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Abstract — Current cloud-enabled NoSQL database 

frameworks support flexible and scalable storage of huge 

amounts of data arriving through various and often 

heterogeneous channels. However, they do not natively 

provide optimised processing of spatial data, thus making it 

more difficult to perform accurate data analytics needed in 

many smart city application scenarios. To improve the 

performance of spatial data computation in the NoSQL 

MongoDB storage framework, this paper proposes a novel 

data partitioning method based on dimensionality 

reduction. The underlying key idea is to reduce a spatial 

data representation from multi to single dimensionality, by 

still maintaining its geometrical meaning and by employing 

a specific geo-encoding scheme, i.e., a geohash string. In 

particular, the geohash string is used as a sharding key in 

order to store geometrically-nearby objects into the same 

chunks (and consequently into the same shard). In addition, 

as a distinctive feature, we have extended the MongoDB 

framework with a custom spatial QoS-aware optimizer that 

exploits our novel partitioning scheme to support two, 

typically expensive, types of spatial queries with QoS 

guarantees. Those queries are containment (and 

consequently top-N) and proximity. The paper also 

contributes to the existing literature with extensive 

experimental results about the performance of both our 

partitioning method and query optimizer; the reported 

results show that our solutions outperform baselines by 

orders of magnitude. 

 

Keywords — Spatial Join, NoSQL, MongoDB, Point in 

Polygon, Containment, Proximity. 

I. INTRODUCTION 

Highly dynamic smart city application scenarios require, 

more than often, to collect massive amounts of geo-referenced 

datasets from heterogeneous sources [1]. In addition, these data 

processing workloads typically require storing historical data 

for future deeper analytics that normally cannot be performed 

online.  

Currently, the most effective way of unifying large and 

heterogeneous datasets in a consolidated structure is to use 

NoSQL scalable storage frameworks, such as MongoDB. A 

drawback, however, is that those systems do not have a native 

support for effective spatial data partitioning (sharding in 

MongoDB terms) that enable to distribute spatial data to 

multiple processing units according to specific application-

dependent spatial data criteria. Current NoSQL storage 

frameworks are general and focus mostly on load balancing by 

dispatching roughly equal data loads to the storage shards (a.k.a. 

partitions) regardless of spatial data relationships.  

To outline the importance of a proper partitioning support 

for spatial data, let us consider the case of the collection and 

analysis of mobility data related to taxicabs, cars, ambulances, 

and shared bikes within a metropolitan city. That data 

constitutes a deluge of geo-referenced data (encompassing 

location representations that incorporate geographical 

meaning). Interesting analytics include traffic city planning, 

where decision makers may try to uncover hidden patterns by 

generating heatmaps (visualized in special dashboards) 

showing how vehicles move on a daily/weekly/monthly basis 

during different timeslots. Depending on the analytics results, 

decision makers can, for instance, “estimate the volume of cars 

driving in the same city district at the same time” or can “find 

all taxi trips originated from a given neighbourhood within a 

city”. Such kind of analytics need to know and preserve the real 

geometrical co-locality of spatial objects during mobility data 

processing. 

Sending those massive amounts of georeferenced mobility 

datasets to parallel processing and storage computing resources 

regardless of their spatial characteristic, as in current stock 

versions of NoSQL storage frameworks, may cause 

geometrically-nearby objects to be forwarded to potentially far 

apart processing nodes. As an undesired consequence, 

aggregating back spatial data for interesting insights (by 

applying spatial join predicates) requires applying scatter-

gather exhaustive searches. On the contrary, sending 

geographically-close-by objects to the same processing and 

storage nodes can achieve better time-based QoS goals, i.e., a 

lower latency and higher throughput, when data need to be 

correlated for analysis. 

In addition, being storage-oriented, NoSQL systems (such 

as MongoDB) are I/O-intensive. Therefore, minimizing the 

number of rounds the CPU requires to access the external 

memory for I/O can significantly improve the overall 

performance of the spatial query processing algorithm. Other 

major factors that influence spatial join performance include 

the availability of spatial indexes. 

Along those guidelines, this paper reports the design of 

efficient methods that act on three factors that may significantly 

determine the overall performance of spatial joins in distributed 



NoSQL (i.e., spatial sharding, indexing, and I/O ratio). 

Specifically, we have designed an efficient spatial sharding 

method and a novel query processing optimizer to overcome 

the difficulty of current NoSQL storage frameworks to 

efficiently address time-based QoS goals for spatial analytics 

that intrinsically incorporate spatial joins at scale.  Our 

partitioning method exploits dimensionality reduction, 

enabling the spatial data structure to be reduced from a multi- 

to one-dimensional representation (based on geohash 

encoding). For example, in our solution parametrized 

longitude/latitude pairs are transformed into geohashes, which 

are simple strings maintaining the underlying positional 

information (not precisely but approximately). Spatial points 

that have the same geohash value are located geometrically in 

the same location (apart from approximation errors). As a key 

and original feature of our method, the geohash string is used 

as a sharding key. Spatial data are split and stored into shards 

based on their geohash values, thus increasing the probability 

that geometrically close-by objects end up in the same shard 

and even chunks (a chunk resembles a bucket that contains 

many spatial points in MongoDB parlance). This feature 

contributes to reduce the I/O journeys that the CPU is making 

to the external memory. An integral part of our sharding 

scheme is a prefiltering stage that selects the geohash precision 

that causes a minimal skewness in the sharding key distribution. 

That geohash precision then will be used for sharding. Another 

main contribution of the paper is the design of a custom spatial 

query optimizer specifically for supporting efficient processing 

of spatial queries that incorporate spatial joins.  

Also, we have designed a two-level indexing scheme based 

on a combined use of geohashes and Google’s S2 that 

significantly improves the performance of spatial joins in 

NoSQL distributed systems. Our join algorithm resorts to a 

filter-and-refine approach that is, by far, the most common 

well-performing spatial join approach for big data at-scale [2, 

3]. Our method focuses on optimizing the operation of the 

‘filter’ stage: it is recognized that reducing the ‘candidate set 

resulted from the ‘filter’ stage’ is crucial to improve the overall 

spatial join query performance  [3]. This is exactly one of the 

main goals of our original proposal. In short, we aim at reducing 

the ‘candidate set’ so that we can improve the overall 

performance of our spatial join. Our optimizer incorporates a 

method for selecting the geohash that maximizes the ‘index 

selectivity’, thus enabling faster targeted scans. 

Our novel partitioning, indexing, and query optimizers, 

originally presented in this paper, support complex classes of 

spatial analytics that intrinsically incorporate a spatial join 

predicate. Those optimizations are intended for dynamic 

application scenarios that, more than often, require reducing 

data volumes by means of spatial aggregations. A typical 

scenario is the case where huge volumes of GPS mobility data 

arrive every day to a distributed storage and computing cluster. 

The persistence storage of all values is unnecessary (for 

example, storing GPS coordinates of a taxi every 10 s), whereas 

what is required is storing data summaries (e.g., ensembles such 

as Top-N, and statistics such as ‘averages’, ‘sums’, and ‘counts’) 

showing the trends of how mobility in a city is changing as time 

ticks forward. Our solution is unique in its ability to support 

spatial aggregations natively based on a spatial join that is 

optimized by our retrofitted multi-level indexing-based ‘filter-

and-refine’ method. 

Our optimizer outperforms the plain implementations of the 

MongoDB NoSQL system for answering spatial queries, such 

as containment and proximity, and, thus, achieves better time-

based QoS goals. We have incorporated those optimizations 

transparently within the layers of best-in-breed NoSQL system 

(specifically MongoDB). We term our novel system 

collectively as SpatialNoSQL, indicating the novel support of 

an optimized QoS-aware spatial data processing in NoSQL 

systems.  

To simplify the description and discussion of our original 

solutions, in the following we assume that data are two-

dimensional and that the goal is to determine whether an object 

is contained within another object (a ‘within’ spatial predicate). 

This applies to both containment and nearness (proximity) 

predicates. This applies also for proximity predicates because 

the problem of finding whether an object falls within a specific 

distance from another object can be reduced to a containment 

equivalent (as shown rapidly in Section II.C). It is also assumed 

that one part of the join operation contains spatial points and 

the other part contains spatial objects with extents (i.e., 

polygons). Those assumptions are common in the related 

literature and do not affect the generality of our solution 

proposals (see Section III.B). 

 

The remainder of the paper is organized as follows. We first 

provide a focused background on spatial processing and then, 

we present the design guidelines and the primary 

implementation insights of our SpatialNoSQL prototype, by 

reporting an extensive set of in-the-field performance 

measurements. We conclude by drawing some remarks and 

recommend future perspectives. 

II. SPATIAL PROCESSING: A BRIEF BACKGROUND 

A. Data sharding in NoSQL systems 

The limitations of single server-based processing for big 

data has led to the emergence of distributed processing and 

storage systems that depend on parallelization.  Those systems 

rely on infrastructures that serve internetworked multiple 

devices connected as computing clusters on-premises or in a 

Cloud. 

A notable example of scalable big data storage framework 

is MongoDB that is a NoSQL document-oriented framework 

that operates on such deployments. In MongoDB terms, a 

collection corresponds to a table in relational database 

management systems (RDBMSs) and a document is analogous 

to a record or a tuple in RDBMSs. MongoDB relies on data 

parallelization, which simply means splitting the big data into 

chunks, based on a key (known as sharding key in MongoDB), 

and sending them to various partitions (hosted in various 

computing machines of the Cloud known as shards in 

MongoDB terms). The process is known as sharding. A 

collection may span several shards and, therefore, is referred to 



as a sharded collection. A collection can also fully reside in one 

single shard. Documents within a collection are represented in 

a JSON format. Upon receiving a query, a MongoDB 

component (hosted normally in a separate machine), known as 

router, forwards the query request to specific shards depending 

on the query plan that has been selected based on a sharding 

key, if specified. Otherwise, if the query does not contain a 

sharding key as an index, then the router exhaustively 

broadcasts (i.e., scatter-gather) the request to every shard in the 

cluster, waiting for receiving a response from every shard, then 

merges the results. The stock version of MongoDB supports 

two advanced sharding schemes. Hashed sharding generates a 

hash key for a single filed and use it as a shard key. This 

guarantees more even distribution. However, it reduces the 

targeted scans, where most queries need to scan most shards 

(broadcast scan). This is attributed to the fact that post-hash 

documents that have ‘close’ values for the shard key are 

forwarded to different chunks or shards. Having said that, a 

range search will mostly need a broadcast scan. On the contrary, 

range-based sharding depends on aggregating data of a 

contiguous range on the values of the shard key, thus 

guaranteeing to a good extent that documents with ‘close’ 

values on the shard key will end up in the same chunk or shard. 

It is worth mentioning that load balancing is enabled by default 

in MongoDB and is performed by a balancer that periodically 

monitors the number of chunks in every shard, then it 

automatically migrates chunks from overloaded shards (based 

on a set threshold), until it reaches roughly equal number of 

chunks per shard. Most importantly, selecting a shard key with 

enough variations (i.e., high cardinality) is pivotal.  

The choice of an appropriate sharding key is crucial to 

optimise spatial query processing. The sharding key should 

help, on the one hand, the MongoDB router to route query 

requests only to the specific shards that contain chunks with the 

shard key value and, on the other hand, to prune the search 

space within each shard according to the specified key in the 

query. 

The current MongoDB stock version allows to use only 

number values or text values as a sharding key, but not spatial 

fields that are indexed with spatial indexes, such as 2d and 

2dsphere. The negative effect is that geometrically nearby 

objects can be stored into different chunks and even different 

shards.  

 

B. Spatial Join 

Spatial join is a crucial primitive in dynamic application 

scenarios that normally require intermixing geo-referenced 

datasets for deeper analytics.  It is specifically becoming more 

important to improve the performance of spatial join processing 

because spatial data are typically stored in separate files. For 

instance, in our smart city example scenario, taxi trips in New 

York city may be stored, for privacy purposes, in one file as 

GPS coordinates without exhibiting to which neighbourhood 

(i.e., polygon) each trip belongs. On the other hand, a separate 

file can contain the municipality administrative 

neighbourhoods of New York City. This means that in order to 

find to which polygon a taxi trip belongs, it is necessary to join 

the two files and to solve a computationally-intensive spatial 

predicate known as the Point-In-Polygon (PIP) test for each trip 

(i.e., spatial point). 

In its general form, a spatial join is a set obtained by pairing 

two geo-referenced datasets while applying a spatial predicate 

(e.g., intersection, inclusion, and nearness) [3]. The two 

participating sets can represent multidimensional spatial 

objects. An example of spatial join query in our application 

example is “finding boroughs in NY city to which each GPS-

represented spatial point (e.g., taxi pickup) belongs”. This is an 

example spatial join with a within (i.e., inclusion) predicate that 

requires joining spatial points with a master table representing 

boroughs (an administrative synonym for geometrical polygons 

that divide the city). 

Spatial objects are typically represented by using a specific 

structure that reflects the way they exist in real geometry. For 

example, if we consider the Earth as a planar object, each 

spatial point is represented by the two longitude and latitude 

coordinates. Even spatial objects with extents (e.g., an area 

forming a polygonal-alike shape or a line representing a river 

for example) can be represented as set of several spatial points. 

For example, for polygonal areas, the set consists of those 

points representing the vertices of the polygon. Hence, a point 

is a primitive type that can be used to represent other more 

complex spatial objects. In this way, spatial data can be 

parametrized and saved in tables as normal fields (e.g., 

longitude and latitude coordinates that may be assigned values 

of a float data type). This is a common practice normally 

because transferring parametrized values over the network (in 

addition to storing them) is cheaper than transforming the full 

objects (shapes). A limitation, however, is that this 

transformation leads to losing the inherent geometry of spatial 

objects.  In addition, ordering spatial parametrized data in a way 

that preserves their proximity is intractable [3]. Therefore, it is 

necessary for computer programs to reconstruct those points 

into their original formats at query run time. This requires 

solving expensive spatial predicates and geometrical equations 

(e.g., PIP test). Therefore, the related literature recognizes that 

spatial joins run into complexities that do not normally affect 

standard relational joins. Relational join methods, such as sort-

merge or equijoin are inapplicable in our context because, for 

example, sort-merge join is a sorting-based method: given that 

parametrized IoT spatial data is two-dimensional, it cannot be 

sorted in both dimensions (longitude and latitude) [3]. Similarly, 

also equijoin is generally inapplicable because it depends on 

grouping objects that have equal values, which is impossible in 

cases where one side of the join has spatial objects with a multi-

dimensional representation (a.k.a. spatial extent). Moreover, in 

equijoin, GPS coordinate accuracies may differ for different 

participating devices. What is instead needed is a spatial join 

operator that can join spatial points and objects within a 

tolerable mutual distance. Furthermore, other more complex 

approaches such as plane-sweep technique are inapplicable. 

Interested readers can refer to a reference comprehensive 

seminal survey on spatial join processing for more detailed and 

extensive explanation regarding the inapplicability of the join 

methods mentioned above [3]. 



 

Calculating the spatial predicate on multidimensional 

spatial objects is a compute-intensive and I/O-dominant 

operation, which requires query processors to make several 

rounds in/out the memory (for example, to bring complex 

spatial objects, such as polygons represented with thousands of 

points). Having said that, minimizing the number of such 

operations can significantly improve the overall performance 

of a spatial query [2, 3]. Thus, to address the significant 

performance overhead of join operations on spatial objects, 

most well-performing geospatial-oriented algorithms employ a 

two-stage approach known as filter-and-refine [2-5]. In 

particular, the first filter stage aims at pruning the search space 

by first applying a quick-and-dirty filter, then performing a 

spatial join on approximations of the objects (normally the 

MBRs of spatial objects with extents); this generates a 

candidate set that contains false positives (those with MBRs 

that render the join condition true, but geometrically do not). 

Filter-and-refine is a general approach that can be tailored 

depending on the spatial data structures that underly the spatial 

join processing algorithm. This is a more tractable and scalable 

approach as it means joining on MBRs (considering also that 

spatial points from the other join side are approximated to 

geohashes that cover the MBRs). In the refinement stage, 

incorrect results (i.e., false positives) caused by the 

approximations are removed using the exact geometry 

processor (i.e., the expensive predicate) that is applied on the 

original objects. This predicate is also known as Point in 

Polygon test (PIP hereafter for short), which is a spatial 

predicate that seeks whether a spatial point is contained within 

the boundaries of an embedding space (often known as 

polygon), an expensive operation that is also referred to as 

‘within’, ‘inclusion’ or ‘enclosure’ predicate.   

Filter-and-refine is a general approach that can be tailored 

depending on the spatial data structures that underlie spatial 

join processing algorithm [6]. As an example, in the case of 

Earth flattened out and overlayed with a uniform grid, an 

ordering structure such as Z-order curves can be imposed on 

the grid cells, aiming at specifying the direction and ordering 

of visiting the cells during query processing. As a special case, 

each grid cell can be represented by a string that is resulting 

from a geohash encoding. All spatial points that are fenced 

within the boundaries of each grid cell then share the same 

geohash value. Geohash can be considered a quick-dirty filter. 

It is quick as it does not have to apply a costly PIP test. This is 

a more tractable and scalable approach as it means joining on 

MBRs (considering also that spatial points from the other join 

side are approximated to geohashes that cover the MBRs). 

However, it is dirty as it may not be accurate for all spatial 

points in the input set. This is because geohash values for 

neighbouring cells overlap (a phenomena known as ‘edge cases’ 

or ‘false positives’). For those false positives, the costly PIP test 

is then necessary to verify to which exact cell a spatial point in 

real geometries belongs, which is part of the refinement stage. 

Spatial refinement dominates the cost of the whole join 

 
1 https://s2geometry.io/ 

procedure; thus, designers should consider minimizing false 

positives to reduce the cost induced by applying it [7, 8].  

 

C. Spatial Join Processing in MongoDB 

MongoDB employs mostly two kinds of spatial indexes for 

processing spatial queries, i.e., 2d and 2dsphere, where the 

former is used for flat geometric queries, whereas the latter is 

used for spherical ones (i.e., an Earth-like sphere) [9] . Several 

geospatial queries are supported, including proximity (through 

the $geoNear and $nearSphere operators) and containment 

(through the $geoWithin operator utilized to search for 

geospatial points within a shape represented on a flat surface, 

such as a rectangle, polygon, or a circle).  Those queries are 

supported for geospatial points and shapes (i.e., line, polygon). 

Containment and proximity queries in MongoDB require 

applying a ‘within’ predicate. For operators that require a 

‘within’ predicate, if no spatial index is imposed on the data, 

MongoDB needs to perform a more expensive exhaustive 

spatial join, and the costly PIP test needs to be calculated for all 

points in each shard exhaustively by applying a 

computationally-intensive algorithm known as ray casting.  

To cut off such performance penalties to some degree, 

MongoDB natively allows exploiting spatial indexing 

(2dsphere and 2d) but only locally within each shard 

independently. More interesting for our work is the 2dsphere 

index as it is the indexing structure that we exploit for the 

spatial specifiers that we are optimizing.  2dpshere is based on 

google S21 and relies on generating non-equal-sized cells that 

together cover a geometry indexed in 2dsphere (i.e., the 

embedding space). Thereafter, a B-tree access structure is 

imposed on the non-uniform grid-cells specifying the order at 

which grid cells will be visited upon query time, thus speeding 

up the access. More in details, spatial join in MongoDB is 

performed by using the $geoWithin operator with a polygonal 

geometry specifier. The join with a spatial index in MongoDB 

resembles a filter-and-refine approach, where an S2 list is 

computed for the cells that are covering the geometry specifier. 

Thereafter, for each cell, B-tree is used to retrieve points that 

interact with the covering cells. This works as a dirty-and-quick 

sieve, which returns a list of interacting spatial objects that 

potentially contain false positives. The refinement step then is 

responsible for applying the costly PIP test to each object in the 

false positives list to exclude them from the result set. 

However, there are still two limitations with the current 

MongoDB design. On the one hand, 2dsphere is not allowed to 

be used as a sharding key for sharded collections. Spatial data 

locality (SDL) preservation is not achieved during the 

partitioning stage, thus missing an important optimization. 

Spatial data is distributed randomly, which typically results in 

sending geometrically nearby objects to different chunks, and 

consequently shards. This increases the probability of false 

positives (i.e., BSO objects), requiring thus to perform more 

expensive PIP spatial joins within each shard. On the other 

hand, it is not possible to use the 2dsphere as a cross-shard 



indexing excluding the possibility for the MongoDB query 

router to route the query request to specific shards only (those 

that contain the values in the query specifier). Let us recall that 

sending geometrically co-located objects to the same shards can 

boost up significantly the system performance. This is in part 

due to the fact that spatial queries mostly depend on real 

geometrical proximity. Then, being able to clump 

geometrically-nearby objects in same shards increases chances 

that a local copy of the query processor (within each shard) will 

be applied to an increased number of proximate objects that are 

hosted within each shard independently, thus reducing the 

overall running costs. 

Both containment and proximity searches in MongoDB 

require spatial join predicate. For example, a containment query 

that seeks to “find all taxi trips that have been originated in a 

given neighborhood in NY City during a two months period” 

requires joining two collections (recap that collections in 

MongoDB are analogous to tables in RDBMSs), the first one 

containing the spatial points of taxi trips as set of pairs of 

longitudes and latitudes, and the second one including the 

neighborhoods in NYC in USA, served as polygons.  

Proximity queries in MongoDB (such as those applying $near 

and $nearSphere operators) also require applying a spatial join 

predicate. They basically perform a ‘within’ search (spatial join 

predicate) on circular areas (regularly shaped polygons). This 

is because for example $nearSphere (a proximity operator in 

MongoDB) requires a ‘centre point’ and a ‘radius’. Then 

MongoDB will construct a circle with the specified radius 

centred around the centre point. This circle is then considered a 

polygon (regularly shaped polygon) and the task would be then 

applying a containment operator (for example, $geoWithin) to 

find all points contained within the circle. This way, proximity 

resorts to a special kind of containment, which then requires 

applying a spatial join. 

We have selected MongoDB in this paper as a representative 

baseline because of the spatially-oriented overarching support 

that it offers natively. We have stacked-up our SpatialNoSQL 

prototype (described below) specifically over MongoDB. 

III. SPATIALNOSQL: A NOVEL SPATIAL-AWARE FRAMEWORK 

FOR NOSQL SYSTEMS 

Our SpatialNoSQL system provides a novel sharding 

scheme and an optimised spatial-aware join query support for 

NoSQL solutions. SpatialNoSQL basically comprises two 

components: a spatial aware novel sharding scheme that is 

based on dimensionality reduction (specifically geohashing), 

which we term as geospatial sharding scheme (GSS for short); 

and a custom spatial query optimizer that exploits GSS in 

addition to a novel two-level indexing scheme. Our indexing 

scheme adopts a geohash index at a cross-shard level to operate 

over different shards and a 2dsphere index at an intra-shard 

level to operate locally in each shard independently. We have 

designed this scheme in order to optimize the execution of 

costly spatial queries that incorporate a spatial join predicate 

(such as containment searches based on arbitrarily-shaped 

 
2 http://geohash.org/ 

embedding areas (i.e., polygons), which requires solving the 

costly PIP test). We explain those two components thoroughly 

in the next two sub-sections. 

A. Geospatial Sharding Scheme  

Accounting only for load balancing while distributing big 

spatial data to computing cluster shards is not enough. Spatial 

data loads often show co-location continuum relations that need 

to be considered. Therefore, it is also necessary to address SDL 

preservation to improve geospatial data analytics performance 

[10]. By achieving SDL preservation while splitting data, the 

sharding strategy enables the spatial data query processing 

system to send requests potentially to a reduced number of 

shards (and consequently chunks within each shard).  

Current version of plain MongoDB does not achieve SDL 

preservation. As MongoDB does not allow using spatial 

indexes as sharding keys.  

To overcome the limitations of spatial support in the current 

version of MongoDB, we have designed a novel simple, yet, 

effective sharding scheme that we dub as GSS (short for 

Geohash Sharding Scheme) based on a dimensionality 

reduction approach that represents multidimensional spatial 

points as strings. Specifically spatial objects are represented in 

terms of geohash2 strings and geohashes guide the sharding 

strategy. The underlying idea is that every set of points sharing 

the same geohash value (intrinsically meaning that they are co-

located in real geography) can be sent to the same shards. The 

fact that a geohash is a string that encompasses a geographical 

meaning allows us to use it in MongoDB as a sharding key, thus 

achieving the SDL preservation goal while respecting the 

underlying MongoDB sharding engine rule. 

Algorithm 1 explains how works GSS as it follows. It first 

receives geo-referenced tuples and applies a mapper on them to 

 
  Algorithm 1. GSS Sharding scheme 

 /* input: pointsUpdate (longitude, latitude) 

collection*/ 

chunk[max_chunks] = {} 

 //selecting geohash precession that minimize 

skewness 

 1: min-skewness = INF 

geoPrec = 30 //initial geohash precision 

Foreach gp in geohashes 

          skew = calculateSkewness(gp) 

          If (skew < min-skewness) 

             geoPrec = gp 

 //geocode points  

2: Foreach point p in pointsUpdate collection 

3:     geoPoint  geoEncode(p, geoPrec)  

4:     groupID   mapper (geoPoint) 

5:     chunk [groupID]. add (geoPoint) 

6: End foreach 

 7:     bulk_load_chunks (shards [1…i]) 

 

 



inject a geohash field, transforming the parametrized GPS 

coordinates (specifically longitude/latitude) into a one-

dimensional geohash value. Thereafter, we specify to 

MongoDB that the geohash field is the sharding key. MongoDB 

then proceeds by clumping documents that have the same 

geohash value into same chunks since geohash has been used 

as a sharding key. This is possible because the default sharding 

in MongoDB is range sharding, where documents with similar 

(or equal) sharding key values end up in the same chunk. 

Contiguous chunks have more probability to be inserted into 

same shards. By doing so, we preserve SDL at a low-cost. The 

only cost associated with our method is the geohash encoding 

for which we apply a cheap algorithm with a constant 

complexity. Having said that, the extra overhead introduced by 

our method can be easily mitigated by the benefits we can reap 

thereafter from being able to preserve SDL. It is worth 

mentioning that spatial data coming from IoT is normally 

highly skewed. Stated another way, spatial instances are 

clumped into few patches (being city neighbourhoods, districts, 

boroughs etc.,). This means that specific geohashes will have 

frequency that may far exceed other geohashes. The extreme 

case may happen when spatial instances gather only in specific 

areas of the city during rush hours (for example taxis and 

human mobility data). This may lead to congest specific shards 

by sending more chunks to them, leaving the cluster lopsided 

and may devalue the gains from distributed storage and 

analytics. This can be solved in two directions, first, an 

important tweakable parameter in our algorithm is the geohash 

precision. To increase the probability that better load balancing 

is achieved, and this extreme worst-case scenario is avoided by 

design, we have incorporated a prefiltering stage that calculates 

the skewness of the distribution of data based on the following 

equation: 

𝑁. ∑ (𝑦𝑘  𝑁
𝑘 = 1 −  y̅)3

((𝑁−1). (𝑁 − 2). 𝑆3)
⁄  

Where 𝑦𝑘  is the count of each geohash distinct value, y̅ is 

the average count of geohash values, 𝑁 is the data size and 𝑆 is 

the sample standard deviation. Our sharding algorithm then 

selects the geohash size with the minimum skewness. We 

calculate the sample skewness instead of the population 

skewness because the data we have is considered a sample (data 

keeps arriving from the IoT sources, so the term of population 

vanishes). This way, we guarantee that the geohash values are 

more normally distributed and we have fair amount of 

variations. The imbalance however will persist, but it will have 

less effect on the migration during the auto load balancing. The 

other direction is based on enabling the auto-balancing by 

MongoDB. This will be able to achieve a plausible balance of 

load balancing even with skewed spatial data distribution as the 

following. Our sharding scheme is based on the idea of 

dimensionality reduction where geometrically-nearby spatial 

share the same geohash string value. Bordering geohashes have 

‘similar’ values because the geohash value will slightly change, 

so they are considered ‘close’ in their shard key values. Since 

we specify the geohash key as the shard key, we recover the 

range-based sharding which will act as follows. It will take 

instances with same (or ‘close’, thus geometrically-nearby) 

geohash values and clump them in same chunks. What’s more, 

since we are enabling the auto-balancing, MongoDB migrates 

data as ‘chunks’ between shards to achieve load balancing. 

Since spatial-co-locality is already preserved within the 

boundaries of chunks, then migrated chunks are already 

optimized for this dimension, in addition to the load balancing 

that will be achieved automatically. 

B. Spatial NoSQL join Optimizer 

We have optimized the plain MongoDB spatial join query 
optimizer along two directions. First, we incorporate a 
prefiltering stage as a new specifier that is based on the geohash 
key, taking thus full advantage of the fact that the geohash key 
has also been used as a sharding key. Second, we have designed 
a two-stage indexing scheme that works at a global cross-shard 
level and at a local inter-shard level.  
 
 Our global index is the geohash that enables to select the 
shards that contain the specific geohash list specified in the 
query. The geohash acts also on a local level as a pruner within 
each shard independently because it enables MongoDB to 
retrieve only points within each shard that interact with the 
geohash covering (considering that those shards may contain 
other geohashes that are not included in the query prefiltering 
geohash specifier). The second level index is a local index that 
is provided by MongoDB, which is the 2dSphere, that is applied 
on the result obtained from the higher indexing stage.  

 Algorithm 2. NoSQL spatial join optimizer workflow 

1: Input: two versions 

  Either Query: q, points: p, r: radius, qp (longitude, 

latitude): query point for proximity through $nearSphere 
 OR Query: q, points: p, neighbourhoods: nb for 

containment-PIP through $geoWithin with a geometry 

specifier 

 

 

 

2 maxIS = 0 // maxIS: maximum index selectivity 

geoPrec = 30 

//select geohash precision that maximize the index 

selectivity 

If (latency-awareness == true) 

   Foreach gp in geohashes 

       is = indexSelectivity(geohashValue) 

       if (is > maxIS) 

       geoPrec = gp //selected geohash precision 

 /* List of geohashes covering region (irregular 

polygon),  

3: coverGeo  getCoverGeo (embedding_area, geoPrec)  

4: coverGeoSp = “geoPrec”: {“$in”: [coverGeo]} 

5: //adding the geohash specifier to the plain MongoDB 

operator  

newOperator = add (coverGeoSp, MongoDB_operator)  

 //enforcing our multi-level indexing scheme 

6: p.createIndexes(({"geoPrec",2dsphere"}) 

 /*Query q is a spatial query (containment-PIP, 

proximity, Top-N) that intrinsically requires a spatial 

join */ 

7: executeQuery (q, newOperator,p) //execute the query 

using the new operator 

 



Algorithm 2 (which is shown also in Figure 1) explains our 

spatial join query optimizer for NoSQL based on a filter-and-

refine approach. More in details, if the user expresses latency-

awareness as a QoS goal, then we apply an index selectivity 

measurement to calculate the best geohash precision (e.g., 25, 

30, and 35) that has a higher index selectivity, by narrowing the 

search for values during a query scan. We specifically apply the 

following equation:  

𝑖𝑛𝑑𝑒𝑥𝑆𝑒𝑙𝑒𝑐𝑡 =  
𝑑𝑖𝑠𝑡_𝑔𝑒𝑜_𝑘𝑒𝑦𝑠

𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑟𝑜𝑤𝑠⁄  

where 𝑑𝑖𝑠𝑡_𝑔𝑒𝑜_𝑘𝑒𝑦𝑠  is the ‘distinct geohash keys’ and 

𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑟𝑜𝑤𝑠  is the ‘total number of rows in the 

collection’.  Having selected the appropriate geohash precision. 

The algorithm proceeds as it follows. For proximity queries, the 

optimizer first constructs a circle (given the radius and a query 

point), then a grid structure known normally as Minimum 

Bounding Rectangle (MBR) for the circle is imposed and 

thereafter a list of covering geohashes is generated based on the 

MBR. For containment query processing with irregularly 

shaped polygons (e.g., neighbourhoods), the filter-and-refine 

approach works as follows. The optimizer works on 

precalculated geohash coverings for the embedding space. The 

embedding space (the space that is hosting spatial points) is 

firstly divided into administrative polygons (districts, 

neighbourhoods, or counties in city management terms) and 

each polygon is overlayed with an MBR. Obtained MBRs may 

naturally overlap in the bordering areas between several 

polygons. Corresponding geohashes coverings are generated 

and stored into disk.  

After generating the geohash covering list, for both query 

types, our optimizer injects the list as a value in a new specifier, 

which then will act as a prefiltering frontstage. This will force 

MongoDB to forward the query request to only shards that 

contain geohashes that are part of the covering list. In other 

words, shards that contain points that may interact with the 

covering. 

At a local level, within each shard from the selected shards, 

the geohash indexing is used to select locally only those points 

that interact with the geohash covering. Thereafter, within each 

shard locally, a 2dsphere index is applied as in the following. 

First, a minimum set of cells is imposed that fully cover the 

geometry represented by the previously generated geohash 

covering. Let us refer to this as S2 covering to distinguish it 

from the coarser level geohash covering. Then a B-tree index is 

imposed on the S2 covering to speed up the access. false 

positives, which are already then minimized, are eliminated by 

applying the exact expensive geometrical spatial join operation. 

It worth noticing that by indexing on geohash, we were able to 

minimize the number of possible points that interact with the 

S2 covering within each shard independently and also on a 

global level since geohash has been used as a sharding key.  

The new geohash specifier is crucial to support a quick-and-

dirty prefiltering stage, thus resembling a pruning machine that 

aggressively prunes the search space before applying the 

expensive PIP test and even before applying the 2dsphere 

indexing search. This complies with the filter-and-refine 

approaches. Stated differently, geohash and 2dsphere together 

are a compound filter, whereas the following PIP test is a 

refinement. This way, geohash and 2dsphere reinforce each 

other without their drawbacks. 

It is worth mentioning that being able to explode 

multidimensional spatial data polygons into lists of geohashes 

is an original and significant feature that, to the best of our 

knowledge, has not been explored yet in the current literature 

about NoSQL distributed spatial data management. Reading 

spatial (possibly large) polygons from disks is a dominant 

overhead factor in the ‘refinement’ stage [3]. Because our 

optimizer is able to reduce the ‘candidate set’ that results from 

the ‘filter’ stage, we reduce the number of comparisons that 

need to be performed in the ‘refinement’ stage, which applies 

an expensive PIP operation that needs to bring polygons from 

disks, especially for very large polygons that are not suitable to 

be kept in main memory. 

 

The paper targets dynamic application scenarios of smart 

cities and urban computing, where avalanches of geo-

referenced parametrized mobility traces of moving spatial 

objects (vehicles, human, animals, etc., ) reach NoSQL storage 

frameworks and need to be managed, rapidly and efficiently, to 

reduce time-to-insight (for example, in smart cities , 

participatory health care [11]). Those objects are points with 

negligible spatial extents. On the other side of the join, spatial 

objects with extent (such as polygons, e.g., a district in a city, a 

river, a forest, etc.,) are slowly changing dimensions that rarely 

modify their shapes, thus are statically residing in disks. In 

short, the most computing-intensive operation, then, is joining 

spatial points (dynamic IoT-generated traces) with polygons 

(static shapes). Other spatial joins, such as joining static spatial 

objects together (polygon with polygon, line with polygon, etc.,) 

are less common in dynamic application scenarios because they 

are normally solved once and then stored for successive usage. 

 
Fig. 1. Spatial join query optimizer for NoSQL 

 

 



For example, “finding through which districts of a city a street 

passes”, “finding to which forest a lake belongs” are only need 

to be solved once (or with rarely changing results). However, 

our spatial join method is general and can be easily applied to 

any combinations of spatial objects (e.g., line-string, multi-

point, multiline-string, multi-polygon, and even a very complex 

geometry-collection). Since the abstract level of MongoDB 

representation is based on GeoJSON, many object types are 

supported natively including MultiPoint (array of points), 

lineStrings (representing streets in a city, for example), 

MultiLineString (an array of lineStrings), MultiPolygon (array 

of polygons), and even the most complex spatial shapes such as 

a GeometryCollection (e.g., a city with all static objects it 

contains, schools, streets, districts, etc.,). With these elements 

in mind, it should be clear that the problem of joining a spatial 

point (dynamic geo-referenced trace coming from IoT) with a 

spatial shape (static polygons, lines, or any other geometrical 

shape) can be reduced to the problem of finding the geohash 

coverings that completely cover the spatial shape region. This 

can be easily achieved by writing simple code patches at the 

application layer, such as the one described in the paper as an 

example for computing the covering geohashes of polygons. 

Consider a more complex use case where points at the 

intersection of two arbitrarily shaped polygons need to be found. 

For example, consider a region C at the intersection between 

regions A and B. Two join predicates can describe the case: the 

first to find the intersection boundaries (region C) and the 

second to determine the spatial points that belong to the 

intersection region C. This complex problem can be easily 

solved by applying our methods in two ways. The first way is 

by simply using a two-stage aggregation as the following. The 

first stage computes all the points that fall within the first 

polygon (region A), which can be achieved efficiently by 

applying our method; we can call the resulting set of points of 

this stage as ‘candidate set’. The ‘candidate set’ then will be fed 

to the second stage, where we can again apply our join method 

efficiently to select only those points from the ‘candidate set’ 

that belongs to region B, thus obtaining only the points in the 

intersection region C. The second way the user may choose is 

to write a simple glue code at the application layer to calculate 

the intersection boundaries and serve the result as a new 

polygon to our method. Our method then takes care of all the 

rest by calculating the covering geohashes and applying our 

join method to find points belonging to the new polygon (the 

intersection area). Therefore, having the geohash coverings at 

hand, our methods originally described in this paper are 

applicable as-they-are; they represent the abstract foundational 

layer above which a pyramid of spatial analytics, e.g., the most 

common ones in the literature about smart cities and urban 

planning, can be seamlessly stacked up.  

 

Having said so, the methods that we are presenting in this 

paper are novel, unique, and significant and they can have a 

direct impact on industrial exploitation. Specially, for 

businesses and practitioners that are interested in shortening the 

total time-to-insight by managing and analysing terabytes of 

geo-referenced datasets that arrive continuously from IoT 

scenarios, where even tiny optimization of a spatial join 

operation can assist the system in remaining alive during burst 

spikes in the workloads (which is a common case in dynamic 

scenarios that is not unheard of), thus preventing the system 

from coming into halt situations. 

IV. EXPERIMENTAL PERFORMANCE RESULTS 

To validate our novel query optimizer, we have implemented a 

prototype of our solutions on top of MongoDB, following the 

trending layered-up software stack. We implemented a patch of 

a Scala code over Apache Spark for calculating covering 

geohashes given an input of a GeoJSON file containing 

polygons representing the city administrative neighbourhoods. 

Each polygon consists of an array of locational parametrized 

points, where each point represents a vertex of the polygon. 

For query optimizers, we use JavaScript snippets executed 

directly in the Mongo shell. By delving into finer details, our 

solution rewrites queries as the following: 

1) Proximity with a $nearSphere specifier. We specifically 

rewrite $geoWithin with point and circle geometry 

specifier. 

2) Top-N and containment with irregularly shaped 

polygons (we term this category as containment-PIP) 

We specifically rewrite $geoWithin with polygon 

geometry specifier. Top-N is then a special case of 

containment-PIP, where we find and group the points by 

the polygon to which they belong, count them, and sort 

the counts in a descending order. Listing 1 shows an 

example by applying our optimizer. 

C. Deployment Settings and Benchmarking 

Dataset. For benchmarking, we have tested our methods 

using three datasets coming from scalable big data application 

scenarios in smart cities and urban informatics. NY City taxicab 

 
Fig. 2. Comparing the performance of our new spatial join query optimizer 

on containment-PIP queries (with a $geoWithin operator with a geometry 

specifier) against the plain MongoDB optimizer for all datasets. ‘Mongo’ 

in the legend means the plain MongoDB, whereas ‘geo’ means our new 

geohash-based optimizer. ExDocs and ExKeys mean the number of 

examined documents and keys, respectively. 
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trips datasets [12] 3, which is considered one of the state-of-the-

art benchmarking datasets for spatial queries that require 

solving a spatial join predicate. The second dataset consists of 

a one-month (February 2014) mobility logs of taxi cabs in 

Rome, Italy [13], where positions are represented as spatial 

POINT (latitude, longitude) objects. The third dataset is about 

Uber pickups in New York City 4 for August 2018. We have 

selected mobility data because Global Positioning System 

(GPS) data is normally captured with high spatial accuracy, 

thus is considered a pivotal source for exploring mobility 

patterns in smart cities and urban computing. Even more, 

taxicab mobility data can even be used for exploring human 

mobility dynamics [14]. Since we are providing spatial 

optimizations over a de facto standard NoSQL system 

(MongoDB) that is widely used for urban computing and smart 

cities, we decided to select mobility data from two big cities in 

Europe and USA (Rome and NYC, respectively). For NYC 

taxicab data, we choose a cohort of two months dataset (around 

three million units) representing data captured through taxi 

rides for the first two months of 2016. We choose the green taxi 

trip records, which include interesting fields capturing, most 

importantly, pick-up/drop-off locations and trip distances. For 

Rome data, we have selected around two million and a half 

records that represent the first weekend of February 2014. For 

NYC Uber mobility traces we have selected logs representing 

Uber pickups in NYC for the month of August 2014 (around 

850k records). The reason for selecting those sizes is twofold. 

First, we aim to diversify the scenarios we apply and validate 

the applicability of our methods for various dynamic 

applications scenarios of smart cities and urban planning. 

Those scenarios are discussed in subsection D. Second, larger, 

or smaller sample data sizes have similar data characteristics 

including the data distributions, so those data sizes that we have 

selected are good enough to reflect the real-world scenarios. 

Deployment and experimental settings. We run our 

 
3 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page  

optimizer on a MongoDB Atlas cluster deployed on Microsoft 

Azure, hosting MongoDB version 4.0. It consists of 4 shards. 

Each shard is an M30 tier with 32 GB storage, 8 GB RAM and 

2 vCPUs.  

Parameter settings.  

• For containment-PIP (i.e., based on the PIP with 

polygon geometry specifier) and also for the Top-N 

queries (which is a special case of containment-PIP), 

we depend on varying geohash precisions and on total 

examined documents/keys, in addition to the running 

time. 

• For proximity queries based on $nearSphere operator 

with a test point and circle geometry specifier, we 

depend on varying the circle radius and, similarly, on 

total examined documents/keys, in addition to the 

running time. 

D. Results and Discussion 

• Testing Containment-PIP Query Optimizer 

We specifically focus on containment queries that require 

PIP test. 
Query. We apply the following spatial containment- PIP 

queries. For NYC taxicab data, we apply “find all taxi trips 
originated from a given neighborhood in NYC in the last two 
months”. For NYC Uber taxi, we apply the following query: 
“count the number of Uber orders in a specific neighborhood in 
NYC during the summer (in August) 2014”. Comparing the 
analysis of the two (Uber and taxicab in NYC can help, for 
example, determining the districts where Uber orders surpassed 
those of taxicabs. This can help in sending personalized 
recommendations to Uber and taxi drivers. For Rome data, we 
apply the following query: “find taxi trips that have passed 
through a specific district in Rome in the early morning (at 8:00 
A.M.) of a specific weekend (the first weekend of February 
2014)”. Figures captured though such analytics can help the 
municipality of Rome at devising better recommendations for 
tourists who are visiting the city. Figure 2 shows that our 
optimized version outperforms significantly the plain 
MongoDB containment- PIP for all the datasets. Note that for 
geohash 30, our geohash-based optimizer requires scanning 3 
shards, whereas the plain optimizer requires scanning 4 shards, 
which is less efficient. Also, the secondary axis shows that the 
number of documents examined by each optimizer to answer the 
same query. It is then evident that our optimizer needs to scan 
less units for all geohash settings. 

• Testing Top-N Query Optimizer 

As a special case of containment-PIP, top-N query 

theoretically should act in a similar way. Top-N is possible by 

checking for each neighbourhood (i.e., polygon) the spatial 

objects that are contained within it, thus applying the 

containment-PIP spatial join operator for each object that 

interact with the coverings. 

Query: For NYC taxicab, we apply the following query: 

“which are the top-10 neighbourhoods in NYC that had the 

4 Retrieved 16/07/2020 from: 

https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-

york-city 

 
Fig. 3. Comparing the effect on performance of our new containment-PIP 

query optimizer on ensembles (specifically Top-N queries) against the 
plain MongoDB optimizer for all datasets. Mongo in the legend means the 

plain MongoDB, whereas geohash means our new geohash-based 

optimizer. ExDocs and ExKeys mean the number of examined documents 

and keys, respectively. 
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most pickup taxicab orders in the last two months”. For NYC 

Uber orders, we apply the following: “order NYC districts with 

most Uber orders during summer (August) 2014”. For Rome, 

we apply the following Top-N: “which are the most congested 

districts of Rome during the early morning in weekend”. 

Figures obtained from such analytics can show the mobility 

dynamics and patterns in metropolitan cities, which would help 

municipalities in improving their urban plans. Figure 3 shows 

that MongoDB plain optimizer underperforms our optimizer 

for all geohash settings for all the three datasets. However, the 

best case occurs at geohash 35, meaning that geohash precision 

is a configuration that has a paramount importance in our 

method. 

 

• Testing proximity queries (e.g., kNN) Optimizer 

(based on $nearSphere operator with a test point and circle 

geometry specifier). 

Query: We apply the following spatial kNN query for NYC 

taxicabs: “find all taxicab trip pickup order locations within 

a specified distance of a test point during the last two months, 

sorted in order from nearest to farthest”. For NYC Uber we 

apply the following: “find Uber orders locations within a 

specific distance from the city centre”. For Rome data, we 

apply: “count the number of taxicabs that pass near a specific 

Point of Interest (POI) in Rome during the early morning of 

a specific weekend”. 

As depicted in figure 4, our support outperforms the 

MongoDB plain support for all datasets. Notice, however, that 

in cases where a substantial number of documents and keys 

need to be examined, the difference between running times 

vanishes. Notice the case of radius 15 where our optimizer 

needs to examine documents and keys in magnitudes that are 

roughly equal to those of MongoDB. This is healthy as the 

number of returned satisfying spatial objects at that distance 

(i.e., 15 kilometres) is very near to the total number of 

documents in the points collections that we tested on.  

All results shown in this section prove that our framework 

can satisfy QoS goals, specifically, time-based goals such as 

low-latency, higher resource utilization, and high accuracy. It 

does so by applying GSS with retrofitted query optimizers for 

both proximity (such as kNN) and containment-PIP queries. 

GSS achieves a significant weighted balance between two 

partitioning goals: SDL preservation and load balancing. The 

number of BSOs is tweakable through the geohash precision. 

V. RELATED WORK 

Related methods in the literature are applied to either 

NoSQL disk-based storage-oriented distributed systems (such 

as HBase, HDFS and Cassandra [15]) or in-memory processing 

frameworks (such as Apache Spark [16] and Hadoop). 

For example, few systems such as [17, 18] are engineered 

atop HBase, which is a wide column key-value store that 

utilizes Hadoop HDFS as its storage layer. However, HBase 

does not provide a support for multi-level indexing (including 

secondary indexes), thus degrading reading operations during 

spatial queries [19]. As a way of contrast, MongoDB supports 

a native secondary indexing and database aggregations, which 

increases the productivity levels at the presentation layer, and 

simplifies the big data access patterns for highly efficient 

responses to complex queries. 

Cassandra-based systems such as the work by [20] run into 

similar shortcomings as those discussed for HBase counterparts. 

 

By considering distributed in-memory processing, several 

Spark-based and Hadoop-based frameworks support various 

data partitioning, indexing, caching, and query optimizers for 

processing big spatial data at scale. The most visible and 

popular are GeoSpark [5], spatialspark [21], STARK [22], 

SparkGIS [23], Simba [24] are all based on Spark, thus not 

specifically designed for scalable multi-structure storage of 

rapidly changing data coming from IoT. Also, Simba does not 

apply the filter-and-refine approach for spatial join processing 

which deteriorates the spatial query accuracy for 

multidimensional spatial objects with extents [5]. Other works 

focus specifically on spatial joins for in-memory batch 

processing systems such as [4, 25, 26]. In the same vein, few 

works of the relevant literature focus on exploiting features 

provided by some of those NoSQL-based and memory-based 

frameworks in supporting more complex spatial analytics. For 

example, TrajMesa [27] have extended GeoMesa [28] to 

support an efficient storage of big trajectory data through novel 

indexing and query pruning methods. However, it suffers from 

the same limitations that affect GeoMesa, as it does not support 

multi-level indexing for spatial data. Also, GeoMesa does not 

have a post-processing step to deduplicate the additional spatial 

objects that is introduced by its partitioning model, thus 

deteriorating the spatial query accuracy [5] . The same fact 

applies to Simba. Also, GeoMesa employs a simple grid-based 

local indexing, which is not optimized for processing spatial 

highly skewed data [5]. Similar work appears in Trajspark [29] 

that is engineered atop Spark for range and kNN spatial queries 

on big trajectories data. 

Within the same consortium, several works have combined 

two or more of those frameworks aiming at reusing their 

features without their limitations. For example, [30] has 

combined Cassandra with GeoMesa to support spatial storage 

management and analytics above Cassandra by exploiting those 

spatial supports from GeoMesa. It however suffers the 

limitations of Cassandra and GeoMesa altogether, including the 

absence of a secondary indexing support. 

MD-HBase [31] is, by far, the most widely accepted spatial 

framework stacked above HBase; it does not provide a local 

index for the contents of the data buckets (analogous to 

MongoDB chunks), requiring thus an exhaustive scan inside 

each bucket [19] .  

Those spatial frameworks normally do not support multi-

level spatial indexing. In addition, in-memory processing 

systems are designed to handle big data loads in a way that 

differs significantly from storage-oriented NoSQL counterparts. 

NoSQL frameworks are designed for managing multi-

structured rapidly changing volumes of data coming from 

various heterogeneous sources such as IoT and content 

management systems. More in details, NoSQL frameworks 

have unique ability in being able to ingest data of various 



shapes into same unified storage (e.g., table) despite those 

disparities. For example, a data source is providing level of 

information (analogous to table fields in relational DBMSs) 

that is not available in other sources. However, NoSQL is able 

to ingest from all sources into one collection (table).  Their 

usage is gaining momentum because of the schema-on-read 

capability they provide for handling the multi-structures of the 

frequently changing data. On the contrary, in-memory batch 

processing systems are distributed frameworks designed 

specifically for real-time analytics. With that in mind, different 

set of optimizations are required to efficiently handle spatial 

query processing over NoSQL storage frameworks.  It is worth 

mentioning that emerging analytics, in particular in smart cities, 

are combining both in end-to-end pipelines so that they 

reinforce each other synergistically without their limitations. A 

regular use case is the following. A company that collects 

millions of spatiotemporally-tagged mobility data daily decides 

to integrate the powerful real-time analytics pipelines from 

Apache Spark for running directly on the operation data sitting 

in MongoDB, where the latter serves as a data lake that stores 

efficiently (with a unique capability of multi-level indexing) 

vast amounts of mobility data. This is an efficient mashup as it 

enables results to be served back to live operational processes 

without costly expensive ETL processing that would be 

otherwise needed when integrating Spark with operational 

databases. 

Furthermore, our ability to execute containment queries 

efficiently (by applying our multi-level indexing scheme) is 

strongly novel. Spatial aggregations (such as Top-N) are 

natively supported in our method. Utilizing our support, which 

is transparently incorporated within the layers of the MongoDB 

codebase, means that developers at the application layer can 

write complex aggregation queries without worrying about the 

underlying logistics. Despite applied generally for spatial joins 

in NoSQL, this work focuses specifically on non-irregularly 

shaped spatial objects that requires PIP test (which is more 

resource-intensive). 

 

A related contribution in this direction is our previous work 

[32]. In that work, we have designed a sharding scheme (that 

was termed as GAP, a short for geospatial aware partitioner) 

that depends on compound sharding key that is comprised of 

the geohash value of a spatial point and a timestamp of the 

collection time (GPS sensing time) specially for handling 

spatiotemporal big data loads. The intention was to achieve a 

plausible balance between SDL preservation and load 

balancing on a granular level at the tuple insertion time. 

However, we have found that such a compound key would 

rather compromise the SDL preservation. Moreover, in our 

previous method, we assumed that load balancing should be 

considered on a document-by-document arrival time basis by 

engaging the timestamp in the game. However, this may leave 

the system unstable, because documents are coming from 

streams and they may arrive out-of-order, rendering the 

timestamp incorporation inefficient for striking a balance 

between load balancing and SDL preservation. Also, the 

workloads we were handling at that time was that of ‘ingesting 

spatiotemporal data from IoT in real-time. However, we found 

that this may easily turn a bottleneck when write-to-read ratio 

increases significantly for the collection that is hosting the 

mobility data. This is so because every insertion must update 

any indexes in the mobility collection, which normally contains 

millions of mobility traces, which negatively impacts the write 

operations. In this paper instead, GSS is different in the sense 

that we treat new documents (tuples) as collections (appended 

tables) added to MongoDB untouched as if they were raw 

updates. Then we convert all new arrived documents at once 

into geohash-tagged counterparts. Thereafter, offline, we join 

this collection to the already-sharded collection, update the 

multi-level spatial index and rebalance the complete collection 

overnight. Another limitation of our previous work [32] is that 

we have supported containment queries only for regularly 

(specifically concentrically) shaped areas (circles in this case). 

Let us refer to that category as containment-PIC, indicating that 

it needs a Point-In-Circle (PIC for short) test, which is 

analogous to PIP test with the exception that the embedding 

area where we are searching is circular, thus retrieving 

concentrically located points. However, this kind of queries 

does not serve all types of spatial analytics in smart cities that 

incorporate containment spatial predicates. One would then be 

more interested in finding points that belong to arbitrarily 

shaped polygons, which is the new type we are supporting in 

this paper (that we have termed as containment-PIP). One more 

weakness of our previous work [32] is that we have supported 

proximity searches by using a MapReduce approach. At the 

time, $nearSphere MongoDB plain operators were not 

operating on sharded collections, a drawback that prohibits 

them from exploiting the benefits of distributed processing. 

However, starting from MongoDB 4.0, $nearSphere operator 

has started operating on sharded collections. Consequently, we 

are employing our novel spatial join optimizer in this paper for 

enabling an optimized execution of proximity queries over 

MongoDB. 

VI. CONCLUDING REMARKS 

The abundance of billions of IoT devices have caused the 

 
Fig. 4. The performance of our spatial join query optimizer on proximity 
queries (with a $nearSphere operator) against the plain MongoDB 

optimizer for all datasets. ExDocs and ExKeys mean the number of 

examined documents and keys, respectively. 
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unprecedented accumulation of huge amounts of geo-

referenced datasets. Those datasets often need to be analysed 

by passing through complex spatial analytics pipelines, which 

most interestingly, encompass spatial join predicates. Spatial 

join predicate is a core corollary for spatial analytics in smart 

cities and industry 4.0 and requires normally mashing up 

multiple views to get deeper insights from spatial data. 

Proximity and containment spatial queries are two predominant 

spatial primitive query types in that context. NoSQL scalable 

storage frameworks, such as MongoDB, tend to provide few 

spatial analytics supports for proximity and containment 

searches. However, the spatial join optimizer that those queries 

depend upon is not optimized for distributed collections of data. 

This is what specifically this paper is set to solve. 

 

In this paper, we have designed a query optimizer that 

works specifically for NoSQL queries that involve spatial 

predicates with an intrinsic join operation (e.g., contain and 

intersect predicates). Our method outperforms baselines in the 

field: it is based on dimensionality reduction and on implanting 

cheap prefiltering stages that significantly prune the search 

space before applying the costly real geometrical spatial join 

operators. In summary, we posit that combining spatial 

partitioning and spatial-aware indexing plays a vital role in the 

speed of spatial query processing (and most specifically those 

that incorporate expensive spatial join) in parallel computing 

environments. We have selected to stack up our optimizations 

atop MongoDB, because it supports unique features that are not 

provided by other NoSQL systems. Most importantly, the 

powerful secondary indexing and native support for 

grouping/aggregation make it well positioned if compared with 

its primary competitors in the market. Anyway, the MongoDB 

support for geospatial data management and analytics has still 

several limitations and is considered still in its infancy. We 

have decided to provide a significant original contribution to 

the community in the field by exploiting the powerful native 

features of MongoDB and adding layers of spatial 

optimizations on top of it. 

We posit that the novel optimizations presented in this 

paper are transferable to other similar NoSQL databases such 

as Cassandra and DynamoDB [33]. However, a further 

tweaking and a heavy work on the application layers is needed 

to inject those optimizations. This is so because most NoSQL 

databases do not offer native advanced indexing, aggregation, 

and spatial supports. Nevertheless, some systems such as 

Cassandra and DynamoDB has a potential in implementing our 

optimizations. For example, Cassandra employs the so-called 

‘wide partition’ pattern, which tries to group related rows 

together to speed the access at query scans by accessing 

multiple related rows on same partition [34], which then 

demystifies applying a dimensionality reduction approach such 

as geohash. DynamoDB also applies a consistent hashing 

scheme for partitioning, using concepts like those in Cassandra. 

Cassandra provides and SQL-alike API for querying, and it 

would be beneficial to implement our approach on Cassandra 

in the future. However, the fact that neither Cassandra nor 

DynamoDB support natively aggregations or secondary 

indexing requires us to perform more application-layer 

tweaking. 

The encouraging results achieved so far are stimulating our 

further research work in the area. We are now working on 

primitives for which we design optimizers for stream-static join 

processing. In fact, in a case where spatial points arrive from 

streams only containing GPS coordinates, they need to be joined 

with disk-residence MongoDB polygons. Also, the primitives 

introduced in this paper are useful for offline data warehousing 

view maintenance. Since MongoDB is designed with embedded 

document structures, it is mostly preferable to keep a beefed-up 

collection with all documents embedded. For example, keeping 

the geometrical polygon for each point (which by itself is a 

document) in an embedded document. This requires solving the 

spatial join for arriving tuples (could be offline, static-static join 

as an overnight job for example), thus maintaining the collection 

regularly. 
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