
22 June 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Decentralised Learning in Federated Deployment Environments / Bellavista, Paolo; Foschini, Luca; Mora,
Alessio. - In: ACM COMPUTING SURVEYS. - ISSN 0360-0300. - ELETTRONICO. - 54:1(2021), pp. 15.1-15.38.
[10.1145/3429252]

Published Version:

Decentralised Learning in Federated Deployment Environments

This version is available at: https://hdl.handle.net/11585/851144 since: 2022-02-01

Published:
DOI: http://doi.org/10.1145/3429252

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

https://hdl.handle.net/11585/851144
http://doi.org/10.1145/3429252

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Bellavista, Paolo and Foschini, Luca and Mora, Alessio, Decentralised Learning in
Federated Deployment Environments: A System-Level Survey (2021), ACM
COMPUTING SURVEYS. vol. 54, n. 1, issn 0360-0300

The final published version is available online at:
https://dx.doi.org/10.1145/3429252

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://dx.doi.org/10.1145/3429252

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Decentralized Learning in Federated Deployment
Environments: a System-level Survey

PAOLO BELLAVISTA, LUCA FOSCHINI, and ALESSIO MORA, Dept. Computer Science and
Engineering (DISI), Alma Mater Studiorum - University of Bologna

Decentralized learning is attracting more and more interest because it embodies the principles of data
minimization and focused data collection, while favouring the transparency of purpose specification (i.e. the
objective a model is built for). Cloud-centric-only processing and deep learning are no longer a strict necessity
to train high-fidelity models; edge devices can actively participate in the decentralized learning process by
exchanging meta-level information in place of raw data, thus paving the way for better privacy guarantees. In
addition, these new possibilities can relieve the network backbone from unnecessary data transfer and allow
to meet strict low-latency requirements by leveraging on-device model inference. This survey provides a
detailed and up-to-date overview of the most recent contributions available in the state-of-the-art decentralized
learning literature. In particular, it originally provides the reader audience with a clear presentation of the
peculiarities of federated settings, with a novel taxonomy of decentralized learning approaches, and with a
detailed description of the most relevant and specific system-level contributions of the surveyed solutions for
privacy, communication efficiency, non-IIDness, device heterogeneity, and poisoning defense.

CCS Concepts: • Computing methodologies→ Distributed computing methodologies; Distributed
algorithms; Distributed artificial intelligence; Learning settings.

Additional Key Words and Phrases: Decentralized Learning, Federated Deployment, Privacy, Communication
Efficiency, Poisoning Defense

ACM Reference Format:
Paolo Bellavista, Luca Foschini, and Alessio Mora. 2018. Decentralized Learning in Federated Deployment
Environments: a System-level Survey. 1, 1 (December 2018), 38 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The unprecedented amount of data being generated at the edge of the network — Cisco estimates
that nearly 850 ZB will be produced by all, namely, people, machines, and things by 2021, up from
220 ZB generated in 2016 [21] — represents the ideal ingredient for training accurate Machine
Learning (ML). In particular, Deep Learning (DL) models [63] allow to enhance and support a wide
range of more intelligent applications, services, and infrastructures, such as powering recommender
systems [139], developing data-driven machine health monitoring [143], enabling new ways for
clinical diagnoses [86], or driving the design of new generation mobile networks [137]. However, the
potentially sensitive or confidential nature of gathered data poses privacy concerns when managing,
storing, and processing those data in centralized locations. At the same time, the capacity of the

Authors’ address: Paolo Bellavista, paolo.bellavista@unibo.it; Luca Foschini, luca.foschini@unibo.it; Alessio Mora, alessio.
mora@unibo.it, Dept. Computer Science and Engineering (DISI), Alma Mater Studiorum - University of Bologna, Viale
Risorgimento 2, Bologna, Italy, 40136.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2018/12-ART $15.00
https://doi.org/10.1145/1122445.1122456

, Vol. 1, No. 1, Article . Publication date: December 2018.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 P. Bellavista et al.

network infrastructure risks to be saturated by such continuous data collection, such as from
distributed sources at the network edge to centralized cloud resources.
To this purpose, decentralized learning has recently gained momentum exactly to decouple

model training from the need of directly accessing raw data, by becoming a promising alternative
solution to the more traditional cloud-based ML. In fact, decentralized learning leaves the training
data distributed and supports the learning of joint models via local computation and periodic com-
munication: data no longer need to leave the data owner. For example, data remain on the premises
of organizations or institutions that may want to collaborate, but without sharing their private
data. Other significant use cases embrace intelligent applications for end-users of smartphones or
IoT devices, where the private preferences or habits sensed through user-device interaction do not
leave the source devices.

The literature includes several differently designed approaches to enable decentralized learning.
The common key idea is to be able to just transmit ephemeral locally-computed updates (e.g., model
parameters or gradients) and/or meta-level information (e.g., activations in neural-networks): that
leverages on the fact that they are meaningful only with respect to the current global model and
typically bring significantly lower informative content compared to the raw data (data processing
inequality). This design paves the way to upgrading the user’s privacy so to meet the rising
legislative requirements about it (e.g., the California Consumer Privacy Act [93] and the European
General Data Protection Regulation (GDPR) [30]). Similarly, in the case of federated deployment
environments participated by different institutions, the use of decentralized learning techniques can
ensure privacy guarantees, especially in sensitive domains such as healthcare where data sharing is
impeded by regulation (e.g., the Health Insurance Portability and Accountability Act - HIPAA [94]).
Besides the above privacy concerns, decentralized learning techniques are strongly motivated

from the infrastructural perspective. The huge amount of raw data coming from the edge of the
network and headed to datacenters risks to overwhelm the network backbone, hence a part of these
data should, instead, be consumed locally, as suggested in [21]. Note that, even with decentralized
learning, the periodic exchange of uncompressed updates in place of the upload of all the raw data
may not necessarily reduce the total communication cost needed to train a model in a satisfying
way [76].

As for the paper organization, this survey firstly presents the motivations that led to the develop-
ment of decentralized learning and provides a practical overview about its real-world applications
(in Section 2). Then, it defines the peculiarities of federated deployment environments (or feder-
ated settings in Section 3.1), introduces our original taxonomy to classify decentralized learning
approaches, and presents the main baselines for enabling decentralized learning (in Section 3). In
Section 4, it points out the main issues that have been addressed by the related literature in the
last four years. Indeed, that represents the core of our work providing an accurate, but largely
accessible, overview of the major works in the current literature about decentralized learning. The
referred works are readily characterized in the first place by the federated setting they refer to (i.e.,
Cross-silo or Cross-device), second, by a simple modular description of the baseline framework on
which the particular work is based (using our taxonomy from Section 3.2), and third by the specific
issues addressed in the surveyed solutions (i.e., privacy, communication efficiency, non-IIDness,
device heterogeneity, poisoning defense). The last part of this survey (in Section 5) looks at present
and future research directions for the advancement of decentralized learning, by discussing open
technical challenges and cutting edge lines of work.
We are aware of the rich existing survey literature in the field and in particular of the valuable

[68], [129], [73], and [147] papers. However, we claim that we are providing the readers with a
valuable and differentiated contribution if compared with those surveys primarily because of the
following aspects:

, Vol. 1, No. 1, Article . Publication date: December 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Decentralized Learning in Federated Deployment Environments: a System-level Survey 3

(1) We provide a more in-depth and more extensive technical description of the surveyed works,
describing their motivations, bringing out their most significant technical insights, and pro-
viding the readers with the references to fully comprehend the associated solution guidelines,
as well as commenting their differential strengths and weaknesses.

(2) We provide a readily and intuitive characterization of the surveyed works by means of a
tabular road map to approach the core of our survey, and we claim that it may be useful to
help non-expert readers to navigate the very differentiated literature that is emerging in the
field.

(3) Our survey includes several very recent research papers (published in the last few months)
that are relevant for the community and not covered yet by [68] and [129].

(4) We enlarge the discussion to cover decentralized learning approaches in a broader sense, not
focusing exclusively on federated learning related works.

(5) Finally, differently from [73] and [147], we do not specifically focus only on the advances of
decentralized learning that can be achieved via Multi-access Edge Computing (MEC).

2 THE RISING OF DECENTRALIZED LEARNING
The public opinion is becoming increasingly sensitive to individual privacy rights, especially after
the notorious Facebook-Cambridge Analitica scandal [126] has made no longer ignorable the
Orwellian levels of data held by such companies about us and has exposed the weakness (or even
the non-existence) of privacy regulation and data protection. Anyway, even without thinking to
striking episodes such the above cited one, individuals’ privacy is threatened whenever personal
raw data are disclosed. For example, elementary data anonymization (i.e., removing all explicit
identifiers such as name, address, and phone number) has demonstrated to be almost ineffective in
protecting privacy, since combinations of simple non-unique attributes often allow to re-identify
individuals by matching “anonymized” records with non-anonymized ones in a different public
dataset (e.g., [88]).

The actual legislative vacuum about data harvesting, data holding, and data processing has been
— and still is — the subject of regulation efforts around the world. About that, it is worth mentioning
the CCPA and the GDPR, respectively from California and from European Union, that both leverage
the principles of purpose specification and data minimization. In concrete terms, for example, the
GDPR’s Article 5 states that personal data shall be “collected for specified, explicit and legitimate
purposes and not further processed in a manner that is incompatible with those purposes” and
“kept in a form which permits identification of data subjects for no longer than is necessary for
the purposes for which the personal data are processed”. Such guidelines are often incompatible
with more traditional cloud-based ML solutions, where potential privacy-sensitive raw data flow
towards datacenters to train ML/DL models. In particular, (i) companies harvesting data tend to
keep them forever and users cannot delete them1, hence same data can be used several times for
different learning purposes (for extracting different kinds of insights); (ii) users from whom the data
were collected are unaware of the associated learning objectives; (iii) models learnt from collective
data typically remain property of the companies that built them; and (iv) users disclose their raw
data, in a more or less informed way, to infer centralized models, such as for training.
It could seem that an inevitable dichotomy between the protection of individual’s privacy and

the distillation of useful knowledge from a population exists (i.e., not disclosing private data to
preserve privacy, by merely performing local learning, versus sharing private raw data to produce
more accurate models at the cost of exposing data owners to privacy violation risks). On the
opposite, decentralized learning tries to alleviate the privacy concerns of traditional cloud-centric

1At least until the time this survey has been written.

, Vol. 1, No. 1, Article . Publication date: December 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 P. Bellavista et al.

training by design and is data-minimization-prone. In fact, (i) companies do not need anymore
to collect possible privacy-sensitive raw data to build ML/DL models; (ii) users could likewise
be unaware of the learning objective for which their data are used, but data processing happens
locally, hence facilitating the shift to full transparency; (iii) models (or fractions of models, i.e.,
portions of their parameters) reside locally at the user’s device or inside the organization’s premises
(or in very proximity of it). This could be seen as a first step to give back to the community the
knowledge acquired from joint contributions2; (iv) users do not need to upload their raw data to
query centralized models, in fact on-device inference is typically enabled if the entire model is
replicated locally — if only a portion of the model parameters is locally held instead, distributed
inference is performed by just communicating meta-level information in place of raw data.

In addition, shifting model training from the cloud towards the network edge recalls a trend that
was already in act with the rising of mobile edge computing during the last decade. Besides the
urge of privacy guarantee, several aspects are similar and seem to overlap. A primary one is the
need to relief the burden on the backbone of the network infrastructure, which risks to collapse
under the tsunami of data if not partially consumed locally or in proximity of the associated sources.
Intuitively, actively involving the ecosystem of edge devices in the learning process and exchanging
model updates in a communication-efficient way (e.g., employing stream compression) in place of
centralizing raw data can substantially reduce network traffic while leading to limited degradation
(or in some cases to no degradation) of model accuracy. Secondly, the low-latency requirements
of real-time applications often cannot be met by only leveraging the cloud (for instance when
monitoring a shared industrial workspace, during human robot collaboration, to enforce policies for
worker protection [108]). Enabling on-device inference of the learned or in-learning models, which
naturally comes with most decentralized learning approaches as we will discuss in the continuation
of the survey, benefits such delicate aspect. Let us finally note that decentralized training, with
its potential reduction of ML-related energy consumption because of reduced network traffic and
decreased transmission distance, also contributes to the overall sustainability of the approach: it is
considered as one of the key enabling technologies towards green networking via distributed and
federated datacenters.
Decentralized learning finds natural applications in smart apps for mobile devices which learn

by user interaction, and where low-latency responses are required. In this context, gathering
user-labeled or automatically annotated data points for feeding supervised learning algorithms is a
common practice. Related examples include on-device intelligent keyboards that power content
suggestions [130], or that predict the most suitable next words [38] or the most fitting Emojis [100]
given the chat history; or again vocabularies that evolve to follow the ongoing trending expressions
by learning out-of-vocabulary words [18], and all of this without exporting sensitive text to servers.
Other examples deal with human activity recognition (e.g., [113]) and keyword spotting for voice
assistants in smart homes (e.g., [64]) .

Decentralized learning has been used also to conjugate user privacy and prediction ability of the
infrastructure in the 5G multi-access edge computing architecture [57] [24] [80], for example for
proactive content caching [135] or for optimal allocation of virtual machine replicas copies [31],
and it is considered a key enabling tool for next generation wireless networks [90] as well, e.g., for
spectrum management.

Confirming its versatility, decentralized learning has been also applied to network traffic classifi-
cation, anomaly detection, and VPN traffic recognition tasks, while preserving appropriate privacy

2However, it is worth noting that restricting or preventing access to model’s parameters, even if the model itself is locally
available, makes it harder for an attacker to undermine it, e.g., via backdooring. Therefore, companies or organizations that
adopt Decentralized Learning techniques may be anyway motivated to hamper model inspection.

, Vol. 1, No. 1, Article . Publication date: December 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Decentralized Learning in Federated Deployment Environments: a System-level Survey 5

Fig. 1. The histogram reports the number of papers about decentralized learning per year, covered by this
survey, by showing the increasing relevance of decentralized learning in the literature.

levels [144] [8]. Similar considerations apply to vision-based safety monitoring systems in smart
cities [78].

In the relevant healthcare domain, the popularity of decentralized training approaches shown in
Figure 1 has been also pushed by the need to enable collaboration among healthcare institutions.
In fact, the disclosure of patients’ raw data is often impeded or limited by regulations such as the
HIPAA Privacy Rule, or the patient herself might not want her clinical data to be released to other
entities, or again the institutions might not want to sell out their valuable datasets. Therefore,
plain old centralized training results to be not feasible for predictive clinical models in many
cases. Furthermore, manual labeling of data is often very time-consuming in medical contexts and
typically requires qualified personnel. Datasets held by single institutions tend to be small and
may lack in diversity [95], and this is exacerbated when considering rare diseases. Hence, from
the perspective of isolated local learning, sample scarcity may lead to models with poor predictive
ability, especially when considering deep learning models that notoriously need abundant data
points to reach high fidelity. As practical use cases in smart healthcare, we report the training of a
detector for abnormal retinal fundus and a classifier for common chest radiography observations
(from visual datasets) [99]. Other clinical learning tasks include prediction of prolonged length of
stay and in-hospital mortality [96], prediction of hospitalizations for cardiac events [15], or gaining
insights about brain diseases [104].

3 FUNDAMENTALS, TAXONOMY AND BASELINES FOR DECENTRALIZED
LEARNING

This Section gives some concise background to make highly accessible the following presentation
of the surveyed decentralized learning solutions, by defining the targeted deployment settings and
the modular building blocks that are emerging in the related literature. These building blocks are
at the cornerstones of our original taxonomy, which we will introduce in this Section and use in
the remainder of the survey to better highlight the features, the pros, and the cons of the surveyed
contributions. We also present the most interesting baseline solutions to enable decentralized
learning.

3.1 Cross-Silo and Cross-Device Federated Settings
Here we provide an informal and qualitative characterization of the two most common settings for
decentralized learning, by highlighting their specific elements with respect to traditional distributed

, Vol. 1, No. 1, Article . Publication date: December 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 P. Bellavista et al.

settings [22]. As anticipated in the previous sections, decentralized learning techniques are strongly
motivated when data sharing is impeded by law or by privacy concerns, hence they apply to
several real-world contexts. For the sake of simplicity, let us consider two extreme scenarios: (i) the
federation of entities participating in collaborative learning tasks consists of compute nodes from
different organizations or companies (e.g., hospitals, banks) — that typically store their private
data in on-premise silos —; (ii) the federation comprises a massive amount of edge devices (such as
smartphones, IoT devices, or IIoT devices). Such primary distinction leads to the identification of two
very general settings, which we respectively name Cross-silo federated settings and Cross-device
federated settings [53].
Those two federated scenarios are substantially different from more traditional distributed

settings, where raw data are centralized in datacenters to perform learning. In fact, in cloud-
centric training, the participants of the learning task are compute nodes (generally up to 1000)
interconnected through very fast networks, making the computation cost the major bottleneck.
Data can be balanced across compute nodes; moreover, they can be partitioned and re-partitioned
according to the need. Importantly, any participant can access any part of the dataset. Worker
machines are reliable and low rate of failure or drop out (i.e., abandoning the learning task without
notice) are expected.

The Cross-silo federated setting refers to a scenario in which the entities involved in the learning
process are limited in number (up to 100 participants), and typically they are trusted and reliable.
In addition, they are likely to participate in the entire training task. Data can be unbalanced, but
in general not as much as in Cross-device settings. No assumptions about communication or
computation bottlenecks are made a priori. Furthermore, while training data are assumed to be
independently and identically distributed (IID) in typical datacenter settings, such assumption does
not hold for federated settings (neither for Cross-silo nor for Cross-device): the training data on
a given device or on a given machine are likely not to be representative of the full population
distribution.
In the Cross-device federated settings, participants are very numerous instead (up to 1010),

data are massively distributed and unbalanced (e.g., the number of training examples held by
participants can differ by one or two orders of magnitude) [60]. Learners are highly unreliable;
failure and drop out must be addressed, and each client is likely not to take part in the entire
training process (actually they may contribute only once per task). Furthermore, since edge devices
have limited bandwidth, communication efficient solutions are preferable in Cross-device setting;
the federation may comprise computationally constrained devices as well, making more delicate the
computation/communication trade-off. Another peculiarity is that participants may be malicious in
this scenario, e.g. trying to infer sensitive information about other learners or voluntarily hampering
the global learning.

For the sake of clarity, we use this characterization3 to readily approximate the setting to which
the surveyed works in Section 4 refer — we will show that the targeted federated setting relevantly
influences the design choices of a solution. We indeed use such characterization of the setting as a
primary dimension of our taxonomy.

3.2 A Taxonomy for Decentralized Learning Systems
To favour the readability of the remainder of the survey, we propose a taxonomy for decentralized
learning systems that highlights the main alternative options in designing such frameworks.

3We use the terminology found in [53]. However, the existence of a central orchestrator (i.e., an entity orchestrating the
collaborative training) in federated settings, either Cross-silo or Cross-device, is further supposed in [53]. To embrace all
the decentralized learning work from the literature, we relax this last trait in our terminology usage in this paper.

, Vol. 1, No. 1, Article . Publication date: December 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Decentralized Learning in Federated Deployment Environments: a System-level Survey 7

Fig. 2. Our taxonomy for decentralized learning systems.

3.2.1 Data processing: Data-sequential vs Data-parallel. The common thread when designing decen-
tralized learning algorithm is leveraging data-parallel variants of iterative optimization algorithms
that are inherently sequential, e.g. Stochastic Gradient Descent (SGD) and its optimizations. Typi-
cally, the federation of learners collaborates to minimize a global objective function, that is unknown
to the participants since no single node has direct access to all the data. The global objective can be
thought as a linear combination of the local empirical losses, available locally to the participants
[60].
We further divide data-parallel approaches into systems that leverage synchronous or asyn-

chronous update mode. In fact, as traditional distributed training algorithms, also data-parallel
decentralized learning approaches can exploit asynchronous updates to optimize on speed by
using potentially stale parameters for local training or wait for local computation of the slow-
est participant to synchronously aggregate updates without risking to use outdated parameters.
With synchronous update mode, it is usual to talk about rounds of communication, i.e., all the
triggered participants retrieve the global model state, produce their locally computed updates and
communicate such updates, from which the new generation model will be derived. Communication
efficient algorithms have their principal goal in minimizing the rounds of communication. Relaxing
the synchronicity can instead spread the communications over time, particularly helpful when
handling a large number of learners. However, examples of data-sequential systems exist, i.e.,
systems in which each participant uses as starting model state the result of the computation of
another participant, and thus produces as output the input model state for the next participant.
Anyway, let us note that these solutions are usually limited to the Cross-silo setting.

3.2.2 Network Topology: Star-shaped vs Peer-to-peer. The coordination among learners can be
facilitated by a star-shaped network topology that leverages a central entity to distribute the current
state of the global model at the beginning of each local iteration, and maintain the state updated
during the training task. Participants can directly exchange their locally computed updates as
well, in a peer-to-peer fashion, hence not requiring any infrastructure at the price of increased
coordination complexity. In literature, decentralized learning frameworks that exploit peer-to-peer
networks of participants are often referred as fully decentralized, i.e., decentralized in both data
and coordination.

3.2.3 On-device Model: Full Model vs Splitted Model. Besides the full local replication of the
(current) global model during the training process, it can be possible to have participants that are
only responsible for a fixed subset of model parameters (in this case, typically, the parameters
belonging to 𝑛 shallower layers in a deep neural network, i.e. splitted models). The full replica of
the global model enables on-device inference by design, while in the case of splitted model, without

, Vol. 1, No. 1, Article . Publication date: December 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 P. Bellavista et al.

retrieving the entire model at the end of the training, distributed inference is required. Note that,
anyway, the primary privacy concerns have been bypassed by having feature extraction locally4.

3.2.4 Exchanged parameters: Model Parameters, Gradients, Activations and Others. We also em-
phasize that the degrees of freedom in designing decentralized learning frameworks also involve
the kind of exchanged information during the distributed learning. Supposing gradient descent
based methods for optimization, the usual practice is to have participants exchanging gradients
or model updates, with the latter option valuable in case of participant-specific local solver. In
star-shaped topology, a common practice is to have participants downloading the current model
parameters and communicating back to the aggregator either the gradients or the locally updated
model parameters typically generated through SGD iteration(s). Hence, with such topology it is
usual to talk about parameters in upload and in download. There are examples of star-shaped
frameworks where the communication in both the directions only involves gradient information
(e.g., [118], [9]) as well, i.e., the server aggregates gradients and the back-propagation is performed
on-device. We underline that the exchanged information may be not limited to gradients and model
parameters, in fact other kinds of parameters may be transmitted for diverse optimization purposes.
For instance, the exchange of moment estimates to implement an ADAM[59]-inspired optimization
algorithm [85], or also of information for gradient correction terms [70], and of control variates
[56] to tackle non-IIDness, or of other local estimations to meet given budget resources [125] (more
details about their motivations and implementations are in Section 4). Or again, in presence of
splitted models (e.g., in Split Learning), besides model parameters and gradients, also activations
(and labels) have to be communicated by design.

3.2.5 MEC-awareness: Yes/No. It is also worth mentioning that, considering the MEC architecture
and therefore the existence of a middle layer of edge servers between the edge devices and the cloud,
two levels of topology organization can be identified. On the one hand, decentralized learning
systems may leverage edge servers as intermediate aggregators for updates produced by the edge
devices in their locality (i.e., matching a star-shaped topology) and then edge servers may directly
exchange intermediate-level updates among them in a peer-to-peer fashion, to collaboratively build
the global model. On the other hand, the cloud may be involved as “master aggregator” collecting
intermediate aggregations from the federation of edge servers (the latter solution is referred as
hierarchical). An in-depth discussion about edge-cloud continuum roles in edge intelligence can be
found in [147].

3.3 Baselines for Decentralized Learning Systems
In this subsection, we propose some baseline frameworks to enable decentralized learning. We
introduce the most significant baselines for star-shaped systems, followed by instances of fully
decentralized (server-less) alternatives, i.e. peer-to-peer.

3.3.1 Star-shaped Baselines. Federated Averaging (FedAvg) is a widely accepted heuristic algorithm
used as baseline for star-shaped Federated Learning (FL), given its simplicity and its empirical
effectiveness [81] also in non-convex setting. Its skeleton is presented in Algorithm 1. The learning
process proceeds in synchronous rounds of communication; the (full) current global model is
broadcasted at the beginning of the round to the (selected) participants, that use their private
dataset to produce an update (e.g., gradients or model weights) for the received model, and upload
such contributions. The aggregator, i.e. a sort of parameter server, collects and aggregates (e.g.,
by averaging) the updates from participants and computes the new-generation global model. The
process typically ends when a certain accuracy for the global model is reached, or when a certain
4It is important to remind that information leakage is still possible. This will be faced in Section 4.2.

, Vol. 1, No. 1, Article . Publication date: December 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Decentralized Learning in Federated Deployment Environments: a System-level Survey 9

Algorithm 1: FedAvg algorithm
The𝐾 participants are indexed by𝑘 ,D𝑘 is the local dataset at participant𝑘 ,𝑛𝑘 = |D𝑘 | and𝑛 =

∑𝐾
𝑘=1 𝑛𝑘 ,

𝐵 is the local minibatch size, 𝐸 represents the number of local epochs, 𝜂 is the learning rate. Note the
common initialization of model parameters𝑤0.
Server executes:

initialize𝑤0
for each round 𝑡 = 1, 2, 3, ..

𝑚 ←𝑚𝑎𝑥 (𝐶 × 𝐾, 1)
𝑆𝑡 ← (random set of𝑚 clients)
for each client 𝑘 ∈ 𝑆𝑡 in parallel

𝑤𝑘
𝑡+1 ← ClientUpdate(𝑘,𝑤𝑡)

𝑤𝑡+1 ←
∑𝐾
𝑘=1

𝑛𝑘
𝑛 𝑤

𝑘
𝑡+1

ClientUpdate(𝑘,𝑤)
B ← (split D𝑘 into batches of size 𝐵)
for each local epoch 𝑒 from 1 to 𝐸

for batch 𝑏 ∈ B
𝑤 ← 𝑤 − 𝜂∇ℓ (𝑤 ;𝑏)

return w to server

number of rounds has been executed. SGD is typically chosen as local solver. Three hyperparameters
have to be tuned in FedAvg; 𝐶 controls the fraction of participants to be selected in a certain round
𝑡 (with 𝐶 = 0.0 indicating only one participant involved per round, and 𝐶 = 1.0 meaning the
totality of participants), 𝐸 defines the number of local epochs to be performed in each round, and 𝐵
denotes the minibatch size. It is worth noting that the contributions in the aggregation are weighed
accordingly to the number of local data points held by each participant.

When the full local dataset is treated as a single minibatch (i.e., 𝐵 = ∞), and the local iterations
at each participant are limited to one epoch (i.e., 𝐸 = 1), FedAvg is also known as FedSGD.
An equivalent variant of FedSGD can be formulated by uploading gradients in place of model
parameters.
An accurate convergence analysis, in strongly convex and smooth problems, of FedAvg in

presence of data heterogeneity and partial device participation — peculiar of cross-device settings
— can be found in [71]. The authors theoretically showed that, in such circumstances, model
convergence is slowed down with respect to the ideal case of IIDness and full participation. They
also pointed out that a decaying learning rate is fundamental for the convergence of FedAvg
under non-IIDness: gradually diminishing the learning rate can neutralize biased local updates.
Considering FL-suitable participant sampling and related averaging schemes, the authors of [71]
establish a convergence rate of O(1

𝑇
), where 𝑇 represents the total number of SGD iterations

performed by every participant.
FedAvg is considered a communication efficient algorithm mainly thanks to two aspects: (i) it

selects a (random) subset of participants per round (i.e., if only a portion of participants is selected,
the per-round communication cost is reduced with respect to full participation); (ii) it allows for
additional iterations of local solver (i.e., SGD) to reduce the total number of synchronizations
needed for model convergence – it has been empirically showed that FedAvg significantly reduces
the total communication rounds (under the same C-fraction of per-round selected clients) with
respect to FedSGD, while reaching the same (or higher) model accuracy [81]. A plethora of works
in literature propose improvements for FedAvg (see Section 4 for further details).
A baseline alternative to FedAvg, Federated Distillation (FD), is presented in [49], and it is

explicitly designed to be extremely communication efficient; it is inspired by an online version

, Vol. 1, No. 1, Article . Publication date: December 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 P. Bellavista et al.

of knowledge distillation, namely co-distillation [44], [4]. In a nutshell, each device (the student)
stores its model outputs, i.e. a set of logit values normalized via softmax function, from which it
derives per-label mean logit vectors, and periodically uploads such local-average logit vectors to
the aggregator. The server produces the per-label global-average logit vector by averaging the
contributions of all the participants in that round, and broadcasts such aggregation to the federation;
each device treats the received per-label global-average logit vector as the teacher’s output, and
locally calculates the distillation regularizer. It is straightforward to note that exchanging logit-
vector (local or global averaged, whether they are upload or download parameters), in place of
model parameters or gradients, reduces the per-round communication cost with respect to FedAvg:
the dimension of logit-vectors depends on the number of labels, and not on the number of model
parameters.
A differently designed method to enable collaborative training of neural networks without

sharing raw private data is the so-called Split Learning (SL), also referred as SplitNN [36] to
emphasize the suitability for DL architectures. This technique employs splitted models instead of
full model replication. In fact, the training participants hold replications of the shallower layers up
to a certain layer (i.e., the cut layer), and a central entity holds the deeper layers. Inter-layer values,
i.e., activations and gradients exchange occurs between a certain participant and the central entity,
instead of centralizing the raw data.

The training process as formulated in [36] is data-sequential, albeit distributed. Each participant
retrieves the current state of the shallower layers of the neural network either in a peer-to-peer
mode, downloading it from the last training participant, or in a centralized mode, downloading
it from the central entity itself, and runs the local gradient descent based local solver (e.g., SGD),
using its private dataset5. The participant computes the forward propagation up to the cut layer,
and the outputs of this layer, together with label associated to the data examples, are communicated
to the central entity that concludes the forward pass on the deeper layers. The back propagation of
gradients takes place in a similar fashion, flowing from the deepest layer to the cut layer, where
they are sent from the central entity to the participant that has initially triggered the forward
propagation (only the gradients that refers to the cut layer). Then, the process repeats with a
different participant, collectively learning a joint model without sharing private raw data. In [111]
the position of the cut layer is empirically discussed.

Authors of [36] also proposed a variant of the SplitNN algorithm, namely U-shaped Split Learning,
in which the labels related to the locally available training examples are not centralized but remains
private at the participant side.

A data-parallel variant of SplitNN is proposed in [119], namely SplitFed learning (SFL), to combine
the advantages of FL and SL, that are respectively the parallel processing among distributed learners
and the model partitioning among participants and central entity.
Although splitNN has demonstrated to reduce computation burden and bandwidth utilization

with respect to baseline FedAvg [111] in presence of “big” models and high number of clients,
star-shaped FL and fully decentralized FL allow on-device inference of the model by design, while
this is not true for splitNN that requires a distributed inference unless the complete trained model
is provided to the participants.

3.3.2 Peer-to-peer baselines. In star-shaped FL, the coordination server orchestrates the commu-
nication rounds; it iteratively broadcasts the current model state to the participants and gathers
the locally computed updates to produce the next-generation model by aggregation. Although
leveraging a client-server architecture permits to ignore topology-related issues, FL presents two
5Regardless of the strategy to retrieve the current state of the participant-side model, either peer-to-peer or centralized, in
SplitNN a server exists by design; this is why we consider it as star-shaped.

, Vol. 1, No. 1, Article . Publication date: December 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Decentralized Learning in Federated Deployment Environments: a System-level Survey 11

downsides: (i) the central entity can be seen as a single point of failure; (ii) the central entity may
represent a bottleneck considering a significant number of training participants (as demonstrated
in [72] though not explicitly targeting federated settings). Furthermore, the learners should trust
such central aggregator, and, even though techniques such as multi-party computation can ensure
inscrutability of updates (see Section 4.2), the participants may prefer to coordinate each others
directly (as could be the case of health institutions).

In fully decentralized learning, the topology of star-shaped FL becomes a peer-to-peer topology,
represented as a connected graph (generally assumed to be sparse). Such graph can be a directed
graph or an undirected graph, i.e. unidirectional or bidirectional channels of communication among
the nodes. The topology can be assumed to be fixed or dynamic, i.e. in which interconnections
between nodes may change over time.
In each round, participants perform local computation and then communicate with (a subset

of) the other nodes in the graph — note that not leveraging the server-client architecture (as
well as relaxing the synchronous update mode) redefines the semantic of rounds. Straightforward
optimization algorithms, similarly to FedAvg, employ fully decentralized variants of SGD (e.g.,
peers directly exchanging and merging gradients or model updates). It is also worth highlighting
that, while in star-shaped FL the FedAvg algorithm has been widely accepted as baseline, in peer-
to-peer (server-less) FL there is no algorithm that has distinctly emerged among others; solutions
in literature, in fact, make different assumptions on the connectivity of the graph, in particular
considering each node connected to all the other nodes in the network or considering only a set
of nodes (i.e., the neighbours) reachable by each one, considering a fixed topology or a dynamic
topology, assuming directed (e.g., [42]) or undirected graphs, and employing different strategies for
model fusions.

In the continuation of this subsection, we present examples of baseline algorithms that consider
fixed-topology and undirected graphs — most common assumptions. The first work, BrainTorrent
[104], targets cross-silo federated settings, while the subsequently presented ones also embrace the
cross-device setting [43] [50] [108].

BrainTorrent considers the graph as fully connected, from this consideration comes our labeling
as cross-silo framework — it explicitly targets the collaboration of medical institutions, where it
is reasonable to further suppose full connectivity besides fixed topology and undirected network
graph. In a nutshell, a random participant 𝑘 in the network starts the learning process by pinging
all the others node requesting for model updates; the ones that have a fresher version of the model
respond with their model parameters; the learner that has initiated the process, gathers the updates
from the subset of participants that have responded, referred as 𝑁

𝑘
, and aggregates them with its

own local model by using this strategy:𝜓𝑘 =
𝑛𝑘
𝑛
𝑤𝑘 +∑𝑖∈𝑁

𝑘

𝑛𝑖
𝑛
𝑤 𝑖 . Next, the participant 𝑘 fine tunes

the aggregated model𝜓𝑘 using its own private dataset, it updates the version of its model and it is
ready to respond to ping request from other nodes by providing its new generation fine-tuned𝑤𝑘 .
Then the process repeats.

Gossip-based protocol for distributed learning has been explored in the datacenter setting as
alternative to the parameter-server approach (e.g., [10], [39]). Inspired from them, Gossip Learning
(GL) has been proposed in [43] for Cross-device federated settings. In the baseline GL algorithm,
starting from a common initialization, each node sends its local model to a randomly selected peer,
which firstly merges (e.g., by averaging and weighing the average according to an age parameter
associated with the freshness of the models) the received model with its current parameters, then
updates the resulting model by exploiting its private dataset, and the process repeats. In a nutshell,
there could be different models scattered across the network of peers, with each one of these models
taking random walks (in the network) and being updated when visiting a new node. Typically, the

, Vol. 1, No. 1, Article . Publication date: December 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 P. Bellavista et al.

Algorithm 2: Consensus FedAvg algorithm
𝑁
𝑘
represents the set of neighbors of the participant 𝑘 , hence 𝑘 excluded, D𝑘 is the local dataset at

participant 𝑘 , 𝐵 is the local minibatch size, 𝜂 is the learning rate.
Participant k executes:

initialize𝑤𝑘0
for each round 𝑡 = 1, 2, 3, ..

receive{𝑤𝑖𝑡 }𝑖∈𝑁𝑘

𝜓𝑘𝑡 ← 𝑤𝑘𝑡
for all devices 𝑖 ∈ 𝑁

𝑘

𝜓𝑘𝑡 ← 𝜓𝑘𝑡 + 𝜁𝑡𝛼𝑡,𝑖 (𝑤𝑖𝑡 −𝑤𝑘𝑡)
𝑤𝑘
𝑡+1 =ModelUpdate(𝜓𝑘𝑡)

send(𝑤𝑘
𝑡+1) to neighbors

ModelUpdate(𝜓𝑘𝑡)
B ← (split D𝑘 into batches of size 𝐵)
for batch 𝑏 ∈ B

𝜓𝑘𝑡 ← 𝜓𝑘𝑡 − 𝜂∇ℓ (𝜓𝑘𝑡 ;𝑏)
𝑤𝑘𝑡 ← 𝜓𝑘𝑡
return(𝑤𝑘𝑡)

local update is implemented through minibatch SGD algorithm. It is worth noting that due to the
push only nature of the considered protocol, the merge-update-push cycles are not synchronized
among participants: a node may merge its fresher model with an outdated one. The GL strategy, in
[43], is not evaluated on DL architectures. Furthermore, this seminal work does not thoroughly
discuss some aspects related to different kinds of heterogeneity that arise in real-world cross-
device setting; in particular, the data held by peers, the neighbors reachable by each peer in the
network, and the processing and communication speeds of devices are unrealistically supposed to
be homogeneous. Such aspects are considered and discussed in [35], where it is claimed that gossip
learning shows poor performance on restricted communication topologies and it is highlighted
that GL fails to converge when communication speeds of the nodes and heterogeneity of data are
correlated. Authors of [35] propose some strategies to improve GL in such realistic scenarios.

In BACombo [50], authors consider a fixed topology of neighbors for each learner, not limiting the
spreading of the updates to one peer per round, and propose a neural-network specific solution. The
local model held by each peer is splitted into a set of 𝑆 not-overlapped segments, and each participant
does not pull all the segments (i.e., the entire model) from the same peer but collects 𝑆 segment from
𝑆 different links in the network of neighbours. In this way, each peer reconstructs a model update
by building a mixed model composed by such 𝑆 segments that have been pulled from different
peers. They extend the solution by allowing each peer to pull 𝑆 × 𝑅 segments in each round of
communication, with 𝑅 being an hyper-parameter, to be carefully tuned, that represents the number
of mixed models that can be reconstructed, thus impacting the communication efficiency while
accelerating the propagation of fresh model. The mixing strategy is similar to FedAvg, weighing
contributions (i.e., segments) according to the cardinality of the dataset held by participants.

In [108], authors propose a consensus-based FedAvg-inspired algorithm (referred as CFA), suppos-
ing sparse connectivity. The algorithm is formalized in Algorithm 2. In each round, the participant 𝑘
receives models from its neighbors and produces an aggregated model,𝜓𝑘 . Next, local iterations of
mini-batch SGD are performed to produce the new-generation model, that will be sent to the neigh-
bors, before the process repeats. The peculiarity of the algorithm stands in how the aggregatedmodel

, Vol. 1, No. 1, Article . Publication date: December 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Decentralized Learning in Federated Deployment Environments: a System-level Survey 13

is obtained, at round 𝑡 , from the neighbor contributions, that is:𝜓𝑘𝑡 = 𝑤𝑘𝑡 + 𝜁𝑡
∑
𝑖∈𝑁

𝑘
𝛼𝑘,𝑖 (𝑤 𝑖𝑡 −𝑤𝑘𝑡),

where 𝜁𝑡 is the “consensus step size” and the mixing weights 𝛼𝑘,𝑖 are chosen, similarly to FedAvg,
as 𝛼𝑘,𝑖 = 𝑛𝑖∑

𝑖∈𝑁
𝑘
𝑛𝑖

with 𝑛𝑖 being the cardinality of data samples at participant 𝑖 .

We conclude this overview about instances of baseline algorithms for server-less federated
learning by mentioning the fact that blockchain-based implementations of peer-to-peer learning
frameworks have been — and are — explored in literature (e.g., [58]), though not being explored in
this survey.

4 DECENTRALIZED LEARNING SOLUTIONS: A SYSTEM-LEVEL ANALYSIS
Decentralized learning decouples by design the ability to learn a predictive ML/DL model from
the direct access to raw data and meets the rising urge of ensuring privacy guarantees to the data
owners while still being able to distill useful information for the community. However, as already
pointed out in this survey, diverse challenges emerge. Chief among them, privacy is not completely
secured by means of just disclosing ephemeral updates (e.g., gradients, model parameters) or
meta-level information, as well as the communication efficiency is of paramount importance in
cross-device federated settings. Furthermore, having the raw data (massively) distributed and/or
unbalanced among participants naturally implies dealing with non-IIDness. An additional factor
to be addressed is the heterogeneity of devices’ resources in cross-device settings. Moreover, the
design of decentralized learning approaches opens up to new possibilities for attackers, since
learners actively participate in the training process, e.g. forcing information leakage from other
participants or trying to influence the behaviour of the system. These are the most investigated
issues in literature so far, but other less crucial aspects and challenges are rising and taking the
scene while effective solutions for the urgent aspects permit to already apply decentralized learning
in real scenarios. In this section, we discuss the systems in the literature that aim at solving the
above mentioned issues, i.e. communication efficiency, privacy, non-IIDness, device heterogeneity,
and poisoning defense, classifying them by our taxonomy (see Table 1).

Let us note that, in the following sub-sections, we will use the taxonomy definitions and terms
introduced previously in this survey; where not possible or convenient, we explain in-line the
specific meaning of the employed definitions/terms/symbols.

4.1 Improving Communication Efficiency
The communication efficiency in decentralized learning can be addressed from different perspec-
tives. In the first place, decentralized optimization algorithms are usually designed to allow for
multiple local training iteration between communication rounds to reduce the total communication
cost of the training process (e.g.,[81], [54]); in synchronous star-shaped federated learning the
number of participants selected per round is typically limited (e.g., [81]), as well as in peer-to-peer
topology the number of neighbours to scatter the updates to is bounded (e.g. bounded to 1 such as
in GL [43] or in [117]). Stream compression (e.g., by encoding, quantization and/or sparsification
of updates) is typically employed to reduce the per-round communication cost [61] [16] [103]
[106] [118] [85] [67] [51] [117]. Furthermore, specific strategies can be crafted accordingly to the
peculiarities of the model to train (e.g., by introducing asynchrony between the updating of the
neural-network parameters belonging to shallower/deeper layers [20]). Stream compression has
been mostly explored in star-shaped federated learning, but similar solutions may be easily adapted
in peer-to-peer topology. An orthogonal approach is to improve the communication efficiency by
reducing the total communication rounds needed for the model convergence (e.g., implementing
distributed variants of SGD optimizers [85] [77] [108]). Or again, communication-efficiency can be

, Vol. 1, No. 1, Article . Publication date: December 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 P. Bellavista et al.

Table 1. This tabular classification is used to guide the readers; the referred works are characterized by the
federated setting they refer to, by our taxonomy from Section 3.2, and by the most relevant issues addressed,
i.e., communication efficiency (CE), privacy (P), non-IIDness (non-IID), device heterogeneity (DH), poisoning
defense (PD). We flatten the update mode ramification of the taxonomy, related to data-parallel approaches,
for better visualization.
Notation: 𝑤 (full) model parameters, 𝑤𝑑 on-device layer-partitioned model parameters (e.g., in SL), 𝑔 gradients, 𝑙𝑣 logit vectors, 𝐴 acti-
vations (i.e., output of NN’s cut layer), 𝑌 labels associated with data points,𝑚 1𝑠𝑡 moments, 𝑣 2𝑛𝑑 Adam moments, 𝑐 control variates, 𝑑
GD momentum, 𝑡 time stamps, res_info resource information, 𝐿 loss function value, 𝜌 the Lipschitz parameter of the loss function, 𝛽 the
smoothness parameter of the loss function, 𝜏∗ the optimal number of local updates between synchronizations.
* indicates that the work is not thoroughly discussed throughout the section.

Our Taxonomy Characterization

On-dev. Data Update Topology Exch. Info MEC

Work Year Setting Model S P Async Sync Star P2P Up Down aware

Ba
se
lin

e

FedAvg [81] 2016 both Full ✓ ✓ ✓ 𝑤 𝑤 ×
FD [49] 2018 device Full ✓ ✓ ✓ 𝑙𝑣 𝑙𝑣 ×
CFA [108] 2019 device Full ✓ ✓ ✓ 𝑤 ×
GL [43] 2019 device Full ✓ ✓ ✓ 𝑤 ×
BrainTorrent [104] 2019 silo Full ✓ - - ✓ 𝑤 ×
SplitNN [36] 2018 silo Split ✓ - - ✓ 𝐴, 𝑌 , 𝑤𝑑 𝑔, 𝑤𝑑 ×
SFL [119] 2020 device Split ✓ ✓ ✓ 𝐴, 𝑌 , 𝑤𝑑 𝑔, 𝑤𝑑 ×

Co
m
m
.E

ffi
ci
en
cy

Kamp et al. [54] 2018 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
Konečnỳ et al. [61] 2016 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
Caldas et al. [16] 2018 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
STC [106] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
eSGD [118] 2018 device Full ✓ ✓ ✓ 𝑔 𝑔 ✓
HierFAVG [75] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ✓
Chen et al.∗ [20] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
CE-FedAvg [85] 2019 device Full ✓ ✓ ✓ 𝑤,𝑚, 𝑣 𝑤,𝑚, 𝑣 ×
CFA-GE [85] 2019 device Full ✓ ✓ ✓ 𝑤, 𝑔 ×
SAPS-PSGD [117] 2020 silo Full ✓ ✓ ✓ 𝑤 ×
Momentum FL [77] 2020 device Full ✓ ✓ ✓ 𝑤, 𝑑 𝑤, 𝑑 ×

Pr
iv
ac
y

Geyer et al. [34] 2017 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
DP-FedAvg [82] 2017 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
Triastcyn et al. [120] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
SECAGG [13] 2017 both Full ✓ ✓ ✓ 𝑤 𝑤 ×
Turbo-Agg [112] 2020 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
Hao et al. [37] 2019 device Full ✓ ✓ ✓ 𝑔 𝑔 ×
SecGD∗ [40] 2019 silo Full ✓ ✓ ✓ 𝑔 𝑤 ×
Truex et al. [122] 2019 both Full ✓ ✓ ✓ 𝑤 𝑤 ×
SecProbe [142] 2019 silo Full ✓ ✓ ✓ 𝑤 𝑤 ×
MCL∗ [32] 2019 silo Full ✓ ✓ ✓ 𝑤 𝑤 ×
NoPeekNN [123] 2019 silo Split ✓ - - ✓ 𝐴, 𝑌 , 𝑤𝑑 𝑔, 𝑤𝑑 ×
Yu et al. [132] 2019 silo Split ✓ - - ✓ 𝐴, 𝑌 , 𝑤𝑑 𝑔, 𝑤𝑑 ×

P
&
CE

DiffSketch∗ [67] 2019 device Full ✓ ✓ ✓ 𝑔 𝑔 ×
Jin et al. [51] 2020 device Full ✓ ✓ ✓ 𝑔 𝑔 ×
cpSGD∗ [2] 2018 device Full ✓ ✓ ✓ 𝑔 𝑤 ×
Bonawitz et al. [14] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ×

N
on

-II
D

Y. Zhao et al. [145] 2018 silo Full ✓ ✓ ✓ 𝑤 𝑤 ×
FedAug [49] 2018 silo Full ✓ ✓ ✓ 𝑤 𝑤 ×
FedMeta, UGA [131] 2019 device Full ✓ ✓ ✓ 𝑔 𝑤 ×
FedAvgM∗ [47] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
FedProx [69] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
SCAFFOLD [56] 2019 device Full ✓ ✓ ✓ 𝑤, 𝑐 𝑤, 𝑐 ×
FedDANE [70] 2020 device Full ✓ ✓ ✓ 𝑤, 𝑔 𝑤, 𝑔 ×
FedOpt [101] 2020 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
FAVOR∗ [124] 2020 device Full ✓ ✓ ✓ 𝑤 𝑤 ×

D
H

FedAsync [127] 2019 device Full ✓ ✓ ✓ 𝑤, 𝑡 𝑤 ×
TiFL [17] 2020 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
FedCS [91] 2019 device Full ✓ ✓ ✓ 𝑤, res_info 𝑤 ✓
LoAdaBoost∗ [48] 2018 silo Full ✓ ✓ ✓ 𝑤, 𝐿 𝑤, 𝐿 ×
Wang et al. [125] 2019 device Full ✓ ✓ ✓ 𝑤, 𝑔, 𝜌 , 𝛽 , 𝑤, 𝜏∗ ×

𝐿, res_info
BACombo [50] 2020 device Full ✓ ✓ ✓ 𝑤 ×

, Vol. 1, No. 1, Article . Publication date: December 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Decentralized Learning in Federated Deployment Environments: a System-level Survey 15

Table 1. Continuation

Our Taxonomy Characterization

On-dev. Data Update Topology Exch. Info MEC

Work Year Setting Model S P Async Sync Star P2P Up Down aware

PD

SLSGD [128] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
FoolsGold [33] 2018 device Full ✓ ✓ ✓ 𝑔 𝑤 ×
L. Zhao et al. [141] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
Li et al. [66] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ×

architecturally favoured by leveraging MEC [75]. Obviously, combinations of the previous strategies
are common.

FedAvg can be seen as a periodic averaging protocol that involves in each round of communication
only a random subset of the participants. However, FedAvg (and periodic averaging protocol in
general) maintains the same frequency of communication independently from the utility of the
specific synchronization, e.g., when all models are approximately equal or they have already
converged to an optimum then synchronization may be omitted. Leveraging this observation,
authors of [54] propose a dynamic averaging protocol to invest the communication efficiently by
avoiding to synchronize models when the impact of such aggregation on the resulting model is
negligible. To this end, authors leverage a simple measure, ∥𝑤 𝑖𝑡 − 𝑟 ∥2, for model divergence to
quantify the effect of synchronizations; specifically, they measure the divergence of the locally
trained model, 𝑤 𝑖𝑡 , for the round 𝑡 at participant 𝑖 , with respect to a reference model 𝑟 that is
common among all participants, e.g. the last received global model, and compare such divergence
with an a-priori chosen threshold to decide whether perform a synchronization.

In [61], two strategies have been proposed to reduce the uplink cost in star-shaped FL (explicitly
considering FedAvg as baseline) by means of compression, and they are structured updates and
sketched updates. Such strategies can be combined to further compress the data to be sent from
clients to server. The peculiarity of structured updates is that the updates are restricted to have a
pre-defined structure, and they are directly trained to fit such structure. Two types of structures
are considered by authors: (i) updates are enforced to be a low-rank matrix of rank 𝑘 , with 𝑘 being
a fixed parameter (low-rank updates); (ii) updates are restricted to be a sparse matrix following a
pre-defined random sparsity pattern (i.e., a random mask), thus only the non-zero values along
with the seed to generate the pattern have to be communicated. Regarding sketched updates, the
full (or structured) update resulting from the local training is approximated, i.e. sketched, in a lossy
compressed form. To this end, two (compatible and jointly usable) tools are proposed: subsampling,
i.e only a random subset of the (scaled) values of the updates are communicated, and probabilistic
quantization. As the reader can note in the continuation, several successive works addressing
communication efficiency in decentralized training combine subsampling or sparsification and
quantization. Furthermore, supported by empirical evidence, authors highlight the usefulness of
applying structured random rotations before quantizing to reduce the quantization error.

Similarly to [61], authors of [16] use a combination of basis transform, subsampling and proba-
bilistic quantization to reduce the server-to-client communication cost6 of FedAvg. Furthermore,
inspired by the well-known dropout technique [114], clients train their updates considering a
smaller sub-model with respect to the global model. This further reduces the server-to-client traffic,
reduces the local computational cost and, obviously, reduces the client-to-server traffic. Differently
from the traditional dropout, a fixed number of activations are zeroed out at each fully-connected

6Note that in the work [61] the objective is to reduce the client-to-server communication cost.

, Vol. 1, No. 1, Article . Publication date: December 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 P. Bellavista et al.

layer, thus all the possible sub-models have the same reduced architecture, while a fixed percentage
of filters are zeroed out for convolutional layers. Authors call this strategy Federated Dropout.
The client-to-server communication cost can be ultimately reduced by combining the solution
of [61] and Federated Dropout. To summarize, the process works as follow: at the beginning of
each round, the selected clients receive a compressed sub-model from the server; they decompress
it, locally compute an update, and compress such update to send it back to the server; the server
decompresses the received sub-models updates and maps them to the global (full) model either by
exchanging a random seed or via state on server-side. In the end, the hyperparameters to be tuned
are (i) the type of basis transform, (ii) the fraction of weights that are not zeroed out during the
subsampling, (iii) the number of quantization bits, (iv) the federated dropout rate, i.e. the percentage
of neurons remaining active; (i), (ii), (iii) can be different for the uplink and the downlink.
Building on their previous Sparse Binary Compression (SBC) [107] technique that targets the

traditional distributed setting, in [106] authors specifically design a compression framework for
cross-device federated settings. The proposed Sparse Ternary Compression (STC) compresses both
the upstream and the downstream communication with respect to the baseline FedAvg while
improving the robustness to non-IID data as well as to partial client participation. In addition
to experimentally confirming the already known weakness of vanilla FedAvg in presence of het-
erogeneous data, authors also show poor model accuracy with aggressive quantization schemes,
such as SignSGD7 [9], in non-IID scenarios. Conversely, 𝑡𝑜𝑝𝑝% sparsification, i.e. dropping all but
the 𝑝 fraction of updates with the highest magnitude, suffers least from heterogeneous data. This
observation leads the design of the proposed compression scheme for the upstream communi-
cation in FL. As happens in SBC, STC exploits (i) 𝑡𝑜𝑝𝑝% sparsification of weight deltas (i.e., the
difference between the global model and the local model), (ii) local residual accumulation8, (iii)
binary quantization of the 𝑡𝑜𝑝𝑝% elements9 and (iv) encoding (to losslessly compress the distance
between the non-zero elements of the sparse weight-update) to reduce the amount of data to be
sent from participants to the server. It is worth to highlight once more that this strategy alone
does not affect the downstream communication. In this regard, authors observe that, although
clients-to-server updates are sparse, the server-to-clients update essentially becomes dense as
the participation rate, i.e the fraction of participants involved in each round, exceeds the inverse
sparsity, i.e. the inverse of the hyperparameter that rules the sparsification. In fact, in the worst case,
the number of non-zero elements in the aggregate (the sum) of clients-to-server updates grows
linearly with the number of participating clients. The dense nature of server-to-clients updates
prevent an effective compression. Therefore, they propose to apply their STC algorithm also to the
aggregated updates at server side, hence the server maintains a residual as well. However, the partial
client participation in each round of FL prevents a straightforward application of STC at server-side:
STC sparsifies and compresses weight deltas, and, considering that not all the participants are
involved in every round, some participants could not recover the updated weights from the received
(compressed) delta, since they may not have participated to the previous round(s). The solution

7In SignSGD [9], gradient updates are locally quantized to their binary sign from clients. The parameter server gathers such
binary updates and broadcasts the belief about the sign of the true gradient. The server uses majority vote on the gathered
gradient updates (See Algorithm 3 in [9]).
8Note that, differently from [118] (presented later on), in STC (and SBC) the residual accounts for ignored weights and not
for gradients.
9The result of the sparse weight-update binarization is a ternary tensor containing values −𝜇, 0, 𝜇 with 𝜇 being the mean
of the 𝑡𝑜𝑝𝑝% weight-updates in absolute value. STC sets all the positive non-zeroed elements to 𝜇 and all the negative
non-zeroed elements to −𝜇. Note that in SBC the resulting sparse tensor is binary instead, and the algorithm is slightly
different; they independently compute the mean of all non-zeroed positive and all non-zeroed negative weight-updates; if
the positive mean is bigger than the absolute negative mean, they set all negative values to zero and all positive values to
the positive mean and vice versa.

, Vol. 1, No. 1, Article . Publication date: December 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Decentralized Learning in Federated Deployment Environments: a System-level Survey 17

adopted is to cache the last 𝜏 updates at server-side, and to require a prior synchronization step
for those outdated participants before initiating the local training. Thanks to this shrewd protocol
addition, the downstream communication can be effectively reduced regardless the partial client
participation.
In Edge Stochastic Gradient Descent (eSGD) [118], besides tacking advantage of edge servers

to scale the collaborative training process, authors propose an algorithm to reduce the uplink
communication cost when exchanging gradients in a star-shaped synchronous learning framework.
The solution builds on the observation that gradients, produced by iterations of mini-batch SGD
optimization, are very sparse [115]; in eSGD, participants upload only a fraction (i.e., a fixed percent-
age) of the gradient coordinates, only the ones that are considered important, while accumulating a
residual to account for ignored coordinates10 — merely dropping these portions of gradients, even
if they are small values, can hamper the model convergence [3].
To reduce the network traffic headed to the cloud, a MEC-aware extension of FL is proposed

in [75], namely Hierarchical Federated Averaging (HierFAVG). Authors exploit the hierarchical
architecture of such brand-new paradigm to have middle-level aggregator entities; each 𝜏1 local
updates, edge servers gather the updates of the participants in their proximity to produce the
aggregated models of their locality; each 𝜏2 edge-level aggregations, the cloud updates the global
model (hence each 𝜏1𝜏2 local iterations). It is worth noting that if 𝜏2 is equal to 1, the HierFAVG
corresponds to the traditional FedAvg, while, intuitively, with 𝜏2 greater than 1, HierFAVG reduces
the communication cost with respect to FedAvg.
From another perspective, the communication cost of decentralized training can be reduced if

less rounds are needed to reach a certain target accuracy. To this end, authors of [85] empirically
demonstrate the suitability of an ADAM[59]-inspired variant of FedAvg. As well known, the ADAM
optimizer leverages per-parameter learning rates, 1st moment and 2nd raw moment estimates to
converge faster in traditional minibatch SGD. In the proposed CE-FedAvg, participants locally
compute their update by exploiting ADAM, and they send back to the server the 1st and the 2nd
moment estimates as well as the locally trained model (specifically, their deltas). Thus, beyond the
global model parameters, the server also aggregates the 1st and the 2nd moment estimates, that
are broadcasted at the beginning of every round to the learners. Since moment estimates have the
same size of model parameters, it is straightforward to note that the communication cost per round
is tripled with respect to FedAvg in absence of compression. However, authors highlight that this
is compensated by the faster convergence of CE-FedAvg. Furthermore, they employ compression
techniques to reduce the amount of data to be sent; sparsification, quantization and encoding are
used. Authors also emphasize an additional advantage of CE-FedAvg over FedAvg: in absence of
a central test/validation set of data, it is difficult to tune the learning rate for FedAvg, while the
default ADAM’s hyperparameters seem to be suitable for general use.
Similarly, the authors of [77] implement a federated version of momentum gradient descent,

namely Momentum FL, where momentum terms and model updates are exchanged between
participants and server, round by round, doubling the communication cost of each round with
respect to FedAvg, while taking advantage of faster convergence rate.
The same purpose, i.e. reducing the total communication rounds to reach model convergence,

motivates an improvement of the CFA algorithm (already presented in 3.3.2) in peer-to-peer
topology of learners. Authors propose to introduce a “negotiation” phase where, before using the
aggregated model𝜓𝑘𝑡 to run local training, the participant 𝑘 feeds back𝜓𝑘𝑡 to the same neighbors.
10Gradient sparsification and local gradient accumulation is a well-known technique in the traditional distributed setting to
reduce the communication cost by speeding up the training process (i.e. less communication rounds) without significantly
degrading the resulting model accuracy [115][3][74]. Error accumulation, in this case weight accumulation, permits to not
waste gradient information, although they may suffer from staleness.

, Vol. 1, No. 1, Article . Publication date: December 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 P. Bellavista et al.

Neighbors compute gradients with respect to𝜓𝑘𝑡 , and send them back to the participant that has
forwarded the request. Next, gradients are aggregated, leveraging a tunable mixing parameter, to
produce𝜓𝑘𝑡 that is then used as starting point for the local learning iteration. This strategy should
make the learning faster11. However, this algorithm requires four communication rounds, and
moreover the negotiation is synchronous. Therefore, the algorithm is transformed into a two-stage
algorithm, referred as Consensus FedAvg Gradient Exchange (CFA-GE) [108]: the negotiation
phase is performed without the need of sending𝜓𝑘𝑡 and receiving back the neighbors’ gradients,
permitting to save communications and avoid the synchronization intermediate step (i.e., waiting
for the neighbors to send back the gradients with respect to 𝜓𝑘𝑡). The insight is to exploit past
(and outdated) models received from a certain neighbor during the previous rounds to produce,
in advance, a gradient prediction for that neighbor, and this is done for all the neighbors. In this
way, it is possible to scatter such gradients prediction together with the next-generation model
parameters; each participant hence receives such information, produces 𝜓𝑘𝑡 by aggregating the
neighbors’ model as we have seen for the baseline CFA algorithm, and uses the received gradient
predictions to adjust the model to obtain𝜓𝑘𝑡 , and finally applies the local training to𝜓𝑘𝑡 that will
generate the updated model.

In [117], the authors propose an efficient peer-to-peer framework for cross-silo communication,
namely SAPS-PSGD, where aggressive model sparsification is coupled with single-peer commu-
nication scheme. They leverage a coordinator entity – not a parameter server – that, in extreme
synthesis, broadcasts to the participants a gossip matrix and other some necessary information (i.e.,
the current global step, a random seed to generate the mask for applying the desired sparsification)
and synchronizes the rounds of communication among such node pairs. The gossip matrix is built
by taking into account the peers’ bandwidth to favour faster links; it dynamically determines the
couples of peers that will exchange highly sparse model updates during that round.

4.2 Protecting Privacy
It may be believed that sharing gradients, model updates or meta-level information (such as
outputs of layers in neural-networks) in place of raw data ensures privacy protection. However, it
has been demonstrated that gradients exchanged during the distributed training process do leak
information about the training data [148] [140] [40] [97] [89] [45] as well as model updates [84]
[89] — even though it may be preferable to exchange model weights instead of gradients under a
privacy-preserving perspective [98] — and activations [25] [132].

0The literature about protecting privacy in decentralized learning comprises diverse approaches;
differentially-private mechanisms [34] [82] can be employed during the distributed training process
to mask updates at the cost of reduced model accuracy [7], and relaxations of traditional Differential
Privacy (DP) can be leveraged to inject less noise [120], limiting the incurred performance degrada-
tion. Data-augmentation [32] and obfuscation [46] techniques can be used in visual application to
prevent reconstruction of images in the training set. Multi-party secure aggregation [13] [112] and
similar techniques [40] can hide the individual contributions to the aggregator, finding its main
utility in star-shaped federated learning, but producing non-negligible overheads. Additively homo-
morphic encryption also allows the aggregator to sum updates, thus ensuring the inscrutability of
single contributions [97] while not degrading model accuracy but increasing communication cost.
Combinations of DP-mechanisms with secure aggregation and additively homomorphic encryption
are also explored [122] [37] to balance the weaknesses of such techniques. Minimizing distance
correlation between raw data and activations (at cut layer) [123] and step-wise activation functions
[132] are used to prevent the invertibility from intermediary representations in the context of
11The negotiation phase, from an high-level perspective, can be thought to be similar to the approach of [70].

, Vol. 1, No. 1, Article . Publication date: December 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Decentralized Learning in Federated Deployment Environments: a System-level Survey 19

privacy-preserving Split Learning.

The first works enforcing participant-level (𝜖, 𝛿)-DP [29] in federated settings are most notably
[34] and [82]. The aim, common to both the works, is to ensure that a model trained with FedAvg
does not reveal whether a certain participant has been involved during the decentralized training
process, balancing the trade-off between privacy loss and model performance. It is worth high-
lighting that the proposed solutions protect the whole client’s dataset differently from [1] where a
single data point’s contribution in the trained model is protected.
Authors of [34] use two randomized mechanisms to guarantee client-level DP: (i) random

subsampling of participants for a certain round of communication; (ii) Gaussian mechanism. In
FedAvg, the central aggregator averages the participants’ updates, that here are considered to
be weight deltas (i.e., the difference between the received parameter weights and the locally
computed parameter weights). The key idea of [34] is to perturb and approximate such averaging
(i.e. perturbing the sum of updates) by employing a Gaussian mechanism. As usual, the Gaussian-
distributed noise has to be calibrated according to a certain sensitivity; such sensitivity is calculated
as the median norm of all the gathered updates12 and the updates are scaled according to such
sensitivity, i.e. clipped updates. To keep track of the privacy loss within subsequent communication
rounds, authors use the moments account of [1] instead of the privacy amplification lemma and
the standard composition theorem [29] to obtain tighter bounds. In particular, they stop the
collaborative training once the (cumulative) 𝛿 , that represents the likelihood that a participant’s
contribution is disclosed, becomes greater than a threshold.

The approach of [82] is slightly different from [34]. Authors, in fact, randomly sample participants
by selecting each independently with probability 𝑞, hence producing variable-sized samples of
participants and influencing the sensitivity of (weighted) average queries — in [34] a fixed number
of clients is randomly selected. Two different bounded-sensitivity estimators are proposed to
account for such participant-sampling process. Furthermore, two clipping strategies are evaluated
for multi-layers models: (i) flat clipping, i.e. using an overall clipping parameter, or (ii) per-layer
clipping, i.e. treating the parameters of each layer as separate vector and using per-layer clipping
parameters, motivated by the observation that such vectors may have vastly different 𝐿2 norms —
anyway the clipping parameter is fixed throughout the training process, while in [34] is dynamically
calculated as the median norm of all the unclipped contributions.

In [120], authors allocate a tighter privacy budget for guaranteeing client-level DP and instance-
level DP, i.e. less noise to reach the same privacy guarantee, also improving the accuracy of the
trained model. They employ a relaxation of traditional DP, in this case Bayesian DP (BDP) [121], by
making two assumptions (i) stationary data distribution and (ii) datasets with unchangeable samples.
Authors also use a Bayesian accounting method instead of state-of-the-art moments accountant
[1] thanks to the assumption that data come from a particular distribution and not all the data
are equally likely; this observation can lead to sharper privacy loss bounds with BDP in federated
setting. Besides the proposed use of BDP, to limit the noise added to guarantee both instance-
level and client-level DP, the noise to be added by the server for client-level DP is “re-counted”
considering the injected noise during the on-device gradient descent. They call this approach joint
accounting. However, a limitation emerges: joint accounting is only usable for FedSGD algorithm,
not for FedAvg (because the possible multiple local iterations in FedAvg, hence multiple noisy steps,
may influence the point at which the gradient is computed: a different gradient distribution can
arise or the total noise variance can be underestimated).

12The sensitivity is calculated by the server in each communication round.

, Vol. 1, No. 1, Article . Publication date: December 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 P. Bellavista et al.

To prevent the server from peeking in individual updates during the aggregation phase, a practical
protocol for secure aggregation, namely SECAGG, has been proposed in [13] for federated settings
— reminding that the communication bottleneck and the dropping of users are peculiar of such
scenarios. In a nutshell, star-shaped FL systems leverage a central server that computes sums
of updates from which deriving the new-generation global model round by round. The scope of
SECAGG is to hide the individual contributions of participants and release only the sum of such
updates to the server, preventing privacy violations from the aggregator entity. The essence of
the approach is similar to differential privacy: updates are locally perturbed, but, while in DP-
mechanisms such perturbations become part of the updates (they are never removed, in fact noise
calibration is fundamental to not compromise the training), in SECAGG such perturbations are
neutralized during the aggregation phase. The insight is to have pairs of participants — hereinafter
referred as participant 𝑢 and participant 𝑣 — that share randomly sampled 0-sum pairs of mask
vectors, 𝑝𝑢,𝑣 and 𝑝𝑣,𝑢 ; before uploading their model updates, participants 𝑢 and 𝑣 add such masks
to their contributions, with 𝑝𝑢,𝑣 + 𝑝𝑣,𝑢 = 0 ∀𝑢 ≠ 𝑣 ; each participant 𝑢 computes a random mask
vector and perturbs (i.e., adding 𝑝𝑢,𝑣 if 𝑢 > 𝑣 or subtracting 𝑝𝑢,𝑣 otherwise) its local update for
each other user v; mask-pairs are canceled out during the sum of all contributions. Every pair of
participants share a common random seed 𝑠𝑢,𝑣 of some fixed length that can be fed to a secure
Pseudorandom Generator PRG [11] to generate the mask pairs, hence the seed can be transmitted
in place of the the entire mask (that has the same size of updates) reducing the communication
burden. These shared seeds are established through Diffie-Hellman [23] key exchange, composed
with a hash function. It is worth noting, that (i) SECAGG requires the elements of the input vectors,
i.e. the participant’s updates, to be integers𝑚𝑜𝑑𝐾 , while (ii) the elements of the vector updates
are typically real-valued instead, and that (iii) the employed PRG’s output space is the same of the
input space. Therefore, the real-valued elements of the updates are typically clipped to a fixed range
of real numbers, and then quantized among such range using 𝑘 bins, and the SECAGG modulus is
chosen to be 𝐾 = 𝑘𝑛, with 𝑛 being the number of participants.
A practical protocol for collaborative training in federated settings must be able to tolerate a

fraction of dropping users. To this end, SECAGG leverages Shamir’s t-of-n Secret Sharing [109] to
permit recovering the pair-wise seeds of a limited numbers of dropping participants; in practice,
each participant sends encrypted shares of its Diffie-Hellman secret to all other participants via
server. SECAGG also accounts for the critical case in which a certain participant belatedly responds
to the server with its contribution by using a double masking for the updates. In addition to 𝑝𝑢,𝑣 , a
private mask vector 𝑝𝑢 (generated from a seed 𝑏𝑢 as well) is further added to the update, and also
its shares are distributed during the secret sharing round for the pair-wise masks.

SECAGG has been employed in the FL system designed in [12] but highlighting that the quadrat-
ically grow (with respect to the number of participants) of the computational cost for the server
limits the maximum size of an instance of SECAGG to hundreds of learners. They indeed leverage
intermediate secure aggregators for subsets of participants, and the intermediate sums are further
aggregated without SECAGG by a master aggregator.

A recent work [112], namely Turbo-Aggregate, addresses the quadratic growth of the computa-
tional cost and of the communication overhead by slightly changing the approach, and still being
resilient to user dropouts (up to 50% of participants). The key idea is to partition the federation
of learners in groups that actively participate in the aggregation and dropout-recovery phases
instead of just leveraging the central server, and to add redundancy directly in the model updates
to reconstruct the missing contributions of dropout participants instead of Shamir’s t-of-n Secret
Sharing such as in SECAGG. In a nutshell, reminding that the scope is to securely compute a
sum (i.e., the sum of locally computed updates) and assuming that all communications take place
via central server employing Diffie-Hellman key exchange protocol, Turbo-Agg works as follow.

, Vol. 1, No. 1, Article . Publication date: December 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Decentralized Learning in Federated Deployment Environments: a System-level Survey 21

Firstly, participants are randomly divided in 𝐿 groups, with each group being composed of 𝑁𝑙
participants. The set of participants in group 𝑙 is referred as 𝑈𝑙 . The process involves 𝐿 stages,
and Turbo-Agg adopts a circular and sequential strategy in its simplest version: in each stage
only one group is involved; the output produced from a group in a certain stage is the input for
the next group13. Ignoring for a moment the possibility of dropout, in each stage, the participant
𝑖 in group 𝑙 masks its update 𝑥 (𝑙)

𝑖
with a random vector 𝑢 (𝑙)

𝑖
being known (and communicated)

only by the honest server, similarly to what happens in SECAGG. To be secure against server-
participants collusion, learner 𝑖 additionally masks its update with another random vector 𝑟 (𝑙)

𝑖, 𝑗
,

and the resulting masked update 𝑥 (𝑙)
𝑖, 𝑗

= 𝑥
(𝑙)
𝑖
+ 𝑢 (𝑙)

𝑖
+ 𝑟 (𝑙)

𝑖, 𝑗
is sent to each participant 𝑗 of the group

𝑙 + 1, with
∑
𝑗 ∈[𝑁𝑙+1] 𝑟

(𝑙)
𝑖, 𝑗

= 0, i.e. random vectors 𝑟 cancel out during aggregation. The secure sum is
cooperatively computed, group by group, and can be summarized thanks to the recursive relation
𝑠
(𝑙)
𝑖

= 1
𝑁𝑙−1

∑
𝑗 ∈[𝑁𝑙−1] 𝑠

(𝑙−1)
𝑗
+∑𝑗 ∈[𝑈𝑙−1] 𝑥

(𝑙−1)
𝑗,𝑖

with 𝑠 (𝑙)
𝑖

that is a variable locally held by each partici-
pant 𝑖 in group 𝑙 > 1, and that represents the aggregated masked updates from the previous group14.
It is important to highlight that each participant 𝑖 of group 𝑙 sends 𝑠 (𝑙)

𝑖
and 𝑥 (𝑙)

𝑖, 𝑗
to each learner 𝑗 of

the group 𝑙 + 1. A final aggregation step is necessary to preserve the privacy of the participants in
group 𝐿 at the stage 𝐿; an additional group (referred as 𝑓 𝑖𝑛𝑎𝑙), in fact, is randomly composed (for
example, among the survived learners) with each participant aggregating the contributions coming
from the group 𝐿, and sending the results to the server. Specifically, participants 𝑗 in the 𝑓 𝑖𝑛𝑎𝑙 group
produces 𝑠 (𝑓 𝑖𝑛𝑎𝑙)

𝑗
= 1

𝑁𝐿

∑
𝑖∈[𝑁𝐿] 𝑠

(𝐿)
𝑖
+∑𝑖∈[𝑈𝐿] 𝑥

(𝐿)
𝑖, 𝑗

and send it to the server, that can recover the sum
of unperturbed updates by applying 1

𝑁𝑓 𝑖𝑛𝑎𝑙

∑
𝑗 ∈[𝑁𝑓 𝑖𝑛𝑎𝑙] 𝑠

(𝑓 𝑖𝑛𝑎𝑙)
𝑗

− ∑
𝑚∈[𝐿]

∑
𝑗 ∈[𝑈𝑚] 𝑢

(𝑚)
𝑗

. However,
in case of participant dropouts the protocol will fail, since, for example, the random vectors 𝑟
cannot be cancelled out. To this end, authors propose to employ Lagrange coding [134] to allow
participants of group 𝑙 to recover the missing contributions from group 𝑙 − 1, and to compute the
partial aggregation anyway. Being concrete and redirecting to the full paper [112] and to [134] for
theoretical detail, each participant has to send to each participant 𝑗 in group 𝑙 + 1 two additional
(coded) vectors in each stage, namely 𝑠 (𝑙)

𝑖
and 𝑥 (𝑙)

𝑖, 𝑗
, in addition to 𝑠 (𝑙)

𝑖
and 𝑥 (𝑙)

𝑖, 𝑗
. The employed coding

strategy allow each learner in group 𝑙 + 1 to reconstruct the vector {𝑠 (𝑙)
𝑖
}𝑖∈𝑁𝑙

starting from at least
𝑁𝑙 evaluations (i.e, 𝑠

(𝑙)
𝑖

and 𝑥 (𝑙)
𝑖, 𝑗
) from the previous stage. Therefore, since each participant send

two evaluations to the learners in the next group, this redundancy permits to tolerate up to half of
learners dropping.
It is worth noting that, although SECAGG and its variant Turbo-Aggregate explicitly targets

star-shaped networks of learners, they are suitable for fully decentralized networks, i.e. peer-to-peer
topologies, with one peer (or more) working as aggregator.
An alternative to SECAGG for star-shaped FL frameworks is represented by Additively Ho-

momorphic Encryption; since such technique guarantees the additivity of multiple ciphertexts,
the server can perform the aggregation without the need of seeing the updates in clear. In [37],
authors propose to use a symmetric additively homomorphic encryption called PPDM [146] for its
efficiency, combining it with Laplacian mechanism for DP in order to neutralize collusion between
compromised users and malicious server. They show drastically reduced communication overhead
with similar solution [97], that employs paillier encryption instead.

In [122], authors combine multi-party computation (MPC) via Threshold Homomorphic Encryp-
tion and Differential Privacy to balance their respective weaknesses; in fact, applying DP to provide

13Since only one group is active per stage, for ease of notation, group and stage are referred both with the index 𝑙 .
14The initial aggregation at group 𝑙 = 1 is set as 𝑠 (1)

𝑖
= 1.

, Vol. 1, No. 1, Article . Publication date: December 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 P. Bellavista et al.

the required level of privacy may degrade accuracy while MPC alone is vulnerable to inference
attacks over the output, i.e. the intermediate models during the collaborative training process and
the final predictive model. Leveraging only on one of those two techniques may compromise the
effectiveness of the system (in terms of prediction accuracy of the resulting model or in terms of
privacy guarantee). The key intuition in [122] is to reduce the traditional amount of locally-injected
noise to ensure 𝜖-DP by exploiting the MPC framework building on the assumption that 𝑡 par-
ticipants are trusted (i.e., non-colluding parties), with 𝑡 being a customizable parameter; thanks
to this assumption, the Gaussian noise to be added to each local query is reduced by a factor of
𝑡 − 1. In the worst scenario, the performance (in terms of model accuracy) of the proposed system
converges with existing local DP approaches.
00Considering the scenario in which the data quality of certain participants, namely unreliable

participants, may be poor (meaning that a portion of their data is not always accurate as the data held
by others), authors of [142] focus on guaranteeing two levels of privacy: (i) preserving privacy of
the participant’s data and (ii) hiding the eventual participation in the training process of unreliable
participants. At the same time, they focus on limiting the impact on the global model of such
participants. The proposed solution, SecProbe [142], ensures participants’ privacy by perturbing,
during the local training process, the objective function of the neural network using the functional
mechanism (FM) [138] to achieve 𝜖-DP, and obtaining the sanitized parameters by minimizing the
perturbed objective function.

Tomake themetadata exchanged in Split Learning irreversible, in [132] authors propose tomodify
the conventional activation functions to be step-wise, i.e. the activation function is discretized by
having the input domain divided into intervals and the output constant for each interval; in this
way, it is not possible to exactly recover the activations’ input from their outputs15. In this context,
another approach to reduce invertibility of intermediate representations consists in minimizing the
distance correlation between raw data and the communication payload, i.e. having a low distance
correlation while maintaining the accuracy in predicting the output labels. Authors of [123] hence
train the neural network by using a weighted combination of two losses as loss function, and
such losses are the log distance correlation [116] and the categorical cross entropy. The former is
used as a measure of statistical dependence between the input data and the estimated cut layer
activations, while the latter traditionally considers the true labels for the inputs and the predicted
labels. Intuitively, the distance correlation is minimized to ensure privacy and the cross entropy is
minimized for classification accuracy. The solution is evaluated on visual datasets.

4.3 Combining Privacy and Communication Efficiency
Lossy compression techniques inherently lead to a privacy improvement, however it is not straight-
forward to measure the effective privacy guarantees, for example under DP formalism. The works
surveyed in 4.1 do not explicitly measure privacy, and the ones in 4.2 do not address the com-
munication cost as primary concern, while examples of combined approaches can be found in
[67] and in [51]. Furthermore, other aspects in conjugating privacy and communication efficiency
emerge; the secure aggregation protocol [13] can be redesigned to account from the beginning for
communication efficiency [14], while tailored DP-mechanisms can be more amenable to privacy
analysis when quantization of noisy DP-updates is employed[2].

15Authors of [132] consider three activation functions: sigmoid, hyperbolic tangent and ReLU [87]. While sigmoid and
hyperbolic tangent are bijective functions, ReLU is a surjective function, and the output of ReLU can be reversed only if the
input is positive. The proposed solution “masks” the output of such positive inputs by using a step-wise variant of ReLU.

, Vol. 1, No. 1, Article . Publication date: December 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Decentralized Learning in Federated Deployment Environments: a System-level Survey 23

In [51], authors combine communication efficiency, privacy guarantees and resilience tomalicious
participants under non-IID data distribution. They consider a star-shaped synchronous collaborative
learning framework in which participants and server exchange (aggressively compressed) gradients
instead of model parameters. The proposed algorithms use as baseline the SignSGD [9] algorithm
with majority vote, that, however, does not explicitly and formally address privacy protection
of participants and that has been shown to fail to converge when the data on different learners
are heterogeneous [19] [106]. In particular, to deal with non-IID data, authors first propose a
variation of SignSGD, namely sto-sign, that applies a two-level stochastic quantization on locally
computed gradients, and then only transmits the signs of such quantized values. Additionally, dp-
sign, a differentially private version of sto-sign, is designed to ensure formal privacy guarantees for
participants involved in the training. Authors theoretically relate the Byzantine16 resilience, i.e. the
number of Byzantine workers that can be tolerated without harming the convergence guarantees, of
their proposed algorithms to the heterogeneity of local datasets. Authors also propose an extension
of their algorithms which takes account for residual error on server side and uses it to correct the
majority vote. The convergence of the proposed algorithms is established theoretically.
With respect to just sending the quantized updates in clear, the SECAGG[13] protocol leads to

a bandwidth expansion17 that is less than 2x while ensuring reliability of the secure aggregation
to dropping or collusion of a fraction of users. However, in [14], authors critically observe some
limitations of a straightforward combination of SECAGG and compression techniques; chief among
them (i) quantizing to a fixed point representation requires selecting the clipping range [−𝑐, 𝑐]
a priori that may be challenging to establish or may lead to poor approximations if the clipping
range is not large enough, and (ii) the SECAGG modulus is chosen to be 𝐾 = 𝑛𝑘 to represent all
possible aggregated vectors without overflow (for example, if clients are 210 the SECAGG modulus
are 10 bits wider than they would be without accounting for secure aggregation) dominating the
communication cost introduced by SECAGG — the bandwidth expansion determined by secret
sharing and cryptography is much less influential. The scope of [14] is to propose a recipe for an
auto-tuning (observation (i)) communication-efficient (observation (ii)) secure aggregation. The key
idea is to avoid clipping at client-side but instead quantizing over an unbounded range according to
a quantization bin size 𝑏 that is dynamically and tightly adjusted by the server (and communicated
round by round) according to the distribution of the entries of the sum relative to the previous
round, and then locally applying the𝑚𝑜𝑑 𝑘 operation instead of clipping; the server can compute
a tight bin size 𝑏 exploiting the assumption that the entries of the sum fit a normal distribution
thanks to a random rotation that is locally performed by the participants (before quantizing) to
their updates.

4.4 Addressing non-IIDness
As empirically shown by [81], carefully tuning the number of local epochs is crucial in FedAvg
since during additional on-device iterations — less frequent synchronization among participants —
local models can significantly drift apart from the global model potentially preventing convergence.
Such an issue is exacerbated when considering statistically heterogeneous data from different par-
ticipants [81] [145] [107] [47] — realistic assumption especially in cross-device federated settings.
Data sharing and data augmentation techniques have been demonstrated to effectively alleviate
the impact of non-IIDness at the cost of less decentralization [145] [131] [49]. Another major line
of works tackles the problem by directly limiting the drift of the model’s objective function by
16A Byzantine participant may transmit arbitrary information. Authors of [51] assume that such Byzantine participants
upload the opposite signs (the opposite sign of each entry) of the true gradients, with the true gradients being the average
gradients of all the normal workers (hence, it is supposed that the attackers know such quantities).
171.73x bandwidth expansion considering 210 participants (i.e., 𝑛 = 210) and 16 bit fixed point representation (i.e., 𝑘 = 216).

, Vol. 1, No. 1, Article . Publication date: December 2018.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 P. Bellavista et al.

means of proximal terms or/and gradient correction terms at the (possible) cost of communication
overhead [69] [56] [70] [127]. Or again, employing SGD optimizers, such as server-side momentum
[47], and, more in general, adaptive gradient-based optimizers [101], i.e., incorporating adaptive
learning rates, have been shown to mitigate the effect of heterogeneous data as well as reducing the
total communication rounds to reach model convergence. Also experience-driven solutions have
lately emerged to counterbalance non-IIDness and speed-up convergence; a deep reinforcement
learning based mechanism that intelligently selects the participants for each FL round has been
proposed in [124].

Authors of [145] experimentally show that test accuracy of FedAvg can be significantly increased
in non-IID scenarios by providing a small subset of globally shared data (e.g., 5%); participants use
their private dataset augmented with such data examples, provided by the server, to train their
updates. Despite the effectiveness of the proposed solution, it has the cost of less decentralization
and requires communicating the globally shared data to the participants. Authors also propose an
alternative initialization of the global model; instead of a random initialization, the server trains
a warm-up model using the shared data before broadcasting the model at the beginning of the
learning task.
Authors of [131] observe two critical aspects of FedAvg, especially when dealing with non-

IIDness. In fact, they argue that the additional on-device iterations between global synchronizations
produce gradient biases, and that selecting a fraction of participants in each round results in an
inconsistency between the optimization objectives and the real target distribution (the global model
is trained by minimizing the empirical loss on data distributions that are, in general, different in
each round of FedAvg). Since allowing multiple local iterations and selecting a part of clients are
fundamental for the communication efficiency of FedAvg and its suitability in federated settings,
authors of [131] propose two (distinct but jointly usable) strategies to alleviate such issues. They
propose an Unbiased Gradient Aggregation (UGA) that performs what they call keep-trace gradient
descent optimization for the first 𝐸−1 epochs, and then uses the whole data set to evaluate gradients
during the last epoch. The key idea of keep-trace gradient descent optimization is preserving the
functional relation, between 𝑤𝑘 (𝑖)𝑡 and 𝑤𝑘 (𝑖−1)

𝑡 in round 𝑡 for subsequent on-device iterations 𝑖
on client 𝑘 (as usual,𝑤 indicates local/global model parameters) instead of passing for numerical
values of gradients 𝑔𝑘 (𝑖)𝑡 , such that in the last epoch they can calculate the gradient, 𝑔𝑘𝑡 , against
𝑤𝑡 directly (considering the entire participant’s data set). It is worth noting that, in UGA, the
server gathers and aggregates thus calculated gradients 𝑔𝑘𝑡 to produce the global model for the next
iteration. On the other hand, to address the lack of a clear objective among subsequent rounds with
different participants, authors propose FedMeta. The optimization process becomes a two-stage
optimization: after each global aggregation (either performed following the baseline FedAvg or
UGA), the server runs an additional gradient descent step using a special dataset, D𝑚𝑒𝑡𝑎 . The
rationale is that using such meta training set at server-side provides a clear and consistent objective
in the learning process. Obviously, the composition of D𝑚𝑒𝑡𝑎 is critical.
Authors of FedProx [69] tackle the potential model drift caused by non-IIDness by adding a

proximal term to the local objective function instead of just heuristically tuning the number of local
epochs; intuitively, the impact of local data is limited by restricting the locally-computed updates
to be close to the current global model. Furthermore, FedProx allows for local solvers of choice, not
limiting them to be SGD as happen for the traditional FedAvg. It is worth noting that FedProx is a
generalization of FedAvg; if the multiplicative (hyper)parameter, 𝜇, that rules the proximal term
in FedProx is set to 0 and the local solver of participants is restricted to be SGD, FedProx exactly
matches FedAvg.

, Vol. 1, No. 1, Article . Publication date: December 2018.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Decentralized Learning in Federated Deployment Environments: a System-level Survey 25

Authors of SCAFFOLD [56] address the issue of drifting clients using control variates in FedAvg.
The idea is to align client updates by applying a correction term to the local gradients on each local
step. Each client computes its local control variate that represents the expected direction of the
local update while a global control variate that represents the aggregated direction in which the
server updates the global model is defined to be the uniform average of local control variates. Each
participant corrects its update by adding to the locally computed stochastic gradient the difference
between the global and the local control variate. The hypothetical case that motivates this strategy
is to have all clients computing the same update for the global model hence eliminating the model
drift. However, to achieve this, clients should communicate with each other every (either directly
or via parameter server) local gradient step, e.g. each client communicating its locally computed
gradient, that is unfeasible. Therefore, the local control variates and consequently the global control
variates are estimated throughout the process, and the global control variate is broadcasted to the
participants together with the model parameters at the beginning of every round by the server.
FedDANE [70], inspired by DANE [110] and its inexact variant [102], combines the use of the

proximal term exploited in FedProx with a gradient correction term similarly to SCAFFOLD. The
update phase is a two-step process: to compute the gradient correction term and to inexactly solve
the Newton-type sub-problem, the locally computed gradients of the local objective functions
should be firstly collected and then averaged to approximate the full gradients. However, given
the realistic connection bottleneck in cross-device federated settings, it is unfeasible to gather all
the locally computed gradients; in FedDANE, the full gradients are approximated aggregating the
gradients of a randomly sub-sampled set of participants. It is worth noting that each update requires
two rounds of communication differently from the baseline FedAvg, FedProx and SCAFFOLD —
even though SCAFFOLD has to communicate in each round both the model parameters and the
control variates. Despite the theoretical convergence guarantee, FedDANE shows “disappointing
performance” in experimental evaluation compared to FedAvg and FedProx leaving doubts on the
robustness of theoretical assumptions.

Authors of [101] propose an approach to decouple server and client learning rate and to exploit
adaptive learning rates on both client and server, with the primary objective of tackling client drift.
The idea is to have clients that leverage some client optimizer to minimize the loss on their local
dataset, while the server exploits a gradient-based server optimizer to minimize the loss across
participants. Building upon such general framework, namely FedOpt, they introduce and evaluate
some per-coordinate adaptive methods as server optimizers with SGD as client optimizer. In
practice, they implement three adaptive server optimizers, i.e. FedAdaGrad, FedYogi, and FedAdam
respectively being the federated versions of the well-known AdaGrad [83] [27], Yogi [136], and
ADAM. In their comparison with FedAvg18 they also include FedAvgM [47]. They show that such
approaches are effective, in some circumstances “dramatically” effective with respect to FedAvg, in
mitigating client drift and, as a natural consequence, in reducing the total number of communication
rounds required for model convergence. Authors of [101] also provide theoretical convergence
analysis, and observe the need for a decaying learning rate at client-side.

4.5 Handling Device Heterogeneity
Device heterogeneity, i.e. device with diverse hardware characteristics or/and with different connec-
tivity (in general referred as resources), is common in cross-device federated settings. Such hetero-
geneity negatively influences the training process; for example, in federated learning frameworks

18It is worth noting that, under the proposed framework, FedAvg and FedAvgM [47], i.e. FedAvg with server-side momentum,
become specializations of the FedOpt family; the former uses SGD as both client and server optimizer with server learning
rate equal to 1, while the latter employs SGD with momentum as server optimizer.

, Vol. 1, No. 1, Article . Publication date: December 2018.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 P. Bellavista et al.

that leverage synchronous rounds, the slower participants dictate the pace if any counteraction is
taken.

Authors of [127] claim that the synchronous nature of FedAvg can limit the scalability, the
efficiency and the flexibility of the FL framework. In fact, (i) only few hundreds of participants are
selected per round due to avoid server-side congestion (the server broadcasts the global model
at the beginning of every rounds to all the selected participants); (ii) given the heterogeneity of
training devices (e.g., there could be significant diversity in terms of computational power), the
server usually sets a timeout for receiving back the updates and then synchronizing the model. It
could happen that the selected participants that are able to complete the round within such timeout
are not enough to produce a reliable update (i.e., less than the minimum participant goal count) [12].
By leveraging asynchronous updates, FedAsync avoids server-side timeouts and abandoned rounds
as well as not requiring to broadcast the model to all the selected participants at the same time.
Moreover, to limit the effect of staleness, a well-know drawback of asynchronous SGD approaches,
FedAsync uses a weighted average to generate the new global model after aggregation as happens
in SLSGD, relying a mixing hyperparameter that weighs the freshness of the aggregated model.
Furthermore, to deal with drifting clients and non-IIDness, a proximal term in the local objective
functions is employed as it happens in FedProx. Different alternatives are proposed to account
for staleness, and to adaptatively decrease the mixing hyperparameter that rules the average in
function of staleness, i.e. less weight associated with larger staleness.Under the same communication
overhead, they show that FedAsync converges fester than FedAvg when staleness is small while
the two approaches have similar performances considering large staleness for FedAsync. Authors
state that, in general, the convergence rate of FedAsync is between single-thread SGD and FedAvg.

Asynchronous approaches, such as FedAsync [127], limit the influence of resource-constrained
devices on the collaborative training process — synchronization among participants requires to
wait for the slowest. In TiFL [17], authors design a system to alleviate the stragglers problem
without relaxing the synchronization of FedAvg, but by clustering participants in tiers with similar
response latency per round, while in LoAdaBoost [48], authors propose to use the cross-entropy
loss information to early stopping the local training.
Besides asynchronism and tier of participants with similar response latency, a natural solution

to address straggler clients in FL frameworks (resource constrained devices and/or devices under
poor network condition) was priorly proposed in [91], in their FedCS. The goal is to maximize the
number of updates to be aggregated within a specific deadline, since involving a larger fraction of
participants in each round typically reduces the time needed to achieve a certain model accuracy
[81]. Taking advantage of the MEC infrastructure, authors propose to extend the FL algorithm by
replacing the random selection of clients with a two-step client selection; the MEC operator asks
random clients to provide their resource information (computational capacities, wireless channel
states, size of the dataset relevant to the current training task) from which deciding whether
including them in the current training round according to an estimation of the time necessary for
such participants to complete the download-train-upload process.

In [125], authors address the problem of dynamically adapting the global aggregation frequency
(in real time) to optimize the learning process with a given resource19 budget targeting a star-shaped
FL framework in edge computing environments. They consider𝑀 types of resources that can be
taken into account, and define that all the participants consume 𝑐𝑚 units of type-𝑚 resource at
each local update step, and each global aggregation consumes 𝑏𝑚 units of type-𝑚 resource (with
𝑐𝑚 > 0, 𝑏𝑚 > 0). Being 𝑇 , the number of total local update steps for the training process, and

19Authors of [125] consider a general definition of “resources” including, e.g., bandwidth, energy, time and monetary cost.

, Vol. 1, No. 1, Article . Publication date: December 2018.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Decentralized Learning in Federated Deployment Environments: a System-level Survey 27

being 𝜏 , the number of local updates between two global synchronizations, and considering the
resulting number of global synchronizations 𝐾 , i.e. 𝐾 = 𝑇 /𝜏 , the total amount of consumed type-𝑚
resource is (𝑇 +1)𝑐𝑚 + (𝐾 + 1)𝑏𝑚 , noting that the additional “+1” accounts for computing the last
loss value after the last synchronization 𝐾 . The objective is to minimize the global loss function by
tuning 𝜏 and 𝐾 (and, consequently, 𝑇) such that the total amount of consumed type-𝑚 resource is
not greater than the resource budget 𝑅𝑚 (each type-𝑚 resource has a certain budget associated).
Such minimization problem is approximately solved by leveraging a theoretical convergence upper
bound of the canonical distributed gradient descent after 𝑇 iterations, although assuming that
the loss function is (i) convex, (ii) 𝜌-Lipschitz and (iii) 𝛽-smooth. In the convergence analysis,
authors also define an upper bound for gradient divergence, i.e. an upper bound of the divergence
between the gradient of the local loss function and the gradient of the global loss function, that
depends on how the data is distributed among different participants, hence taking into account the
non-IIDness of data. We redirect to the full paper for the complete theoretical analysis. In a nutshell,
the proposed control algorithm recomputes the optimal20 𝜏 , hereinafter referred as 𝜏∗, during each
aggregation step via linear search on integer values of 𝜏 accordingly to the most updated parameter
estimations needed to approximately solves the minimization problem mentioned above.
In regards to peer-to-peer frameworks, BACombo (already presented in 3.3.2) interestingly

leverages a bandwidth-aware worker selection, i.e the peers to be requested for model segments are
not trivially chosen randomly. To reduce transmission time, peers with faster network connections
should be preferred. However, it is not easy to know the network condition of a certain peer a priori.
The proposed solution exploit a multi-armed bandit algorithm [5]; each participant, with probability
𝜖 , either explores the network conditions of peers by selecting them randomly or exploits its already
acquired knowledge — each participant maintains a table, that is updated each time a peer is picked
for communication, that contains historical indications about the network state of that peer — by
greedily selecting the peers with best network conditions.

4.6 Defending against Poisoning
From being passive data providers, in cloud-based ML, participants become active entities in the
learning process of decentralized training: they locally compute updates and observe intermediate
model states. Although this design is the cornerstone to improve several aspects of traditional
ML/DL, it exposes the system to a larger variety of attacks from malicious learners, since partici-
pants, in theory, can contribute with arbitrary updates, and could try to manipulate the learning
process for diverse scopes (e.g., merely hampering the convergence, forcing other participants to
over-expose their contribution or backdooring the system), while making their detection harder
since the raw data are not accessible. This is known as model poisoning, besides the more traditional
data poisoning. We redirect the reader to [79] for a complete understanding of the threat model and
of the attack variety. We present here some strategies to detect and/or neutralize poisoning attacks.

Authors of [128] (SLSGD) propose a variation of FedAvg to address non-IIDness and to tolerate
data poisoning attacks (evaluated by simulating the attack through label flipping). They act on the
baseline FedAvg algorithm by varying (i) the aggregation step and (ii) the new-model generation
step; (i) instead of aggregating the updates by averaging, they use a trimmed mean to (try to) filter
out poisoned updates, and (ii) instead of replacing the previous global model with the resulting
aggregated model, they use a moving average between the previous and the just aggregated model

20It is worth noting that, intuitively, if the resource budget is unlimited, 𝜏∗ is equal to 1, i.e. global synchronization after each
local update, while in presence of budget constraints it may be convenient investing the resource for local computations
rarefying the global synchronizations, i.e. 𝜏∗ > 1.

, Vol. 1, No. 1, Article . Publication date: December 2018.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 P. Bellavista et al.

to limit the influence of non-IID datasets and to mitigate the extra variance caused by such “robust”
aggregation.
In [33], authors propose a defense against sybil-based poisoning (precisely, label-flipping and

backdoor poisoning), namely FoolsGold, targeting a federated learning framework where par-
ticipants upload locally computed gradients to the (honest) aggregator. The idea is to identify
malicious colluding participants, i.e. poisoning sybils, by monitoring the diversity of participants’
update; sybils are supposed to share a common objective and the directions of poisoning gradients
should seem unusually similar respect to updates from honest learners. In a nutshell, FoolsGold
maintains an historical aggregate of updates per participant at server side, i.e. the cumulative
sums of its updates so far, and it measures the cosine similarity between couple of participants’
historical aggregates before each aggregation step — the rational behind this strategy is that gra-
dients resulting from single local iteration of SGD can be very similar in directions even among
honest clients, however colluding parties will share the same objective in the long run, limiting the
effectiveness of poisoning throughout the training process by accordingly re-scaling the learning
rate of participants that are deemed as possible sybils. The clear limit of FoolsGold — apart from
being incompatible with secure aggregation and assuming honest aggregator — is that it is designed
to look for sybils, hence a single participant adversary can remain undetected.
Authors of [141] propose a defense against poisoning, specifically targeting label flipping and

semantic backdoor attacks, in a synchronous federated learning framework accounting also for
non-IIDness. Differently from FoolsGold [33], their strategy actively leverages on clients; the server
asks to the participants to evaluate some sub-models, each one derived from the aggregation of
disjoint subsets of the model updates related to a certain round, and they provide back to the
server an indication about the correctness in the classification task of such sub-models, tested
on their private dataset, in the form of a binary matrix (obviously, a certain participant cannot
receive a sub-model derived from its own contribution). Thanks to the gathered matrices, the server
computes a penalizing coefficient for each sub-update to weigh the aggregation of such sub-models
(for example, if more than half of the clients report the anomaly for the same sub-model, it should
be zero-weighed). Authors highlight that their solution can be also combined to FoolsGold [33], e.g.
to detect single-participant attack.
Similarly to [33] and [141], authors of [66] use a server-side pre-trained autoencoder model to

detect abnormal weight updates that are then accordingly penalized during the aggregation.

5 OPEN PROBLEMS AND FUTURE DIRECTIONS
As an obvious observation, we remark that data-sequential approaches are only limited to Cross-silo
federated settings, where the number of participants is limited (see Table 1). At the same time, (data-
parallel) star-shaped synchronous systems and related improvements (i.e., 44 out of 53 surveyed
solutions) have dominated the early years of decentralized learning, pushed by the Google’s FedAvg
baseline and, not surprisingly, the first real-world large-scale decentralized learning system for
Cross-device federated settings has followed this trend [12]. Nevertheless, we stress the evidence
that relaxing the synchronous constraint for aggregating updates in star-shaped systems mitigates
the struggles in handling a large amount of heterogeneous devices, while introducing degrees of
uncertainty that hamper the theoretical comprehension of the system’s behaviour in real scenarios
(e.g. FedAsync solution adopts this strategy). At the other end of the spectrum, we observe a reduced
portion of fully decentralized solutions (only 5 systems out of 53, with one of them, i.e. SAPS-
PSGD [117], that leverages a central entity for coordination). In addition, the MEC-architecture
has demonstrated to effectively help in scaling the learning process and is increasingly adopted; in
Table 1, we report 3 works explicitly considering this architecture. Indeed, that allows to favour
the exploration and ease the implementation of hierarchical solutions, such as star-shaped both

, Vol. 1, No. 1, Article . Publication date: December 2018.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Decentralized Learning in Federated Deployment Environments: a System-level Survey 29

between devices and edge servers, and between edge servers and the cloud. To conclude, in the
next subsections, we will present other open challenges that will likely influence the incoming
future of decentralized learning systems, by also sketching possible and most promising directions
for future research.

5.1 Rethinking the Traditional MLWorkflow for Federated Learning
The literature explored in this survey proposes solutions to the main challenges of employing
federated learning systems in real-world scenarios. However, most works suppose that the hyper-
parameters (e.g., the neural network’s architecture, regularization techniques, and optimizers) of
the model to be trained have been already established, and typically the focus is not about the
tuning of their determination. Furthermore, decentralized learning systems introduce additional
algorithm-specific hyperparameters (e.g., the number of local epochs or the number of participants
involved per round) that significantly influence the performance of the adopted solution. While in
cloud-centric DL it is feasible to run many rounds of training to empirically search the hyperparam-
eters space towards optimality, this strategy is probably infeasible for cross-silo settings and surely
incompatible with cross-device settings. Hence, we expect that hyperparameter optimization that
targets the communication and computation overhead on the devices that compose the federation,
and not only aiming at the best accuracy of models as happens in datacenter optimizations, will
gain traction, by fostering the development of easy-to-tune and/or auto-tuning algorithms for
federated settings (e.g., [14] – explored in Section 4 – and [41]).

Another relevant phase of the traditional workflow in cloud-centric ML, which is reshaped by the
design of decentralized learning systems, relates to the debugging of trained models’ behaviour. In
fact, preventing the access to the raw data by design does preclude modelers and practitioners from
directly investigating the causes of the detected problems (e.g., investigating missclassification,
noticing evident bias in the training set, identifying outliers, manually adding or adjusting labels),
i.e. manual data inspection is impossible [6]. Connected to that, the design and implementation
of privacy-preserving techniques to enable the debug phase also for federated learning systems
are open areas of research. For example, in [6], the privacy concerns are overtaken by using
privacy-preserving Generative Adversarial Network trained in a federated fashion, thus enabling
the debug on synthetic data examples that conjugate the trade-off between information leakage
and debugging utility.

5.2 Designing Incentive Mechanisms
Another assumption typically made in the FL-related literature is that the (selected) learners are
willing to participate. Leaving aside for a moment the privacy concerns that may discourage
participants, another factor that can determine the reluctance in being involved in federated
learning processes is the associated overhead, in terms of computation and communication. Self-
interested mobile devices may be unwilling to cooperate without receiving adequate rewards
[55]. Such considerations may be exacerbated in cross-silo federated settings, where competitors
should collaborate for a common objective, while they may have local data different in quality
(i.e., an organization with rich and high-quality local data would not be willing to participate
in a federated learning process and sharing, for free, the acquired final knowledge with other
competitors that have contributed much less in the learned model due to scarce-quality data).
Furthermore, the revenue generated from the built model will come only afterwards [133]. In this
direction, solutions to properly reward participants and attracting data owners with high-quality
data, e.g. more conspicuous rewards for participants with higher quality of local data, are emerging
(e.g., [55], [133]). Designing effective incentive mechanisms will be fundamental for the spreading
of decentralized learning in real-world scenarios.

, Vol. 1, No. 1, Article . Publication date: December 2018.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 P. Bellavista et al.

5.3 Towards Model Heterogeneity and Personalization
As we have seen, in federated settings, different kinds of heterogeneity must be addressed, from
system heterogeneity (i.e., device with different resource budgets) to data heterogeneity (i.e.,
non-IIDness). We highlight an additional facet of heterogeneity that regards the local model
architecture: each participant of the learning process can design its own model accordingly to its
needs. This degree of freedom would further favour the collaboration among institutions — under
the perspective of intellectual property related to the tailored model architecture — and can be
also leveraged to favour the inclusion of more resource-constrained edge devices in the learning
process. Transfer learning and knowledge distillation are investigated to effectively enabling such
independence improvements among participants (e.g., [65]). Besides model heterogeneity, model
personalization, i.e. fitting the global model to the participant-specific local data, would represent
an additional tool to tackle non-IIDness [62].

5.4 Going beyond Supervised Learning
It is important to underline once more that almost all the cited works in this survey suppose labeled
data examples within supervised learning contexts. However, in real federated settings it could not
be straightforward to automatically or to manually label data samples; while systems to favour the
collection of user-annotated examples are arising (e.g., [78]), the huge amount of unlabeled raw
data, that will be produced in the next years at the edge of the network, may not be adequately
exploited by only supervised learning techniques. Anyway, opening up to semi-supervised [52],
unsupervised or to reinforcement learning approaches would require similar issues in terms of
privacy guarantees, heterogeneity, communication efficiency and scalability.

5.5 User Perception of FL Privacy Guarantees
The rising regulations about privacy protection would ideally require the express consent of users
for sensitive-data collection and processing. Decentralized learning techniques naturally shape
the principles of focused data collection and minimization, on which most of the privacy-related
regulations build on as well. However, we might wonder if the average user fully understands
the privacy benefits and limitations that come with the design of decentralized learning systems,
and in particular with privacy-preserving decentralized learning systems (e.g., differential private
decentralized training). In fact, only if the user is aware of the guarantees about privacy protection,
she or he can consciously decide whether and which data letting be involved in possible decentral-
ized learning processes. Moreover, different users may value privacy aspects differently, eventually
entailing fine granular and user-specific tuning of privacy guarantees, an aspect that has not been
thoroughly explored yet. Orthogonally, there is no clear consensus on how to choose privacy
parameters (e.g., 𝜖 for 𝜖-DP mechanisms) [28]. Fostering and creating a shared consensus about the
adequate level of privacy in collaborative learning systems is another key aspect for the incoming
future, as well as fully understanding and addressing the specific privacy preferences of educated
users (i.e., users who have full comprehension of the implications of the privacy technology used).

5.6 Fairness and Sources of Bias in Decentralized Learning
The relevant objective of ensuring fairness does not strictly relate to decentralized learning; it
is a recognized and well-known issue in traditional ML/DL. However, some unique and peculiar
traits of decentralized learning systems open up to new directions for future research. In fact,
especially in cross-device settings, practical assumptions and requirements about the (selected)
per-round participants can generate bias in the training data, which in turn might make the model
unfair, e.g., under-represented groups in training samples may receive lower-quality predictions, or

, Vol. 1, No. 1, Article . Publication date: December 2018.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Decentralized Learning in Federated Deployment Environments: a System-level Survey 31

individuals that should be treated similarly by the model receive significantly different outcomes,
or again the trained model might show prejudices against some sensitive subgroups of individuals.
By going into practical details and consequences, for example, the proposed implementation of FL
for Android mobile devices includes in the training rounds only the devices that are (i) connected
to unmetered network, (ii) charging, and (iii) that respond within a time-out (also the involved
devices have to meet some hardware requirements, i.e., memory); this may lead to sample a
biased population of participants. Solutions for more flexible device participation (e.g., [105]) can
mitigate such phenomenon. Similar observations raise from other strategies such as prioritizing
fast connected devices (e.g., in [117] or [50]). Furthermore, also imbalanced data among nodes
can represent a source of bias [26], and this has demonstrated to be more typical of cross-device
settings. Another factor that makes fairness challenging in decentralized learning systems lies in
the privacy-preserving design of such approaches: usually data are not directly accessible to search
for bias in data samples.

5.7 Towards Fully Decentralized Systems at Scale
While cross-device (star-shaped) FL is mature enough to be used in large scale applications [12]
(e.g., in the realm of smartphone apps), cross-device fully decentralized solutions have not reached
such mature implementations yet. As already highlighted, dealing with peer-to-peer topologies
inherently adds layers of complexity with respect to the client-server paradigm; that makes it harder
the implementation as well as the theoretical analysis of such systems. A very practical solution
may be having a central orchestrating entity that is aware of the current topology status thanks to
periodic reports provided by the federation of peers (as in [117]); in this way the orchestrator21 can
determine and dictate the (favourable) peer links to be used in exchanging model updates. In this
perspective, in the short-term future research in the field, we expect growing efforts in practical
(and maybe more elegant) solutions to dominate the complexity of dynamic large-scale peer-to-peer
topologies, as in the case of real cross-device federated scenarios of practical usage, since fully
decentralized systems bring, in principle, several advantages with respect to star-shaped solutions
(e.g., no need to trust central entities, no server bottlenecks, no unique points of failure). We also
note that while communication-efficient strategies can be more easily adapted from star-shaped to
fully decentralized systems (e.g., [117]), this may be not so natural for non-IIDness and for privacy
guarantees. Furthermore, as far as we know, poisoning has not been investigated considering such
topology of participants. In short, the literature about fully decentralized learning is still in its
embryonic stages: approaches to ensure formal privacy guarantees (e.g., DP-based approaches
and secure aggregation adaptations) and to effectively tackle non-IIDness (e.g., [92]) have still
to be thoughtfully explored and investigated before achieving the efficient implementation and
deployment of an associated large-scale prototype.

6 CONCLUDING REMARKS
This survey aims at offering a fresh and up-to-date overview of the motivations that are leading to
the rising popularity of decentralized learning, by also exemplifying them over a few variegated
instances of real-world applications. Most relevantly, the paper proposes an original and relatively
simple taxonomy to readily classify baselines and their improvements/extensions for decentralized
learning, thus providing a useful guide to and shedding new light on this articulated research area
and the emerging frameworks/solutions in the field. The proposed taxonomy has been largely used
in the paper as a lens for an in-depth technical analysis of up-to-date contributions in the literature.
This analysis has allowed us to highlight the main issues that the surveyed work has addressed and

21The orchestrator may also easily dictate the hyperparameters of the model to be trained and of the algorithm to be used.

, Vol. 1, No. 1, Article . Publication date: December 2018.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 P. Bellavista et al.

to identify the primary lessons learned so far; the lessons learned based on our taxonomy-driven
analysis also helped us to identify the most relevant open problems and the most promising future
directions for research in this challenging, wide, relevant, and rising area.

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H BrendanMcMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. 2016. Deep

learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 308–318.

[2] Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar, and Brendan McMahan. 2018. cpSGD:
Communication-efficient and differentially-private distributed SGD. In Advances in Neural Information Processing
Systems. 7564–7575.

[3] Alham Fikri Aji and Kenneth Heafield. 2017. Sparse communication for distributed gradient descent. arXiv preprint
arXiv:1704.05021 (2017).

[4] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormandi, George E Dahl, and Geoffrey E Hinton. 2018. Large
scale distributed neural network training through online distillation. arXiv preprint arXiv:1804.03235 (2018).

[5] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of the multiarmed bandit problem.
Machine learning 47, 2-3 (2002), 235–256.

[6] Sean Augenstein, H Brendan McMahan, Daniel Ramage, Swaroop Ramaswamy, Peter Kairouz, Mingqing Chen,
Rajiv Mathews, et al. 2019. Generative Models for Effective ML on Private, Decentralized Datasets. arXiv preprint
arXiv:1911.06679 (2019).

[7] Eugene Bagdasaryan, Omid Poursaeed, and Vitaly Shmatikov. 2019. Differential privacy has disparate impact on
model accuracy. In Advances in Neural Information Processing Systems. 15453–15462.

[8] Evita Bakopoulou, Balint Tillman, and Athina Markopoulou. 2019. A Federated Learning Approach for Mobile Packet
Classification. arXiv preprint arXiv:1907.13113 (2019).

[9] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. 2018. signSGD: Compressed
optimisation for non-convex problems. arXiv preprint arXiv:1802.04434 (2018).

[10] Michael Blot, David Picard, Matthieu Cord, and Nicolas Thome. 2016. Gossip training for deep learning. arXiv preprint
arXiv:1611.09726 (2016).

[11] Manuel Blum and Silvio Micali. 1984. How to generate cryptographically strong sequences of pseudorandom bits.
SIAM journal on Computing 13, 4 (1984), 850–864.

[12] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe Kiddon,
Jakub Konecny, Stefano Mazzocchi, H Brendan McMahan, et al. 2019. Towards federated learning at scale: System
design. arXiv preprint arXiv:1902.01046 (2019).

[13] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar Patel, Daniel
Ramage, Aaron Segal, and Karn Seth. 2017. Practical secure aggregation for privacy-preserving machine learning. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM, 1175–1191.

[14] Keith Bonawitz, Fariborz Salehi, Jakub Konečnỳ, Brendan McMahan, and Marco Gruteser. 2019. Federated learning
with autotuned communication-efficient secure aggregation. arXiv preprint arXiv:1912.00131 (2019).

[15] Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex Olshevsky, Ioannis Ch Paschalidis, andWei Shi. 2018. Federated
learning of predictive models from federated electronic health records. International journal of medical informatics
112 (2018), 59–67.

[16] Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and Ameet Talwalkar. 2018. Expanding the reach of federated
learning by reducing client resource requirements. arXiv preprint arXiv:1812.07210 (2018).

[17] Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar, Nathalie Baracaldo, Yi Zhou, Heiko Ludwig, Feng Yan,
and Yue Cheng. 2020. TiFL: A Tier-based Federated Learning System. arXiv preprint arXiv:2001.09249 (2020).

[18] Mingqing Chen, RajivMathews, TomOuyang, and Françoise Beaufays. 2019. Federated LearningOf Out-Of-Vocabulary
Words. arXiv preprint arXiv:1903.10635 (2019).

[19] Xiangyi Chen, Tiancong Chen, Haoran Sun, Zhiwei Steven Wu, and Mingyi Hong. 2019. Distributed Training with
Heterogeneous Data: Bridging Median and Mean Based Algorithms. arXiv preprint arXiv:1906.01736 (2019).

[20] Yang Chen, Xiaoyan Sun, and Yaochu Jin. 2019. Communication-Efficient Federated Deep Learning With Layerwise
Asynchronous Model Update and Temporally Weighted Aggregation. IEEE Transactions on Neural Networks and
Learning Systems (2019).

[21] Cisco. [n.d.]. Cisco Global Cloud Index: Forecast and Methodology, 2016–2021 White Paper. URL https://www.cisco.
com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html. Accessed
on April 2020.

, Vol. 1, No. 1, Article . Publication date: December 2018.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Decentralized Learning in Federated Deployment Environments: a System-level Survey 33

[22] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio Ranzato, Andrew
Senior, Paul Tucker, Ke Yang, et al. 2012. Large scale distributed deep networks. In Advances in neural information
processing systems. 1223–1231.

[23] Whitfield Diffie and Martin Hellman. 1976. New directions in cryptography. IEEE transactions on Information Theory
22, 6 (1976), 644–654.

[24] Tung V. Doan, Zhongyi Fan, Giang T. Nguyen, Hani Salah, Dongho You, and Frank HP Fitzek. 2020. Follow Me, If You
Can: A Framework for Seamless Migration in Mobile Edge Cloud. IEEE INFOCOM Workshops (2020), 1178–11183.

[25] Alexey Dosovitskiy and Thomas Brox. 2016. Inverting visual representations with convolutional networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4829–4837.

[26] Moming Duan, Duo Liu, Xianzhang Chen, Renping Liu, Yujuan Tan, and Liang Liang. 2020. Self-Balancing Federated
Learning With Global Imbalanced Data in Mobile Systems. IEEE Transactions on Parallel and Distributed Systems 32, 1
(2020), 59–71.

[27] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of machine learning research 12, 7 (2011).

[28] Cynthia Dwork, Nitin Kohli, and Deirdre Mulligan. 2019. Differential Privacy in Practice: Expose your Epsilons!
Journal of Privacy and Confidentiality 9, 2 (2019).

[29] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differential privacy. Foundations and Trends®
in Theoretical Computer Science 9, 3–4 (2014), 211–407.

[30] EU. [n.d.]. REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL. URL
https://eur-lex.europa.eu/legal-content/EN/TXT/.

[31] Romano Fantacci and Benedetta Picano. 2020. Federated learning framework for mobile edge computing networks.
CAAI Transactions on Intelligence Technology 5, 1 (2020), 15–21.

[32] Yingwei Fu, Huaimin Wang, Kele Xu, Haibo Mi, and Yijie Wang. 2019. Mixup Based Privacy Preserving Mixed
Collaboration Learning. In 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE). IEEE,
275–2755.

[33] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. 2018. Mitigating sybils in federated learning poisoning. arXiv
preprint arXiv:1808.04866 (2018).

[34] Robin C Geyer, Tassilo Klein, and Moin Nabi. 2017. Differentially private federated learning: A client level perspective.
arXiv preprint arXiv:1712.07557 (2017).

[35] Lodovico Giaretta and Šarūnas Girdzijauskas. 2019. Gossip learning: Off the beaten path. In 2019 IEEE International
Conference on Big Data (Big Data). IEEE, 1117–1124.

[36] Otkrist Gupta and Ramesh Raskar. 2018. Distributed learning of deep neural network over multiple agents. Journal of
Network and Computer Applications 116 (2018), 1–8.

[37] Meng Hao, Hongwei Li, Guowen Xu, Sen Liu, and Haomiao Yang. 2019. Towards Efficient and Privacy-Preserving
Federated Deep Learning. In ICC 2019-2019 IEEE International Conference on Communications (ICC). IEEE, 1–6.

[38] Andrew Hard, Kanishka Rao, Rajiv Mathews, Françoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon,
and Daniel Ramage. 2018. Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604 (2018).

[39] Corentin Hardy, Erwan Le Merrer, and Bruno Sericola. 2018. Gossiping GANs. In Proceedings of the Second Workshop
on Distributed Infrastructures for Deep Learning: DIDL, Vol. 22.

[40] Valentin Hartmann and Robert West. 2019. Privacy-Preserving Distributed Learning with Secret Gradient Descent.
arXiv preprint arXiv:1906.11993 (2019).

[41] Chaoyang He, Murali Annavaram, and Salman Avestimehr. 2020. FedNAS: Federated Deep Learning via Neural
Architecture Search. arXiv preprint arXiv:2004.08546 (2020).

[42] Chaoyang He, Conghui Tan, Hanlin Tang, Shuang Qiu, and Ji Liu. 2019. Central server free federated learning over
single-sided trust social networks. arXiv preprint arXiv:1910.04956 (2019).

[43] István Hegedűs, Gábor Danner, and Márk Jelasity. 2019. Gossip Learning as a Decentralized Alternative to Federated
Learning. In IFIP International Conference on Distributed Applications and Interoperable Systems. Springer, 74–90.

[44] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 (2015).

[45] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. 2017. Deep models under the GAN: information leakage
from collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 603–618.

[46] Wei Hou, Dakui Wang, and Xiaojun Chen. 2020. Generate Images with Obfuscated Attributes for Private Image
Classification. In International Conference on Multimedia Modeling. Springer, 125–135.

[47] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2019. Measuring the effects of non-identical data distribution
for federated visual classification. arXiv preprint arXiv:1909.06335 (2019).

, Vol. 1, No. 1, Article . Publication date: December 2018.

https://eur-lex.europa.eu/legal-content/EN/TXT/

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 P. Bellavista et al.

[48] Li Huang, Yifeng Yin, Zeng Fu, Shifa Zhang, Hao Deng, and Dianbo Liu. 2018. LoAdaBoost: Loss-Based AdaBoost
Federated Machine Learning on medical Data. arXiv preprint arXiv:1811.12629 (2018).

[49] Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim. 2018. Communication-
efficient on-device machine learning: Federated distillation and augmentation under non-iid private data. arXiv
preprint arXiv:1811.11479 (2018).

[50] Jingyan Jiang, Liang Hu, Chenghao Hu, Jiate Liu, and Zhi Wang. 2020. BACombo—Bandwidth-Aware Decentralized
Federated Learning. Electronics 9, 3 (2020), 440.

[51] Richeng Jin, Yufan Huang, Xiaofan He, Huaiyu Dai, and Tianfu Wu. 2020. Stochastic-Sign SGD for Federated Learning
with Theoretical Guarantees. arXiv preprint arXiv:2002.10940 (2020).

[52] Yilun Jin, Xiguang Wei, Yang Liu, and Qiang Yang. 2020. A Survey towards Federated Semi-supervised Learning.
arXiv preprint arXiv:2002.11545 (2020).

[53] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith
Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. 2019. Advances and open problems in
federated learning. arXiv preprint arXiv:1912.04977 (2019).

[54] Michael Kamp, Linara Adilova, Joachim Sicking, Fabian Hüger, Peter Schlicht, Tim Wirtz, and Stefan Wrobel. 2018.
Efficient decentralized deep learning by dynamic model averaging. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer, 393–409.

[55] Jiawen Kang, Zehui Xiong, Dusit Niyato, Shengli Xie, and Junshan Zhang. 2019. Incentive mechanism for reliable
federated learning: A joint optimization approach to combining reputation and contract theory. IEEE Internet of
Things Journal 6, 6 (2019), 10700–10714.

[56] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich, and Ananda Theertha
Suresh. 2019. SCAFFOLD: Stochastic controlled averaging for on-device federated learning. arXiv preprint
arXiv:1910.06378 (2019).

[57] Kimon Karras, Evangelos Pallis, George Mastorakis, Yannis Nikoloudakis, Jordi Mongay Batalla, Constandinos X.
Mavromoustakis, and Evangelos K. Markakis. 2020. A Hardware Acceleration Platform for AI-Based Inference at the
Edge. Circuits Syst. Signal Process. 39, 2 (2020), 1059–1070.

[58] Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim. 2018. On-device federated learning via blockchain
and its latency analysis. arXiv preprint arXiv:1808.03949 (2018).

[59] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
(2014).

[60] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. 2016. Federated optimization: Distributed
machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527 (2016).

[61] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon. 2016.
Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).

[62] Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant. 2020. Survey of Personalization Techniques for Federated
Learning. arXiv preprint arXiv:2003.08673 (2020).

[63] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature 521, 7553 (2015), 436–444.
[64] David Leroy, Alice Coucke, Thibaut Lavril, Thibault Gisselbrecht, and Joseph Dureau. 2019. Federated learning

for keyword spotting. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 6341–6345.

[65] Daliang Li and Junpu Wang. 2019. FedMD: Heterogenous Federated Learning via Model Distillation. arXiv preprint
arXiv:1910.03581 (2019).

[66] Suyi Li, Yong Cheng, Yang Liu, Wei Wang, and Tianjian Chen. 2019. Abnormal client behavior detection in federated
learning. arXiv preprint arXiv:1910.09933 (2019).

[67] Tian Li, Zaoxing Liu, Vyas Sekar, and Virginia Smith. 2019. Privacy for Free: Communication-Efficient Learning with
Differential Privacy Using Sketches. arXiv preprint arXiv:1911.00972 (2019).

[68] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated Learning: Challenges, Methods, and
Future Directions. IEEE Signal Processing Magazine 37, 3 (2020), 50–60.

[69] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. 2018. Federated
optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018).

[70] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. 2020. FedDANE: A
Federated Newton-Type Method. arXiv preprint arXiv:2001.01920 (2020).

[71] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2019. On the convergence of fedavg on
non-iid data. arXiv preprint arXiv:1907.02189 (2019).

[72] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. 2017. Can decentralized algorithms
outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. In Advances in
Neural Information Processing Systems. 5330–5340.

, Vol. 1, No. 1, Article . Publication date: December 2018.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Decentralized Learning in Federated Deployment Environments: a System-level Survey 35

[73] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-Chang Liang, Qiang Yang, Dusit
Niyato, and Chunyan Miao. 2020. Federated learning in mobile edge networks: A comprehensive survey. IEEE
Communications Surveys & Tutorials (2020).

[74] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2017. Deep gradient compression: Reducing the
communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887 (2017).

[75] Lumin Liu, Jun Zhang, SH Song, and Khaled B Letaief. 2019. Edge-Assisted Hierarchical Federated Learning with
Non-IID Data. arXiv preprint arXiv:1905.06641 (2019).

[76] Menghan Liu, Haotian Jiang, Jia Chen, Alaa Badokhon, Xuetao Wei, and Ming-Chun Huang. 2016. A collaborative
privacy-preserving deep learning system in distributed mobile environment. In 2016 International Conference on
Computational Science and Computational Intelligence (CSCI). IEEE, 192–197.

[77] Wei Liu, Li Chen, Yunfei Chen, and Wenyi Zhang. 2020. Accelerating Federated Learning via Momentum Gradient
Descent. IEEE Transactions on Parallel and Distributed Systems 31, 8 (2020), 1754–1766.

[78] Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu, Yuanyuan Chen, Lican Feng, Tianjian Chen, Han Yu, and
Qiang Yang. 2020. FedVision: An Online Visual Object Detection Platform Powered by Federated Learning. arXiv
preprint arXiv:2001.06202 (2020).

[79] Lingjuan Lyu, Han Yu, and Qiang Yang. 2020. Threats to Federated Learning: A Survey. arXiv preprint arXiv:2003.02133
(2020).

[80] Evangelos K. Markakis, Kimon Karras, Nikolaos Zotos, Anargyros Sideris, Theoharris Moysiadis, Angelo Corsaro,
George Alexiou, Charalabos Skianis, George Mastorakis, Constandinos X. Mavromoustakis, and Evangelos Pallis.
2017. EXEGESIS: Extreme Edge Resource Harvesting for a Virtualized Fog Environment. IEEE Commun. Mag. 55, 7
(2017), 173–179.

[81] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. 2016. Communication-efficient learning of
deep networks from decentralized data. arXiv preprint arXiv:1602.05629 (2016).

[82] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2017. Learning differentially private language
models without losing accuracy. arXiv preprint arXiv:1710.06963 (2017).

[83] H Brendan McMahan and Matthew Streeter. 2010. Adaptive bound optimization for online convex optimization.
arXiv preprint arXiv:1002.4908 (2010).

[84] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. 2019. Exploiting unintended feature
leakage in collaborative learning. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 691–706.

[85] Jed Mills, Jia Hu, and Geyong Min. 2019. Communication-Efficient Federated Learning for Wireless Edge Intelligence
in IoT. IEEE Internet of Things Journal (2019).

[86] Akinori Mitani, Abigail Huang, Subhashini Venugopalan, Greg S Corrado, Lily Peng, Dale R Webster, Naama Hammel,
Yun Liu, and Avinash V Varadarajan. 2020. Author Correction: Detection of anaemia from retinal fundus images via
deep learning. Nature Biomedical Engineering 4, 2 (2020), 242–242.

[87] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve restricted boltzmann machines. In Proceedings
of the 27th international conference on machine learning (ICML-10). 807–814.

[88] Arvind Narayanan and Vitaly Shmatikov. 2008. Robust de-anonymization of large datasets (how to break anonymity
of the Netflix prize dataset). University of Texas at Austin (2008).

[89] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2018. Comprehensive privacy analysis of deep learning: Stand-alone
and federated learning under passive and active white-box inference attacks. arXiv preprint arXiv:1812.00910 (2018).

[90] Solmaz Niknam, Harpreet S Dhillon, and Jeffrey H Reed. 2020. Federated Learning for Wireless Communications:
Motivation, Opportunities, and Challenges. IEEE Communications Magazine 58, 6 (2020), 46–51.

[91] Takayuki Nishio and Ryo Yonetani. 2019. Client selection for federated learning with heterogeneous resources in
mobile edge. In ICC 2019-2019 IEEE International Conference on Communications (ICC). IEEE, 1–7.

[92] Kenta Niwa, Noboru Harada, Guoqiang Zhang, andW Bastiaan Kleijn. 2020. Edge-consensus Learning: Deep Learning
on P2P Networks with Nonhomogeneous Data. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 668–678.

[93] State of California Department of Justice. [n.d.]. California Consumer Privacy Act (CCPA). URL https://oag.ca.gov/
privacy/ccpa. Accessed on May 2020.

[94] U.S. Department of Health & Human Services. [n.d.]. The HIPAA Privacy Rule. URL https://www.hhs.gov/hipaa/for-
professionals/privacy/index.html. Accessed on May 2020.

[95] Trishan Panch, Peter Szolovits, and Rifat Atun. 2018. Artificial intelligence, machine learning and health systems.
Journal of global health 8, 2 (2018).

[96] Stephen R Pfohl, Andrew M Dai, and Katherine Heller. 2019. Federated and Differentially Private Learning for
Electronic Health Records. arXiv preprint arXiv:1911.05861 (2019).

[97] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho Moriai. 2018. Privacy-preserving deep
learning via additively homomorphic encryption. IEEE Transactions on Information Forensics and Security 13, 5 (2018),

, Vol. 1, No. 1, Article . Publication date: December 2018.

https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://www.hhs.gov/hipaa/for-professionals/privacy/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/index.html

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 P. Bellavista et al.

1333–1345.
[98] Tran Thi Phuong et al. 2019. Privacy-preserving deep learning via weight transmission. IEEE Transactions on

Information Forensics and Security 14, 11 (2019), 3003–3015.
[99] Maarten G Poirot, Praneeth Vepakomma, Ken Chang, Jayashree Kalpathy-Cramer, Rajiv Gupta, and Ramesh Raskar.

2019. Split Learning for collaborative deep learning in healthcare. arXiv preprint arXiv:1912.12115 (2019).
[100] Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise Beaufays. 2019. Federated Learning for Emoji

Prediction in a Mobile Keyboard. arXiv preprint arXiv:1906.04329 (2019).
[101] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv Kumar, and

H Brendan McMahan. 2020. Adaptive Federated Optimization. arXiv preprint arXiv:2003.00295 (2020).
[102] Sashank J Reddi, Jakub Konečnỳ, Peter Richtárik, Barnabás Póczós, and Alex Smola. 2016. Aide: Fast and communica-

tion efficient distributed optimization. arXiv preprint arXiv:1608.06879 (2016).
[103] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani. 2019. Fedpaq:

A communication-efficient federated learning method with periodic averaging and quantization. arXiv preprint
arXiv:1909.13014 (2019).

[104] Abhijit Guha Roy, Shayan Siddiqui, Sebastian Pölsterl, Nassir Navab, and Christian Wachinger. 2019. Braintorrent: A
peer-to-peer environment for decentralized federated learning. arXiv preprint arXiv:1905.06731 (2019).

[105] Yichen Ruan, Xiaoxi Zhang, Shu-Che Liang, and Carlee Joe-Wong. 2020. Towards Flexible Device Participation in
Federated Learning for Non-IID Data. arXiv preprint arXiv:2006.06954 (2020).

[106] Felix Sattler, SimonWiedemann, Klaus-Robert Müller, andWojciech Samek. 2019. Robust and communication-efficient
federated learning from non-iid data. IEEE transactions on neural networks and learning systems (2019).

[107] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. 2019. Sparse binary compression:
Towards distributed deep learning with minimal communication. In 2019 International Joint Conference on Neural
Networks (IJCNN). IEEE, 1–8.

[108] Stefano Savazzi, Monica Nicoli, and Vittorio Rampa. 2020. Federated Learning with Cooperating Devices: A Consensus
Approach for Massive IoT Networks. IEEE Internet of Things Journal (2020).

[109] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[110] Ohad Shamir, Nati Srebro, and Tong Zhang. 2014. Communication-efficient distributed optimization using an

approximate newton-type method. In International conference on machine learning. 1000–1008.
[111] Abhishek Singh, Praneeth Vepakomma, Otkrist Gupta, and Ramesh Raskar. 2019. Detailed comparison of communi-

cation efficiency of split learning and federated learning. arXiv preprint arXiv:1909.09145 (2019).
[112] Jinhyun So, Basak Guler, and A Salman Avestimehr. 2020. Turbo-Aggregate: Breaking the Quadratic Aggregation

Barrier in Secure Federated Learning. arXiv preprint arXiv:2002.04156 (2020).
[113] Konstantin Sozinov, Vladimir Vlassov, and Sarunas Girdzijauskas. 2018. Human Activity Recognition Using Federated

Learning. In 2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Com-
munications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom). IEEE, 1103–1111.

[114] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine learning research 15, 1 (2014),
1929–1958.

[115] Nikko Strom. 2015. Scalable distributed DNN training using commodity GPU cloud computing. In Sixteenth Annual
Conference of the International Speech Communication Association.

[116] Gábor J Székely, Maria L Rizzo, Nail K Bakirov, et al. 2007. Measuring and testing dependence by correlation of
distances. The annals of statistics 35, 6 (2007), 2769–2794.

[117] Zhenheng Tang, Shaohuai Shi, and Xiaowen Chu. 2020. Communication-efficient decentralized learning with
sparsification and adaptive peer selection. arXiv preprint arXiv:2002.09692 (2020).

[118] Zeyi Tao and Qun Li. 2018. esgd: Communication efficient distributed deep learning on the edge. In {USENIX}
Workshop on Hot Topics in Edge Computing (HotEdge 18).

[119] Chandra Thapa, MAP Chamikara, and Seyit Camtepe. 2020. SplitFed: When Federated Learning Meets Split Learning.
arXiv preprint arXiv:2004.12088 (2020).

[120] Aleksei Triastcyn and Boi Faltings. 2019. Federated Learning with Bayesian Differential Privacy. arXiv preprint
arXiv:1911.10071 (2019).

[121] Aleksei Triastcyn and Boi Faltings. 2019. Improved Accounting for Differentially Private Learning. arXiv preprint
arXiv:1901.09697 (2019).

[122] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui Zhang, and Yi Zhou. 2019. A
hybrid approach to privacy-preserving federated learning. In Proceedings of the 12th ACM Workshop on Artificial
Intelligence and Security. 1–11.

, Vol. 1, No. 1, Article . Publication date: December 2018.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Decentralized Learning in Federated Deployment Environments: a System-level Survey 37

[123] Praneeth Vepakomma, Otkrist Gupta, Abhimanyu Dubey, and Ramesh Raskar. 2019. Reducing leakage in distributed
deep learning for sensitive health data. arXiv preprint arXiv:1812.00564 (2019).

[124] Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. 2020. Optimizing Federated Learning on Non-IID Data with
Reinforcement Learning. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 1698–1707.

[125] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian Makaya, Ting He, and Kevin Chan. 2019.
Adaptive federated learning in resource constrained edge computing systems. IEEE Journal on Selected Areas in
Communications 37, 6 (2019), 1205–1221.

[126] Wikipedia. [n.d.]. Facebook–Cambridge Analytica data scandal. URL https://en.wikipedia.org/wiki/Facebook\T1\
textendashCambridge_Analytica_data_scandal. Accessed on May 2020.

[127] Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. Asynchronous federated optimization. arXiv preprint
arXiv:1903.03934 (2019).

[128] Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. SLSGD: Secure and Efficient Distributed On-device Machine
Learning. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases.

[129] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated machine learning: Concept and applications.
ACM Transactions on Intelligent Systems and Technology (TIST) 10, 2 (2019), 1–19.

[130] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ramage, and Françoise
Beaufays. 2018. Applied federated learning: Improving google keyboard query suggestions. arXiv preprint
arXiv:1812.02903 (2018).

[131] Xin Yao, Tianchi Huang, Rui-Xiao Zhang, Ruiyu Li, and Lifeng Sun. 2019. Federated Learning with Unbiased Gradient
Aggregation and Controllable Meta Updating. arXiv preprint arXiv:1910.08234 (2019).

[132] Chun-Hsien Yu, Chun-Nan Chou, and Emily Chang. 2019. Distributed Layer-Partitioned Training for Privacy-
Preserved Deep Learning. In 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE,
343–346.

[133] Han Yu, Zelei Liu, Yang Liu, Tianjian Chen, Mingshu Cong, Xi Weng, Dusit Niyato, and Qiang Yang. 2020. A
Fairness-aware Incentive Scheme for Federated Learning. In Proceedings of the AAAI/ACM Conference on AI, Ethics,
and Society. 393–399.

[134] Qian Yu, Songze Li, Netanel Raviv, Seyed Mohammadreza Mousavi Kalan, Mahdi Soltanolkotabi, and Salman Aves-
timehr. 2019. Lagrange Coded Computing: Optimal Design for Resiliency, Security, and Privacy. In International
Conference on Artificial Intelligence and Statistics (AISTATS 2019).

[135] Zhengxin Yu, Jia Hu, Geyong Min, Haochuan Lu, Zhiwei Zhao, Haozhe Wang, and Nektarios Georgalas. 2018.
Federated learning based proactive content caching in edge computing. In 2018 IEEE Global Communications Conference
(GLOBECOM). IEEE, 1–6.

[136] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. 2018. Adaptive methods for
nonconvex optimization. In Advances in neural information processing systems. 9793–9803.

[137] Chaoyun Zhang, Paul Patras, and Hamed Haddadi. 2019. Deep learning in mobile and wireless networking: A survey.
IEEE Communications Surveys & Tutorials 21, 3 (2019), 2224–2287.

[138] Jun Zhang, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, and Marianne Winslett. 2012. Functional mechanism: regression
analysis under differential privacy. arXiv preprint arXiv:1208.0219 (2012).

[139] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based recommender system: A survey and new
perspectives. ACM Computing Surveys (CSUR) 52, 1 (2019), 1–38.

[140] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2020. iDLG: Improved Deep Leakage from Gradients. arXiv preprint
arXiv:2001.02610 (2020).

[141] Lingchen Zhao, ShengshanHu, QianWang, Jianlin Jiang, Chao Shen, and Xiangyang Luo. 2019. Shielding Collaborative
Learning: Mitigating Poisoning Attacks through Client-Side Detection. arXiv preprint arXiv:1910.13111 (2019).

[142] Lingchen Zhao, Qian Wang, Qin Zou, Yan Zhang, and Yanjiao Chen. 2019. Privacy-preserving collaborative deep
learning with unreliable participants. IEEE Transactions on Information Forensics and Security 15 (2019), 1486–1500.

[143] Rui Zhao, Ruqiang Yan, Zhenghua Chen, Kezhi Mao, Peng Wang, and Robert X Gao. 2019. Deep learning and its
applications to machine health monitoring. Mechanical Systems and Signal Processing 115 (2019), 213–237.

[144] Ying Zhao, Junjun Chen, DiWu, Jian Teng, and Shui Yu. 2019. Multi-Task Network Anomaly Detection using Federated
Learning. In Proceedings of the Tenth International Symposium on Information and Communication Technology. 273–279.

[145] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. 2018. Federated learning with
non-iid data. arXiv preprint arXiv:1806.00582 (2018).

[146] Jun Zhou, Zhenfu Cao, Xiaolei Dong, and Xiaodong Lin. 2015. PPDM: A privacy-preserving protocol for cloud-assisted
e-healthcare systems. IEEE Journal of Selected Topics in Signal Processing 9, 7 (2015), 1332–1344.

[147] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. 2019. Edge intelligence: Paving the last mile of
artificial intelligence with edge computing. Proc. IEEE 107, 8 (2019), 1738–1762.

, Vol. 1, No. 1, Article . Publication date: December 2018.

https://en.wikipedia.org/wiki/Facebook\T1\textendash Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook\T1\textendash Cambridge_Analytica_data_scandal

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

38 P. Bellavista et al.

[148] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from gradients. In Advances in Neural Information
Processing Systems. 14747–14756.

, Vol. 1, No. 1, Article . Publication date: December 2018.

	Copertina_postprint_IRIS_UNIBO (2) - Copy
	Dec__Learning_Last___ACM_Journals___After_Reviews___in_37_pages (1).pdf
	Abstract
	1 Introduction
	2 The Rising of Decentralized Learning
	3 Fundamentals, Taxonomy and Baselines for Decentralized Learning
	3.1 Cross-Silo and Cross-Device Federated Settings
	3.2 A Taxonomy for Decentralized Learning Systems
	3.3 Baselines for Decentralized Learning Systems

	4 Decentralized Learning Solutions: A System-level Analysis
	4.1 Improving Communication Efficiency
	4.2 Protecting Privacy
	4.3 Combining Privacy and Communication Efficiency
	4.4 Addressing non-IIDness
	4.5 Handling Device Heterogeneity
	4.6 Defending against Poisoning

	5 Open Problems and Future Directions
	5.1 Rethinking the Traditional ML Workflow for Federated Learning
	5.2 Designing Incentive Mechanisms
	5.3 Towards Model Heterogeneity and Personalization
	5.4 Going beyond Supervised Learning
	5.5 User Perception of FL Privacy Guarantees
	5.6 Fairness and Sources of Bias in Decentralized Learning
	5.7 Towards Fully Decentralized Systems at Scale

	6 Concluding Remarks
	References

