is

firstly divided into administrative polygons (districts,

neighbourhoods, or counties in city management terms) and

each polygon is overlayed with an MBR. Obtained MBRs may

naturally overlap in the bordering areas between several

polygons. Corresponding geohashes coverings are generated

and stored into disk.

After generating the geohash covering list, for both query

types, our optimizer injects the list as a value in a new specifier,

which then will act as a prefiltering frontstage. This will force

MongoDB to forward the query request to only shards that

contain geohashes that are part of the covering list. In other

words, shards that contain points that may interact with the

covering.

At a local level, within each shard from the selected shards,

the geohash indexing is used to select locally only those points

that interact with the geohash covering. Thereafter, within each

shard locally, a 2dsphere index is applied as in the following.

First, a minimum set of cells is imposed that fully cover the

geometry represented by the previously generated geohash

covering. Let us refer to this as S2 covering to distinguish it

from the coarser level geohash covering. Then a B-tree index is

imposed on the S2 covering to speed up the access. false

positives, which are already then minimized, are eliminated by

applying the exact expensive geometrical spatial join operation.

It worth noticing that by indexing on geohash, we were able to

minimize the number of possible points that interact with the

S2 covering within each shard independently and also on a

global level since geohash has been used as a sharding key.

The new geohash specifier is crucial to support a quick-and-

dirty prefiltering stage, thus resembling a pruning machine that

aggressively prunes the search space before applying the

expensive PIP test and even before applying the 2dsphere

indexing search. This complies with the filter-and-refine

approaches. Stated differently, geohash and 2dsphere together

are a compound filter, whereas the following PIP test is a

refinement. This way, geohash and 2dsphere reinforce each

other without their drawbacks.

It is worth mentioning that being able to explode

multidimensional spatial data polygons into lists of geohashes

is an original and significant feature that, to the best of our

knowledge, has not been explored yet in the current literature

about NoSQL distributed spatial data management. Reading

spatial (possibly large) polygons from disks is a dominant

overhead factor in the ‘refinement’ stage [3]. Because our

optimizer is able to reduce the ‘candidate set’ that results from

the ‘filter’ stage, we reduce the number of comparisons that

need to be performed in the ‘refinement’ stage, which applies

an expensive PIP operation that needs to bring polygons from

disks, especially for very large polygons that are not suitable to

be kept in main memory.

The paper targets dynamic application scenarios of smart

cities and urban computing, where avalanches of geo-

referenced parametrized mobility traces of moving spatial

objects (vehicles, human, animals, etc.,) reach NoSQL storage

frameworks and need to be managed, rapidly and efficiently, to

reduce time-to-insight (for example, in smart cities ,

participatory health care [11]). Those objects are points with

negligible spatial extents. On the other side of the join, spatial

objects with extent (such as polygons, e.g., a district in a city, a

river, a forest, etc.,) are slowly changing dimensions that rarely

modify their shapes, thus are statically residing in disks. In

short, the most computing-intensive operation, then, is joining

spatial points (dynamic IoT-generated traces) with polygons

(static shapes). Other spatial joins, such as joining static spatial

objects together (polygon with polygon, line with polygon, etc.,)

are less common in dynamic application scenarios because they

are normally solved once and then stored for successive usage.

Fig. 1. Spatial join query optimizer for NoSQL

For example, “finding through which districts of a city a street

passes”, “finding to which forest a lake belongs” are only need

to be solved once (or with rarely changing results). However,

our spatial join method is general and can be easily applied to

any combinations of spatial objects (e.g., line-string, multi-

point, multiline-string, multi-polygon, and even a very complex

geometry-collection). Since the abstract level of MongoDB

representation is based on GeoJSON, many object types are

supported natively including MultiPoint (array of points),

lineStrings (representing streets in a city, for example),

MultiLineString (an array of lineStrings), MultiPolygon (array

of polygons), and even the most complex spatial shapes such as

a GeometryCollection (e.g., a city with all static objects it

contains, schools, streets, districts, etc.,). With these elements

in mind, it should be clear that the problem of joining a spatial

point (dynamic geo-referenced trace coming from IoT) with a

spatial shape (static polygons, lines, or any other geometrical

shape) can be reduced to the problem of finding the geohash

coverings that completely cover the spatial shape region. This

can be easily achieved by writing simple code patches at the

application layer, such as the one described in the paper as an

example for computing the covering geohashes of polygons.

Consider a more complex use case where points at the

intersection of two arbitrarily shaped polygons need to be found.

For example, consider a region C at the intersection between

regions A and B. Two join predicates can describe the case: the

first to find the intersection boundaries (region C) and the

second to determine the spatial points that belong to the

intersection region C. This complex problem can be easily

solved by applying our methods in two ways. The first way is

by simply using a two-stage aggregation as the following. The

first stage computes all the points that fall within the first

polygon (region A), which can be achieved efficiently by

applying our method; we can call the resulting set of points of

this stage as ‘candidate set’. The ‘candidate set’ then will be fed

to the second stage, where we can again apply our join method

efficiently to select only those points from the ‘candidate set’

that belongs to region B, thus obtaining only the points in the

intersection region C. The second way the user may choose is

to write a simple glue code at the application layer to calculate

the intersection boundaries and serve the result as a new

polygon to our method. Our method then takes care of all the

rest by calculating the covering geohashes and applying our

join method to find points belonging to the new polygon (the

intersection area). Therefore, having the geohash coverings at

hand, our methods originally described in this paper are

applicable as-they-are; they represent the abstract foundational

layer above which a pyramid of spatial analytics, e.g., the most

common ones in the literature about smart cities and urban

planning, can be seamlessly stacked up.

Having said so, the methods that we are presenting in this

paper are novel, unique, and significant and they can have a

direct impact on industrial exploitation. Specially, for

businesses and practitioners that are interested in shortening the

total time-to-insight by managing and analysing terabytes of

geo-referenced datasets that arrive continuously from IoT

scenarios, where even tiny optimization of a spatial join

operation can assist the system in remaining alive during burst

spikes in the workloads (which is a common case in dynamic

scenarios that is not unheard of), thus preventing the system

from coming into halt situations.

IV. EXPERIMENTAL PERFORMANCE RESULTS

To validate our novel query optimizer, we have implemented a

prototype of our solutions on top of MongoDB, following the

trending layered-up software stack. We implemented a patch of

a Scala code over Apache Spark for calculating covering

geohashes given an input of a GeoJSON file containing

polygons representing the city administrative neighbourhoods.

Each polygon consists of an array of locational parametrized

points, where each point represents a vertex of the polygon.

For query optimizers, we use JavaScript snippets executed

directly in the Mongo shell. By delving into finer details, our

solution rewrites queries as the following:

1) Proximity with a $nearSphere specifier. We specifically

rewrite $geoWithin with point and circle geometry

specifier.

2) Top-N and containment with irregularly shaped

polygons (we term this category as containment-PIP)

We specifically rewrite $geoWithin with polygon

geometry specifier. Top-N is then a special case of

containment-PIP, where we find and group the points by

the polygon to which they belong, count them, and sort

the counts in a descending order. Listing 1 shows an

example by applying our optimizer.

C. Deployment Settings and Benchmarking

Dataset. For benchmarking, we have tested our methods

using three datasets coming from scalable big data application

scenarios in smart cities and urban informatics. NY City taxicab

Fig. 2. Comparing the performance of our new spatial join query optimizer

on containment-PIP queries (with a $geoWithin operator with a geometry

specifier) against the plain MongoDB optimizer for all datasets. ‘Mongo’

in the legend means the plain MongoDB, whereas ‘geo’ means our new

geohash-based optimizer. ExDocs and ExKeys mean the number of

examined documents and keys, respectively.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

25 30 35 25 30 35 25 30 35

NYC taxicab NYC Uber Rome taxi

n
u

m
b

e
r

o
f

e
x

a
m

in
e

d
 d

o
c

s
 (

M
il

li
o

n
s

)

ru
n

n
in

g
 t

im
e
 (

s
e
c
o

n
d

s
)

geohash precision

runningTime_Mongo runningTime_geo

ExDocs_Mongo ExDocs_geo

trips datasets [12] 3, which is considered one of the state-of-the-

art benchmarking datasets for spatial queries that require

solving a spatial join predicate. The second dataset consists of

a one-month (February 2014) mobility logs of taxi cabs in

Rome, Italy [13], where positions are represented as spatial

POINT (latitude, longitude) objects. The third dataset is about

Uber pickups in New York City 4 for August 2018. We have

selected mobility data because Global Positioning System

(GPS) data is normally captured with high spatial accuracy,

thus is considered a pivotal source for exploring mobility

patterns in smart cities and urban computing. Even more,

taxicab mobility data can even be used for exploring human

mobility dynamics [14]. Since we are providing spatial

optimizations over a de facto standard NoSQL system

(MongoDB) that is widely used for urban computing and smart

cities, we decided to select mobility data from two big cities in

Europe and USA (Rome and NYC, respectively). For NYC

taxicab data, we choose a cohort of two months dataset (around

three million units) representing data captured through taxi

rides for the first two months of 2016. We choose the green taxi

trip records, which include interesting fields capturing, most

importantly, pick-up/drop-off locations and trip distances. For

Rome data, we have selected around two million and a half

records that represent the first weekend of February 2014. For

NYC Uber mobility traces we have selected logs representing

Uber pickups in NYC for the month of August 2014 (around

850k records). The reason for selecting those sizes is twofold.

First, we aim to diversify the scenarios we apply and validate

the applicability of our methods for various dynamic

applications scenarios of smart cities and urban planning.

Those scenarios are discussed in subsection D. Second, larger,

or smaller sample data sizes have similar data characteristics

including the data distributions, so those data sizes that we have

selected are good enough to reflect the real-world scenarios.

Deployment and experimental settings. We run our

3 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

optimizer on a MongoDB Atlas cluster deployed on Microsoft

Azure, hosting MongoDB version 4.0. It consists of 4 shards.

Each shard is an M30 tier with 32 GB storage, 8 GB RAM and

2 vCPUs.

Parameter settings.

• For containment-PIP (i.e., based on the PIP with

polygon geometry specifier) and also for the Top-N

queries (which is a special case of containment-PIP),

we depend on varying geohash precisions and on total

examined documents/keys, in addition to the running

time.

• For proximity queries based on $nearSphere operator

with a test point and circle geometry specifier, we

depend on varying the circle radius and, similarly, on

total examined documents/keys, in addition to the

running time.

D. Results and Discussion

• Testing Containment-PIP Query Optimizer

We specifically focus on containment queries that require

PIP test.
Query. We apply the following spatial containment- PIP

queries. For NYC taxicab data, we apply “find all taxi trips
originated from a given neighborhood in NYC in the last two
months”. For NYC Uber taxi, we apply the following query:
“count the number of Uber orders in a specific neighborhood in
NYC during the summer (in August) 2014”. Comparing the
analysis of the two (Uber and taxicab in NYC can help, for
example, determining the districts where Uber orders surpassed
those of taxicabs. This can help in sending personalized
recommendations to Uber and taxi drivers. For Rome data, we
apply the following query: “find taxi trips that have passed
through a specific district in Rome in the early morning (at 8:00
A.M.) of a specific weekend (the first weekend of February
2014)”. Figures captured though such analytics can help the
municipality of Rome at devising better recommendations for
tourists who are visiting the city. Figure 2 shows that our
optimized version outperforms significantly the plain
MongoDB containment- PIP for all the datasets. Note that for
geohash 30, our geohash-based optimizer requires scanning 3
shards, whereas the plain optimizer requires scanning 4 shards,
which is less efficient. Also, the secondary axis shows that the
number of documents examined by each optimizer to answer the
same query. It is then evident that our optimizer needs to scan
less units for all geohash settings.

• Testing Top-N Query Optimizer

As a special case of containment-PIP, top-N query

theoretically should act in a similar way. Top-N is possible by

checking for each neighbourhood (i.e., polygon) the spatial

objects that are contained within it, thus applying the

containment-PIP spatial join operator for each object that

interact with the coverings.

Query: For NYC taxicab, we apply the following query:

“which are the top-10 neighbourhoods in NYC that had the

4 Retrieved 16/07/2020 from:

https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-

york-city

Fig. 3. Comparing the effect on performance of our new containment-PIP

query optimizer on ensembles (specifically Top-N queries) against the
plain MongoDB optimizer for all datasets. Mongo in the legend means the

plain MongoDB, whereas geohash means our new geohash-based

optimizer. ExDocs and ExKeys mean the number of examined documents

and keys, respectively.

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

0

5

10

15

20

25

30

35

40

45

25 30 35 25 30 35 25 30 35

NYC taxicab NYC Uber Rome taxi

n
u

m
b

e
r

o
f

e
x

a
m

in
e

d
 d

o
c

s

(M
il

li
o

n
s

)

ru
n

n
in

g
 t

im
e
 (

s
e
c
o

n
d

s
)

geohash precision

runningTime_Mongo runningTime_geohash

ExDocs_Mongo ExDocs_geohash

most pickup taxicab orders in the last two months”. For NYC

Uber orders, we apply the following: “order NYC districts with

most Uber orders during summer (August) 2014”. For Rome,

we apply the following Top-N: “which are the most congested

districts of Rome during the early morning in weekend”.

Figures obtained from such analytics can show the mobility

dynamics and patterns in metropolitan cities, which would help

municipalities in improving their urban plans. Figure 3 shows

that MongoDB plain optimizer underperforms our optimizer

for all geohash settings for all the three datasets. However, the

best case occurs at geohash 35, meaning that geohash precision

is a configuration that has a paramount importance in our

method.

• Testing proximity queries (e.g., kNN) Optimizer

(based on $nearSphere operator with a test point and circle

geometry specifier).

Query: We apply the following spatial kNN query for NYC

taxicabs: “find all taxicab trip pickup order locations within

a specified distance of a test point during the last two months,

sorted in order from nearest to farthest”. For NYC Uber we

apply the following: “find Uber orders locations within a

specific distance from the city centre”. For Rome data, we

apply: “count the number of taxicabs that pass near a specific

Point of Interest (POI) in Rome during the early morning of

a specific weekend”.

As depicted in figure 4, our support outperforms the

MongoDB plain support for all datasets. Notice, however, that

in cases where a substantial number of documents and keys

need to be examined, the difference between running times

vanishes. Notice the case of radius 15 where our optimizer

needs to examine documents and keys in magnitudes that are

roughly equal to those of MongoDB. This is healthy as the

number of returned satisfying spatial objects at that distance

(i.e., 15 kilometres) is very near to the total number of

documents in the points collections that we tested on.

All results shown in this section prove that our framework

can satisfy QoS goals, specifically, time-based goals such as

low-latency, higher resource utilization, and high accuracy. It

does so by applying GSS with retrofitted query optimizers for

both proximity (such as kNN) and containment-PIP queries.

GSS achieves a significant weighted balance between two

partitioning goals: SDL preservation and load balancing. The

number of BSOs is tweakable through the geohash precision.

V. RELATED WORK

Related methods in the literature are applied to either

NoSQL disk-based storage-oriented distributed systems (such

as HBase, HDFS and Cassandra [15]) or in-memory processing

frameworks (such as Apache Spark [16] and Hadoop).

For example, few systems such as [17, 18] are engineered

atop HBase, which is a wide column key-value store that

utilizes Hadoop HDFS as its storage layer. However, HBase

does not provide a support for multi-level indexing (including

secondary indexes), thus degrading reading operations during

spatial queries [19]. As a way of contrast, MongoDB supports

a native secondary indexing and database aggregations, which

increases the productivity levels at the presentation layer, and

simplifies the big data access patterns for highly efficient

responses to complex queries.

Cassandra-based systems such as the work by [20] run into

similar shortcomings as those discussed for HBase counterparts.

By considering distributed in-memory processing, several

Spark-based and Hadoop-based frameworks support various

data partitioning, indexing, caching, and query optimizers for

processing big spatial data at scale. The most visible and

popular are GeoSpark [5], spatialspark [21], STARK [22],

SparkGIS [23], Simba [24] are all based on Spark, thus not

specifically designed for scalable multi-structure storage of

rapidly changing data coming from IoT. Also, Simba does not

apply the filter-and-refine approach for spatial join processing

which deteriorates the spatial query accuracy for

multidimensional spatial objects with extents [5]. Other works

focus specifically on spatial joins for in-memory batch

processing systems such as [4, 25, 26]. In the same vein, few

works of the relevant literature focus on exploiting features

provided by some of those NoSQL-based and memory-based

frameworks in supporting more complex spatial analytics. For

example, TrajMesa [27] have extended GeoMesa [28] to

support an efficient storage of big trajectory data through novel

indexing and query pruning methods. However, it suffers from

the same limitations that affect GeoMesa, as it does not support

multi-level indexing for spatial data. Also, GeoMesa does not

have a post-processing step to deduplicate the additional spatial

objects that is introduced by its partitioning model, thus

deteriorating the spatial query accuracy [5] . The same fact

applies to Simba. Also, GeoMesa employs a simple grid-based

local indexing, which is not optimized for processing spatial

highly skewed data [5]. Similar work appears in Trajspark [29]

that is engineered atop Spark for range and kNN spatial queries

on big trajectories data.

Within the same consortium, several works have combined

two or more of those frameworks aiming at reusing their

features without their limitations. For example, [30] has

combined Cassandra with GeoMesa to support spatial storage

management and analytics above Cassandra by exploiting those

spatial supports from GeoMesa. It however suffers the

limitations of Cassandra and GeoMesa altogether, including the

absence of a secondary indexing support.

MD-HBase [31] is, by far, the most widely accepted spatial

framework stacked above HBase; it does not provide a local

index for the contents of the data buckets (analogous to

MongoDB chunks), requiring thus an exhaustive scan inside

each bucket [19] .

Those spatial frameworks normally do not support multi-

level spatial indexing. In addition, in-memory processing

systems are designed to handle big data loads in a way that

differs significantly from storage-oriented NoSQL counterparts.

NoSQL frameworks are designed for managing multi-

structured rapidly changing volumes of data coming from

various heterogeneous sources such as IoT and content

management systems. More in details, NoSQL frameworks

have unique ability in being able to ingest data of various

shapes into same unified storage (e.g., table) despite those

disparities. For example, a data source is providing level of

information (analogous to table fields in relational DBMSs)

that is not available in other sources. However, NoSQL is able

to ingest from all sources into one collection (table). Their

usage is gaining momentum because of the schema-on-read

capability they provide for handling the multi-structures of the

frequently changing data. On the contrary, in-memory batch

processing systems are distributed frameworks designed

specifically for real-time analytics. With that in mind, different

set of optimizations are required to efficiently handle spatial

query processing over NoSQL storage frameworks. It is worth

mentioning that emerging analytics, in particular in smart cities,

are combining both in end-to-end pipelines so that they

reinforce each other synergistically without their limitations. A

regular use case is the following. A company that collects

millions of spatiotemporally-tagged mobility data daily decides

to integrate the powerful real-time analytics pipelines from

Apache Spark for running directly on the operation data sitting

in MongoDB, where the latter serves as a data lake that stores

efficiently (with a unique capability of multi-level indexing)

vast amounts of mobility data. This is an efficient mashup as it

enables results to be served back to live operational processes

without costly expensive ETL processing that would be

otherwise needed when integrating Spark with operational

databases.

Furthermore, our ability to execute containment queries

efficiently (by applying our multi-level indexing scheme) is

strongly novel. Spatial aggregations (such as Top-N) are

natively supported in our method. Utilizing our support, which

is transparently incorporated within the layers of the MongoDB

codebase, means that developers at the application layer can

write complex aggregation queries without worrying about the

underlying logistics. Despite applied generally for spatial joins

in NoSQL, this work focuses specifically on non-irregularly

shaped spatial objects that requires PIP test (which is more

resource-intensive).

A related contribution in this direction is our previous work

[32]. In that work, we have designed a sharding scheme (that

was termed as GAP, a short for geospatial aware partitioner)

that depends on compound sharding key that is comprised of

the geohash value of a spatial point and a timestamp of the

collection time (GPS sensing time) specially for handling

spatiotemporal big data loads. The intention was to achieve a

plausible balance between SDL preservation and load

balancing on a granular level at the tuple insertion time.

However, we have found that such a compound key would

rather compromise the SDL preservation. Moreover, in our

previous method, we assumed that load balancing should be

considered on a document-by-document arrival time basis by

engaging the timestamp in the game. However, this may leave

the system unstable, because documents are coming from

streams and they may arrive out-of-order, rendering the

timestamp incorporation inefficient for striking a balance

between load balancing and SDL preservation. Also, the

workloads we were handling at that time was that of ‘ingesting

spatiotemporal data from IoT in real-time. However, we found

that this may easily turn a bottleneck when write-to-read ratio

increases significantly for the collection that is hosting the

mobility data. This is so because every insertion must update

any indexes in the mobility collection, which normally contains

millions of mobility traces, which negatively impacts the write

operations. In this paper instead, GSS is different in the sense

that we treat new documents (tuples) as collections (appended

tables) added to MongoDB untouched as if they were raw

updates. Then we convert all new arrived documents at once

into geohash-tagged counterparts. Thereafter, offline, we join

this collection to the already-sharded collection, update the

multi-level spatial index and rebalance the complete collection

overnight. Another limitation of our previous work [32] is that

we have supported containment queries only for regularly

(specifically concentrically) shaped areas (circles in this case).

Let us refer to that category as containment-PIC, indicating that

it needs a Point-In-Circle (PIC for short) test, which is

analogous to PIP test with the exception that the embedding

area where we are searching is circular, thus retrieving

concentrically located points. However, this kind of queries

does not serve all types of spatial analytics in smart cities that

incorporate containment spatial predicates. One would then be

more interested in finding points that belong to arbitrarily

shaped polygons, which is the new type we are supporting in

this paper (that we have termed as containment-PIP). One more

weakness of our previous work [32] is that we have supported

proximity searches by using a MapReduce approach. At the

time, $nearSphere MongoDB plain operators were not

operating on sharded collections, a drawback that prohibits

them from exploiting the benefits of distributed processing.

However, starting from MongoDB 4.0, $nearSphere operator

has started operating on sharded collections. Consequently, we

are employing our novel spatial join optimizer in this paper for

enabling an optimized execution of proximity queries over

MongoDB.

VI. CONCLUDING REMARKS

The abundance of billions of IoT devices have caused the

Fig. 4. The performance of our spatial join query optimizer on proximity
queries (with a $nearSphere operator) against the plain MongoDB

optimizer for all datasets. ExDocs and ExKeys mean the number of

examined documents and keys, respectively.

0

0.5

1

1.5

2

2.5

3

0

2

4

6

8

10

12

14

3 7 10 15 3 7 10 15 3 7 10 15

NYC taxicab NYC Uber Rome taxi

n
u

m
b

e
r

o
f

e
x
a

m
in

e
d

 d
o

c
s
 (

M
il

li
o

n
s
)

ru
n

n
in

g
 t

im
e
 (

s
e
c
o

n
d

s
)

distance (kilometers)

runningTime_Mongo runningTime_geohash

ExDocs_Mongo ExDocs_geohash

unprecedented accumulation of huge amounts of geo-

referenced datasets. Those datasets often need to be analysed

by passing through complex spatial analytics pipelines, which

most interestingly, encompass spatial join predicates. Spatial

join predicate is a core corollary for spatial analytics in smart

cities and industry 4.0 and requires normally mashing up

multiple views to get deeper insights from spatial data.

Proximity and containment spatial queries are two predominant

spatial primitive query types in that context. NoSQL scalable

storage frameworks, such as MongoDB, tend to provide few

spatial analytics supports for proximity and containment

searches. However, the spatial join optimizer that those queries

depend upon is not optimized for distributed collections of data.

This is what specifically this paper is set to solve.

In this paper, we have designed a query optimizer that

works specifically for NoSQL queries that involve spatial

predicates with an intrinsic join operation (e.g., contain and

intersect predicates). Our method outperforms baselines in the

field: it is based on dimensionality reduction and on implanting

cheap prefiltering stages that significantly prune the search

space before applying the costly real geometrical spatial join

operators. In summary, we posit that combining spatial

partitioning and spatial-aware indexing plays a vital role in the

speed of spatial query processing (and most specifically those

that incorporate expensive spatial join) in parallel computing

environments. We have selected to stack up our optimizations

atop MongoDB, because it supports unique features that are not

provided by other NoSQL systems. Most importantly, the

powerful secondary indexing and native support for

grouping/aggregation make it well positioned if compared with

its primary competitors in the market. Anyway, the MongoDB

support for geospatial data management and analytics has still

several limitations and is considered still in its infancy. We

have decided to provide a significant original contribution to

the community in the field by exploiting the powerful native

features of MongoDB and adding layers of spatial

optimizations on top of it.

We posit that the novel optimizations presented in this

paper are transferable to other similar NoSQL databases such

as Cassandra and DynamoDB [33]. However, a further

tweaking and a heavy work on the application layers is needed

to inject those optimizations. This is so because most NoSQL

databases do not offer native advanced indexing, aggregation,

and spatial supports. Nevertheless, some systems such as

Cassandra and DynamoDB has a potential in implementing our

optimizations. For example, Cassandra employs the so-called

‘wide partition’ pattern, which tries to group related rows

together to speed the access at query scans by accessing

multiple related rows on same partition [34], which then

demystifies applying a dimensionality reduction approach such

as geohash. DynamoDB also applies a consistent hashing

scheme for partitioning, using concepts like those in Cassandra.

Cassandra provides and SQL-alike API for querying, and it

would be beneficial to implement our approach on Cassandra

in the future. However, the fact that neither Cassandra nor

DynamoDB support natively aggregations or secondary

indexing requires us to perform more application-layer

tweaking.

The encouraging results achieved so far are stimulating our

further research work in the area. We are now working on

primitives for which we design optimizers for stream-static join

processing. In fact, in a case where spatial points arrive from

streams only containing GPS coordinates, they need to be joined

with disk-residence MongoDB polygons. Also, the primitives

introduced in this paper are useful for offline data warehousing

view maintenance. Since MongoDB is designed with embedded

document structures, it is mostly preferable to keep a beefed-up

collection with all documents embedded. For example, keeping

the geometrical polygon for each point (which by itself is a

document) in an embedded document. This requires solving the

spatial join for arriving tuples (could be offline, static-static join

as an overnight job for example), thus maintaining the collection

regularly.

ACKNOWLEDGMENT

This research was supported by the IDEHA project funded by

PON “RICERCA E INNOVAZIONE” 2014-2020 (no.

J46C18000440008) and by the SACHER (Smart Architecture

for Cultural Heritage in Emilia Romagna) project funded by the

POR-FESR 2014-20 (no. J32I16000120009).

REFERENCES

[1] I. M. Al Jawarneh, P. Bellavista, L. Foschini and R. Montanari, "Spatial-

aware approximate big data stream processing," in 2019 IEEE Global

Communications Conference (GLOBECOM), 2019, pp. 1-6.
[2] I. M. H. Al Jawarneh, "Quality of Service Aware Data Stream

Processing for Highly Dynamic and Scalable Applications,”. Ph.D.

dissertation, Dept. Computer Science and Engineering. alma -

University of Bologna, BO, Italy, 2020.

[3] E. H. Jacox and H. Samet, "Spatial join techniques," ACM Transactions
on Database Systems (TODS), vol. 32, (1), pp. 7, 2007.

[4] B. Qiao, B. Hu, J. Zhu, G. Wu, C. Giraud-Carrier and G. Wang, "A top-

k spatial join querying processing algorithm based on spark," Inf Syst,
vol. 87, pp. 101419, 2020.

[5] J. Yu, Z. Zhang and M. Sarwat, "Spatial data management in apache

spark: The geospark perspective and beyond," GeoInformatica, vol. 23,
(1), pp. 37-78, 2019.

[6] P. Bouros and N. Mamoulis, "Spatial joins: what's next?" SIGSPATIAL

Special, vol. 11, (1), pp. 13-21, 2019.
[7] I. M. Aljawarneh, P. Bellavista, A. Corradi, R. Montanari, L. Foschini

and A. Zanotti, "Efficient spark-based framework for big geospatial data

query processing and analysis," in 2017 IEEE Symposium on Computers
and Communications (ISCC), 2017, pp. 851-856.

[8] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, R. Montanari

and A. Zanotti, "In-memory spatial-aware framework for processing
proximity-alike queries in big spatial data," in 2018 IEEE 23rd

International Workshop on Computer Aided Modeling and Design of

Communication Links and Networks (CAMAD), 2018, pp. 1-6.
[9] S. Bradshaw and K. Chodorow, Mongodb: The Definitive Guide:

Powerful and Scalable Data Storage, 3rd Edn. O’Reilly Media Inc, USA,

2018.
[10] G. Heiler and A. Hanbury, "Comparing implementation variants of

distributed spatial join on spark," in 2019 IEEE International Conference

on Big Data (Big Data), 2019, pp. 6071-6073.
[11] I. M. Aljawarneh, P. Bellavista, C. R. De Rolt and L. Foschini,

"Dynamic identification of participatory mobile health communities," in

Cloud Infrastructures, Services, and IoT Systems for Smart
CitiesAnonymous Springer, 2017, pp. 208-217.

[12] New York (N.Y.). Taxi and Limousine Commission. New York City

Taxi Trip Data, 2009-2018. Inter-university Consortium for Political and

Social Research [distributor], 2019-02-20.

https://doi.org/10.3886/ICPSR37254.v1

[13] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici and A. Rabuffi.
(). CRAWDAD dataset roma/taxi (v. 2014-07-17). Available:

https://crawdad.org/roma/taxi/20140717/taxicabs. DOI:

10.15783/C7QC7M.
[14] J. Wang, X. Kong, F. Xia and L. Sun, "Urban human mobility: Data-

driven modeling and prediction," ACM SIGKDD Explorations

Newsletter, vol. 21, (1), pp. 1-19, 2019.
[15] A. Lakshman and P. Malik, "Cassandra: a decentralized structured

storage system," ACM SIGOPS Operating Systems Review, vol. 44, (2),

pp. 35-40, 2010.
[16] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker and I. Stoica,

"Spark: Cluster computing with working sets." HotCloud, vol. 10, (10-

10), pp. 95, 2010.
[17] D. Zhang, Y. Wang, Z. Liu and S. Dai, "Improving NoSQL Storage

Schema Based on Z-Curve for Spatial Vector Data," IEEE Access, vol.

7, pp. 78817-78829, 2019.
[18] P. Wang, F. Xu, M. Ma and L. Duan, "Efficient spatial big data storage

and query in HBase," in 2019 IEEE International Conference on Smart

Cloud (SmartCloud), 2019, pp. 149-155.

[19] J. K. Nidzwetzki and R. H. Güting, "BBoxDB: a distributed and highly

available key-bounding-box-value store," Distributed and Parallel

Databases, vol. 38, (2), pp. 439-493, 2020.
[20] J. K. Nidzwetzki and R. H. Güting, "Distributed SECONDO: A highly

available and scalable system for spatial data processing," in

International Symposium on Spatial and Temporal Databases, 2015, pp.
491-496.

[21] S. You, J. Zhang and L. Gruenwald, "Large-scale spatial join query

processing in cloud," in 2015 31st IEEE International Conference on
Data Engineering Workshops, 2015, pp. 34-41.

[22] S. Hagedorn, P. Gotze and K. Sattler, "The STARK framework for

spatio-temporal data analytics on spark," Datenbanksysteme Für
Business, Technologie Und Web (BTW 2017), 2017.

[23] F. Baig, H. Vo, T. Kurc, J. Saltz and F. Wang, "Sparkgis: Resource

aware efficient in-memory spatial query processing," in Proceedings of
the 25th ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems, 2017, pp. 1-10..
[24] D. Xie, F. Li, B. Yao, G. Li, L. Zhou and M. Guo, "Simba: Efficient in-

memory spatial analytics," in Proceedings of the 2016 International

Conference on Management of Data, 2016, pp. 1071-1085.
[25] R. T. Whitman, B. G. Marsh, M. B. Park and E. G. Hoel, "Distributed

spatial and spatio-temporal join on apache spark," ACM Transactions on

Spatial Algorithms and Systems (TSAS), vol. 5, (1), pp. 1-28, 2019.
[26] C. Rong, X. Cheng, Z. Chen and N. Huo, "Similarity joins for high‐

dimensional data using Spark," Concurrency and Computation: Practice

and Experience, vol. 31, (20), pp. e5339, 2019.
[27] R. Li, H. He, R. Wang, S. Ruan, Y. Sui, J. Bao and Y. Zheng, "Trajmesa:

A distributed nosql storage engine for big trajectory data," in 2020 IEEE

36th International Conference on Data Engineering (ICDE), 2020, pp.
2002-2005.

[28] J. N. Hughes, A. Annex, C. N. Eichelberger, A. Fox, A. Hulbert and M.

Ronquest, "Geomesa: A distributed architecture for spatio-temporal
fusion," in Geospatial Informatics, Fusion, and Motion Video Analytics

V, 2015, pp. 94730F.

[29] Z. Zhang, C. Jin, J. Mao, X. Yang and A. Zhou, "Trajspark: A scalable
and efficient in-memory management system for big trajectory data," in

Asia-Pacific Web (APWeb) and Web-Age Information Management

(WAIM) Joint Conference on Web and Big Data, 2017, pp. 11-26.
[30] A. Nanjappan, "R*-Tree index in Cassandra for Geospatial Processing,"

2019.

[31] S. Nishimura, S. Das, D. Agrawal and A. El Abbadi, "Md-hbase: A
scalable multi-dimensional data infrastructure for location aware

services," in 2011 IEEE 12th International Conference on Mobile Data

Management, 2011, pp. 7-16.
[32] I. M. Al Jawarneh, P. Bellavista, F. Casimiro, A. Corradi and L. Foschini,

"Cost-effective strategies for provisioning NoSQL storage services in

support for industry 4.0," in 2018 IEEE Symposium on Computers and
Communications (ISCC), 2018, pp. 1227.

[33] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall and W. Vogels, "Dynamo:

amazon's highly available key-value store," ACM SIGOPS Operating

Systems Review, vol. 41, (6), pp. 205-220, 2007.

[34] J. Carpenter and E. Hewitt, Cassandra: The Definitive Guide:
Distributed Data at Web Scale. O'Reilly Media, 2020.

Isam Mashhour Al Jawarneh received PhD degree

in computer science and engineering from University

of Bologna, Italy in 2020. He is now a postdoctoral

researcher at University of Bologna. His research

interests cover many aspects of big data stream

processing and active data warehousing for highly

dynamic application scenarios. He has authored/co-authored many

international journal articles and papers for flagship conferences (such

as IEEE GLOBECOM and ICC). He has a research and teaching

experience at higher-education level for more than 13 years.

Paolo Bellavista (SM’06) received MSc and PhD

degrees in computer science engineering from the

University of Bologna, Italy, where he is now a full

professor of distributed and mobile systems. His

research activities span from pervasive wireless

computing to location/context-aware services, from edge cloud

computing to middleware for Industry 4.0 applications. He is currently

the scientific coordinator of a large H2020 big data innovation action

called IoTwins about distributed digital twins for the manufacturing

industry. He serves on the Editorial Boards of IEEE Communications

Surveys and Tutorials, ACM Computing Surveys, IEEE T. on

Network and Service Management, Elsevier Pervasive Mobile

Computing, and Elsevier J. on Network and Computing Applications,

among the others.

Antonio Corradi (SM’19) graduated from University

of Bologna, Italy, and received MS in electrical

engineering from Cornell University, USA. He is a full

professor of computer engineering at the University of

Bologna. His research interests include distributed

systems, middleware for pervasive and heterogeneous computing,

infrastructure for services and network management.

Luca Foschini (SM’19) graduated from the

University of Bologna, Italy, where he received a

Ph.D. degree in computer science engineering in

2007. He is now an associate professor of computer

engineering at the University of Bologna. His

interests span from integrated management of

distributed systems and services to wireless pervasive computing and

scalable context data distribution infrastructures and context-aware

services. Currently, he is working on mobile crowdsensing and

crowdsourcing and management of Cloud systems for Smart City

environments.

Rebecca Montanari graduated from the University

of Bologna, where she received a Ph.D. degree in

computer science engineering in 2001. She is now an

associate professor of computer engineering at the

University of Bologna. Her research primarily

focuses on semantic-based middleware supports for

service provisioning, context-aware services, security solutions for

pervasive environments, policy-based service management, and

adaptive and scalable middleware solutions for system and service

management.

	Copertina_postprint_IRIS_UNIBO (2) - Copy
	TNSM20_final_paper.pdf

