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Electrically charged particles can be created by the decay of strong enough electric 
fields, a phenomenon known as the Schwinger mechanism1. By electromagnetic 
duality, a sufficiently strong magnetic field would similarly produce magnetic 
monopoles, if they exist2. Magnetic monopoles are hypothetical fundamental 
particles that are predicted by several theories beyond the standard model3–7 but have 
never been experimentally detected. Searching for the existence of magnetic 
monopoles via the Schwinger mechanism has not yet been attempted, but it is 
advantageous, owing to the possibility of calculating its rate through semi-classical 
techniques without perturbation theory, as well as that the production of the 
magnetic monopoles should be enhanced by their finite size8,9 and strong coupling to 
photons2,10. Here we present a search for magnetic monopole production by the 
Schwinger mechanism in Pb–Pb heavy ion collisions at the Large Hadron Collider, 
producing the strongest known magnetic fields in the current Universe11. It was 
conducted by the MoEDAL experiment, whose trapping detectors were exposed to 
0.235 per nanobarn, or approximately 1.8 × 109, of Pb–Pb collisions with 
5.02-teraelectronvolt center-of-mass energy per collision in November 2018. A 
superconducting quantum interference device (SQUID) magnetometer scanned the 
trapping detectors of MoEDAL for the presence of magnetic charge, which would 
induce a persistent current in the SQUID. Magnetic monopoles with integer Dirac 
charges of 1, 2 and 3 and masses up to 75 gigaelectronvolts per speed of light squared 
were excluded by the analysis at the 95% confidence level. This provides a lower mass 
limit for finite-size magnetic monopoles from a collider search and greatly extends 
previous mass bounds.

Magnetic monopoles (MMs) are hypothetical fundamental particles 
that carry isolated magnetic charge—that is, a single north or south 
pole. Their existence would symmetrize the Maxwell equations of elec-
trodynamics via a duality transformation. Dirac formulated the first 
field theory of a point-like magnetic charge interacting with quantum 
charged matter and showed3 that the existence of an MM would neces-
sitate the quantization of electric charge. This important result, known 
as the Dirac quantization condition (DQC), is given by
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where gD is the unit Dirac charge, e is the electric charge, g is the mag-
netic charge, ħ is the reduced Planck’s constant and n is an integer. 
Dirac’s theory describes the MM as an elementary particle with its 
mass as a free parameter, to be constrained by experiments12. MMs 
also appear as solutions of grand unified theories (GUTs)4,5. In contrast 
to the Dirac monopole, GUT MMs are composites of the fundamental 
non-Abelian gauge and Higgs fields that characterize the theory. Their 
expected masses are close to the GUT scale (1016 GeV/c2; c, speed of 
light in a vacuum) and thus cannot be produced in a realistic collider 
experiment. Moreover, GUT MMs are expected to have been diluted 
by cosmic inflation, and hence it is unlikely that they will be observed 
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even in cosmic ray searches. In fact, the theory of GUT MMs motivated 
the idea of an inflationary Universe13. String theories also predict MMs6, 
which may have masses much lower than the GUT scale, depending 
on the string scale. The composite MMs, as opposed to the point-like 
Dirac ones, would have an internal structure. These models arise from 
spontaneously broken gauge theories, and in recent years composite 
finite-energy MM solutions were also discovered in various field theo-
ries beyond the Standard Model, possibly with masses as low as a few 
TeV7. This raises the prospects for collider production of such objects, 
thus reviving interest in experimental searches for MMs.

All searches for the direct production of MMs at particle accelerators 
so far have focused on collisions of elementary particles such as elec-
trons—or quarks in the case of hadron collisions— assuming production 
via fermion–antifermion annihilation (the Drell–Yan mechanism) or 
photon–photon collisions. However, the strong coupling of the MM, 
arising from equation (1)3, makes it difficult to calculate the produc-
tion cross-section. Indeed, it has been argued that the production of 
composite MMs from elementary particle collisions is exponentially 
suppressed by e−4/α, where α is the electromagnetic fine structure 
constant14,15. This exponential suppression can be interpreted as a 
consequence of the large physical size of the monopole relative to its 
Compton wavelength, and hence the small overlap of initial and final 
states. Alternatively, it can be seen as due to the low relative entropy of 
the specific coherent state of a composite monopole, in comparison to 
other configurations comprising the same large number of particles. 
However, it is not known what a purely nonperturbative treatment, 
which is still lacking, would imply. Collider experiments have neverthe-
less focused on interpreting searches in the context of point-like MMs16, 
whereas most MMs predicted by models considered in the literature 
are composite objects, including the light MMs potentially accessible 
at the Large Hadron Collider (LHC)17–23.

A way to avoid these shortcomings is provided by searching for MM 
pair production via the Schwinger mechanism. In 1951, building upon 
earlier work by Sauter, Euler and Heisenberg24,25, Schwinger1 showed 
that electrically charged particles could be produced by the decay of a 
strong electric field. If MMs exist, electromagnetic duality, supported 
by explicit calculations2,9, implies that they would also be produced by 
the same mechanism in a sufficiently strong magnetic field. Unprec-
edented magnetic fields are present, fleetingly, in ultraperipheral 
heavy-ion collisions11. In this case, the MM production cross-section 
can be computed without relying on perturbation theory (that is, non-
perturbatively) using semiclassical techniques, including the effects of 
strong MM–photon coupling. Owing to the coherence of the magnetic 
field over length scales comparable to the monopole size, the overlap 
of initial and final states is not suppressed exponentially by e−4/α, as in 
the collision of point-like particles. The magnetic field also overcomes 
the entropic argument for this suppression, because it makes MM pro-
duction preferential over the production of an arbitrary state with the 
same number of particles. Indeed, in this approach, the finite size8,9 and 
strong coupling of MMs2,10 enhance their production by decreasing the 
semiclassical barrier. For example, in constant fields, these effects can 
increase the MM mass reach by an order of magnitude.

Although Schwinger production of MMs in a constant, or slowly vary-
ing, magnetic field is well understood theoretically, and the production 
probability has been calculated accurately from first principles2,9, the 
strong space and time dependence of the electromagnetic fields of LHC 
heavy-ion collisions present additional theoretical challenges. Progress 
on this front is made possible owing to the large charges of heavy ions, 
as a consequence of which the resulting electromagnetic field can 
be approximated as a coherent classical field sourced by the charge 
distribution of the ions. The strongest fields are generated in ultrape-
ripheral collisions, for which the impact parameter is approximately 
twice the nuclear radius. In the 2018 heavy-ion run at the LHC, the peak 
magnetic field strength was B ≈ 1016 T (ref. 11), with an inverse decay 
time ω ≈ 1026 s−1. This field strength is about seven orders of magnitude 

greater than the critical field strength of quantum electrodynamics, and 
more than four orders of magnitude greater than the strongest known 
astrophysical magnetic fields, which are present on the surfaces of 
magnetars26. The probability of MM pair production by the Schwinger 
mechanism depends strongly on the strength of the magnetic fields 
produced in the heavy-ion collisions10. Thus, the high-energy Pb–Pb 
collisions at the LHC provide the best opportunity for producing MMs.

We have considered two approximate approaches to the calculation 
of the overall MM production cross-section: the free-particle approx-
imation (FPA)27 given by equation (5) and the locally constant field 
approximation (LCFA)10 given by equation (4) (Methods). In the FPA, the 
spacetime dependence of the electromagnetic field of the heavy ions 
is treated exactly, but MM self-interactions are neglected. Conversely, 
in the LCFA, the spacetime dependence of the electromagnetic field is 
neglected but MM self-interactions are treated exactly. In this way the 
two approximations are complementary, with uncorrelated uncertain-
ties. In addition, for the FPA, the leading effects of MM self-interactions 
have been shown to enhance the cross-section, and for the LCFA the 
leading effects of spacetime dependence have also been shown to 
enhance the cross-section10,27. Thus, while neither approximation pro-
vides a complete calculation of the production cross-section, both are 
expected to yield conservative lower limits. We conservatively use the 
smaller cross-section in our final MM mass bounds.

To study experimentally the production of MMs created via the 
Schwinger mechanism in Pb–Pb heavy-ion collisions at the LHC, one 
also needs to be able to calculate the kinematics of the produced MMs, 
thus allowing the efficiency of their detection to be assessed. At LHC 
energies, the expected momentum distribution of MMs is primar-
ily due to the time dependence of the electromagnetic field of the 
ultrarelativistic heavy ions. The momentum distribution predicted 
by the LCFA is narrower than what is allowed by the time–energy uncer-
tainty principle, whereas the FPA prediction saturates it27. The failure 
of the LCFA to yield a consistent momentum distribution is due to the 
assumption of the instantaneous nature of the production process. 
In this work, only the FPA is used for the momentum distribution of 
Schwinger-produced MMs. Nevertheless, the total cross-section in 
the LCFA still provides important information on the effects of MM 
self-interactions on the production process. The expression for the 
FPA momentum distribution is given in equation (6). The uncertainty 
in the expression is expected to be subdominant compared to that 
in the total cross-section. Extended Data Fig. 2 shows the transverse 
momentum distribution for Schwinger MMs derived from the FPA, as 
a function of MM mass (M) plotted versus MM β, the ratio of velocity 
to the speed of light in vacuum.

The Monopole and Exotics Detector at the LHC (MoEDAL) is opti-
mized for the detection of MMs and other highly ionizing particles. 
MoEDAL has reported one of the strongest limits on point-like MM 
production in proton–proton collisions12, and has set more recently 
first limits on the production of dyons (particles with both magnetic 
and electric charges) in a collider experiment28. Deployed in the LHCb 
(Large Hadron Collider beauty) experiment’s VELO (VErtex LOcator)  
cavern around interaction point 8 (IP8), MoEDAL comprises two 
independent, passive detectors—the magnetic monopole trappers 
(MMTs) and nuclear track detectors (NTDs). NTDs are made of stacks 
of thin plastic sheets. When a highly ionizing particle traverses the 
NTDs, it damages the chemical bonds in the sheets along its path. 
Etching the NTDs expands the damaged region to the point that it 
can be detected with an optical microscope, exposing the track of 
the particle. Owing to their positioning and threshold properties, 
the NTDs are sensitive only to new physics. Chemical processing, 
optical microscope scanning and analysis of the NTD data are com-
plicated, time-consuming processes. We plan to release first searches 
for MM (starting from proton–proton collisions) with NTDs in the 
near future. The MMTs, used in this work, consist of three compo-
nents deployed in the front and lateral regions around IP8 at distances 
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between 1 and 2 m. Each component is made from 14–18 boxes, with 
each box made of four layers of 12 aluminum bars. The nominal bar 
dimensions are 25.4 × 25.4 × 190 mm. The total mass of the MMTs 
used in this study is 880 kg. There is no magnetic field in the region 
that would affect the MM trajectories. Because of its large anomalous 
magnetic moment, it is estimated that a Al13

27  nucleus (100% natural 
abundance) would bind a magnetically charged particle with an 
energy of 0.5–2.5 MeV (refs. 29–31). Details of MM binding to matter 
are discussed in Methods. After exposure, the MMT bars are scanned 
for trapped magnetic charges with a d.c. SQUID long-core magnetom-
eter (Model 755, 2G Enterprises) installed at the ETH Zurich Labora-
tory for Natural Magnetism. Fig. 1 shows a schematic diagram of this 
search.

The mean expected rate of trapped MMs, Rexp, is defined as the mean 
number of MMs expected to be trapped during the Pb–Pb collision 
run. It is determined using a Monte Carlo simulation that is described 
further in the Methods section. For each MM mass and magnetic charge 
considered, the initial momenta are sampled from the Schwinger FPA 
kinematic distribution. The MMs are then propagated through the 
realistic geometry of the LHCb and MoEDAL detectors using the Geant4 
toolkit32. The MMT trapping efficiency, ϵ, is defined as the ratio of the 
number of MMs trapped by MMTs to the total number of generated 
MMs. The trapping condition in the simulation ensures that the energies 
of the MMs are less than 0.5 MeV. The mean expected rate is calculated 
for a given mass and magnetic charge as a product of the trapping 
efficiency, luminosity and production cross-section.

The systematic uncertainty in the expected rate of trapped MMs 
owing to the finite statistics of the Monte Carlo samples is less than 2% 
for a magnetic charge of 1gD, increasing to 2–7% for 2gD, and reaching 
20% for 3gD due to the low trapping efficiency. The systematics in the 
calculation of energy losses by Geant4 are between 1–7% (ref. 33), and 
the uncertainty in the luminosity is better than 5%. The dominant sys-
tematic uncertainty arises from the efficiency calculation, and is mainly 
due to the uncertainty in the material budget, which is determined by 
inspection and direct measurement. The error in the measurements 
of component materials present in the VELO cavern is estimated by 
minimal and maximal geometry models, which encompass the uncer-
tainties. Generally, the VELO vacuum vessel is modelled with high preci-
sion, whereas the cables and pipes that are downstream of the VELO, as 
well as the inner regions of the vacuum pump and vacuum manifold, 
are not as well known. We model the cables and small pipes as a set 
of vertical stainless steel rods, which represent 2.3% of the radiation 
length on average. We vary the radius of the rods in the simulation from 
0.01 cm (minimal geometry) to 0.5 cm (maximum geometry). We also 
add a layer of stainless steel to the inner region of the vacuum tank. The 
default geometry contains 2.64 mm of stainless steel, representing 15% 
of added radiation length. The minimal geometry contains no extra 
stainless steel. The maximal geometry, included as a conservative case, 
consists of 5.28 mm of extra stainless steel, that is, 30% of a radiation 
length. For magnetic charges larger than 3gD all simulated MMs range 
out in the default geometry before reaching the MMTs. A more detailed 
discussion of the uncertainty calculation can be found in Methods.
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Fig. 1 | Schematic diagram for the search for Schwinger MMs with MoEDAL. 
a, The MoEDAL experiment is located at interaction point 8 (IP8) of the LHC. 
The location of the ALICE, ATLAS and CMS experiments are also indicated. b, It 
has an array of MMT detectors around the interaction point. c, Peripheral  
Pb–Pb heavy-ion collisions produce strong magnetic fields. The 2018 Pb–Pb 
run with an integrated luminosity at IP8 (LIP8) of 0.235 nb−1. B is the magnetic 
field of the heavy ions along the y axis, the z axis is the direction of motion of 
ions, and the x axis is the direction along which the impact parameter b is 

measured. d, A qualitative sketch describing the Schwinger pair production 
process in presence of a strong magnetic field from a Dirac sea of negative 
energy states. A monopole (M) with negative energy tunnels into the  
positive energy states, leaving behind a positive energy anti-monopole (M ).  
e, A schematic of one layer of the MMT. After production, an MM may be 
trapped in an MMT detector. f, Samples from the MMTs are passed through a 
superconducting coil, and the magnetic charge of a trapped MM will induce a 
signal in a SQUID detector (sensor and electronics).
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The MoEDAL detector, consisting of 880 kg of MMTs placed in  

the forward and lateral regions, was exposed to 0.235 nb−1  
(1 nb = 1.0 × 10−7 fm2) of Pb–Pb collisions at sNN  = 5.02 TeV obtained 
in November 2018. The 0.235 nb−1 exposure corresponds to approxi-
mately 1.8 × 109 Pb–Pb collisions in total, and approximately 5.9 × 108 
of these are ultraperipheral. The much smaller (less than 10 μb−1) Pb–Pb 
run in 2016 was not included in the analysis, to ensure uniform beam 
conditions. The MMTs were scanned using the d.c. SQUID magnetom-
eter for the presence of trapped magnetic charges. No statistically 
significant signal was observed. The existence of an MM with |g| ≥ 0.5gD 
in the trapping volume was excluded at more than 3σ.

MMs with masses up to 75 GeV/c2 to 70 GeV/c2 for magnetic charges 
from 1gD to 3gD, respectively, are excluded at the 95% confidence level 
by comparing with the calculated Schwinger production cross-section, 
as shown in Table 1. The statistical significances of the limits take into 
account the uncertainty of Rexp owing to the systematics, which is domi-
nated by the material budget (see Extended Data Tables 1–5) and Pois-
son statistics. The expected numbers of events depend exponentially 
on the MM mass, so even large systematic uncertainties have only a 
small effect on the mass limits. Details of the measurement, calibra-
tion and statistical procedures are provided in Methods. We note that 
the FPA mass bounds for |g| ≥ 2gD are lower than for 1gD, because the 
increase in the cross-section is offset by the rapid decrease in efficiency 
for higher magnetic charges. This is not the case for the LCFA, where 
the cross-section grows for higher magnetic charges faster than the 
efficiency drops.

Fig. 2a shows the exclusion regions in the magnetic charge versus 
mass plane for the FPA and LCFA approximations. Our results exclude 
a much larger region of the parameter space than previous limits 
from other production channels, including production of MM pairs 
in heavy-ion collisions at the CERN SPS (Super Proton Synchrotron)34 
via a thermalized quark gluon plasma, which was re-interpreted in 
ref. 35. in terms of the Schwinger mechanism. In addition, these lim-
its are model-independent, and thus valid for both elementary and 
composite MMs. Fig. 2a also reports limits from indirect searches of 
MMs produced close to the surface of neutron stars, as well as from 
cosmological reheating and Big Bang nucleosynthesis35.

The main result of this work (Fig. 2a) takes advantage of the recent 
progress10,35 in the calculation of the overall production rate of MMs 
in strong magnetic fields, which allows one to place limits on MM 

masses. An alternative way to present the results is to interpret the 
zero observed rate of MMs as a first experimental constraint on the 
cross-section for the Schwinger mechanism for MM production, assum-
ing the FPA production kinematics. This approach is complementary 
and free of potential theoretical prejudice on the overall production 
rate, relying only on the observed rate, measured luminosity and MM 
trapping efficiency calculated under the FPA assumption. Fig. 2b shows 
the 95% exclusion regions on the cross-section for magnetic charges 
1, 2 and 3gD.

Conclusions
The MoEDAL detector took 0.235 nb−1 of data in the Pb–Pb heavy-ion 
run at sNN  = 5.02 TeV, that took place in November 2018, the last year 
of Run-2 at the LHC. The MMT detectors exposed during this run were 
scanned for the presence of trapped magnetic charge using the SQUID 
magnetometer. No signal candidates were observed. This allowed the 
exclusion of production via the Schwinger mechanism of MMs with 
Dirac charges 1gD ≤ g ≤ 3gD and masses up to 75 GeV/c2 at the 95% con-
fidence level. This limit from a collider experiment is based on a non-
perturbative calculation of the MM production cross-section. In 
addition, this direct search is sensitive to MMs that are not point-like. 
The current study constitutes, therefore, a search in which finite-size 
MMs are potentially detectable, not subject to the exponential sup-
pression of their production cross-section expected in Drell–Yan or 
photon–fusion production.

In the previous literature, exclusion mass limits spanning the  
1,725–2,370 GeV/c2 range, with corresponding cross-section limits of 
the order of femtobarns, were obtained assuming Drell–Yan or pho-
ton–fusion production for various spin assumptions and magnetic 

Table 1 | 95% confidence level mass limits (in GeV/c2) on MM 
pair production in LHC Pb–Pb collisions

Cross-section approximation Magnetic charge (gD)

1 2 3

FPA 90 70 70

LCFA 75 210 388

Conservative limit 75 70 70
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Fig. 2 | 95% confidence level exclusion regions. a, The 95% confidence level 
mass exclusion regions obtained using the FPA (blue) and LCFA (red) 
cross-section of MM production via the Schwinger mechanism for Pb–Pb 
collisions at sNN  = 5.02 TeV and an integrated luminosity at IP8 (LIP8) of 
0.235 nb−1, with the conservative exclusion region shaded violet. Limits 
resulting from other production channels35 are also shown for 

comparison. BBN, Big Bang nucleosynthesis. b, The 95% confidence level 
exclusion regions on the cross-section for MM production via the Schwinger 
mechanism for Pb–Pb collisions at sNN  = 5.02 TeV and an integrated luminosity 
at IP8 (LIP8) of 0.235 nb−1, as functions of the MM mass for magnetic charges 1gD 
(blue), 2gD (red) and 3gD (green). The dotted and dashed lines represent the 
theoretical FPA (σ FPA

th ) and LCFA cross-sections (σ LCFA
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charges up to 5gD (refs. 28,36–38), which constrain light-MM solutions 
of several theoretical models. The exclusion mass obtained here 
are below the TeV range (with corresponding cross-section limits 
of the order of microbarns) because the production cross-section 
depends exponentially on the MM mass. Nonetheless, the current 
search is pioneering owing to its use of nonperturbatively calculated 
cross-sections and is, to the best of our knowledge, the first to have 
sensitivity to composite MM production at a collider. To ensure the 
soundness of our lower mass bounds, we have consistently made 
conservative assumptions. There is substantial scope for future work 
to improve the accuracy of theoretical calculations, and for future 
experimental searches at higher energy and luminosity, so as to extend 
the mass reach. Apart from the heavy-ion collisions, MMs could have 
been produced via the Schwinger mechanism by primordial mag-
netic fields, leading to cosmological implications39. The Schwinger 
production mechanism could also be investigated in proton–proton 
collisions, where, at higher Lorentz factors, the magnetic field may be 
stronger than in Pb–Pb collisions. However, because it is also localized 
in a much smaller volume, it is not clear if the same approach is still 
valid. The exclusion limits from the current search may guide both 
theorists and experimentalists in their quest towards understanding 
the nature of magnetic charge.
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Methods

Monte Carlo simulation of the MoEDAL experiment
The MM simulation code is developed in Gauss40, which is the LHCb 
simulation framework that uses Geant4 as the simulation engine. MoE-
DAL simulations use a dedicated Geant4 class that describes production 
and propagation of MMs41. The MM ionization energy losses, geometry 
and material content of the MoEDAL detector and its vicinity are mod-
eled in the simulation. The MMTs are described in Geant4 as sensitive 
detectors and produce hits when MMs are trapped in them. These hits 
are recorded in simulation and analysed for calculating efficiency and 
the expected rate of MMs detection. A custom-made momentum dis-
tribution of MMs derived from Schwinger kinematics (equation (3)) is 
implemented and propagated through the MoEDAL geometry.

Cross-section calculation
In our analysis, the electromagnetic fields are approximated as coher-
ent, classical, event-averaged fields sourced by the heavy ions42,43. In this 
approximation the fields are determined by integrating the Liénard–
Wiechert potentials over the charge distribution of the ions, which 
is modelled as a Woods–Saxon distribution with radius RPb = 6.62 fm 
and surface thickness aPb = 0.546 fm44,45. Note that the inclusion of 
event-by-event fluctuations46 can be expected to greatly enhance the 
overall MM yield, owing to the exponential form of the cross-sections, 
shown below. We leave this effect as a promising avenue for future work.

In the near vicinity of the collision center, the magnetic field is the 
largest component of the electromagnetic field, and it points perpen-
dicularly to both the beam axis and the impact parameter, as defined in 
Fig. 1c. The electric field cancels at the collision centre but in the near 
vicinity it has a nonzero component parallel to the impact parameter; 
see ref. 11 for a review.

Following ref. 10, we calculate the electromagnetic fields on a lattice 
of points in the vicinity of the collision centre, that is, for x, y, z and ct of 
order R/γ, where γ is the Lorentz factor at collision. We then perform a 
fit of the following form to the results:
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This model correctly describes the asymptotic behaviour of the elec-
tromagnetic fields in ultrarelativistic heavy-ion collisions. It depends 
on two fit parameters, B and ω, and agrees with direct numerical inte-
gration to within ten percent accuracy at all points studied.

For lead-ion collisions at sNN  = 5.02 TeV, we find the peak magnetic 
field strength occurs for b = bmax ≈ 1.94RPb. It takes the value  
B = 7.6 ± 0.3 GeV2, from which the field decays with inverse decay time 
ω = 73 ± 3 GeV, where we have used natural units, c = ħ = ϵ0 = 1. The uncer-
tainty quoted on these values reflects the stability of the fit results with 
respect to the underlying assumptions of the fit model. In particular, 
by minimizing the sum of absolute squared deviations, good agreement 
can be obtained between the data and the fit in the region around the 
origin, where the magnetic field is largest. On the other hand, minimiz-
ing the sum of relative (that is, fractional) squared deviations gives 
better agreement for the asymptotic tails. Since we do not know which 
aspects of the electromagnetic field are most important for MM pair 
production, we take the differences between the fits as a measure of 
the uncertainty and assume a uniform distribution within this range. 
The magnitude of the peak magnetic field is in good agreement with 
ref. 46, in which a Glauber-model Monte Carlo was used to model 
event-by-event fluctuations and nucleon collisions, finding peak mag-
netic field strengths of ⟨By⟩ ≈ 7.0 GeV2 and ⟨|By|⟩ ≈ 7.5 GeV2 when extrap-
olated to sNN  = 5.02 TeV. For comparison, we have also computed the 

electromagnetic fields using the model of ref. 42, yielding B ≈ 9 GeV2 
and ω ≈ 80 GeV. However, the larger field strengths in this case can be 
traced back to the unphysical nature of assuming a uniform charge 
density in a two dimensional disc. We therefore use the more realistic 
Woods–Saxon charge distribution model in preference.

The MM production cross-section due to the electromagnetic fields 
present in heavy-ion collisions has been calculated in refs. 10,27. In these 
works, the authors included only the electromagnetic field due to the 
non-colliding (spectator) nucleons, and neglected the field due to 
the colliding (participant) nucleons. This approximation is justified 
for impact parameters greater than approximately twice the nuclear 
radius, that is, ultraperipheral collisions47. It may also be justified for 
somewhat less peripheral collision, especially for the early times in 
which the magnetic field is strongest43. As we will see below, ultrape-
ripheral collisions are expected to yield the greatest MM production 
cross-sections. In light of this, and of the theoretical uncertainty in the 
MM production cross-section for smaller impact parameters, we will 
conservatively include only MM production from ultraperipheral colli-
sions in our analysis. We leave the analysis of more central events, and 
of the effect of nucleon collisions on MM production, for future work.

In ref. 10, the MM production cross-section for fixed impact parameter 
b was calculated in the LCFA and FPA approximations,
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where Ω2(b) ≈ 2/(bRPb) is the product of the slow inverse decay lengths 
of the field perpendicular to the beam axis and M is the MM mass. Both 
equations were derived for scalar (spin s = 0) MMs. Within the LCFA 
one can demonstrate that the effect of MM spin on the production 
cross-section is simply a multiplicative factor of (2s + 1)2,48,49; however, 
we will conservatively neglect this factor. Within each of these approxi-
mations, equations (2) and (3) are accurate up to a multiplicative O(1) 
factor. This uncertainty in the pre-exponential factor stems from the 
approximate evaluation of a functional determinant, discussed further 
around equation 39 of ref. 10. It should have only a small effect on our 
final MM mass bounds, owing to the strong (exponential) dependence 
of the cross-sections on the MM mass. For the same reason, its effect is 
subdominant to the uncertainty in B and ω, which enter the exponent.

The total cross-section in the LCFA is strongly dominated by impact 
parameters in the vicinity of b = bmax ≈ 2RPb, at which the magnetic field 
is maximal. As a consequence, integration over the impact parameter 
can be carried out using Laplace’s method, yielding
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where all parameters are evaluated at b = bmax. For the MM masses we 
have studied, the range of impact parameters that contribute strongly 
to the total cross-section deviates from bmax by less than about 1%.

The total cross-section in the FPA is also dominated by impact param-
eters in the vicinity of bmax, though less strongly so. The integration 
over impact parameters yields
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where all parameters are evaluated at b = bmax. In this expression, the 
first term inside the square brackets arises from the contribution 
due to ultraperipheral collisions, with b ≥ bmax, and the second term  
ccentral > 0 arises from integration over the contribution due to more 



central collisions with b < bmax. The condition b < bmax corresponds to 
events in centrality classes 0–68%44,45.

Ignoring the effect of nucleon collisions on the production process 
would result in ccentral ≈ 2/7, in which case these more central collisions 
would account for 20–30% of the total cross-section for the range of 
masses we have studied within the FPA. However, the effects of nucleon 
collisions could substantially modify the production cross-section for 
these more central collisions, and were not accounted for in the deriva-
tion of equation (3)10. To avoid this uncertainty in our FPA analysis, we 
exclude all MM production from impact parameters b < bmax, in which 
there are a sizeable number of nucleon collisions. This amounts to 
making the conservative choice ccentral = 0 in equation (5).

Note that at LHC energies Schwinger production of MMs would 
occur well before the thermalization of the quark–gluon plasma. This is 
because the magnetic field decays on a timescale of order 1/ω, shorter 
by around two orders of magnitude than the thermalization time of the 
quark–gluon plasma50. Thus, while the development of conductivity in 
the quark–gluon plasma remains an important source of uncertainty 
for predictions of the chiral magnetic effect51,52, it is not expected to 
be relevant for Schwinger production of MMs.

Both the FPA and the LCFA are semiclassical approximations, yield-
ing exponential forms for the cross-section. Consequently, the expres-
sions are quantitatively reliable only when the exponent is negative 
and has magnitude greater than one. Outside this range, the semiclas-
sical analysis indicates that there is no exponential suppression for 
MM production. For sufficiently light MMs, the magnitude of the expo-
nent is less than one, indicating the breakdown of the semiclassical 
approximation and consequently unsuppressed MM production. In 
the FPA this occurs for M ≲ ω/4 ≈ 18 GeV and in the LCFA this occurs for 

≲M g B g g/4π ≈ 73( / ) GeV.3
D

3/2  For such light MMs, we assume the 
production cross-section to be at least as large as that for heavier 
monopoles in which there is exponential suppression.

For the distribution of momentum p we use the following result, 
based on a calculation within the FPA, for the relative probability27
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This equation describes an isotropic momentum distribution. Within 
the FPA, there is a residual O(1) uncertainty regarding the pz depend-
ence, which is not fully accounted for by this expression, and which 
is discussed at length in ref. 27. In short, the true momentum distribu-
tion in the FPA is expected to differ from equation (6) by a moderate 
anisotropy along the beam axis, though its precise form is unknown. 
This uncertainty in the momentum distribution will result in an O(1) 
uncertainty in the final efficiency, which is subdominant compared to 
the uncertainty in the total cross-section.

Efficiency calculation
The trapping efficiency, shown in Extended Data Tables 1–5, depends 
on the kinematics predicted by the MM model, the MM mass and mag-
netic charge, the material traversed by the MMs, and the correspond-
ing energy losses. The efficiency is negligible for MMs with very low 
momentum, as slow-moving MMs would lose their energy through 
ionization before reaching the detectors. The efficiency increases 
almost linearly with increase in momentum until the MMs become 
energetic enough to pass through the MMTs without getting trapped. 
The efficiency then decreases with momentum above a threshold value 
that depends on the MM mass and magnetic charge. The Bethe–Bloch 
equation modified for MMs with magnetic charge g = ngD (n = 1, 2, 3, …) 
that describes the ionization energy losses is given by:
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where ne is the number of electrons per unit volume in the medium, 
Im is the mean ionization potential of the crossed medium, me is the 
electron mass, γ is the Lorentz factor, δ is the density effect cor-
rection, K(|g|) = (0.406; 0.346 if g > 1gD) is the QED correction and  
B(|g|) = 0.248, 0.672, 1.022, 1.243, 1.464 is the Bloch correction for  
g = 1gD, …, 5gD, respectively53. Therefore, MMs with higher magnetic 
charges (|g| > 1gD) are expected to have greater ionization losses and, 
as a consequence, tend to range out before reaching the MMTs, pre-
dominantly stopping in the upstream material. Also, keeping other 
parameters unchanged, MMs with lower masses have a higher velocity, 
leading to greater energy losses, and hence failure to reach the MMTs. 
The size of trapping efficiency decreases sharply for >1gD magnetic 
charges. For 1gD, ϵ varies between 1.1–1.5 × 10−4 for MM mass 50–105 GeV. 
For 2gD, ϵ varies between 3.3–4.4 × 10−7 for MM mass 50–85 GeV.

Uncertainties and statistical methods
The mean Poisson rate, Rexp, gives the expected number of MMs trapped 
in the MMTs during the MoEDAL Pb–Pb data-taking run. It is calculated 
as the product of the MM cross-section, the luminosity (exposure), and 
the trapping efficiency. We exclude MM masses with non-zero expected 
events, based on the non-observation of MM after scanning the MMTs. 
The confidence level of exclusion (CLexc) is determined from the Pois-
son statistics on Rexp, Monte Carlo statistical errors, and systematic 
uncertainties on the detector geometry, cross-section (due to B and ω 
uncertainties), energy losses, and magnetometer response (false nega-
tives, discussed in the following section). The Monte Carlo statistical 
uncertainties are confined to less than 2% (7%) for 1gD (2gD), owing to the 
large Monte Carlo samples generated (~5 × 107–1 × 1010, depending on the 
MM mass and magnetic charge) but increase to ~20% for 3gD owing to 
the low trapping efficiency (~2.3 × 10−9). The false negative probability of 
the magnetometer response is 0.2% (ref. 12) for magnetic charges g > gD 
and decreases with increasing magnetic charge. The dE/dx calculation 
results in a relative uncertainty in the range 1–7%33. The uncertainty of  
B and ω is specified in an earlier section. The remaining, dominant source 
of uncertainty is due to the material budget, described in the main text.

Extended Data Fig. 1 shows an example of the dependence of the mean 
rate on the MM mass. The rate is calculated for the FPA cross-section, 
which gives the conservative limits used in the main text. Extended 
Data Tables 1–5 show the efficiency and expected rate of trapped MMs 
produced by the Schwinger mechanism for different values of the MM 
mass and magnetic charge. Cross-section values are also shown, with a 
spread corresponding to B and ω uncertainties. The spread in efficiency 
is between the maximal and minimal geometry models. We note that, 
although the resulting spread of Rexp is large, its impact on the mass 
limits is strongly suppressed, owing to the exponential dependence 
of the cross-section on the MM mass.

The efficiency and cross-section uncertainties lead to a systematic 
spread in Rexp. The probability to observe no MMs in the scanned MMTs 
given the range of Rexp, P R R(0|( , ))exp

min
exp
max , is calculated using the toy 

Monte Carlo approach. A uniform probability distribution for the range 
of possible efficiency values is assumed, reflecting no preference 
between the minimal and maximal geometry models. For g = 3gD, the 
range’s left boundary is the upper limit on the efficiency for the maxi-
mal geometry. Likewise, a uniform distribution is assumed for the  
B and ω variables, which are expected to be be 100% positively corre-
lated. A toy value of the expected rate Ri

exp is calculated using efficiency 
and cross-section values on the basis of random draws from their dis-
tributions. Then, a toy observed rate Ri is randomly drawn from a Pois-
son distribution with μ R= i

exp. The process is repeated 105 times. The 
probability P R R(0|( , ))exp

min
exp
max  is then defined as the fraction of Ri = 0 

entries in the toy Ri distribution. Finally, the CLexc is calculated as 
P R R(1 − (0|( , ))) × 100 %exp

min
exp
max .

To test the robustness of this approach against the choice of the dis-
tribution of the efficiency, ϵ, additional choices are considered. In the 
first test, a Gaussian distribution with μ = (ϵmax + ϵmin)/2 and σ = (μ − ϵmin)/2, 
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truncated at ϵmin and ϵmax, is assumed. In the second test, a skewed Gauss-
ian distribution centered at ϵ corresponding to the default geometry, 
with σ = (μ − ϵmin)/2 and skewness parameter set to 1 or 2, is assumed. 
The choice of a Gaussian distribution reflects our expectation that the 
default geometry is the most likely one. The direction of the skewness 
is dictated by the fact that the efficiency changes more rapidly when the 
material is removed from the geometry, compared to when it is added. In 
all considered cases the resulting CLexc agrees with or is slightly stronger 
than that for the uniform distribution of ϵ. Additionally, for g = 3gD, the 
calculation was repeated using uniform distribution with the maximal 
geometry’s efficiency assumed to be two orders of magnitude lower 
than the limit obtained with the finite Monte Carlo statistics (Extended 
Data Tables 3–5). The mass limit decreases by ~5 GeV/c2.

Magnetometer measurements
The SQUID magnetometer uses the induction technique54 that is 
directly sensitive to the presence of an isolated magnetic charge, which 
would excite a persistent current in the device. The expected response 
of a SQUID magnetometer needs to be quantified before such a current 
is measured. The magnetometer setup consists of a flux measuring 
system with two pick-up coils of diameter 8 cm along its longitudinal 
axis. The transportation of samples takes place via an access shaft with 
diameter 4 cm. A more detailed description is provided in ref. 55.

The bars of the MoEDAL MMTs were scanned for the presence of 
magnetic charges with a d.c. SQUID long-core magnetometer. Each 
sample was scanned through the superconducting coil at least twice, 
and the magnetometer’s response was recorded before, during and 
after each passage. The current induced in the superconducting coil 
is directly proportional to the difference in magnetic flux in the direc-
tion of transport. The magnetometer feedback, after multiplication 
by a calibration constant C is converted into a magnetic pole strength 
S (in units of gD). Two independent methods, the solenoid method and 
the convolution method, were used to perform calibration of the instru-
ment55. The solenoid method used long, thin solenoids that mimic an 
MM of well known magnetic charge. The magnetometer response was 
measured to be linear and charge symmetric in a range corresponding 
to 0.1–300 gD (ref. 33). A magnetic charge present in the sample would 
induce a persistent current in the superconducting coil, proportional 
to its pole strength. The difference between the measured induced 
currents before (I1) and after (I2) passage of the sample, while simulta-
neously adjusting for corresponding contributions (I 1

tray and I 2
tray) of 

the empty conveyer tray, is defined as the persistent current. We cal-
culate the magnetic pole strength as

S C I I I I= [( − ) − ( − )].2 1 2
tray

1
tray

For a dipole, the currents induced by the north and south pole in a 
sample cancel out. The current expected from a Dirac MM was emulated 
using a long solenoid. An MM present in the sample would record a per-
sistent current significantly different from zero. After passing through 
the superconducting coil, a sample was considered an MM candidate 
whenever the measured pole strength diverged from zero by more than 
0.4gD. The candidates were scanned four or five times each. A sample 
with an actual magnetic charge would yield the same persistent current 
in repeated measurements. However, after multiple measurements on 
samples, whenever the first one diverged from zero, subsequent meas-
urements were consistent with zero. The measured outliers could be 
attributed to spurious flux jumps occurring as a result of ferromagnetic 
impurities in the sample, noise currents in the superconducting loop, 
variations in external magnetic fields, and other known instrumental 
and environmental factors33. The probability that a sample containing 
an MM with |g| ≥ 0.5gD would repeatedly yield a persistent current lower 
than the detection threshold is estimated by the rate of spurious jumps 
between 0.25gD and 0.5gD. This false negative probability is calculated 
at 0.2%12. For MMs with charges larger than 0.5gD, this number is even 

smaller. This calculation does not depend on the structure or the mass 
of the magnetic charge. Thus, the presence of an MM with |g| ≥ 0.5gD 
was excluded in all samples at more than 3 sigma. After scanning, the 
bars are returned to CERN for storage and further use.

Monopole binding to matter
An early investigation56 of charged particles of arbitrary magnetic 
moment moving in the field of the MM with an external electric field 
concluded that the MM can couple to matter with chemical-bond-level 
energies. Additionally, a number of authors have predicted that nucle-
ons, nuclei, atoms and even molecules, will bind to slow-moving mono-
poles via the interaction of the monopole with the magnetic moments 
of these systems31,57–64. It has been suggested that an atomic bound state 
will have such a long lifetime that it is practically stable63,64. However, 
it has also been predicted that a bound state of an atom with an MM 
will rapidly contract to a state where the monopole binds directly to 
an atomic nucleus or a nucleon31,57–62.

It seems certain that MMs will bind to all nuclei because the extremely 
strong magnetic field in their vicinity will disrupt the nucleus and bind 
to the nuclear, or even the subnuclear, constituents31. The possibility has 
been discussed that such a slow-moving or trapped MM could create a 
kind of metastable nuclear state that could spontaneously fission65,66. 
This is due to the weakening of the Coulomb barrier inhibiting the fission 
by the magnetic interaction of the MM, which has a longer range than the 
nuclear force. Such effects are highly model-dependent and difficult to 
estimate. The MoEDAL trapping detector consists of over 99.9% 27Al. If an 
MM bound to the aluminium lattice can induce the fission of the stable 
27Al in which it is bound, the ‘freed’ MM would then bind to resulting 
fragments or eventually to a nucleon. There is also the possibility that 
an MM would bind to an atom and not a nucleus. Additionally, an MM 
that binds to a proton would pick up an electron to create a monopole 
atom61. Thus, even if the stopping, or bound, MM did cause the fission 
of nuclei in the vicinity, it would still not invalidate the statement that 
they are ultimately captured in the MoEDAL trapping volume.

For the MM to be detectable using the MoEDAL MMT, the bound com-
plex of nucleus, nucleon, or atom and MM must be strongly attached 
to the crystalline lattice of the material. Presumably, any bound state 
with an atom in the lattice would necessarily be bound. The lifetime 
of a monopole nucleus or nucleon bound state can be estimated by 
considering simple tunnelling, where the decay rate can be estimated 
using the Wentzel–Kramers–Brillouin (WKB) formula. Previous work31 
has shown that even for aluminium trapping volumes placed in a mag-
netic field of 1.5 T, with a magnetic charge number of one, we only need 
a binding energy of the order of 1 eV to get a 10-year lifetime. In fact, the 
calculated binding energy is of the order of 0.5–2.5 MeV29–31. It would 
take a major disruption of the lattice to dislodge a trapped monopole 
state, arising from large (kV) electric fields or multi-T magnetic fields. 
Neither of these are present at the MoEDAL intersection region, where 
the only magnetic fields are due to the Earth and the small fringe fields 
from the LHCb dipole magnet, which are less than ~10 mT.
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Extended Data Fig. 1 | Mean expected rate of Schwinger MMs (Rexp). The 
mean expected rate of MMs with 1gD (left) and 2gD (right) magnetic charge in 
the MMT as a function of the MM mass in the FPA model. The black line 

corresponds to the default geometry. The grey region corresponds to the 
systematic error, which is dominated by the material budget. The 95% 
confidence level mass exclusion region is shown in blue.



Extended Data Fig. 2 | Transverse momentum distribution of Schwinger MMs. The transverse momentum distribution for Schwinger MMs derived from the 
FPA, as a function of MM mass (M) plotted versus MM β.
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Extended Data Table 1 | Expected rate of MM trapping in the MoEDAL MMTs for the 1gD FPA model, where ϵ is MMT trapping 
efficiency and Rexp is the mean expected rate of trapped MMs



Extended Data Table 2 | Expected rate of MM trapping in the MoEDAL MMTs for the 2gD FPA model
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Extended Data Table 3 | Expected rate of MM trapping in the MoEDAL MMTs for the 3gD FPA model



Extended Data Table 4 | Expected rate of MM trapping in the MoEDAL MMTs for the 4gD FPA model
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Extended Data Table 5 | Expected rate of MM trapping in the MoEDAL MMTs for the 5gD FPA model
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