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Decentralized Learning in Federated Deployment
Environments: a System-level Survey

PAOLO BELLAVISTA, LUCA FOSCHINI, and ALESSIO MORA, Dept. Computer Science and
Engineering (DISI), Alma Mater Studiorum - University of Bologna

Decentralized learning is attracting more and more interest because it embodies the principles of data
minimization and focused data collection, while favouring the transparency of purpose specification (i.e. the
objective a model is built for). Cloud-centric-only processing and deep learning are no longer a strict necessity
to train high-fidelity models; edge devices can actively participate in the decentralized learning process by
exchanging meta-level information in place of raw data, thus paving the way for better privacy guarantees. In
addition, these new possibilities can relieve the network backbone from unnecessary data transfer and allow
to meet strict low-latency requirements by leveraging on-device model inference. This survey provides a
detailed and up-to-date overview of the most recent contributions available in the state-of-the-art decentralized
learning literature. In particular, it originally provides the reader audience with a clear presentation of the
peculiarities of federated settings, with a novel taxonomy of decentralized learning approaches, and with a
detailed description of the most relevant and specific system-level contributions of the surveyed solutions for
privacy, communication efficiency, non-IIDness, device heterogeneity, and poisoning defense.

CCS Concepts: • Computing methodologies→ Distributed computing methodologies; Distributed
algorithms; Distributed artificial intelligence; Learning settings.

Additional Key Words and Phrases: Decentralized Learning, Federated Deployment, Privacy, Communication
Efficiency, Poisoning Defense
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1 INTRODUCTION
The unprecedented amount of data being generated at the edge of the network — Cisco estimates
that nearly 850 ZB will be produced by all, namely, people, machines, and things by 2021, up from
220 ZB generated in 2016 [21] — represents the ideal ingredient for training accurate Machine
Learning (ML). In particular, Deep Learning (DL) models [63] allow to enhance and support a wide
range of more intelligent applications, services, and infrastructures, such as powering recommender
systems [139], developing data-driven machine health monitoring [143], enabling new ways for
clinical diagnoses [86], or driving the design of new generation mobile networks [137]. However, the
potentially sensitive or confidential nature of gathered data poses privacy concerns when managing,
storing, and processing those data in centralized locations. At the same time, the capacity of the
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network infrastructure risks to be saturated by such continuous data collection, such as from
distributed sources at the network edge to centralized cloud resources.
To this purpose, decentralized learning has recently gained momentum exactly to decouple

model training from the need of directly accessing raw data, by becoming a promising alternative
solution to the more traditional cloud-based ML. In fact, decentralized learning leaves the training
data distributed and supports the learning of joint models via local computation and periodic com-
munication: data no longer need to leave the data owner. For example, data remain on the premises
of organizations or institutions that may want to collaborate, but without sharing their private
data. Other significant use cases embrace intelligent applications for end-users of smartphones or
IoT devices, where the private preferences or habits sensed through user-device interaction do not
leave the source devices.

The literature includes several differently designed approaches to enable decentralized learning.
The common key idea is to be able to just transmit ephemeral locally-computed updates (e.g., model
parameters or gradients) and/or meta-level information (e.g., activations in neural-networks): that
leverages on the fact that they are meaningful only with respect to the current global model and
typically bring significantly lower informative content compared to the raw data (data processing
inequality). This design paves the way to upgrading the user’s privacy so to meet the rising
legislative requirements about it (e.g., the California Consumer Privacy Act [93] and the European
General Data Protection Regulation (GDPR) [30]). Similarly, in the case of federated deployment
environments participated by different institutions, the use of decentralized learning techniques can
ensure privacy guarantees, especially in sensitive domains such as healthcare where data sharing is
impeded by regulation (e.g., the Health Insurance Portability and Accountability Act - HIPAA [94]).
Besides the above privacy concerns, decentralized learning techniques are strongly motivated

from the infrastructural perspective. The huge amount of raw data coming from the edge of the
network and headed to datacenters risks to overwhelm the network backbone, hence a part of these
data should, instead, be consumed locally, as suggested in [21]. Note that, even with decentralized
learning, the periodic exchange of uncompressed updates in place of the upload of all the raw data
may not necessarily reduce the total communication cost needed to train a model in a satisfying
way [76].

As for the paper organization, this survey firstly presents the motivations that led to the develop-
ment of decentralized learning and provides a practical overview about its real-world applications
(in Section 2). Then, it defines the peculiarities of federated deployment environments (or feder-
ated settings in Section 3.1), introduces our original taxonomy to classify decentralized learning
approaches, and presents the main baselines for enabling decentralized learning (in Section 3). In
Section 4, it points out the main issues that have been addressed by the related literature in the
last four years. Indeed, that represents the core of our work providing an accurate, but largely
accessible, overview of the major works in the current literature about decentralized learning. The
referred works are readily characterized in the first place by the federated setting they refer to (i.e.,
Cross-silo or Cross-device), second, by a simple modular description of the baseline framework on
which the particular work is based (using our taxonomy from Section 3.2), and third by the specific
issues addressed in the surveyed solutions (i.e., privacy, communication efficiency, non-IIDness,
device heterogeneity, poisoning defense). The last part of this survey (in Section 5) looks at present
and future research directions for the advancement of decentralized learning, by discussing open
technical challenges and cutting edge lines of work.
We are aware of the rich existing survey literature in the field and in particular of the valuable

[68], [129], [73], and [147] papers. However, we claim that we are providing the readers with a
valuable and differentiated contribution if compared with those surveys primarily because of the
following aspects:
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(1) We provide a more in-depth and more extensive technical description of the surveyed works,
describing their motivations, bringing out their most significant technical insights, and pro-
viding the readers with the references to fully comprehend the associated solution guidelines,
as well as commenting their differential strengths and weaknesses.

(2) We provide a readily and intuitive characterization of the surveyed works by means of a
tabular road map to approach the core of our survey, and we claim that it may be useful to
help non-expert readers to navigate the very differentiated literature that is emerging in the
field.

(3) Our survey includes several very recent research papers (published in the last few months)
that are relevant for the community and not covered yet by [68] and [129].

(4) We enlarge the discussion to cover decentralized learning approaches in a broader sense, not
focusing exclusively on federated learning related works.

(5) Finally, differently from [73] and [147], we do not specifically focus only on the advances of
decentralized learning that can be achieved via Multi-access Edge Computing (MEC).

2 THE RISING OF DECENTRALIZED LEARNING
The public opinion is becoming increasingly sensitive to individual privacy rights, especially after
the notorious Facebook-Cambridge Analitica scandal [126] has made no longer ignorable the
Orwellian levels of data held by such companies about us and has exposed the weakness (or even
the non-existence) of privacy regulation and data protection. Anyway, even without thinking to
striking episodes such the above cited one, individuals’ privacy is threatened whenever personal
raw data are disclosed. For example, elementary data anonymization (i.e., removing all explicit
identifiers such as name, address, and phone number) has demonstrated to be almost ineffective in
protecting privacy, since combinations of simple non-unique attributes often allow to re-identify
individuals by matching “anonymized” records with non-anonymized ones in a different public
dataset (e.g., [88]).

The actual legislative vacuum about data harvesting, data holding, and data processing has been
— and still is — the subject of regulation efforts around the world. About that, it is worth mentioning
the CCPA and the GDPR, respectively from California and from European Union, that both leverage
the principles of purpose specification and data minimization. In concrete terms, for example, the
GDPR’s Article 5 states that personal data shall be “collected for specified, explicit and legitimate
purposes and not further processed in a manner that is incompatible with those purposes” and
“kept in a form which permits identification of data subjects for no longer than is necessary for
the purposes for which the personal data are processed”. Such guidelines are often incompatible
with more traditional cloud-based ML solutions, where potential privacy-sensitive raw data flow
towards datacenters to train ML/DL models. In particular, (i) companies harvesting data tend to
keep them forever and users cannot delete them1, hence same data can be used several times for
different learning purposes (for extracting different kinds of insights); (ii) users from whom the data
were collected are unaware of the associated learning objectives; (iii) models learnt from collective
data typically remain property of the companies that built them; and (iv) users disclose their raw
data, in a more or less informed way, to infer centralized models, such as for training.
It could seem that an inevitable dichotomy between the protection of individual’s privacy and

the distillation of useful knowledge from a population exists (i.e., not disclosing private data to
preserve privacy, by merely performing local learning, versus sharing private raw data to produce
more accurate models at the cost of exposing data owners to privacy violation risks). On the
opposite, decentralized learning tries to alleviate the privacy concerns of traditional cloud-centric

1At least until the time this survey has been written.
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training by design and is data-minimization-prone. In fact, (i) companies do not need anymore
to collect possible privacy-sensitive raw data to build ML/DL models; (ii) users could likewise
be unaware of the learning objective for which their data are used, but data processing happens
locally, hence facilitating the shift to full transparency; (iii) models (or fractions of models, i.e.,
portions of their parameters) reside locally at the user’s device or inside the organization’s premises
(or in very proximity of it). This could be seen as a first step to give back to the community the
knowledge acquired from joint contributions2; (iv) users do not need to upload their raw data to
query centralized models, in fact on-device inference is typically enabled if the entire model is
replicated locally — if only a portion of the model parameters is locally held instead, distributed
inference is performed by just communicating meta-level information in place of raw data.

In addition, shifting model training from the cloud towards the network edge recalls a trend that
was already in act with the rising of mobile edge computing during the last decade. Besides the
urge of privacy guarantee, several aspects are similar and seem to overlap. A primary one is the
need to relief the burden on the backbone of the network infrastructure, which risks to collapse
under the tsunami of data if not partially consumed locally or in proximity of the associated sources.
Intuitively, actively involving the ecosystem of edge devices in the learning process and exchanging
model updates in a communication-efficient way (e.g., employing stream compression) in place of
centralizing raw data can substantially reduce network traffic while leading to limited degradation
(or in some cases to no degradation) of model accuracy. Secondly, the low-latency requirements
of real-time applications often cannot be met by only leveraging the cloud (for instance when
monitoring a shared industrial workspace, during human robot collaboration, to enforce policies for
worker protection [108]). Enabling on-device inference of the learned or in-learning models, which
naturally comes with most decentralized learning approaches as we will discuss in the continuation
of the survey, benefits such delicate aspect. Let us finally note that decentralized training, with
its potential reduction of ML-related energy consumption because of reduced network traffic and
decreased transmission distance, also contributes to the overall sustainability of the approach: it is
considered as one of the key enabling technologies towards green networking via distributed and
federated datacenters.
Decentralized learning finds natural applications in smart apps for mobile devices which learn

by user interaction, and where low-latency responses are required. In this context, gathering
user-labeled or automatically annotated data points for feeding supervised learning algorithms is a
common practice. Related examples include on-device intelligent keyboards that power content
suggestions [130], or that predict the most suitable next words [38] or the most fitting Emojis [100]
given the chat history; or again vocabularies that evolve to follow the ongoing trending expressions
by learning out-of-vocabulary words [18], and all of this without exporting sensitive text to servers.
Other examples deal with human activity recognition (e.g., [113]) and keyword spotting for voice
assistants in smart homes (e.g., [64]) .

Decentralized learning has been used also to conjugate user privacy and prediction ability of the
infrastructure in the 5G multi-access edge computing architecture [57] [24] [80], for example for
proactive content caching [135] or for optimal allocation of virtual machine replicas copies [31],
and it is considered a key enabling tool for next generation wireless networks [90] as well, e.g., for
spectrum management.

Confirming its versatility, decentralized learning has been also applied to network traffic classifi-
cation, anomaly detection, and VPN traffic recognition tasks, while preserving appropriate privacy

2However, it is worth noting that restricting or preventing access to model’s parameters, even if the model itself is locally
available, makes it harder for an attacker to undermine it, e.g., via backdooring. Therefore, companies or organizations that
adopt Decentralized Learning techniques may be anyway motivated to hamper model inspection.
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Fig. 1. The histogram reports the number of papers about decentralized learning per year, covered by this
survey, by showing the increasing relevance of decentralized learning in the literature.

levels [144] [8]. Similar considerations apply to vision-based safety monitoring systems in smart
cities [78].

In the relevant healthcare domain, the popularity of decentralized training approaches shown in
Figure 1 has been also pushed by the need to enable collaboration among healthcare institutions.
In fact, the disclosure of patients’ raw data is often impeded or limited by regulations such as the
HIPAA Privacy Rule, or the patient herself might not want her clinical data to be released to other
entities, or again the institutions might not want to sell out their valuable datasets. Therefore,
plain old centralized training results to be not feasible for predictive clinical models in many
cases. Furthermore, manual labeling of data is often very time-consuming in medical contexts and
typically requires qualified personnel. Datasets held by single institutions tend to be small and
may lack in diversity [95], and this is exacerbated when considering rare diseases. Hence, from
the perspective of isolated local learning, sample scarcity may lead to models with poor predictive
ability, especially when considering deep learning models that notoriously need abundant data
points to reach high fidelity. As practical use cases in smart healthcare, we report the training of a
detector for abnormal retinal fundus and a classifier for common chest radiography observations
(from visual datasets) [99]. Other clinical learning tasks include prediction of prolonged length of
stay and in-hospital mortality [96], prediction of hospitalizations for cardiac events [15], or gaining
insights about brain diseases [104].

3 FUNDAMENTALS, TAXONOMY AND BASELINES FOR DECENTRALIZED
LEARNING

This Section gives some concise background to make highly accessible the following presentation
of the surveyed decentralized learning solutions, by defining the targeted deployment settings and
the modular building blocks that are emerging in the related literature. These building blocks are
at the cornerstones of our original taxonomy, which we will introduce in this Section and use in
the remainder of the survey to better highlight the features, the pros, and the cons of the surveyed
contributions. We also present the most interesting baseline solutions to enable decentralized
learning.

3.1 Cross-Silo and Cross-Device Federated Settings
Here we provide an informal and qualitative characterization of the two most common settings for
decentralized learning, by highlighting their specific elements with respect to traditional distributed
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settings [22]. As anticipated in the previous sections, decentralized learning techniques are strongly
motivated when data sharing is impeded by law or by privacy concerns, hence they apply to
several real-world contexts. For the sake of simplicity, let us consider two extreme scenarios: (i) the
federation of entities participating in collaborative learning tasks consists of compute nodes from
different organizations or companies (e.g., hospitals, banks) — that typically store their private
data in on-premise silos —; (ii) the federation comprises a massive amount of edge devices (such as
smartphones, IoT devices, or IIoT devices). Such primary distinction leads to the identification of two
very general settings, which we respectively name Cross-silo federated settings and Cross-device
federated settings [53].
Those two federated scenarios are substantially different from more traditional distributed

settings, where raw data are centralized in datacenters to perform learning. In fact, in cloud-
centric training, the participants of the learning task are compute nodes (generally up to 1000)
interconnected through very fast networks, making the computation cost the major bottleneck.
Data can be balanced across compute nodes; moreover, they can be partitioned and re-partitioned
according to the need. Importantly, any participant can access any part of the dataset. Worker
machines are reliable and low rate of failure or drop out (i.e., abandoning the learning task without
notice) are expected.

The Cross-silo federated setting refers to a scenario in which the entities involved in the learning
process are limited in number (up to 100 participants), and typically they are trusted and reliable.
In addition, they are likely to participate in the entire training task. Data can be unbalanced, but
in general not as much as in Cross-device settings. No assumptions about communication or
computation bottlenecks are made a priori. Furthermore, while training data are assumed to be
independently and identically distributed (IID) in typical datacenter settings, such assumption does
not hold for federated settings (neither for Cross-silo nor for Cross-device): the training data on
a given device or on a given machine are likely not to be representative of the full population
distribution.
In the Cross-device federated settings, participants are very numerous instead (up to 1010),

data are massively distributed and unbalanced (e.g., the number of training examples held by
participants can differ by one or two orders of magnitude) [60]. Learners are highly unreliable;
failure and drop out must be addressed, and each client is likely not to take part in the entire
training process (actually they may contribute only once per task). Furthermore, since edge devices
have limited bandwidth, communication efficient solutions are preferable in Cross-device setting;
the federation may comprise computationally constrained devices as well, making more delicate the
computation/communication trade-off. Another peculiarity is that participants may be malicious in
this scenario, e.g. trying to infer sensitive information about other learners or voluntarily hampering
the global learning.

For the sake of clarity, we use this characterization3 to readily approximate the setting to which
the surveyed works in Section 4 refer — we will show that the targeted federated setting relevantly
influences the design choices of a solution. We indeed use such characterization of the setting as a
primary dimension of our taxonomy.

3.2 A Taxonomy for Decentralized Learning Systems
To favour the readability of the remainder of the survey, we propose a taxonomy for decentralized
learning systems that highlights the main alternative options in designing such frameworks.

3We use the terminology found in [53]. However, the existence of a central orchestrator (i.e., an entity orchestrating the
collaborative training) in federated settings, either Cross-silo or Cross-device, is further supposed in [53]. To embrace all
the decentralized learning work from the literature, we relax this last trait in our terminology usage in this paper.
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Fig. 2. Our taxonomy for decentralized learning systems.

3.2.1 Data processing: Data-sequential vs Data-parallel. The common thread when designing decen-
tralized learning algorithm is leveraging data-parallel variants of iterative optimization algorithms
that are inherently sequential, e.g. Stochastic Gradient Descent (SGD) and its optimizations. Typi-
cally, the federation of learners collaborates to minimize a global objective function, that is unknown
to the participants since no single node has direct access to all the data. The global objective can be
thought as a linear combination of the local empirical losses, available locally to the participants
[60].
We further divide data-parallel approaches into systems that leverage synchronous or asyn-

chronous update mode. In fact, as traditional distributed training algorithms, also data-parallel
decentralized learning approaches can exploit asynchronous updates to optimize on speed by
using potentially stale parameters for local training or wait for local computation of the slow-
est participant to synchronously aggregate updates without risking to use outdated parameters.
With synchronous update mode, it is usual to talk about rounds of communication, i.e., all the
triggered participants retrieve the global model state, produce their locally computed updates and
communicate such updates, from which the new generation model will be derived. Communication
efficient algorithms have their principal goal in minimizing the rounds of communication. Relaxing
the synchronicity can instead spread the communications over time, particularly helpful when
handling a large number of learners. However, examples of data-sequential systems exist, i.e.,
systems in which each participant uses as starting model state the result of the computation of
another participant, and thus produces as output the input model state for the next participant.
Anyway, let us note that these solutions are usually limited to the Cross-silo setting.

3.2.2 Network Topology: Star-shaped vs Peer-to-peer. The coordination among learners can be
facilitated by a star-shaped network topology that leverages a central entity to distribute the current
state of the global model at the beginning of each local iteration, and maintain the state updated
during the training task. Participants can directly exchange their locally computed updates as
well, in a peer-to-peer fashion, hence not requiring any infrastructure at the price of increased
coordination complexity. In literature, decentralized learning frameworks that exploit peer-to-peer
networks of participants are often referred as fully decentralized, i.e., decentralized in both data
and coordination.

3.2.3 On-device Model: Full Model vs Splitted Model. Besides the full local replication of the
(current) global model during the training process, it can be possible to have participants that are
only responsible for a fixed subset of model parameters (in this case, typically, the parameters
belonging to 𝑛 shallower layers in a deep neural network, i.e. splitted models). The full replica of
the global model enables on-device inference by design, while in the case of splitted model, without
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retrieving the entire model at the end of the training, distributed inference is required. Note that,
anyway, the primary privacy concerns have been bypassed by having feature extraction locally4.

3.2.4 Exchanged parameters: Model Parameters, Gradients, Activations and Others. We also em-
phasize that the degrees of freedom in designing decentralized learning frameworks also involve
the kind of exchanged information during the distributed learning. Supposing gradient descent
based methods for optimization, the usual practice is to have participants exchanging gradients
or model updates, with the latter option valuable in case of participant-specific local solver. In
star-shaped topology, a common practice is to have participants downloading the current model
parameters and communicating back to the aggregator either the gradients or the locally updated
model parameters typically generated through SGD iteration(s). Hence, with such topology it is
usual to talk about parameters in upload and in download. There are examples of star-shaped
frameworks where the communication in both the directions only involves gradient information
(e.g., [118], [9]) as well, i.e., the server aggregates gradients and the back-propagation is performed
on-device. We underline that the exchanged information may be not limited to gradients and model
parameters, in fact other kinds of parameters may be transmitted for diverse optimization purposes.
For instance, the exchange of moment estimates to implement an ADAM[59]-inspired optimization
algorithm [85], or also of information for gradient correction terms [70], and of control variates
[56] to tackle non-IIDness, or of other local estimations to meet given budget resources [125] (more
details about their motivations and implementations are in Section 4). Or again, in presence of
splitted models (e.g., in Split Learning), besides model parameters and gradients, also activations
(and labels) have to be communicated by design.

3.2.5 MEC-awareness: Yes/No. It is also worth mentioning that, considering the MEC architecture
and therefore the existence of a middle layer of edge servers between the edge devices and the cloud,
two levels of topology organization can be identified. On the one hand, decentralized learning
systems may leverage edge servers as intermediate aggregators for updates produced by the edge
devices in their locality (i.e., matching a star-shaped topology) and then edge servers may directly
exchange intermediate-level updates among them in a peer-to-peer fashion, to collaboratively build
the global model. On the other hand, the cloud may be involved as “master aggregator” collecting
intermediate aggregations from the federation of edge servers (the latter solution is referred as
hierarchical). An in-depth discussion about edge-cloud continuum roles in edge intelligence can be
found in [147].

3.3 Baselines for Decentralized Learning Systems
In this subsection, we propose some baseline frameworks to enable decentralized learning. We
introduce the most significant baselines for star-shaped systems, followed by instances of fully
decentralized (server-less) alternatives, i.e. peer-to-peer.

3.3.1 Star-shaped Baselines. Federated Averaging (FedAvg) is a widely accepted heuristic algorithm
used as baseline for star-shaped Federated Learning (FL), given its simplicity and its empirical
effectiveness [81] also in non-convex setting. Its skeleton is presented in Algorithm 1. The learning
process proceeds in synchronous rounds of communication; the (full) current global model is
broadcasted at the beginning of the round to the (selected) participants, that use their private
dataset to produce an update (e.g., gradients or model weights) for the received model, and upload
such contributions. The aggregator, i.e. a sort of parameter server, collects and aggregates (e.g.,
by averaging) the updates from participants and computes the new-generation global model. The
process typically ends when a certain accuracy for the global model is reached, or when a certain
4It is important to remind that information leakage is still possible. This will be faced in Section 4.2.
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Algorithm 1: FedAvg algorithm
The𝐾 participants are indexed by𝑘 ,D𝑘 is the local dataset at participant𝑘 ,𝑛𝑘 = |D𝑘 | and𝑛 =

∑𝐾
𝑘=1 𝑛𝑘 ,

𝐵 is the local minibatch size, 𝐸 represents the number of local epochs, 𝜂 is the learning rate. Note the
common initialization of model parameters𝑤0.
Server executes:

initialize𝑤0
for each round 𝑡 = 1, 2, 3, ..

𝑚 ←𝑚𝑎𝑥 (𝐶 × 𝐾, 1)
𝑆𝑡 ← (random set of𝑚 clients)
for each client 𝑘 ∈ 𝑆𝑡 in parallel

𝑤𝑘
𝑡+1 ← ClientUpdate(𝑘,𝑤𝑡 )

𝑤𝑡+1 ←
∑𝐾
𝑘=1

𝑛𝑘
𝑛 𝑤

𝑘
𝑡+1

ClientUpdate(𝑘,𝑤)
B ← (split D𝑘 into batches of size 𝐵)
for each local epoch 𝑒 from 1 to 𝐸

for batch 𝑏 ∈ B
𝑤 ← 𝑤 − 𝜂∇ℓ (𝑤 ;𝑏)

return w to server

number of rounds has been executed. SGD is typically chosen as local solver. Three hyperparameters
have to be tuned in FedAvg; 𝐶 controls the fraction of participants to be selected in a certain round
𝑡 (with 𝐶 = 0.0 indicating only one participant involved per round, and 𝐶 = 1.0 meaning the
totality of participants), 𝐸 defines the number of local epochs to be performed in each round, and 𝐵
denotes the minibatch size. It is worth noting that the contributions in the aggregation are weighed
accordingly to the number of local data points held by each participant.

When the full local dataset is treated as a single minibatch (i.e., 𝐵 = ∞), and the local iterations
at each participant are limited to one epoch (i.e., 𝐸 = 1), FedAvg is also known as FedSGD.
An equivalent variant of FedSGD can be formulated by uploading gradients in place of model
parameters.
An accurate convergence analysis, in strongly convex and smooth problems, of FedAvg in

presence of data heterogeneity and partial device participation — peculiar of cross-device settings
— can be found in [71]. The authors theoretically showed that, in such circumstances, model
convergence is slowed down with respect to the ideal case of IIDness and full participation. They
also pointed out that a decaying learning rate is fundamental for the convergence of FedAvg
under non-IIDness: gradually diminishing the learning rate can neutralize biased local updates.
Considering FL-suitable participant sampling and related averaging schemes, the authors of [71]
establish a convergence rate of O( 1

𝑇
), where 𝑇 represents the total number of SGD iterations

performed by every participant.
FedAvg is considered a communication efficient algorithm mainly thanks to two aspects: (i) it

selects a (random) subset of participants per round (i.e., if only a portion of participants is selected,
the per-round communication cost is reduced with respect to full participation); (ii) it allows for
additional iterations of local solver (i.e., SGD) to reduce the total number of synchronizations
needed for model convergence – it has been empirically showed that FedAvg significantly reduces
the total communication rounds (under the same C-fraction of per-round selected clients) with
respect to FedSGD, while reaching the same (or higher) model accuracy [81]. A plethora of works
in literature propose improvements for FedAvg (see Section 4 for further details).
A baseline alternative to FedAvg, Federated Distillation (FD), is presented in [49], and it is

explicitly designed to be extremely communication efficient; it is inspired by an online version
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of knowledge distillation, namely co-distillation [44], [4]. In a nutshell, each device (the student)
stores its model outputs, i.e. a set of logit values normalized via softmax function, from which it
derives per-label mean logit vectors, and periodically uploads such local-average logit vectors to
the aggregator. The server produces the per-label global-average logit vector by averaging the
contributions of all the participants in that round, and broadcasts such aggregation to the federation;
each device treats the received per-label global-average logit vector as the teacher’s output, and
locally calculates the distillation regularizer. It is straightforward to note that exchanging logit-
vector (local or global averaged, whether they are upload or download parameters), in place of
model parameters or gradients, reduces the per-round communication cost with respect to FedAvg:
the dimension of logit-vectors depends on the number of labels, and not on the number of model
parameters.
A differently designed method to enable collaborative training of neural networks without

sharing raw private data is the so-called Split Learning (SL), also referred as SplitNN [36] to
emphasize the suitability for DL architectures. This technique employs splitted models instead of
full model replication. In fact, the training participants hold replications of the shallower layers up
to a certain layer (i.e., the cut layer), and a central entity holds the deeper layers. Inter-layer values,
i.e., activations and gradients exchange occurs between a certain participant and the central entity,
instead of centralizing the raw data.

The training process as formulated in [36] is data-sequential, albeit distributed. Each participant
retrieves the current state of the shallower layers of the neural network either in a peer-to-peer
mode, downloading it from the last training participant, or in a centralized mode, downloading
it from the central entity itself, and runs the local gradient descent based local solver (e.g., SGD),
using its private dataset5. The participant computes the forward propagation up to the cut layer,
and the outputs of this layer, together with label associated to the data examples, are communicated
to the central entity that concludes the forward pass on the deeper layers. The back propagation of
gradients takes place in a similar fashion, flowing from the deepest layer to the cut layer, where
they are sent from the central entity to the participant that has initially triggered the forward
propagation (only the gradients that refers to the cut layer). Then, the process repeats with a
different participant, collectively learning a joint model without sharing private raw data. In [111]
the position of the cut layer is empirically discussed.

Authors of [36] also proposed a variant of the SplitNN algorithm, namely U-shaped Split Learning,
in which the labels related to the locally available training examples are not centralized but remains
private at the participant side.

A data-parallel variant of SplitNN is proposed in [119], namely SplitFed learning (SFL), to combine
the advantages of FL and SL, that are respectively the parallel processing among distributed learners
and the model partitioning among participants and central entity.
Although splitNN has demonstrated to reduce computation burden and bandwidth utilization

with respect to baseline FedAvg [111] in presence of “big” models and high number of clients,
star-shaped FL and fully decentralized FL allow on-device inference of the model by design, while
this is not true for splitNN that requires a distributed inference unless the complete trained model
is provided to the participants.

3.3.2 Peer-to-peer baselines. In star-shaped FL, the coordination server orchestrates the commu-
nication rounds; it iteratively broadcasts the current model state to the participants and gathers
the locally computed updates to produce the next-generation model by aggregation. Although
leveraging a client-server architecture permits to ignore topology-related issues, FL presents two
5Regardless of the strategy to retrieve the current state of the participant-side model, either peer-to-peer or centralized, in
SplitNN a server exists by design; this is why we consider it as star-shaped.
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downsides: (i) the central entity can be seen as a single point of failure; (ii) the central entity may
represent a bottleneck considering a significant number of training participants (as demonstrated
in [72] though not explicitly targeting federated settings). Furthermore, the learners should trust
such central aggregator, and, even though techniques such as multi-party computation can ensure
inscrutability of updates (see Section 4.2), the participants may prefer to coordinate each others
directly (as could be the case of health institutions).

In fully decentralized learning, the topology of star-shaped FL becomes a peer-to-peer topology,
represented as a connected graph (generally assumed to be sparse). Such graph can be a directed
graph or an undirected graph, i.e. unidirectional or bidirectional channels of communication among
the nodes. The topology can be assumed to be fixed or dynamic, i.e. in which interconnections
between nodes may change over time.
In each round, participants perform local computation and then communicate with (a subset

of) the other nodes in the graph — note that not leveraging the server-client architecture (as
well as relaxing the synchronous update mode) redefines the semantic of rounds. Straightforward
optimization algorithms, similarly to FedAvg, employ fully decentralized variants of SGD (e.g.,
peers directly exchanging and merging gradients or model updates). It is also worth highlighting
that, while in star-shaped FL the FedAvg algorithm has been widely accepted as baseline, in peer-
to-peer (server-less) FL there is no algorithm that has distinctly emerged among others; solutions
in literature, in fact, make different assumptions on the connectivity of the graph, in particular
considering each node connected to all the other nodes in the network or considering only a set
of nodes (i.e., the neighbours) reachable by each one, considering a fixed topology or a dynamic
topology, assuming directed (e.g., [42]) or undirected graphs, and employing different strategies for
model fusions.

In the continuation of this subsection, we present examples of baseline algorithms that consider
fixed-topology and undirected graphs — most common assumptions. The first work, BrainTorrent
[104], targets cross-silo federated settings, while the subsequently presented ones also embrace the
cross-device setting [43] [50] [108].

BrainTorrent considers the graph as fully connected, from this consideration comes our labeling
as cross-silo framework — it explicitly targets the collaboration of medical institutions, where it
is reasonable to further suppose full connectivity besides fixed topology and undirected network
graph. In a nutshell, a random participant 𝑘 in the network starts the learning process by pinging
all the others node requesting for model updates; the ones that have a fresher version of the model
respond with their model parameters; the learner that has initiated the process, gathers the updates
from the subset of participants that have responded, referred as 𝑁

𝑘
, and aggregates them with its

own local model by using this strategy:𝜓𝑘 =
𝑛𝑘
𝑛
𝑤𝑘 +∑𝑖∈𝑁

𝑘

𝑛𝑖
𝑛
𝑤 𝑖 . Next, the participant 𝑘 fine tunes

the aggregated model𝜓𝑘 using its own private dataset, it updates the version of its model and it is
ready to respond to ping request from other nodes by providing its new generation fine-tuned𝑤𝑘 .
Then the process repeats.

Gossip-based protocol for distributed learning has been explored in the datacenter setting as
alternative to the parameter-server approach (e.g., [10], [39]). Inspired from them, Gossip Learning
(GL) has been proposed in [43] for Cross-device federated settings. In the baseline GL algorithm,
starting from a common initialization, each node sends its local model to a randomly selected peer,
which firstly merges (e.g., by averaging and weighing the average according to an age parameter
associated with the freshness of the models) the received model with its current parameters, then
updates the resulting model by exploiting its private dataset, and the process repeats. In a nutshell,
there could be different models scattered across the network of peers, with each one of these models
taking random walks (in the network) and being updated when visiting a new node. Typically, the
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Algorithm 2: Consensus FedAvg algorithm
𝑁
𝑘
represents the set of neighbors of the participant 𝑘 , hence 𝑘 excluded, D𝑘 is the local dataset at

participant 𝑘 , 𝐵 is the local minibatch size, 𝜂 is the learning rate.
Participant k executes:

initialize𝑤𝑘0
for each round 𝑡 = 1, 2, 3, ..

receive{𝑤𝑖𝑡 }𝑖∈𝑁𝑘

𝜓𝑘𝑡 ← 𝑤𝑘𝑡
for all devices 𝑖 ∈ 𝑁

𝑘

𝜓𝑘𝑡 ← 𝜓𝑘𝑡 + 𝜁𝑡𝛼𝑡,𝑖 (𝑤𝑖𝑡 −𝑤𝑘𝑡 )
𝑤𝑘
𝑡+1 =ModelUpdate(𝜓𝑘𝑡 )

send(𝑤𝑘
𝑡+1) to neighbors

ModelUpdate(𝜓𝑘𝑡 )
B ← (split D𝑘 into batches of size 𝐵)
for batch 𝑏 ∈ B

𝜓𝑘𝑡 ← 𝜓𝑘𝑡 − 𝜂∇ℓ (𝜓𝑘𝑡 ;𝑏)
𝑤𝑘𝑡 ← 𝜓𝑘𝑡
return(𝑤𝑘𝑡 )

local update is implemented through minibatch SGD algorithm. It is worth noting that due to the
push only nature of the considered protocol, the merge-update-push cycles are not synchronized
among participants: a node may merge its fresher model with an outdated one. The GL strategy, in
[43], is not evaluated on DL architectures. Furthermore, this seminal work does not thoroughly
discuss some aspects related to different kinds of heterogeneity that arise in real-world cross-
device setting; in particular, the data held by peers, the neighbors reachable by each peer in the
network, and the processing and communication speeds of devices are unrealistically supposed to
be homogeneous. Such aspects are considered and discussed in [35], where it is claimed that gossip
learning shows poor performance on restricted communication topologies and it is highlighted
that GL fails to converge when communication speeds of the nodes and heterogeneity of data are
correlated. Authors of [35] propose some strategies to improve GL in such realistic scenarios.

In BACombo [50], authors consider a fixed topology of neighbors for each learner, not limiting the
spreading of the updates to one peer per round, and propose a neural-network specific solution. The
local model held by each peer is splitted into a set of 𝑆 not-overlapped segments, and each participant
does not pull all the segments (i.e., the entire model) from the same peer but collects 𝑆 segment from
𝑆 different links in the network of neighbours. In this way, each peer reconstructs a model update
by building a mixed model composed by such 𝑆 segments that have been pulled from different
peers. They extend the solution by allowing each peer to pull 𝑆 × 𝑅 segments in each round of
communication, with 𝑅 being an hyper-parameter, to be carefully tuned, that represents the number
of mixed models that can be reconstructed, thus impacting the communication efficiency while
accelerating the propagation of fresh model. The mixing strategy is similar to FedAvg, weighing
contributions (i.e., segments) according to the cardinality of the dataset held by participants.

In [108], authors propose a consensus-based FedAvg-inspired algorithm (referred as CFA), suppos-
ing sparse connectivity. The algorithm is formalized in Algorithm 2. In each round, the participant 𝑘
receives models from its neighbors and produces an aggregated model,𝜓𝑘 . Next, local iterations of
mini-batch SGD are performed to produce the new-generation model, that will be sent to the neigh-
bors, before the process repeats. The peculiarity of the algorithm stands in how the aggregatedmodel
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is obtained, at round 𝑡 , from the neighbor contributions, that is:𝜓𝑘𝑡 = 𝑤𝑘𝑡 + 𝜁𝑡
∑
𝑖∈𝑁

𝑘
𝛼𝑘,𝑖 (𝑤 𝑖𝑡 −𝑤𝑘𝑡 ),

where 𝜁𝑡 is the “consensus step size” and the mixing weights 𝛼𝑘,𝑖 are chosen, similarly to FedAvg,
as 𝛼𝑘,𝑖 = 𝑛𝑖∑

𝑖∈𝑁
𝑘
𝑛𝑖

with 𝑛𝑖 being the cardinality of data samples at participant 𝑖 .

We conclude this overview about instances of baseline algorithms for server-less federated
learning by mentioning the fact that blockchain-based implementations of peer-to-peer learning
frameworks have been — and are — explored in literature (e.g., [58]), though not being explored in
this survey.

4 DECENTRALIZED LEARNING SOLUTIONS: A SYSTEM-LEVEL ANALYSIS
Decentralized learning decouples by design the ability to learn a predictive ML/DL model from
the direct access to raw data and meets the rising urge of ensuring privacy guarantees to the data
owners while still being able to distill useful information for the community. However, as already
pointed out in this survey, diverse challenges emerge. Chief among them, privacy is not completely
secured by means of just disclosing ephemeral updates (e.g., gradients, model parameters) or
meta-level information, as well as the communication efficiency is of paramount importance in
cross-device federated settings. Furthermore, having the raw data (massively) distributed and/or
unbalanced among participants naturally implies dealing with non-IIDness. An additional factor
to be addressed is the heterogeneity of devices’ resources in cross-device settings. Moreover, the
design of decentralized learning approaches opens up to new possibilities for attackers, since
learners actively participate in the training process, e.g. forcing information leakage from other
participants or trying to influence the behaviour of the system. These are the most investigated
issues in literature so far, but other less crucial aspects and challenges are rising and taking the
scene while effective solutions for the urgent aspects permit to already apply decentralized learning
in real scenarios. In this section, we discuss the systems in the literature that aim at solving the
above mentioned issues, i.e. communication efficiency, privacy, non-IIDness, device heterogeneity,
and poisoning defense, classifying them by our taxonomy (see Table 1).

Let us note that, in the following sub-sections, we will use the taxonomy definitions and terms
introduced previously in this survey; where not possible or convenient, we explain in-line the
specific meaning of the employed definitions/terms/symbols.

4.1 Improving Communication Efficiency
The communication efficiency in decentralized learning can be addressed from different perspec-
tives. In the first place, decentralized optimization algorithms are usually designed to allow for
multiple local training iteration between communication rounds to reduce the total communication
cost of the training process (e.g.,[81], [54]); in synchronous star-shaped federated learning the
number of participants selected per round is typically limited (e.g., [81]), as well as in peer-to-peer
topology the number of neighbours to scatter the updates to is bounded (e.g. bounded to 1 such as
in GL [43] or in [117]). Stream compression (e.g., by encoding, quantization and/or sparsification
of updates) is typically employed to reduce the per-round communication cost [61] [16] [103]
[106] [118] [85] [67] [51] [117]. Furthermore, specific strategies can be crafted accordingly to the
peculiarities of the model to train (e.g., by introducing asynchrony between the updating of the
neural-network parameters belonging to shallower/deeper layers [20]). Stream compression has
been mostly explored in star-shaped federated learning, but similar solutions may be easily adapted
in peer-to-peer topology. An orthogonal approach is to improve the communication efficiency by
reducing the total communication rounds needed for the model convergence (e.g., implementing
distributed variants of SGD optimizers [85] [77] [108]). Or again, communication-efficiency can be
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Table 1. This tabular classification is used to guide the readers; the referred works are characterized by the
federated setting they refer to, by our taxonomy from Section 3.2, and by the most relevant issues addressed,
i.e., communication efficiency (CE), privacy (P), non-IIDness (non-IID), device heterogeneity (DH), poisoning
defense (PD). We flatten the update mode ramification of the taxonomy, related to data-parallel approaches,
for better visualization.
Notation: 𝑤 (full) model parameters, 𝑤𝑑 on-device layer-partitioned model parameters (e.g., in SL), 𝑔 gradients, 𝑙𝑣 logit vectors, 𝐴 acti-
vations (i.e., output of NN’s cut layer), 𝑌 labels associated with data points,𝑚 1𝑠𝑡 moments, 𝑣 2𝑛𝑑 Adam moments, 𝑐 control variates, 𝑑
GD momentum, 𝑡 time stamps, res_info resource information, 𝐿 loss function value, 𝜌 the Lipschitz parameter of the loss function, 𝛽 the
smoothness parameter of the loss function, 𝜏∗ the optimal number of local updates between synchronizations.
* indicates that the work is not thoroughly discussed throughout the section.

Our Taxonomy Characterization

On-dev. Data Update Topology Exch. Info MEC

Work Year Setting Model S P Async Sync Star P2P Up Down aware

Ba
se
lin

e

FedAvg [81] 2016 both Full ✓ ✓ ✓ 𝑤 𝑤 ×
FD [49] 2018 device Full ✓ ✓ ✓ 𝑙𝑣 𝑙𝑣 ×
CFA [108] 2019 device Full ✓ ✓ ✓ 𝑤 ×
GL [43] 2019 device Full ✓ ✓ ✓ 𝑤 ×
BrainTorrent [104] 2019 silo Full ✓ - - ✓ 𝑤 ×
SplitNN [36] 2018 silo Split ✓ - - ✓ 𝐴, 𝑌 , 𝑤𝑑 𝑔, 𝑤𝑑 ×
SFL [119] 2020 device Split ✓ ✓ ✓ 𝐴, 𝑌 , 𝑤𝑑 𝑔, 𝑤𝑑 ×

Co
m
m
.E

ffi
ci
en
cy

Kamp et al. [54] 2018 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
Konečnỳ et al. [61] 2016 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
Caldas et al. [16] 2018 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
STC [106] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
eSGD [118] 2018 device Full ✓ ✓ ✓ 𝑔 𝑔 ✓
HierFAVG [75] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ✓
Chen et al.∗ [20] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
CE-FedAvg [85] 2019 device Full ✓ ✓ ✓ 𝑤,𝑚, 𝑣 𝑤,𝑚, 𝑣 ×
CFA-GE [85] 2019 device Full ✓ ✓ ✓ 𝑤, 𝑔 ×
SAPS-PSGD [117] 2020 silo Full ✓ ✓ ✓ 𝑤 ×
Momentum FL [77] 2020 device Full ✓ ✓ ✓ 𝑤, 𝑑 𝑤, 𝑑 ×

Pr
iv
ac
y

Geyer et al. [34] 2017 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
DP-FedAvg [82] 2017 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
Triastcyn et al. [120] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
SECAGG [13] 2017 both Full ✓ ✓ ✓ 𝑤 𝑤 ×
Turbo-Agg [112] 2020 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
Hao et al. [37] 2019 device Full ✓ ✓ ✓ 𝑔 𝑔 ×
SecGD∗ [40] 2019 silo Full ✓ ✓ ✓ 𝑔 𝑤 ×
Truex et al. [122] 2019 both Full ✓ ✓ ✓ 𝑤 𝑤 ×
SecProbe [142] 2019 silo Full ✓ ✓ ✓ 𝑤 𝑤 ×
MCL∗ [32] 2019 silo Full ✓ ✓ ✓ 𝑤 𝑤 ×
NoPeekNN [123] 2019 silo Split ✓ - - ✓ 𝐴, 𝑌 , 𝑤𝑑 𝑔, 𝑤𝑑 ×
Yu et al. [132] 2019 silo Split ✓ - - ✓ 𝐴, 𝑌 , 𝑤𝑑 𝑔, 𝑤𝑑 ×

P
&
CE

DiffSketch∗ [67] 2019 device Full ✓ ✓ ✓ 𝑔 𝑔 ×
Jin et al. [51] 2020 device Full ✓ ✓ ✓ 𝑔 𝑔 ×
cpSGD∗ [2] 2018 device Full ✓ ✓ ✓ 𝑔 𝑤 ×
Bonawitz et al. [14] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ×

N
on

-II
D

Y. Zhao et al. [145] 2018 silo Full ✓ ✓ ✓ 𝑤 𝑤 ×
FedAug [49] 2018 silo Full ✓ ✓ ✓ 𝑤 𝑤 ×
FedMeta, UGA [131] 2019 device Full ✓ ✓ ✓ 𝑔 𝑤 ×
FedAvgM∗ [47] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
FedProx [69] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
SCAFFOLD [56] 2019 device Full ✓ ✓ ✓ 𝑤, 𝑐 𝑤, 𝑐 ×
FedDANE [70] 2020 device Full ✓ ✓ ✓ 𝑤, 𝑔 𝑤, 𝑔 ×
FedOpt [101] 2020 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
FAVOR∗ [124] 2020 device Full ✓ ✓ ✓ 𝑤 𝑤 ×

D
H

FedAsync [127] 2019 device Full ✓ ✓ ✓ 𝑤, 𝑡 𝑤 ×
TiFL [17] 2020 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
FedCS [91] 2019 device Full ✓ ✓ ✓ 𝑤, res_info 𝑤 ✓
LoAdaBoost∗ [48] 2018 silo Full ✓ ✓ ✓ 𝑤, 𝐿 𝑤, 𝐿 ×
Wang et al. [125] 2019 device Full ✓ ✓ ✓ 𝑤, 𝑔, 𝜌 , 𝛽 , 𝑤, 𝜏∗ ×

𝐿, res_info
BACombo [50] 2020 device Full ✓ ✓ ✓ 𝑤 ×
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Table 1. Continuation

Our Taxonomy Characterization

On-dev. Data Update Topology Exch. Info MEC

Work Year Setting Model S P Async Sync Star P2P Up Down aware

PD

SLSGD [128] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
FoolsGold [33] 2018 device Full ✓ ✓ ✓ 𝑔 𝑤 ×
L. Zhao et al. [141] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ×
Li et al. [66] 2019 device Full ✓ ✓ ✓ 𝑤 𝑤 ×

architecturally favoured by leveraging MEC [75]. Obviously, combinations of the previous strategies
are common.

FedAvg can be seen as a periodic averaging protocol that involves in each round of communication
only a random subset of the participants. However, FedAvg (and periodic averaging protocol in
general) maintains the same frequency of communication independently from the utility of the
specific synchronization, e.g., when all models are approximately equal or they have already
converged to an optimum then synchronization may be omitted. Leveraging this observation,
authors of [54] propose a dynamic averaging protocol to invest the communication efficiently by
avoiding to synchronize models when the impact of such aggregation on the resulting model is
negligible. To this end, authors leverage a simple measure, ∥𝑤 𝑖𝑡 − 𝑟 ∥2, for model divergence to
quantify the effect of synchronizations; specifically, they measure the divergence of the locally
trained model, 𝑤 𝑖𝑡 , for the round 𝑡 at participant 𝑖 , with respect to a reference model 𝑟 that is
common among all participants, e.g. the last received global model, and compare such divergence
with an a-priori chosen threshold to decide whether perform a synchronization.

In [61], two strategies have been proposed to reduce the uplink cost in star-shaped FL (explicitly
considering FedAvg as baseline) by means of compression, and they are structured updates and
sketched updates. Such strategies can be combined to further compress the data to be sent from
clients to server. The peculiarity of structured updates is that the updates are restricted to have a
pre-defined structure, and they are directly trained to fit such structure. Two types of structures
are considered by authors: (i) updates are enforced to be a low-rank matrix of rank 𝑘 , with 𝑘 being
a fixed parameter (low-rank updates); (ii) updates are restricted to be a sparse matrix following a
pre-defined random sparsity pattern (i.e., a random mask), thus only the non-zero values along
with the seed to generate the pattern have to be communicated. Regarding sketched updates, the
full (or structured) update resulting from the local training is approximated, i.e. sketched, in a lossy
compressed form. To this end, two (compatible and jointly usable) tools are proposed: subsampling,
i.e only a random subset of the (scaled) values of the updates are communicated, and probabilistic
quantization. As the reader can note in the continuation, several successive works addressing
communication efficiency in decentralized training combine subsampling or sparsification and
quantization. Furthermore, supported by empirical evidence, authors highlight the usefulness of
applying structured random rotations before quantizing to reduce the quantization error.

Similarly to [61], authors of [16] use a combination of basis transform, subsampling and proba-
bilistic quantization to reduce the server-to-client communication cost6 of FedAvg. Furthermore,
inspired by the well-known dropout technique [114], clients train their updates considering a
smaller sub-model with respect to the global model. This further reduces the server-to-client traffic,
reduces the local computational cost and, obviously, reduces the client-to-server traffic. Differently
from the traditional dropout, a fixed number of activations are zeroed out at each fully-connected

6Note that in the work [61] the objective is to reduce the client-to-server communication cost.
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layer, thus all the possible sub-models have the same reduced architecture, while a fixed percentage
of filters are zeroed out for convolutional layers. Authors call this strategy Federated Dropout.
The client-to-server communication cost can be ultimately reduced by combining the solution
of [61] and Federated Dropout. To summarize, the process works as follow: at the beginning of
each round, the selected clients receive a compressed sub-model from the server; they decompress
it, locally compute an update, and compress such update to send it back to the server; the server
decompresses the received sub-models updates and maps them to the global (full) model either by
exchanging a random seed or via state on server-side. In the end, the hyperparameters to be tuned
are (i) the type of basis transform, (ii) the fraction of weights that are not zeroed out during the
subsampling, (iii) the number of quantization bits, (iv) the federated dropout rate, i.e. the percentage
of neurons remaining active; (i), (ii), (iii) can be different for the uplink and the downlink.
Building on their previous Sparse Binary Compression (SBC) [107] technique that targets the

traditional distributed setting, in [106] authors specifically design a compression framework for
cross-device federated settings. The proposed Sparse Ternary Compression (STC) compresses both
the upstream and the downstream communication with respect to the baseline FedAvg while
improving the robustness to non-IID data as well as to partial client participation. In addition
to experimentally confirming the already known weakness of vanilla FedAvg in presence of het-
erogeneous data, authors also show poor model accuracy with aggressive quantization schemes,
such as SignSGD7 [9], in non-IID scenarios. Conversely, 𝑡𝑜𝑝𝑝% sparsification, i.e. dropping all but
the 𝑝 fraction of updates with the highest magnitude, suffers least from heterogeneous data. This
observation leads the design of the proposed compression scheme for the upstream communi-
cation in FL. As happens in SBC, STC exploits (i) 𝑡𝑜𝑝𝑝% sparsification of weight deltas (i.e., the
difference between the global model and the local model), (ii) local residual accumulation8, (iii)
binary quantization of the 𝑡𝑜𝑝𝑝% elements9 and (iv) encoding (to losslessly compress the distance
between the non-zero elements of the sparse weight-update) to reduce the amount of data to be
sent from participants to the server. It is worth to highlight once more that this strategy alone
does not affect the downstream communication. In this regard, authors observe that, although
clients-to-server updates are sparse, the server-to-clients update essentially becomes dense as
the participation rate, i.e the fraction of participants involved in each round, exceeds the inverse
sparsity, i.e. the inverse of the hyperparameter that rules the sparsification. In fact, in the worst case,
the number of non-zero elements in the aggregate (the sum) of clients-to-server updates grows
linearly with the number of participating clients. The dense nature of server-to-clients updates
prevent an effective compression. Therefore, they propose to apply their STC algorithm also to the
aggregated updates at server side, hence the server maintains a residual as well. However, the partial
client participation in each round of FL prevents a straightforward application of STC at server-side:
STC sparsifies and compresses weight deltas, and, considering that not all the participants are
involved in every round, some participants could not recover the updated weights from the received
(compressed) delta, since they may not have participated to the previous round(s). The solution

7In SignSGD [9], gradient updates are locally quantized to their binary sign from clients. The parameter server gathers such
binary updates and broadcasts the belief about the sign of the true gradient. The server uses majority vote on the gathered
gradient updates (See Algorithm 3 in [9]).
8Note that, differently from [118] (presented later on), in STC (and SBC) the residual accounts for ignored weights and not
for gradients.
9The result of the sparse weight-update binarization is a ternary tensor containing values −𝜇, 0, 𝜇 with 𝜇 being the mean
of the 𝑡𝑜𝑝𝑝% weight-updates in absolute value. STC sets all the positive non-zeroed elements to 𝜇 and all the negative
non-zeroed elements to −𝜇. Note that in SBC the resulting sparse tensor is binary instead, and the algorithm is slightly
different; they independently compute the mean of all non-zeroed positive and all non-zeroed negative weight-updates; if
the positive mean is bigger than the absolute negative mean, they set all negative values to zero and all positive values to
the positive mean and vice versa.

, Vol. 1, No. 1, Article . Publication date: December 2018.



785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Decentralized Learning in Federated Deployment Environments: a System-level Survey 17

adopted is to cache the last 𝜏 updates at server-side, and to require a prior synchronization step
for those outdated participants before initiating the local training. Thanks to this shrewd protocol
addition, the downstream communication can be effectively reduced regardless the partial client
participation.
In Edge Stochastic Gradient Descent (eSGD) [118], besides tacking advantage of edge servers

to scale the collaborative training process, authors propose an algorithm to reduce the uplink
communication cost when exchanging gradients in a star-shaped synchronous learning framework.
The solution builds on the observation that gradients, produced by iterations of mini-batch SGD
optimization, are very sparse [115]; in eSGD, participants upload only a fraction (i.e., a fixed percent-
age) of the gradient coordinates, only the ones that are considered important, while accumulating a
residual to account for ignored coordinates10 — merely dropping these portions of gradients, even
if they are small values, can hamper the model convergence [3].
To reduce the network traffic headed to the cloud, a MEC-aware extension of FL is proposed

in [75], namely Hierarchical Federated Averaging (HierFAVG). Authors exploit the hierarchical
architecture of such brand-new paradigm to have middle-level aggregator entities; each 𝜏1 local
updates, edge servers gather the updates of the participants in their proximity to produce the
aggregated models of their locality; each 𝜏2 edge-level aggregations, the cloud updates the global
model (hence each 𝜏1𝜏2 local iterations). It is worth noting that if 𝜏2 is equal to 1, the HierFAVG
corresponds to the traditional FedAvg, while, intuitively, with 𝜏2 greater than 1, HierFAVG reduces
the communication cost with respect to FedAvg.
From another perspective, the communication cost of decentralized training can be reduced if

less rounds are needed to reach a certain target accuracy. To this end, authors of [85] empirically
demonstrate the suitability of an ADAM[59]-inspired variant of FedAvg. As well known, the ADAM
optimizer leverages per-parameter learning rates, 1st moment and 2nd raw moment estimates to
converge faster in traditional minibatch SGD. In the proposed CE-FedAvg, participants locally
compute their update by exploiting ADAM, and they send back to the server the 1st and the 2nd
moment estimates as well as the locally trained model (specifically, their deltas). Thus, beyond the
global model parameters, the server also aggregates the 1st and the 2nd moment estimates, that
are broadcasted at the beginning of every round to the learners. Since moment estimates have the
same size of model parameters, it is straightforward to note that the communication cost per round
is tripled with respect to FedAvg in absence of compression. However, authors highlight that this
is compensated by the faster convergence of CE-FedAvg. Furthermore, they employ compression
techniques to reduce the amount of data to be sent; sparsification, quantization and encoding are
used. Authors also emphasize an additional advantage of CE-FedAvg over FedAvg: in absence of
a central test/validation set of data, it is difficult to tune the learning rate for FedAvg, while the
default ADAM’s hyperparameters seem to be suitable for general use.
Similarly, the authors of [77] implement a federated version of momentum gradient descent,

namely Momentum FL, where momentum terms and model updates are exchanged between
participants and server, round by round, doubling the communication cost of each round with
respect to FedAvg, while taking advantage of faster convergence rate.
The same purpose, i.e. reducing the total communication rounds to reach model convergence,

motivates an improvement of the CFA algorithm (already presented in 3.3.2) in peer-to-peer
topology of learners. Authors propose to introduce a “negotiation” phase where, before using the
aggregated model𝜓𝑘𝑡 to run local training, the participant 𝑘 feeds back𝜓𝑘𝑡 to the same neighbors.
10Gradient sparsification and local gradient accumulation is a well-known technique in the traditional distributed setting to
reduce the communication cost by speeding up the training process (i.e. less communication rounds) without significantly
degrading the resulting model accuracy [115][3][74]. Error accumulation, in this case weight accumulation, permits to not
waste gradient information, although they may suffer from staleness.
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Neighbors compute gradients with respect to𝜓𝑘𝑡 , and send them back to the participant that has
forwarded the request. Next, gradients are aggregated, leveraging a tunable mixing parameter, to
produce𝜓𝑘𝑡 that is then used as starting point for the local learning iteration. This strategy should
make the learning faster11. However, this algorithm requires four communication rounds, and
moreover the negotiation is synchronous. Therefore, the algorithm is transformed into a two-stage
algorithm, referred as Consensus FedAvg Gradient Exchange (CFA-GE) [108]: the negotiation
phase is performed without the need of sending𝜓𝑘𝑡 and receiving back the neighbors’ gradients,
permitting to save communications and avoid the synchronization intermediate step (i.e., waiting
for the neighbors to send back the gradients with respect to 𝜓𝑘𝑡 ). The insight is to exploit past
(and outdated) models received from a certain neighbor during the previous rounds to produce,
in advance, a gradient prediction for that neighbor, and this is done for all the neighbors. In this
way, it is possible to scatter such gradients prediction together with the next-generation model
parameters; each participant hence receives such information, produces 𝜓𝑘𝑡 by aggregating the
neighbors’ model as we have seen for the baseline CFA algorithm, and uses the received gradient
predictions to adjust the model to obtain𝜓𝑘𝑡 , and finally applies the local training to𝜓𝑘𝑡 that will
generate the updated model.

In [117], the authors propose an efficient peer-to-peer framework for cross-silo communication,
namely SAPS-PSGD, where aggressive model sparsification is coupled with single-peer commu-
nication scheme. They leverage a coordinator entity – not a parameter server – that, in extreme
synthesis, broadcasts to the participants a gossip matrix and other some necessary information (i.e.,
the current global step, a random seed to generate the mask for applying the desired sparsification)
and synchronizes the rounds of communication among such node pairs. The gossip matrix is built
by taking into account the peers’ bandwidth to favour faster links; it dynamically determines the
couples of peers that will exchange highly sparse model updates during that round.

4.2 Protecting Privacy
It may be believed that sharing gradients, model updates or meta-level information (such as
outputs of layers in neural-networks) in place of raw data ensures privacy protection. However, it
has been demonstrated that gradients exchanged during the distributed training process do leak
information about the training data [148] [140] [40] [97] [89] [45] as well as model updates [84]
[89] — even though it may be preferable to exchange model weights instead of gradients under a
privacy-preserving perspective [98] — and activations [25] [132].

0The literature about protecting privacy in decentralized learning comprises diverse approaches;
differentially-private mechanisms [34] [82] can be employed during the distributed training process
to mask updates at the cost of reduced model accuracy [7], and relaxations of traditional Differential
Privacy (DP) can be leveraged to inject less noise [120], limiting the incurred performance degrada-
tion. Data-augmentation [32] and obfuscation [46] techniques can be used in visual application to
prevent reconstruction of images in the training set. Multi-party secure aggregation [13] [112] and
similar techniques [40] can hide the individual contributions to the aggregator, finding its main
utility in star-shaped federated learning, but producing non-negligible overheads. Additively homo-
morphic encryption also allows the aggregator to sum updates, thus ensuring the inscrutability of
single contributions [97] while not degrading model accuracy but increasing communication cost.
Combinations of DP-mechanisms with secure aggregation and additively homomorphic encryption
are also explored [122] [37] to balance the weaknesses of such techniques. Minimizing distance
correlation between raw data and activations (at cut layer) [123] and step-wise activation functions
[132] are used to prevent the invertibility from intermediary representations in the context of
11The negotiation phase, from an high-level perspective, can be thought to be similar to the approach of [70].
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privacy-preserving Split Learning.

The first works enforcing participant-level (𝜖, 𝛿)-DP [29] in federated settings are most notably
[34] and [82]. The aim, common to both the works, is to ensure that a model trained with FedAvg
does not reveal whether a certain participant has been involved during the decentralized training
process, balancing the trade-off between privacy loss and model performance. It is worth high-
lighting that the proposed solutions protect the whole client’s dataset differently from [1] where a
single data point’s contribution in the trained model is protected.
Authors of [34] use two randomized mechanisms to guarantee client-level DP: (i) random

subsampling of participants for a certain round of communication; (ii) Gaussian mechanism. In
FedAvg, the central aggregator averages the participants’ updates, that here are considered to
be weight deltas (i.e., the difference between the received parameter weights and the locally
computed parameter weights). The key idea of [34] is to perturb and approximate such averaging
(i.e. perturbing the sum of updates) by employing a Gaussian mechanism. As usual, the Gaussian-
distributed noise has to be calibrated according to a certain sensitivity; such sensitivity is calculated
as the median norm of all the gathered updates12 and the updates are scaled according to such
sensitivity, i.e. clipped updates. To keep track of the privacy loss within subsequent communication
rounds, authors use the moments account of [1] instead of the privacy amplification lemma and
the standard composition theorem [29] to obtain tighter bounds. In particular, they stop the
collaborative training once the (cumulative) 𝛿 , that represents the likelihood that a participant’s
contribution is disclosed, becomes greater than a threshold.

The approach of [82] is slightly different from [34]. Authors, in fact, randomly sample participants
by selecting each independently with probability 𝑞, hence producing variable-sized samples of
participants and influencing the sensitivity of (weighted) average queries — in [34] a fixed number
of clients is randomly selected. Two different bounded-sensitivity estimators are proposed to
account for such participant-sampling process. Furthermore, two clipping strategies are evaluated
for multi-layers models: (i) flat clipping, i.e. using an overall clipping parameter, or (ii) per-layer
clipping, i.e. treating the parameters of each layer as separate vector and using per-layer clipping
parameters, motivated by the observation that such vectors may have vastly different 𝐿2 norms —
anyway the clipping parameter is fixed throughout the training process, while in [34] is dynamically
calculated as the median norm of all the unclipped contributions.

In [120], authors allocate a tighter privacy budget for guaranteeing client-level DP and instance-
level DP, i.e. less noise to reach the same privacy guarantee, also improving the accuracy of the
trained model. They employ a relaxation of traditional DP, in this case Bayesian DP (BDP) [121], by
making two assumptions (i) stationary data distribution and (ii) datasets with unchangeable samples.
Authors also use a Bayesian accounting method instead of state-of-the-art moments accountant
[1] thanks to the assumption that data come from a particular distribution and not all the data
are equally likely; this observation can lead to sharper privacy loss bounds with BDP in federated
setting. Besides the proposed use of BDP, to limit the noise added to guarantee both instance-
level and client-level DP, the noise to be added by the server for client-level DP is “re-counted”
considering the injected noise during the on-device gradient descent. They call this approach joint
accounting. However, a limitation emerges: joint accounting is only usable for FedSGD algorithm,
not for FedAvg (because the possible multiple local iterations in FedAvg, hence multiple noisy steps,
may influence the point at which the gradient is computed: a different gradient distribution can
arise or the total noise variance can be underestimated).

12The sensitivity is calculated by the server in each communication round.
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To prevent the server from peeking in individual updates during the aggregation phase, a practical
protocol for secure aggregation, namely SECAGG, has been proposed in [13] for federated settings
— reminding that the communication bottleneck and the dropping of users are peculiar of such
scenarios. In a nutshell, star-shaped FL systems leverage a central server that computes sums
of updates from which deriving the new-generation global model round by round. The scope of
SECAGG is to hide the individual contributions of participants and release only the sum of such
updates to the server, preventing privacy violations from the aggregator entity. The essence of
the approach is similar to differential privacy: updates are locally perturbed, but, while in DP-
mechanisms such perturbations become part of the updates (they are never removed, in fact noise
calibration is fundamental to not compromise the training), in SECAGG such perturbations are
neutralized during the aggregation phase. The insight is to have pairs of participants — hereinafter
referred as participant 𝑢 and participant 𝑣 — that share randomly sampled 0-sum pairs of mask
vectors, 𝑝𝑢,𝑣 and 𝑝𝑣,𝑢 ; before uploading their model updates, participants 𝑢 and 𝑣 add such masks
to their contributions, with 𝑝𝑢,𝑣 + 𝑝𝑣,𝑢 = 0 ∀𝑢 ≠ 𝑣 ; each participant 𝑢 computes a random mask
vector and perturbs (i.e., adding 𝑝𝑢,𝑣 if 𝑢 > 𝑣 or subtracting 𝑝𝑢,𝑣 otherwise) its local update for
each other user v; mask-pairs are canceled out during the sum of all contributions. Every pair of
participants share a common random seed 𝑠𝑢,𝑣 of some fixed length that can be fed to a secure
Pseudorandom Generator PRG [11] to generate the mask pairs, hence the seed can be transmitted
in place of the the entire mask (that has the same size of updates) reducing the communication
burden. These shared seeds are established through Diffie-Hellman [23] key exchange, composed
with a hash function. It is worth noting, that (i) SECAGG requires the elements of the input vectors,
i.e. the participant’s updates, to be integers𝑚𝑜𝑑𝐾 , while (ii) the elements of the vector updates
are typically real-valued instead, and that (iii) the employed PRG’s output space is the same of the
input space. Therefore, the real-valued elements of the updates are typically clipped to a fixed range
of real numbers, and then quantized among such range using 𝑘 bins, and the SECAGG modulus is
chosen to be 𝐾 = 𝑘𝑛, with 𝑛 being the number of participants.
A practical protocol for collaborative training in federated settings must be able to tolerate a

fraction of dropping users. To this end, SECAGG leverages Shamir’s t-of-n Secret Sharing [109] to
permit recovering the pair-wise seeds of a limited numbers of dropping participants; in practice,
each participant sends encrypted shares of its Diffie-Hellman secret to all other participants via
server. SECAGG also accounts for the critical case in which a certain participant belatedly responds
to the server with its contribution by using a double masking for the updates. In addition to 𝑝𝑢,𝑣 , a
private mask vector 𝑝𝑢 (generated from a seed 𝑏𝑢 as well) is further added to the update, and also
its shares are distributed during the secret sharing round for the pair-wise masks.

SECAGG has been employed in the FL system designed in [12] but highlighting that the quadrat-
ically grow (with respect to the number of participants) of the computational cost for the server
limits the maximum size of an instance of SECAGG to hundreds of learners. They indeed leverage
intermediate secure aggregators for subsets of participants, and the intermediate sums are further
aggregated without SECAGG by a master aggregator.

A recent work [112], namely Turbo-Aggregate, addresses the quadratic growth of the computa-
tional cost and of the communication overhead by slightly changing the approach, and still being
resilient to user dropouts (up to 50% of participants). The key idea is to partition the federation
of learners in groups that actively participate in the aggregation and dropout-recovery phases
instead of just leveraging the central server, and to add redundancy directly in the model updates
to reconstruct the missing contributions of dropout participants instead of Shamir’s t-of-n Secret
Sharing such as in SECAGG. In a nutshell, reminding that the scope is to securely compute a
sum (i.e., the sum of locally computed updates) and assuming that all communications take place
via central server employing Diffie-Hellman key exchange protocol, Turbo-Agg works as follow.
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Firstly, participants are randomly divided in 𝐿 groups, with each group being composed of 𝑁𝑙
participants. The set of participants in group 𝑙 is referred as 𝑈𝑙 . The process involves 𝐿 stages,
and Turbo-Agg adopts a circular and sequential strategy in its simplest version: in each stage
only one group is involved; the output produced from a group in a certain stage is the input for
the next group13. Ignoring for a moment the possibility of dropout, in each stage, the participant
𝑖 in group 𝑙 masks its update 𝑥 (𝑙)

𝑖
with a random vector 𝑢 (𝑙)

𝑖
being known (and communicated)

only by the honest server, similarly to what happens in SECAGG. To be secure against server-
participants collusion, learner 𝑖 additionally masks its update with another random vector 𝑟 (𝑙)

𝑖, 𝑗
,

and the resulting masked update 𝑥 (𝑙)
𝑖, 𝑗

= 𝑥
(𝑙)
𝑖
+ 𝑢 (𝑙)

𝑖
+ 𝑟 (𝑙)

𝑖, 𝑗
is sent to each participant 𝑗 of the group

𝑙 + 1, with
∑
𝑗 ∈[𝑁𝑙+1 ] 𝑟

(𝑙)
𝑖, 𝑗

= 0, i.e. random vectors 𝑟 cancel out during aggregation. The secure sum is
cooperatively computed, group by group, and can be summarized thanks to the recursive relation
𝑠
(𝑙)
𝑖

= 1
𝑁𝑙−1

∑
𝑗 ∈[𝑁𝑙−1 ] 𝑠

(𝑙−1)
𝑗
+∑𝑗 ∈[𝑈𝑙−1 ] 𝑥

(𝑙−1)
𝑗,𝑖

with 𝑠 (𝑙)
𝑖

that is a variable locally held by each partici-
pant 𝑖 in group 𝑙 > 1, and that represents the aggregated masked updates from the previous group14.
It is important to highlight that each participant 𝑖 of group 𝑙 sends 𝑠 (𝑙)

𝑖
and 𝑥 (𝑙)

𝑖, 𝑗
to each learner 𝑗 of

the group 𝑙 + 1. A final aggregation step is necessary to preserve the privacy of the participants in
group 𝐿 at the stage 𝐿; an additional group (referred as 𝑓 𝑖𝑛𝑎𝑙), in fact, is randomly composed (for
example, among the survived learners) with each participant aggregating the contributions coming
from the group 𝐿, and sending the results to the server. Specifically, participants 𝑗 in the 𝑓 𝑖𝑛𝑎𝑙 group
produces 𝑠 (𝑓 𝑖𝑛𝑎𝑙)

𝑗
= 1

𝑁𝐿

∑
𝑖∈[𝑁𝐿 ] 𝑠

(𝐿)
𝑖
+∑𝑖∈[𝑈𝐿 ] 𝑥

(𝐿)
𝑖, 𝑗

and send it to the server, that can recover the sum
of unperturbed updates by applying 1

𝑁𝑓 𝑖𝑛𝑎𝑙

∑
𝑗 ∈[𝑁𝑓 𝑖𝑛𝑎𝑙 ] 𝑠

(𝑓 𝑖𝑛𝑎𝑙)
𝑗

− ∑
𝑚∈[𝐿]

∑
𝑗 ∈[𝑈𝑚 ] 𝑢

(𝑚)
𝑗

. However,
in case of participant dropouts the protocol will fail, since, for example, the random vectors 𝑟
cannot be cancelled out. To this end, authors propose to employ Lagrange coding [134] to allow
participants of group 𝑙 to recover the missing contributions from group 𝑙 − 1, and to compute the
partial aggregation anyway. Being concrete and redirecting to the full paper [112] and to [134] for
theoretical detail, each participant has to send to each participant 𝑗 in group 𝑙 + 1 two additional
(coded) vectors in each stage, namely 𝑠 (𝑙)

𝑖
and 𝑥 (𝑙)

𝑖, 𝑗
, in addition to 𝑠 (𝑙)

𝑖
and 𝑥 (𝑙)

𝑖, 𝑗
. The employed coding

strategy allow each learner in group 𝑙 + 1 to reconstruct the vector {𝑠 (𝑙)
𝑖
}𝑖∈𝑁𝑙

starting from at least
𝑁𝑙 evaluations (i.e, 𝑠

(𝑙)
𝑖

and 𝑥 (𝑙)
𝑖, 𝑗
) from the previous stage. Therefore, since each participant send

two evaluations to the learners in the next group, this redundancy permits to tolerate up to half of
learners dropping.
It is worth noting that, although SECAGG and its variant Turbo-Aggregate explicitly targets

star-shaped networks of learners, they are suitable for fully decentralized networks, i.e. peer-to-peer
topologies, with one peer (or more) working as aggregator.
An alternative to SECAGG for star-shaped FL frameworks is represented by Additively Ho-

momorphic Encryption; since such technique guarantees the additivity of multiple ciphertexts,
the server can perform the aggregation without the need of seeing the updates in clear. In [37],
authors propose to use a symmetric additively homomorphic encryption called PPDM [146] for its
efficiency, combining it with Laplacian mechanism for DP in order to neutralize collusion between
compromised users and malicious server. They show drastically reduced communication overhead
with similar solution [97], that employs paillier encryption instead.

In [122], authors combine multi-party computation (MPC) via Threshold Homomorphic Encryp-
tion and Differential Privacy to balance their respective weaknesses; in fact, applying DP to provide

13Since only one group is active per stage, for ease of notation, group and stage are referred both with the index 𝑙 .
14The initial aggregation at group 𝑙 = 1 is set as 𝑠 (1)

𝑖
= 1.
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the required level of privacy may degrade accuracy while MPC alone is vulnerable to inference
attacks over the output, i.e. the intermediate models during the collaborative training process and
the final predictive model. Leveraging only on one of those two techniques may compromise the
effectiveness of the system (in terms of prediction accuracy of the resulting model or in terms of
privacy guarantee). The key intuition in [122] is to reduce the traditional amount of locally-injected
noise to ensure 𝜖-DP by exploiting the MPC framework building on the assumption that 𝑡 par-
ticipants are trusted (i.e., non-colluding parties), with 𝑡 being a customizable parameter; thanks
to this assumption, the Gaussian noise to be added to each local query is reduced by a factor of
𝑡 − 1. In the worst scenario, the performance (in terms of model accuracy) of the proposed system
converges with existing local DP approaches.
00Considering the scenario in which the data quality of certain participants, namely unreliable

participants, may be poor (meaning that a portion of their data is not always accurate as the data held
by others), authors of [142] focus on guaranteeing two levels of privacy: (i) preserving privacy of
the participant’s data and (ii) hiding the eventual participation in the training process of unreliable
participants. At the same time, they focus on limiting the impact on the global model of such
participants. The proposed solution, SecProbe [142], ensures participants’ privacy by perturbing,
during the local training process, the objective function of the neural network using the functional
mechanism (FM) [138] to achieve 𝜖-DP, and obtaining the sanitized parameters by minimizing the
perturbed objective function.

Tomake themetadata exchanged in Split Learning irreversible, in [132] authors propose tomodify
the conventional activation functions to be step-wise, i.e. the activation function is discretized by
having the input domain divided into intervals and the output constant for each interval; in this
way, it is not possible to exactly recover the activations’ input from their outputs15. In this context,
another approach to reduce invertibility of intermediate representations consists in minimizing the
distance correlation between raw data and the communication payload, i.e. having a low distance
correlation while maintaining the accuracy in predicting the output labels. Authors of [123] hence
train the neural network by using a weighted combination of two losses as loss function, and
such losses are the log distance correlation [116] and the categorical cross entropy. The former is
used as a measure of statistical dependence between the input data and the estimated cut layer
activations, while the latter traditionally considers the true labels for the inputs and the predicted
labels. Intuitively, the distance correlation is minimized to ensure privacy and the cross entropy is
minimized for classification accuracy. The solution is evaluated on visual datasets.

4.3 Combining Privacy and Communication Efficiency
Lossy compression techniques inherently lead to a privacy improvement, however it is not straight-
forward to measure the effective privacy guarantees, for example under DP formalism. The works
surveyed in 4.1 do not explicitly measure privacy, and the ones in 4.2 do not address the com-
munication cost as primary concern, while examples of combined approaches can be found in
[67] and in [51]. Furthermore, other aspects in conjugating privacy and communication efficiency
emerge; the secure aggregation protocol [13] can be redesigned to account from the beginning for
communication efficiency [14], while tailored DP-mechanisms can be more amenable to privacy
analysis when quantization of noisy DP-updates is employed[2].

15Authors of [132] consider three activation functions: sigmoid, hyperbolic tangent and ReLU [87]. While sigmoid and
hyperbolic tangent are bijective functions, ReLU is a surjective function, and the output of ReLU can be reversed only if the
input is positive. The proposed solution “masks” the output of such positive inputs by using a step-wise variant of ReLU.
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In [51], authors combine communication efficiency, privacy guarantees and resilience tomalicious
participants under non-IID data distribution. They consider a star-shaped synchronous collaborative
learning framework in which participants and server exchange (aggressively compressed) gradients
instead of model parameters. The proposed algorithms use as baseline the SignSGD [9] algorithm
with majority vote, that, however, does not explicitly and formally address privacy protection
of participants and that has been shown to fail to converge when the data on different learners
are heterogeneous [19] [106]. In particular, to deal with non-IID data, authors first propose a
variation of SignSGD, namely sto-sign, that applies a two-level stochastic quantization on locally
computed gradients, and then only transmits the signs of such quantized values. Additionally, dp-
sign, a differentially private version of sto-sign, is designed to ensure formal privacy guarantees for
participants involved in the training. Authors theoretically relate the Byzantine16 resilience, i.e. the
number of Byzantine workers that can be tolerated without harming the convergence guarantees, of
their proposed algorithms to the heterogeneity of local datasets. Authors also propose an extension
of their algorithms which takes account for residual error on server side and uses it to correct the
majority vote. The convergence of the proposed algorithms is established theoretically.
With respect to just sending the quantized updates in clear, the SECAGG[13] protocol leads to

a bandwidth expansion17 that is less than 2x while ensuring reliability of the secure aggregation
to dropping or collusion of a fraction of users. However, in [14], authors critically observe some
limitations of a straightforward combination of SECAGG and compression techniques; chief among
them (i) quantizing to a fixed point representation requires selecting the clipping range [−𝑐, 𝑐]
a priori that may be challenging to establish or may lead to poor approximations if the clipping
range is not large enough, and (ii) the SECAGG modulus is chosen to be 𝐾 = 𝑛𝑘 to represent all
possible aggregated vectors without overflow (for example, if clients are 210 the SECAGG modulus
are 10 bits wider than they would be without accounting for secure aggregation) dominating the
communication cost introduced by SECAGG — the bandwidth expansion determined by secret
sharing and cryptography is much less influential. The scope of [14] is to propose a recipe for an
auto-tuning (observation (i)) communication-efficient (observation (ii)) secure aggregation. The key
idea is to avoid clipping at client-side but instead quantizing over an unbounded range according to
a quantization bin size 𝑏 that is dynamically and tightly adjusted by the server (and communicated
round by round) according to the distribution of the entries of the sum relative to the previous
round, and then locally applying the𝑚𝑜𝑑 𝑘 operation instead of clipping; the server can compute
a tight bin size 𝑏 exploiting the assumption that the entries of the sum fit a normal distribution
thanks to a random rotation that is locally performed by the participants (before quantizing) to
their updates.

4.4 Addressing non-IIDness
As empirically shown by [81], carefully tuning the number of local epochs is crucial in FedAvg
since during additional on-device iterations — less frequent synchronization among participants —
local models can significantly drift apart from the global model potentially preventing convergence.
Such an issue is exacerbated when considering statistically heterogeneous data from different par-
ticipants [81] [145] [107] [47] — realistic assumption especially in cross-device federated settings.
Data sharing and data augmentation techniques have been demonstrated to effectively alleviate
the impact of non-IIDness at the cost of less decentralization [145] [131] [49]. Another major line
of works tackles the problem by directly limiting the drift of the model’s objective function by
16A Byzantine participant may transmit arbitrary information. Authors of [51] assume that such Byzantine participants
upload the opposite signs (the opposite sign of each entry) of the true gradients, with the true gradients being the average
gradients of all the normal workers (hence, it is supposed that the attackers know such quantities).
171.73x bandwidth expansion considering 210 participants (i.e., 𝑛 = 210) and 16 bit fixed point representation (i.e., 𝑘 = 216).

, Vol. 1, No. 1, Article . Publication date: December 2018.



1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 P. Bellavista et al.

means of proximal terms or/and gradient correction terms at the (possible) cost of communication
overhead [69] [56] [70] [127]. Or again, employing SGD optimizers, such as server-side momentum
[47], and, more in general, adaptive gradient-based optimizers [101], i.e., incorporating adaptive
learning rates, have been shown to mitigate the effect of heterogeneous data as well as reducing the
total communication rounds to reach model convergence. Also experience-driven solutions have
lately emerged to counterbalance non-IIDness and speed-up convergence; a deep reinforcement
learning based mechanism that intelligently selects the participants for each FL round has been
proposed in [124].

Authors of [145] experimentally show that test accuracy of FedAvg can be significantly increased
in non-IID scenarios by providing a small subset of globally shared data (e.g., 5%); participants use
their private dataset augmented with such data examples, provided by the server, to train their
updates. Despite the effectiveness of the proposed solution, it has the cost of less decentralization
and requires communicating the globally shared data to the participants. Authors also propose an
alternative initialization of the global model; instead of a random initialization, the server trains
a warm-up model using the shared data before broadcasting the model at the beginning of the
learning task.
Authors of [131] observe two critical aspects of FedAvg, especially when dealing with non-

IIDness. In fact, they argue that the additional on-device iterations between global synchronizations
produce gradient biases, and that selecting a fraction of participants in each round results in an
inconsistency between the optimization objectives and the real target distribution (the global model
is trained by minimizing the empirical loss on data distributions that are, in general, different in
each round of FedAvg). Since allowing multiple local iterations and selecting a part of clients are
fundamental for the communication efficiency of FedAvg and its suitability in federated settings,
authors of [131] propose two (distinct but jointly usable) strategies to alleviate such issues. They
propose an Unbiased Gradient Aggregation (UGA) that performs what they call keep-trace gradient
descent optimization for the first 𝐸−1 epochs, and then uses the whole data set to evaluate gradients
during the last epoch. The key idea of keep-trace gradient descent optimization is preserving the
functional relation, between 𝑤𝑘 (𝑖)𝑡 and 𝑤𝑘 (𝑖−1)

𝑡 in round 𝑡 for subsequent on-device iterations 𝑖
on client 𝑘 (as usual,𝑤 indicates local/global model parameters) instead of passing for numerical
values of gradients 𝑔𝑘 (𝑖)𝑡 , such that in the last epoch they can calculate the gradient, 𝑔𝑘𝑡 , against
𝑤𝑡 directly (considering the entire participant’s data set). It is worth noting that, in UGA, the
server gathers and aggregates thus calculated gradients 𝑔𝑘𝑡 to produce the global model for the next
iteration. On the other hand, to address the lack of a clear objective among subsequent rounds with
different participants, authors propose FedMeta. The optimization process becomes a two-stage
optimization: after each global aggregation (either performed following the baseline FedAvg or
UGA), the server runs an additional gradient descent step using a special dataset, D𝑚𝑒𝑡𝑎 . The
rationale is that using such meta training set at server-side provides a clear and consistent objective
in the learning process. Obviously, the composition of D𝑚𝑒𝑡𝑎 is critical.
Authors of FedProx [69] tackle the potential model drift caused by non-IIDness by adding a

proximal term to the local objective function instead of just heuristically tuning the number of local
epochs; intuitively, the impact of local data is limited by restricting the locally-computed updates
to be close to the current global model. Furthermore, FedProx allows for local solvers of choice, not
limiting them to be SGD as happen for the traditional FedAvg. It is worth noting that FedProx is a
generalization of FedAvg; if the multiplicative (hyper)parameter, 𝜇, that rules the proximal term
in FedProx is set to 0 and the local solver of participants is restricted to be SGD, FedProx exactly
matches FedAvg.
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Authors of SCAFFOLD [56] address the issue of drifting clients using control variates in FedAvg.
The idea is to align client updates by applying a correction term to the local gradients on each local
step. Each client computes its local control variate that represents the expected direction of the
local update while a global control variate that represents the aggregated direction in which the
server updates the global model is defined to be the uniform average of local control variates. Each
participant corrects its update by adding to the locally computed stochastic gradient the difference
between the global and the local control variate. The hypothetical case that motivates this strategy
is to have all clients computing the same update for the global model hence eliminating the model
drift. However, to achieve this, clients should communicate with each other every (either directly
or via parameter server) local gradient step, e.g. each client communicating its locally computed
gradient, that is unfeasible. Therefore, the local control variates and consequently the global control
variates are estimated throughout the process, and the global control variate is broadcasted to the
participants together with the model parameters at the beginning of every round by the server.
FedDANE [70], inspired by DANE [110] and its inexact variant [102], combines the use of the

proximal term exploited in FedProx with a gradient correction term similarly to SCAFFOLD. The
update phase is a two-step process: to compute the gradient correction term and to inexactly solve
the Newton-type sub-problem, the locally computed gradients of the local objective functions
should be firstly collected and then averaged to approximate the full gradients. However, given
the realistic connection bottleneck in cross-device federated settings, it is unfeasible to gather all
the locally computed gradients; in FedDANE, the full gradients are approximated aggregating the
gradients of a randomly sub-sampled set of participants. It is worth noting that each update requires
two rounds of communication differently from the baseline FedAvg, FedProx and SCAFFOLD —
even though SCAFFOLD has to communicate in each round both the model parameters and the
control variates. Despite the theoretical convergence guarantee, FedDANE shows “disappointing
performance” in experimental evaluation compared to FedAvg and FedProx leaving doubts on the
robustness of theoretical assumptions.

Authors of [101] propose an approach to decouple server and client learning rate and to exploit
adaptive learning rates on both client and server, with the primary objective of tackling client drift.
The idea is to have clients that leverage some client optimizer to minimize the loss on their local
dataset, while the server exploits a gradient-based server optimizer to minimize the loss across
participants. Building upon such general framework, namely FedOpt, they introduce and evaluate
some per-coordinate adaptive methods as server optimizers with SGD as client optimizer. In
practice, they implement three adaptive server optimizers, i.e. FedAdaGrad, FedYogi, and FedAdam
respectively being the federated versions of the well-known AdaGrad [83] [27], Yogi [136], and
ADAM. In their comparison with FedAvg18 they also include FedAvgM [47]. They show that such
approaches are effective, in some circumstances “dramatically” effective with respect to FedAvg, in
mitigating client drift and, as a natural consequence, in reducing the total number of communication
rounds required for model convergence. Authors of [101] also provide theoretical convergence
analysis, and observe the need for a decaying learning rate at client-side.

4.5 Handling Device Heterogeneity
Device heterogeneity, i.e. device with diverse hardware characteristics or/and with different connec-
tivity (in general referred as resources), is common in cross-device federated settings. Such hetero-
geneity negatively influences the training process; for example, in federated learning frameworks

18It is worth noting that, under the proposed framework, FedAvg and FedAvgM [47], i.e. FedAvg with server-side momentum,
become specializations of the FedOpt family; the former uses SGD as both client and server optimizer with server learning
rate equal to 1, while the latter employs SGD with momentum as server optimizer.
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that leverage synchronous rounds, the slower participants dictate the pace if any counteraction is
taken.

Authors of [127] claim that the synchronous nature of FedAvg can limit the scalability, the
efficiency and the flexibility of the FL framework. In fact, (i) only few hundreds of participants are
selected per round due to avoid server-side congestion (the server broadcasts the global model
at the beginning of every rounds to all the selected participants); (ii) given the heterogeneity of
training devices (e.g., there could be significant diversity in terms of computational power), the
server usually sets a timeout for receiving back the updates and then synchronizing the model. It
could happen that the selected participants that are able to complete the round within such timeout
are not enough to produce a reliable update (i.e., less than the minimum participant goal count) [12].
By leveraging asynchronous updates, FedAsync avoids server-side timeouts and abandoned rounds
as well as not requiring to broadcast the model to all the selected participants at the same time.
Moreover, to limit the effect of staleness, a well-know drawback of asynchronous SGD approaches,
FedAsync uses a weighted average to generate the new global model after aggregation as happens
in SLSGD, relying a mixing hyperparameter that weighs the freshness of the aggregated model.
Furthermore, to deal with drifting clients and non-IIDness, a proximal term in the local objective
functions is employed as it happens in FedProx. Different alternatives are proposed to account
for staleness, and to adaptatively decrease the mixing hyperparameter that rules the average in
function of staleness, i.e. less weight associated with larger staleness.Under the same communication
overhead, they show that FedAsync converges fester than FedAvg when staleness is small while
the two approaches have similar performances considering large staleness for FedAsync. Authors
state that, in general, the convergence rate of FedAsync is between single-thread SGD and FedAvg.

Asynchronous approaches, such as FedAsync [127], limit the influence of resource-constrained
devices on the collaborative training process — synchronization among participants requires to
wait for the slowest. In TiFL [17], authors design a system to alleviate the stragglers problem
without relaxing the synchronization of FedAvg, but by clustering participants in tiers with similar
response latency per round, while in LoAdaBoost [48], authors propose to use the cross-entropy
loss information to early stopping the local training.
Besides asynchronism and tier of participants with similar response latency, a natural solution

to address straggler clients in FL frameworks (resource constrained devices and/or devices under
poor network condition) was priorly proposed in [91], in their FedCS. The goal is to maximize the
number of updates to be aggregated within a specific deadline, since involving a larger fraction of
participants in each round typically reduces the time needed to achieve a certain model accuracy
[81]. Taking advantage of the MEC infrastructure, authors propose to extend the FL algorithm by
replacing the random selection of clients with a two-step client selection; the MEC operator asks
random clients to provide their resource information (computational capacities, wireless channel
states, size of the dataset relevant to the current training task) from which deciding whether
including them in the current training round according to an estimation of the time necessary for
such participants to complete the download-train-upload process.

In [125], authors address the problem of dynamically adapting the global aggregation frequency
(in real time) to optimize the learning process with a given resource19 budget targeting a star-shaped
FL framework in edge computing environments. They consider𝑀 types of resources that can be
taken into account, and define that all the participants consume 𝑐𝑚 units of type-𝑚 resource at
each local update step, and each global aggregation consumes 𝑏𝑚 units of type-𝑚 resource (with
𝑐𝑚 > 0, 𝑏𝑚 > 0). Being 𝑇 , the number of total local update steps for the training process, and

19Authors of [125] consider a general definition of “resources” including, e.g., bandwidth, energy, time and monetary cost.
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being 𝜏 , the number of local updates between two global synchronizations, and considering the
resulting number of global synchronizations 𝐾 , i.e. 𝐾 = 𝑇 /𝜏 , the total amount of consumed type-𝑚
resource is (𝑇 +1)𝑐𝑚 + (𝐾 + 1)𝑏𝑚 , noting that the additional “+1” accounts for computing the last
loss value after the last synchronization 𝐾 . The objective is to minimize the global loss function by
tuning 𝜏 and 𝐾 (and, consequently, 𝑇 ) such that the total amount of consumed type-𝑚 resource is
not greater than the resource budget 𝑅𝑚 (each type-𝑚 resource has a certain budget associated).
Such minimization problem is approximately solved by leveraging a theoretical convergence upper
bound of the canonical distributed gradient descent after 𝑇 iterations, although assuming that
the loss function is (i) convex, (ii) 𝜌-Lipschitz and (iii) 𝛽-smooth. In the convergence analysis,
authors also define an upper bound for gradient divergence, i.e. an upper bound of the divergence
between the gradient of the local loss function and the gradient of the global loss function, that
depends on how the data is distributed among different participants, hence taking into account the
non-IIDness of data. We redirect to the full paper for the complete theoretical analysis. In a nutshell,
the proposed control algorithm recomputes the optimal20 𝜏 , hereinafter referred as 𝜏∗, during each
aggregation step via linear search on integer values of 𝜏 accordingly to the most updated parameter
estimations needed to approximately solves the minimization problem mentioned above.
In regards to peer-to-peer frameworks, BACombo (already presented in 3.3.2) interestingly

leverages a bandwidth-aware worker selection, i.e the peers to be requested for model segments are
not trivially chosen randomly. To reduce transmission time, peers with faster network connections
should be preferred. However, it is not easy to know the network condition of a certain peer a priori.
The proposed solution exploit a multi-armed bandit algorithm [5]; each participant, with probability
𝜖 , either explores the network conditions of peers by selecting them randomly or exploits its already
acquired knowledge — each participant maintains a table, that is updated each time a peer is picked
for communication, that contains historical indications about the network state of that peer — by
greedily selecting the peers with best network conditions.

4.6 Defending against Poisoning
From being passive data providers, in cloud-based ML, participants become active entities in the
learning process of decentralized training: they locally compute updates and observe intermediate
model states. Although this design is the cornerstone to improve several aspects of traditional
ML/DL, it exposes the system to a larger variety of attacks from malicious learners, since partici-
pants, in theory, can contribute with arbitrary updates, and could try to manipulate the learning
process for diverse scopes (e.g., merely hampering the convergence, forcing other participants to
over-expose their contribution or backdooring the system), while making their detection harder
since the raw data are not accessible. This is known as model poisoning, besides the more traditional
data poisoning. We redirect the reader to [79] for a complete understanding of the threat model and
of the attack variety. We present here some strategies to detect and/or neutralize poisoning attacks.

Authors of [128] (SLSGD) propose a variation of FedAvg to address non-IIDness and to tolerate
data poisoning attacks (evaluated by simulating the attack through label flipping). They act on the
baseline FedAvg algorithm by varying (i) the aggregation step and (ii) the new-model generation
step; (i) instead of aggregating the updates by averaging, they use a trimmed mean to (try to) filter
out poisoned updates, and (ii) instead of replacing the previous global model with the resulting
aggregated model, they use a moving average between the previous and the just aggregated model

20It is worth noting that, intuitively, if the resource budget is unlimited, 𝜏∗ is equal to 1, i.e. global synchronization after each
local update, while in presence of budget constraints it may be convenient investing the resource for local computations
rarefying the global synchronizations, i.e. 𝜏∗ > 1.
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to limit the influence of non-IID datasets and to mitigate the extra variance caused by such “robust”
aggregation.
In [33], authors propose a defense against sybil-based poisoning (precisely, label-flipping and

backdoor poisoning), namely FoolsGold, targeting a federated learning framework where par-
ticipants upload locally computed gradients to the (honest) aggregator. The idea is to identify
malicious colluding participants, i.e. poisoning sybils, by monitoring the diversity of participants’
update; sybils are supposed to share a common objective and the directions of poisoning gradients
should seem unusually similar respect to updates from honest learners. In a nutshell, FoolsGold
maintains an historical aggregate of updates per participant at server side, i.e. the cumulative
sums of its updates so far, and it measures the cosine similarity between couple of participants’
historical aggregates before each aggregation step — the rational behind this strategy is that gra-
dients resulting from single local iteration of SGD can be very similar in directions even among
honest clients, however colluding parties will share the same objective in the long run, limiting the
effectiveness of poisoning throughout the training process by accordingly re-scaling the learning
rate of participants that are deemed as possible sybils. The clear limit of FoolsGold — apart from
being incompatible with secure aggregation and assuming honest aggregator — is that it is designed
to look for sybils, hence a single participant adversary can remain undetected.
Authors of [141] propose a defense against poisoning, specifically targeting label flipping and

semantic backdoor attacks, in a synchronous federated learning framework accounting also for
non-IIDness. Differently from FoolsGold [33], their strategy actively leverages on clients; the server
asks to the participants to evaluate some sub-models, each one derived from the aggregation of
disjoint subsets of the model updates related to a certain round, and they provide back to the
server an indication about the correctness in the classification task of such sub-models, tested
on their private dataset, in the form of a binary matrix (obviously, a certain participant cannot
receive a sub-model derived from its own contribution). Thanks to the gathered matrices, the server
computes a penalizing coefficient for each sub-update to weigh the aggregation of such sub-models
(for example, if more than half of the clients report the anomaly for the same sub-model, it should
be zero-weighed). Authors highlight that their solution can be also combined to FoolsGold [33], e.g.
to detect single-participant attack.
Similarly to [33] and [141], authors of [66] use a server-side pre-trained autoencoder model to

detect abnormal weight updates that are then accordingly penalized during the aggregation.

5 OPEN PROBLEMS AND FUTURE DIRECTIONS
As an obvious observation, we remark that data-sequential approaches are only limited to Cross-silo
federated settings, where the number of participants is limited (see Table 1). At the same time, (data-
parallel) star-shaped synchronous systems and related improvements (i.e., 44 out of 53 surveyed
solutions) have dominated the early years of decentralized learning, pushed by the Google’s FedAvg
baseline and, not surprisingly, the first real-world large-scale decentralized learning system for
Cross-device federated settings has followed this trend [12]. Nevertheless, we stress the evidence
that relaxing the synchronous constraint for aggregating updates in star-shaped systems mitigates
the struggles in handling a large amount of heterogeneous devices, while introducing degrees of
uncertainty that hamper the theoretical comprehension of the system’s behaviour in real scenarios
(e.g. FedAsync solution adopts this strategy). At the other end of the spectrum, we observe a reduced
portion of fully decentralized solutions (only 5 systems out of 53, with one of them, i.e. SAPS-
PSGD [117], that leverages a central entity for coordination). In addition, the MEC-architecture
has demonstrated to effectively help in scaling the learning process and is increasingly adopted; in
Table 1, we report 3 works explicitly considering this architecture. Indeed, that allows to favour
the exploration and ease the implementation of hierarchical solutions, such as star-shaped both
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between devices and edge servers, and between edge servers and the cloud. To conclude, in the
next subsections, we will present other open challenges that will likely influence the incoming
future of decentralized learning systems, by also sketching possible and most promising directions
for future research.

5.1 Rethinking the Traditional MLWorkflow for Federated Learning
The literature explored in this survey proposes solutions to the main challenges of employing
federated learning systems in real-world scenarios. However, most works suppose that the hyper-
parameters (e.g., the neural network’s architecture, regularization techniques, and optimizers) of
the model to be trained have been already established, and typically the focus is not about the
tuning of their determination. Furthermore, decentralized learning systems introduce additional
algorithm-specific hyperparameters (e.g., the number of local epochs or the number of participants
involved per round) that significantly influence the performance of the adopted solution. While in
cloud-centric DL it is feasible to run many rounds of training to empirically search the hyperparam-
eters space towards optimality, this strategy is probably infeasible for cross-silo settings and surely
incompatible with cross-device settings. Hence, we expect that hyperparameter optimization that
targets the communication and computation overhead on the devices that compose the federation,
and not only aiming at the best accuracy of models as happens in datacenter optimizations, will
gain traction, by fostering the development of easy-to-tune and/or auto-tuning algorithms for
federated settings (e.g., [14] – explored in Section 4 – and [41]).

Another relevant phase of the traditional workflow in cloud-centric ML, which is reshaped by the
design of decentralized learning systems, relates to the debugging of trained models’ behaviour. In
fact, preventing the access to the raw data by design does preclude modelers and practitioners from
directly investigating the causes of the detected problems (e.g., investigating missclassification,
noticing evident bias in the training set, identifying outliers, manually adding or adjusting labels),
i.e. manual data inspection is impossible [6]. Connected to that, the design and implementation
of privacy-preserving techniques to enable the debug phase also for federated learning systems
are open areas of research. For example, in [6], the privacy concerns are overtaken by using
privacy-preserving Generative Adversarial Network trained in a federated fashion, thus enabling
the debug on synthetic data examples that conjugate the trade-off between information leakage
and debugging utility.

5.2 Designing Incentive Mechanisms
Another assumption typically made in the FL-related literature is that the (selected) learners are
willing to participate. Leaving aside for a moment the privacy concerns that may discourage
participants, another factor that can determine the reluctance in being involved in federated
learning processes is the associated overhead, in terms of computation and communication. Self-
interested mobile devices may be unwilling to cooperate without receiving adequate rewards
[55]. Such considerations may be exacerbated in cross-silo federated settings, where competitors
should collaborate for a common objective, while they may have local data different in quality
(i.e., an organization with rich and high-quality local data would not be willing to participate
in a federated learning process and sharing, for free, the acquired final knowledge with other
competitors that have contributed much less in the learned model due to scarce-quality data).
Furthermore, the revenue generated from the built model will come only afterwards [133]. In this
direction, solutions to properly reward participants and attracting data owners with high-quality
data, e.g. more conspicuous rewards for participants with higher quality of local data, are emerging
(e.g., [55], [133]). Designing effective incentive mechanisms will be fundamental for the spreading
of decentralized learning in real-world scenarios.
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5.3 Towards Model Heterogeneity and Personalization
As we have seen, in federated settings, different kinds of heterogeneity must be addressed, from
system heterogeneity (i.e., device with different resource budgets) to data heterogeneity (i.e.,
non-IIDness). We highlight an additional facet of heterogeneity that regards the local model
architecture: each participant of the learning process can design its own model accordingly to its
needs. This degree of freedom would further favour the collaboration among institutions — under
the perspective of intellectual property related to the tailored model architecture — and can be
also leveraged to favour the inclusion of more resource-constrained edge devices in the learning
process. Transfer learning and knowledge distillation are investigated to effectively enabling such
independence improvements among participants (e.g., [65]). Besides model heterogeneity, model
personalization, i.e. fitting the global model to the participant-specific local data, would represent
an additional tool to tackle non-IIDness [62].

5.4 Going beyond Supervised Learning
It is important to underline once more that almost all the cited works in this survey suppose labeled
data examples within supervised learning contexts. However, in real federated settings it could not
be straightforward to automatically or to manually label data samples; while systems to favour the
collection of user-annotated examples are arising (e.g., [78]), the huge amount of unlabeled raw
data, that will be produced in the next years at the edge of the network, may not be adequately
exploited by only supervised learning techniques. Anyway, opening up to semi-supervised [52],
unsupervised or to reinforcement learning approaches would require similar issues in terms of
privacy guarantees, heterogeneity, communication efficiency and scalability.

5.5 User Perception of FL Privacy Guarantees
The rising regulations about privacy protection would ideally require the express consent of users
for sensitive-data collection and processing. Decentralized learning techniques naturally shape
the principles of focused data collection and minimization, on which most of the privacy-related
regulations build on as well. However, we might wonder if the average user fully understands
the privacy benefits and limitations that come with the design of decentralized learning systems,
and in particular with privacy-preserving decentralized learning systems (e.g., differential private
decentralized training). In fact, only if the user is aware of the guarantees about privacy protection,
she or he can consciously decide whether and which data letting be involved in possible decentral-
ized learning processes. Moreover, different users may value privacy aspects differently, eventually
entailing fine granular and user-specific tuning of privacy guarantees, an aspect that has not been
thoroughly explored yet. Orthogonally, there is no clear consensus on how to choose privacy
parameters (e.g., 𝜖 for 𝜖-DP mechanisms) [28]. Fostering and creating a shared consensus about the
adequate level of privacy in collaborative learning systems is another key aspect for the incoming
future, as well as fully understanding and addressing the specific privacy preferences of educated
users (i.e., users who have full comprehension of the implications of the privacy technology used).

5.6 Fairness and Sources of Bias in Decentralized Learning
The relevant objective of ensuring fairness does not strictly relate to decentralized learning; it
is a recognized and well-known issue in traditional ML/DL. However, some unique and peculiar
traits of decentralized learning systems open up to new directions for future research. In fact,
especially in cross-device settings, practical assumptions and requirements about the (selected)
per-round participants can generate bias in the training data, which in turn might make the model
unfair, e.g., under-represented groups in training samples may receive lower-quality predictions, or
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individuals that should be treated similarly by the model receive significantly different outcomes,
or again the trained model might show prejudices against some sensitive subgroups of individuals.
By going into practical details and consequences, for example, the proposed implementation of FL
for Android mobile devices includes in the training rounds only the devices that are (i) connected
to unmetered network, (ii) charging, and (iii) that respond within a time-out (also the involved
devices have to meet some hardware requirements, i.e., memory); this may lead to sample a
biased population of participants. Solutions for more flexible device participation (e.g., [105]) can
mitigate such phenomenon. Similar observations raise from other strategies such as prioritizing
fast connected devices (e.g., in [117] or [50]). Furthermore, also imbalanced data among nodes
can represent a source of bias [26], and this has demonstrated to be more typical of cross-device
settings. Another factor that makes fairness challenging in decentralized learning systems lies in
the privacy-preserving design of such approaches: usually data are not directly accessible to search
for bias in data samples.

5.7 Towards Fully Decentralized Systems at Scale
While cross-device (star-shaped) FL is mature enough to be used in large scale applications [12]
(e.g., in the realm of smartphone apps), cross-device fully decentralized solutions have not reached
such mature implementations yet. As already highlighted, dealing with peer-to-peer topologies
inherently adds layers of complexity with respect to the client-server paradigm; that makes it harder
the implementation as well as the theoretical analysis of such systems. A very practical solution
may be having a central orchestrating entity that is aware of the current topology status thanks to
periodic reports provided by the federation of peers (as in [117]); in this way the orchestrator21 can
determine and dictate the (favourable) peer links to be used in exchanging model updates. In this
perspective, in the short-term future research in the field, we expect growing efforts in practical
(and maybe more elegant) solutions to dominate the complexity of dynamic large-scale peer-to-peer
topologies, as in the case of real cross-device federated scenarios of practical usage, since fully
decentralized systems bring, in principle, several advantages with respect to star-shaped solutions
(e.g., no need to trust central entities, no server bottlenecks, no unique points of failure). We also
note that while communication-efficient strategies can be more easily adapted from star-shaped to
fully decentralized systems (e.g., [117]), this may be not so natural for non-IIDness and for privacy
guarantees. Furthermore, as far as we know, poisoning has not been investigated considering such
topology of participants. In short, the literature about fully decentralized learning is still in its
embryonic stages: approaches to ensure formal privacy guarantees (e.g., DP-based approaches
and secure aggregation adaptations) and to effectively tackle non-IIDness (e.g., [92]) have still
to be thoughtfully explored and investigated before achieving the efficient implementation and
deployment of an associated large-scale prototype.

6 CONCLUDING REMARKS
This survey aims at offering a fresh and up-to-date overview of the motivations that are leading to
the rising popularity of decentralized learning, by also exemplifying them over a few variegated
instances of real-world applications. Most relevantly, the paper proposes an original and relatively
simple taxonomy to readily classify baselines and their improvements/extensions for decentralized
learning, thus providing a useful guide to and shedding new light on this articulated research area
and the emerging frameworks/solutions in the field. The proposed taxonomy has been largely used
in the paper as a lens for an in-depth technical analysis of up-to-date contributions in the literature.
This analysis has allowed us to highlight the main issues that the surveyed work has addressed and

21The orchestrator may also easily dictate the hyperparameters of the model to be trained and of the algorithm to be used.
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to identify the primary lessons learned so far; the lessons learned based on our taxonomy-driven
analysis also helped us to identify the most relevant open problems and the most promising future
directions for research in this challenging, wide, relevant, and rising area.
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