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Abstract 

 

Novel distractors are prioritized for attentional selection. When distractors also convey emotional 

content, they divert attention from the primary task more than neutral stimuli do. In the present 

study, while participants were engaged in a central task, we examined the impact of peripheral 

distractors that varied for emotional content and novelty. Results showed that emotional 

interference on reaction times completely habituated with repetition and promptly recovered 

with novelty. The enhanced LPP for emotional pictures was attenuated by repetitions and, 

interestingly, stimulus novelty only affected emotional, but not neutral distractors, in both the RTs 

and LPP. Alpha-ERD was similarly reduced for repeated emotional and neutral distractors. 

Altogether, these findings suggest that the impact of peripheral distractors can be attenuated 

through a non-strategic learning mechanism mediated by mere stimulus repetition, which is fine-

tuned to detect changes in emotional distractors only, supporting the hypothesis that novelty and 

emotion share the same motivational circuits. 
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1. Introduction 

 

A long-standing debate in the field of emotion and cognition is whether emotional cues are 

processed in a mandatory fashion or whether contextual factors can modulate the impact and 

processing of these stimuli (Öhman & Wiens, 2003; Pessoa, 2017; Pourtois et al., 2013; Schupp et 

al, 2007; Vuilleumier et al., 2004). When emotional stimuli serve as distractors, their appearance 

prompts a reliable attentional capture that is reflected in a disruption of performance in the 

ongoing task (Bradley et al., 1996; Calvo et al., 2015; De Cesarei & Codispoti, 2008; Ihssen et al., 

2007; Micucci et al., 2020; Weinberg & Hajcak, 2011). Previous studies (see Chelazzi et al., 2019, 

for a review) have shown that attentional capture by physically salient distractors (i.e., abrupt 

onset, color singletons) is a flexible mechanism that is susceptible to modulation by contextual 

factors, such as the attentional set defined by a given task or implicit learning (e.g., selection 

history or habituation).  

Although there is consistent evidence that top-down factors may prevent the interference of 

emotional distractors (Benoni et al., 2020; Brown et al., 2020), little evidence exists so far 

regarding the role of implicit learning mechanisms in the inhibition of emotional interference. 

Micucci and colleagues (2020) reported that high occurrence of distractors prompts an 

attenuation of emotional interference, compared to a context with rare distractors. Interestingly, 

this decline in attention allocation towards emotional stimuli does not depend on the number of 

emotional pictures presented over time or on the time interval between emotional distractors, but 

is, rather, triggered by the overall frequency of distractors. In the literature on distractor 

suppression (Awh et al., 2003; Geng, 2014), within a stimulus presentation sequence the 

performance cost engendered by a distractor on trial n is mitigated if the distractor was present 

(versus absent) in the preceding n-1 trial, indicating that distractor suppression may occur as a 
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result of short-term practice with distractors. However, this suppression could be driven by mere 

exposure to distractors, a case of habituation, or by repeated acts of active suppression across 

previous trials – a case of selection history effect. In Micucci and colleagues (2020) distractors 

were all different exemplars of stimuli, making the habituation account unlikely as an explanation 

of the reduced attentional capture in the high frequency context, as the filtering mechanism could 

not rely on the formation of a memory trace of the incoming stimuli that would prevent further 

information gathering. Moreover, the initial orienting towards the distractor was fully preserved, 

as shown by the emotional modulation of the late positive potential, an electrocortical marker of 

significance detection that was equally modulated by emotional distractors in the high as well as in 

the low distractor frequency context. In fact, with novel distractors it is more likely that a 

temporary filtering mechanism was activated to prevent further attention allocation to emotional 

stimuli, whereas evaluative processes and the engagement of motivational systems might occur in 

a mandatory fashion. 

Distractor frequency implies that the more the stimuli appear frequently, the less sense of novelty 

one has with them; however, a more direct way to manipulate novelty, which has more to do with 

the specific stimulus and not with expectations or context, is to repeat the same stimulus several 

times across trials. Previous studies showed that the free viewing of centrally-presented repeated 

emotional pictures only slightly affected the emotional modulation of the late positive potential 

(LPP), suggesting that, in the absence of a competing task, mere repetition is not sufficient to 

inhibit the impact of these stimuli (Codispoti et al., 2006, 2007; Ferrari et al., 2011; Mastria et al., 

2017). The introduction of a task would allow us to evaluate the impact of stimulus repetition on 

emotional processing in a competitive context in which emotional pictures are treated as 

distractors. Thus, in the present study, emotional pictures were task-irrelevant stimuli presented 

in peripheral vision while a central discrimination task was being performed. This design allowed 
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us to track the impact of the processing of repeated emotional distractors at the behavioral levels 

(i.e., emotional interference) as well as at the cortical level, in order to investigate at which stage 

of processing emotional distractors are filtered out.  

We may hypothesize that if the filter is sensitive to the specific features of the repeated stimulus, 

regardless of its motivational relevance, the habituation process could already be evident at an 

early stage, that is, before the stimulus (i.e., distractor) is evaluated and engages the motivational 

systems. Within this scenario, we expect an absent or strongly attenuated emotional modulation 

of the LPP, as well as a lack of modulatory effects on reaction times. Alternatively, distractor 

filtering may only be effective once the stimulus has been evaluated in terms of its motivational 

relevance, resulting in the LPP modulation, but preventing further information gathering when the 

stimulus is highly familiar, with no interference effect on performance. 

In the literature on brain oscillations, emotional scenes prompt enhanced alpha event-related 

desynchronization (alpha-ERD; Schubring & Schupp, 2019); moreover, alpha increase has been 

shown to reflect a gating process tuned to inhibit distractor processing (e.g., Geng, 2014; 

Wöstmann et al., 2019). Although previous habituation studies found little evidence of repetition 

effects on the alpha-ERD enhancement for emotional pictures (Ferrari, Mastria & Codispoti, 2020; 

Schubring & Schupp, 2021),  here pictures are the distractor stimuli, which may activate a gating 

process, with an increased alpha ipsilaterally to the distractors, that develops across repetitions 

and to a greater extent for emotional distractors. 

Moreover, at the end of the habituation phase, the introduction of a novel phase, with wholly 

novel distractors, helped to assess the hypothesis that the reduction of emotional interference 

with stimulus repetition could be mediated by a specific spatial inhibition of any sensory stimulus 

appearing in the distractor location. If distractor novelty is effective in prompting a recovery of 

attentional capture, we may argue that the filtering mechanism is basically tuned on the specific 
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features of the repeated stimuli, instead of on spatial filtering. On the other hand, the sensitivity 

to stimulus change may be different for emotional and neutral pictures. In a previous repetition 

study (Ferrari et al., 2020) in which affective habituation was measured in a free viewing context, 

the introduction of novel stimuli after an extensive habituation phase (which lasted for two 

sessions) prompted a response recovery in the LPP only for emotional but not for neutral pictures. 

If a similar pattern is also evident for behavioral interference, this would be further evidence that 

novelty is not sufficient per se to prompt an orienting response, and that other factors related to 

motivational significance of the stimulus (or of the context, Reisenzein et al., 2017) may play a 

crucial role. 

2. Method 

2.1 Participants 

The participants were 25 university students (12 females; mean age =24.64 years, SD = 4.8; 22 

right-handed). All participants had normal or corrected-to-normal visual acuity. The experimental 

protocol conformed to the Declaration of Helsinki.  

 

2.2 Material 

 The visual stimuli were 132 pictures of natural scenes selected from various sources, including the 

International Affective Picture System (IAPS; Lang et al. 2008), and public domain pictures 

available on the Internet. Of these pictures, 44 depicted pleasant contents (heterosexual erotic 

couples), 44 showed unpleasant contents (mutilated bodies), and the remaining 44 were neutral 

pictures depicting a variety of images of people in daily contexts. All images (14.3° h x 10.8°) were 

equated in brightness and contrast, using a MATLAB-based toolbox (SHINE; Willenbockel et al., 

2010). Pictures of natural scenes served as distractor stimuli and were positioned either to the left 
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or the right of a central Gabor patch (sinusoidal gratings with a Gaussian envelope). The distance 

between the inner edge of the distractor image and the center of the Gabor patch was 4°. 

The Gabor patch subtended a 5.3° x 5.3° visual angle and it could be horizontally or vertically 

oriented. Gabor patches were generated using custom MATLAB software by overlapping two 

distinct Gabor patches with the same frequencies but a different orientation (0.94 and 9.4 cycles 

per degree of visual angle, respectively). Stimuli were displayed on a gray background. Stimuli 

were presented on a 16-in monitor at 1024 x 768 resolution and at a refresh rate of 120 Hz. 

Stimulus presentation and data collection were performed using E-Prime software (Schneider et 

al., 2002). 

2.3 Procedure 

In the experimental session, upon arrival at the laboratory, participants signed an informed 

consent form. Then the participant was seated in a recliner in a small, sound-attenuated, dimly-lit 

room, and the EEG sensor net was attached.  

Figure 1 shows the sequence of events of the experimental paradigm. In each trial, a Gabor patch 

appeared in the center of the screen for 150 msec. The participant’s task was to determine, as 

quickly and accurately as possible, whether the Gabor patch was vertical or horizontal, and 

respond accordingly by pressing the corresponding key with the index finger of the dominant 

hand. The intertrial interval was variable (1000, 1550, or 1750 msec) and consisted of a gray 

screen. During this period, behavioral responses to the orientation task were collected. In 

distractor-present trials, a distractor picture (either pleasant, unpleasant, or neutral) was 

presented simultaneously with the Gabor patch, appearing equally often in the left or right visual 

field. Participants were explicitly informed that there would be a distractor in some trials and that 
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it should be ignored. The gabor patch was always present, whereas distractors appeared in 40% of 

the trials. 

The experimental session consisted of three blocks of 300 trials each: the first two blocks belonged 

to the habituation phase, as a small set of 12 pictures (4 pleasant, 4 neutral, and 4 unpleasant) 

were continuously repeated (10 repetitions for each picture exemplar in each block, i.e., 4 x 10). 

The third and last block of the experiment was the novel phase, where only new pictures that had 

never been presented before were revealed (40 pleasant, 40 neutral, 40 unpleasant). Two brief 

breaks were introduced across blocks. To make the novel distractors more unexpected, the second 

break was introduced 30 trials before the end of the habituation phase. 

Using the same 132 pictures, four presentation orders were constructed that varied, across 

participants, the specific pictures presented in the habituation and novel phases. 

Before the beginning of the experiment, each participant performed a practice block of 30 trials in 

which a neutral distractor appeared in 40% of the trials. This picture exemplar was exclusively 

presented in the practice trials.   

 

2.4 EEG recording and processing 

 

Electroencephalogram (EEG) was recorded at a sampling rate of 1000 Hz using a 59 channel Electro-

Cap connected to a SA Instrument CO (San Diego, CA) UF-64/72BA amplifier and in-house developed 

software. Impedance of each sensor was kept below 10 kΩ. Eye movements were recorded at a 

sampling rate of 1000 Hz from two bipolar couples of electrodes, placed respectively 1 cm above 

and below the right eye and 1 cm left and right to the side of the eyes. Both EEG and ocular signal 

were on-line filtered from 0.01 to 100 Hz. Off-line analysis was performed using Emegs (Peyk et al., 

2011). First, eye movements were subtracted from the EEG on a trial-by-trial basis, based on the 

data from the monopolar horizontal and vertical EOG, and using a regressive procedure (Gratton et 
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al., 1983). Then, raw data were low-pass filtered at 30 Hz. ERP averages were computed with a 200-

msec baseline and a 1000-msec time window. Trials and sensors containing artifacts were detected 

through a statistical procedure (Junghöfer et al., 2000). In each trial, if a high number of neighboring 

bad sensors was present, then the whole trial was discarded; for the remaining trials, sensors 

containing artifacts were replaced by interpolating the nearest good sensors. The percentage of 

good trials was 85%, and this percentage did not significantly change across blocks or conditions. 

Finally, data were re-referenced to the average of all channels. The average of the 200 ms pre-

stimulus baseline was subtracted from the waveform obtained. Processed data were averaged for 

each Block of 300 trials (Block 1, Block 2, Block 3) and Trial type (distractor absent; pleasant, neutral, 

and unpleasant distractors). ROI and time interval of interest were identified by both visual 

inspection and previous studies (Micucci et al., 2020). The LPP was scored as the average of the ERP 

waveform in the time window between 450 and 900 msec after stimulus onset at the centro-parietal 

sensor group (CPZ, CP1, CP2, CP3, CP4, PZ, P1, P2, P3, P4, P5, P6, POZ, PO3, PO4, PO5, PO6, PO7, PO8, OZ, 

O1, O2, see inset in Figure 3). 

For time-frequency analysis, no low-pass filtering was applied on the row EEG signal, but the 

correction of eye movements, as well as the artifact detection and sensor interpolation, was similar 

to the ERP analysis. Data were convolved using complex Morlet’s wavelet varying in time and 

frequency with a Gaussian shape. The time frequency analysis was performed on single trial data 

using FieldTrip software through EMEGS (Peyk et al., 2011). The Morlet wavelet has a Gaussian 

shape, where the f/SD(f) ratio was set to 7, and the number of wavelet cycles was set to 5 (Tallon-

Baudry et al., 1997). The range of analysis was from 4 to 80 Hz and analysis was performed in time 

windows from 1,000-msec before picture onset to 1,500 ms after picture onset in steps of 10 ms. 

As frequency resolution is maximal for low frequencies and minimal for high frequencies (Roach & 

Mathalon, 2008), the step between successive frequencies varied linearly from 0.5 Hz for the lowest 
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frequencies to 5 Hz for the highest frequencies. All data were baseline corrected, by subtracting the 

average alpha power of the prestimulus baseline (-300 to -100 ms) from each data point. The 

baseline was calculated slightly earlier than stimulus onset to avoid the burst of oscillatory activity 

that starts before the onset of the stimulation, due to the artifact of the filter algorithm (Hermann 

et al., 2005). The resulting event-related change in total power values (relative to baseline) are in 

decibels (dB) (Delorme & Makeig, 2004). For alpha-ERD (8-14 Hz), statistical analyses were 

performed on the mean value of bilateral occipito-temporal sensor groups (P3, P4, P5, P6, P7, P8, 

PO3, PO4, PO5, PO6, PO7, PO8, O1, O2, see inset in Figure 4) over the same temporal window of 

the LPP (450-900 ms).  

2.5 Data Analysis 

RT and EEG analyses were performed only on accurate trials, that is, when the orientation of the 

central gabor was correctly detected.  

For each participant, block, and trial type, RTs above or below 3 SDs from the mean were 

discarded as outliers. These criteria removed 4.6 % of the data.  

For RT and the LPP, a repeated-measures ANOVA was performed with the two within-participant 

factors of Block (3: Block 1, Block 2, and Block 3) and Trial type (4: distractor absent, pleasant, 

neutral, unpleasant). Considering that alpha-ERD showed an occipital bilateral topography that 

was highly sensitive to distractor spatial position, the statistical design also included the Position 

factor: contralateral vs. ipsilateral hemisphere relative to distractor visual hemifield. Thus, a first 

analysis focused on the emotional content of distractor pictures, with the following design:  

distractor Position (2: Contro, Ipsi) x Block (3) x distractor Valence (3: pleasant, neutral, 

unpleasant). A second analysis assessed the overall alpha-ERD during trials with distractors 

(contralateral and ipsilateral) versus distractor-absent trials as a function of blocks: distractor 

Position (3: Contro, Ipsi, Absent,) x Block (3). Greenhouse-Geisser corrections were applied where 
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relevant. For each ANOVA test, we reported the partial η2 squared statistic (η2
p), indicating the 

proportion of variance that is explained by experimental conditions over the total variance. 

3. Results 

3.1 Behavioral data 

Figure 2 shows the interference effects of distractors on the response times (RTs) to the gabor 

discrimination task. All types of pictures prompted an evident RT slowdown, compared to distractor-

absent trials. The emotional content of distractors, either pleasant or unpleasant, was more 

effective in capturing attention and interfering with the task, but this affective interference was very 

sensitive to picture repetition, showing an evident decrease throughout the habituation phase, 

followed by a full recovery with novel distractors. 

Statistical analysis of RTs revealed a main effect of trial type (F3,72 = 34.6, p < .001, η2
p = .59), with 

slower RTs for distractor-present trials, compared to distractor-absent trials (Fs1,24 = 44, 30.89, 

43.79, ps < .001, η2
p > .56, respectively, for pleasant, neutral, and unpleasant distractor types). The 

emotional picture content prompted an additional modulatory effect on RTs, with slower responses 

during the occurrence of both pleasant and unpleasant distractors, compared to neutral pictures 

(Fs1,24 > 20.89, ps < .001, η2
p > .47). RTs for pleasant and unpleasant distractors were similarly 

modulated.  

The Block (3) x trial types (4) interaction (F6,144 = 6.896, p < .001, η2
p = .223) indicated that behavioral 

interference changed over trials as a function of distractor repetitions, but only for emotional 

pictures (distractor-present vs. distractor-absent (2) x 3 blocks: for pleasant, F2,48 = 13.116, p < .001, 

η2
p = .353 and unpleasant, F2,48 = 5.435, p = .016, η2

p = .185), and not for neutral distractors (F2,48 <1, 

p = .594, η2
p = .020). More specifically, compared to distractor-absent trials, both pleasant and 

unpleasant pictures decreased their interference from block 1 to block 2 of the habituation phase 

(distractor-present vs. distractor-absent (2) x 2 blocks for pleasant, F1,24 = 22.17, p < .001, η2
p = .480; 
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unpleasant, F1,24 = 4.984, p = .035, η2
p = .172), such that the affective modulatory pattern found in 

block 1 (pleasant and unpleasant vs. neutral, Fs1,24 > 18.259, ps < .001, η2
p > .432) was no longer 

evident at the end of the habituation phase (block 2: pleasant and unpleasant vs. neutral, Fs1,24 > 

1.85, ps > .082, η2
p > .072).  

The introduction of novel pictures prompted a full recovery of emotional interference (pleasant and 

unpleasant vs. neutral in the novel block, Fs1,24 > 15.371, ps < .001, η2
p > .39), that was similar to that 

observed in the first block of the habituation phase (block1,3 x trial Typepl,neu,unpl, p = .054). In all these 

conditions, RTs behaved similarly for pleasant and unpleasant distractors.  

Overall accuracy was high (M = 96.5%), indicating that the discrimination task was perceptually easy 

(low-load perceptual task). The ANOVA did not reveal any significant effects involving trial type, 

block, or their interactions.  

 

3.2 Late positive potential (LPP) 

Figure 3 illustrates that the LPP enhancement for pleasant and unpleasant distractors, compared to 

neutral distractors, decreased throughout the habituation phase, and then recovered with the 

introduction of novel distractors.  

Statistical analysis of the LPP revealed a main effect of trial Type, (F3,72 = 31.167, p <. 001, η2
p = .565), 

showing the largest positivity for pleasant distractors, compared to all other trial types, including 

unpleasant distractors (F1,24 = 10.165, p = .004, η2
p = .298), which in turn were more positive than 

neutral distractors (F1,24 = 31.726, p < .001, η2
p = .569). Interestingly, the LPP amplitude did not differ 

between neutral distractor and distractor-absent trials (F1,24 = .64, p = .43, η2
p= .026).  A main effect 

of Block (F2,48 = 6.528, p = .003, η2 
p= .214) indicated that the LPP changed as a function of distractor 

repetitions, with a smaller amplitude in block 2 compared to block 1, (F1,24 = 12.478, p = .002, η2
p = 

.342) as well as compared to block 3 (novel), F1,24 = 6.466, p = .018, η2 
p= .212. The Block x trial Types 
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interaction (F6,144 = 4.133, p = .001, η2
p =.147) revealed that the effect of repetition impacted only 

emotional distractors (Pleasant over blocks, F2,48 = 7.672, p = .001, η2
p= .242, Unpleasant over blocks, 

F2,48 = 6.53, p = .003, η2
p = .214) but not neutral distractors F2,48 = 1.199, p = .307, η2

p = .048. Indeed, 

similarly to RT results, the LPP to neutral distractors was not attenuated by repetition, and novel 

neutral pictures did not prompt any hint of LPP enhancement compared to repeated neutral 

distractors (Block 2 vs. Novel, F = .376, p = .546).  

The affective modulation was highly significant in block 1 (F2,48 = 14.962, p < .001, η2
p = .384) with 

both pleasant and unpleasant being more positive than neutral pictures (F1,24 = 32.998, p < .001, η2
p 

= .50; F1,24 = 17.276, p < .001, η2
p = .419, respectively), but similar to each other. Unlike reaction 

times, in block 2 the affective modulation of the LPP was still significant, (F2,48 = 6.293, p = .004, η2
p 

= .208), but this modulatory effect was mostly driven by pleasant distractors, that, if compared to 

neutral distractors, did not show a significant habituation pattern across repetitions (Block1,2 x trial 

Typepl, neu, F1,24 = 2.184, p = .152, η2
p = .083). Unpleasant distractors, on the other hand, were 

significantly affected by repetitions (Block1,2 x trial Typeunpl, neu, F1,24 = 4.885, p = .037, η2
p = .169), 

such that in block 2 there was no LPP difference between unpleasant and neutral distractors (F1,24 = 

1.119, p = .301, η2
p = .045). In the novel phase the LPP was again larger for both pleasant and 

unpleasant distractors compared to neutral ones Fs1,24 > 15.522, ps < .001, η2
p > .393, although novel 

unpleasant distractors continued to prompt a smaller LPP compared to pleasant stimuli F1,24 = 8.882, 

p = .007, η2
p = .270. 

 

3.3 Alpha Event Related Desynchronization (alpha-ERD) 

Figure 4 illustrates that the overall alpha-ERD was enhanced for emotional (both pleasant and 

unpleasant) compared to neutral distractors, and this affective modulation was preserved over 
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blocks. Alpha-ERD was clearly lateralized as a function of distractor position, with a more evident 

desynchronization in the contralateral, compared to the ipsilateral, hemisphere. Enhanced alpha-

ERD was shown in both the contralateral and the ipsilateral hemisphere to distractor occurrence 

compared to in distractor-absent trials, and this desynchronization decreased across repetitions to 

then recover with novel distractors.  

Distractor Position (2) x Block (3) x distractor Valence (3): Alpha-ERD was significantly modulated by 

distractor valence (F2,48 = 26.859, p < .001, η2
p = .528) with stronger desynchronization for both 

pleasant, F1,24 = 43.991, p < .001, η2
p = .647, and unpleasant (F1,24 = 21.216, p < .001, η2

p = .469) 

compared to neutral pictures, and for pleasant, compared to unpleasant pictures (F1,24 = 11.015, p 

= .003, η2
p =.315). The amount of affective modulation of alpha was not affected by distractor spatial 

position (distractor Position x Valence, F 2,48= 2.091, p = .138, η2
p = .080), and did not show a 

consistent repetition effect (Block x Valence, F 4,96 = 2.526, p =.058, η2
p  = .095), as was, however, the 

case for the RTs and the LPPs. 

Distractor Position (3) x Block (3): The scalp topography and modulation of alpha desynchronization 

was clearly affected by the occurrence of a peripheral distractor (distractor Position, F2,48 = 32.142, 

p < .001, η2
p = .573), prompting a larger occipital alpha decrease in both the contralateral and 

ipsilateral hemispheres (Fs1,24 > 18.154, ps < .001, η2
p  > .431), compared to distractor-absent trials 

where alpha-ERD was elicited by the mere presence of the central gabor, showing a bilateral 

desynchronization. Alpha-ERD to distractors was even more pronounced in the contralateral, 

compared with the ipsilateral, hemisphere to the distractor visual hemifield (F1,24 = 47.5, p < .001, 

η2
p = .664).  

 Alpha oscillations changed across blocks (F2,48 = 6.18, p = .005, η2
p = .202) and the distractor Position 

x Block interaction (F4,96 = 8.657, p < .001, η2
p = .265) revealed that for distractor-absent trials alpha-
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ERD decreased linearly over the three blocks (F1,24 = 8.261, p = .008, η2
p= .256) whereas for 

distractor-present trials alpha-ERD decreased across repetitions (block 1 vs. block 2, F1,24 = 9.822, p 

= .005, η2
p= .290), and then strongly recovered in the novel phase, with a similar pattern in both the 

contralateral and ipsilateral hemispheres (Fs1,24 > 9.2, ps < .001 η2
p > .277). 

4. Discussion 

The present study investigated whether attentional capture by high arousing emotional distractors 

can be attenuated through a non-strategic learning mechanism mediated by mere stimulus 

repetition. Several studies have shown that repeated exposure to a distracting stimulus is able to 

improve our capacity to ignore this distracting information, leading to a reduced RT cost. This 

filtering mechanism has been shown to work efficiently with perceptually salient stimuli (Kelly & 

Yantis, 2009; Turatto & Pascucci, 2016), but emotional distractors, especially those depicting sexual 

or blood/wound cues, belong to a special category of significant stimuli that may be more resistant 

to habituation (Folk, 2015). The results revealed that behavioral interference of emotional 

distractors strongly decreased across repetitions, showing a complete habituation by the end of the 

repetition phase. When repeated distractors were replaced with novel exemplars, the emotional 

interference fully recovered, with slower reaction times for both pleasant and unpleasant pictures 

compared to neutral distractors, indicating that the filtering mechanism was finely tuned regarding 

the specific stimulus used throughout the habituation phase and did not apply to similar emotional 

exemplars, like those presented in the novel phase. Unlike emotional stimuli, novel neutral 

distractors, however, were not effective at prompting attentional capture.  

In terms of cortical reactivity, the enhancement of the LPP for pleasant and unpleasant distractors 

was strongly attenuated by repetition, and the introduction of novel pictures prompted a clear and 

consistent response recovery of the LPP affective modulation. Again, stimulus novelty was effective 
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at prompting a response recovery only for emotional distractors. Thus, no trace emerged, neither 

at the behavioral nor at the neural level, of the impact of stimulus change for neutral distractors, 

suggesting that the inner model leading the predictive coding was tuned to detect a change to 

emotional cues specifically, whereas neutral scenes were all treated as irrelevant distractors, 

regardless of stimulus novelty.  

These findings provide a new and unexpected glimpse into the attentional filter mechanisms that 

operate to inhibit irrelevant information. Among different cognitive mechanisms for distractor 

filtering, the most suitable and parsimonious interpretation of these findings relies on the 

“Comparator theories” of habituation (Öhman, 1992; Ramaswami, 2014; Siddle, 1991), that 

developed from the original “neural model” concept of the orienting reflex (OR) by Sokolov (1960, 

1963). Among the most defining features of the OR were the fact that orienting responses were 

elicited in the context of stimulus change, and that orienting habituated with stimulus repetition. 

Some authors challenged this apparently simple model; for example, Bernstein (1979) argued that 

if stimulus novelty alone is sufficient to elicit an OR, orienting may be maladaptive in that the 

organism’s ongoing behavior will be frequently disrupted by encounters with novel but non-

important stimuli. But of course it depends on how “novelty” is defined and measured (Bradley, 

2009; Reichardt et al., 2020). A long debate then followed (Bernstein, 1979; Maltzman, 1979; 

O’Gorman, 1979) on the definition of the OR as a measure of novelty or significance, with the 

fundamental idea that mere recognition of a stimulus change is not in itself a sufficient condition 

for the appearance of an OR, unless the change has some consequences for the organism. A revision 

of the traditional OR theory was needed, with the formulation (Bernstein, 1979) of a two-stage 

process in which novelty is first assessed in terms of the degree of match with a neuronal model, 

followed by the evaluation of stimulus significance. Maltzaman (1979) proposed a somewhat 
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different conception of a neural model as a detector of stimulus change: the occurrence of an OR 

as a consequence of novel stimuli presupposes a particular state of the organism, that is a 

consequence of ontogeny, phylogeny, past learning experiences, and sets established by the 

immediate stimulus context, as well as previous stimulation. Given a particular state of the 

organism, a stimulus change may evoke an OR. More recently, in line with the current predictive 

coding framework (Friston, 2005), the role of unexpectedness has been emphasized as a crucial 

property mediating the automatic orienting of attention (Reichardt et al., 2020). The basic idea is 

that a certain threshold needs to be overcome by any given event to elicit these responses 

(Reisenzein et al., 2017) and other determinants such as motivation, the complexity of the 

environment, or uncertainty may all influence the threshold (i.e., the degree of unexpectedness 

needed to evoke the orienting response). According to this view, the present findings provide 

evidence that stimulus novelty per se is not sufficient to overcome the threshold required to trigger 

an orienting of attention, as this occurred only for novel emotional distractors but not for those that 

were emotionally neutral. More likely, our results suggest that the detection of a stimulus change 

goes through a further evaluation in terms of motivational relevance, and only when novel stimuli 

belong to high arousing categories is an OR triggered.  

The disappearance of distractor interference across trials could also reflect a spatial filtering that 

selectively cuts out everything that appears outside the attentional focus of the target. The current 

experimental context, with central targets (gabor stimulus) and peripheral distractors (pictures) 

presented simultaneously, may encourage the observer to adopt a top-down attentional set that is 

accurately tuned to the specific target-defining features or position (Bacon & Egeth, 1994; Leber & 

Egeth, 2006a). Hence, in this scenario, distractor filtering could be the consequence of the adoption 

of a well-specified target template (Leber & Egeth, 2006b), instead of a well-defined memory trace 
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of the distractor. If this were the case, we would have no response recovery for novel emotional 

distractors presented after the habituation phase. However, we observed a prompt recovery of 

orienting in both RT and LPP responses as soon as repeated pictures were replaced with novel 

exemplars. Moreover, the LPP to pleasant pictures, although attenuated across repetitions, 

continued to be enhanced compared to neutral distractors until the end of the habituation phase, 

indicating that peripheral distractors were still partially processed, and excluding the hypothesis 

that the reduction of interference was due to a narrowing of attention around the central target. 

An unexpected finding concerns the clear habituation of the LPP for unpleasant distractors, which 

prompted an LPP similar to that of neutral distractors by the end of the habituation phase. 

Compared to other measures of affective processing, the LPP has always proved to be the most 

resistant to habituation, even in the face of a high number of repetitions (Codispoti et al., 2006; 

2007; Ferrari et al., 2011).  However, whereas in previous repetition studies the impact of picture 

repetition was investigated in a free-viewing context (no task), with emotional pictures always 

presented in central vision, here emotional pictures were distractor stimuli presented in the 

periphery during a concurrent perceptual task in the center (i.e., gabor discrimination). A competing 

task was introduced only in one previous study (Codispoti, De Cesarei, Biondi, & Ferrari, 2016), but 

pictures were presented in the center, and the LPP enhancement for both pleasant and unpleasant 

pictures was totally preserved despite repetitions. 

The present findings help us to understand the obligatory nature of the affective modulation of the 

LPP, suggesting that in particular circumstances, such as when emotional pictures are task-irrelevant 

stimuli and are processed in peripheral vision, the habituation process also occurs for the LPP 

affective modulation and is even stronger for unpleasant compared to pleasant distractors.  

Although it is well established that complex natural scenes depicting a variety of semantic categories 
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(e.g., faces, means of transportation, animals) can also be highly processed in peripheral vision when 

they are task-relevant (Boucart et al., 2016; Rousselet et al., 2004; VanRullen & Thorpe, 2001) as 

well as when they are distractors (Micucci et al., 2020) as in the case of the present study, we may 

hypothesize that the affective habituation could be facilitated for peripheral stimuli, compared to 

stimuli processed in foveal vision which may prompt a mandatory emotional categorization. Future 

repetition studies may address this hypothesis with a direct comparison of repetition effects for 

task-irrelevant pictures presented centrally (foveal or parafoveal vision) or displaced in space 

compared to the target. 

One hypothesis explaining why the LPP for pleasant pictures (i.e., erotic couples) resists habituation 

may have to do with the fact that in many studies erotic scenes prompted a stronger physiological 

reactivity compared to other emotional contents (e.g., threat and mutilations). Evidence comes 

from pupil dilation data (e.g., Bradley & Lang, 2015; Bradley et al., 2017) and several brain 

responses, such as the early posterior negativity (EPN, e.g. De Cesarei & Codispoti, 2006; Farkas et 

al., 2020; Schupp & Kirmse, 2021), the late positive potential (LPP, e.g., Ferrari et al., 2008; Ferrari 

et al., 2020; Mastria et al., 2017; Schupp et al, 2004), and the alpha desynchronization (Ferrari et al., 

2020; Schubring & Schupp, 2019). However, it is worth noting that pleasant and unpleasant 

distractors did not differ in the first block, suggesting that the difference in valence between blocks 

has to do with a different impact of picture repetition, which could be attenuated for salient stimuli 

that are easier to process, as in the case of erotic cues. 

Alpha oscillations were highly sensitive to distractor occurrence, showing an enhanced posterior 

desynchronization at sensors that were contralateral to the distractor position, which was highly 

modulated by distractor emotionality.  Previous studies have shown alpha-ERD for emotional, both 

pleasant and unpleasant, compared to neutral pictures during a passive viewing condition (Ferrari 
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et al., 2015; Ferrari et al., 2020; Schubring & Schupp, 2019), as well as while carrying out an explicit 

task on the pictures (De Cesarei & Codispoti, 2011; Schubring & Schupp, 2019). The present study 

showed alpha desynchronization for task-irrelevant emotional pictures that were briefly presented 

in the peripheral visual field. Moreover, although the overall alpha-ERD decreased with stimulus 

repetition and increased with novelty, the emotional modulation remained unaffected across 

blocks, consistent with previous studies (Ferrari et al., 2020; Schubring & Schupp, 2021) with central 

pictures in a passive viewing condition. Unlike the LPP that is highly sensitive to the specific novelty 

of emotional stimuli, alpha-ERD is characterized by a similar habituation pattern for emotional and 

neutral distractors, which may reflect a sensitivity to the detection of novelty at a perceptual level 

(i.e., low-level properties of the visual scene), in the service of an increase in visual processing for 

any kind of distractor change, regardless of its motivational significance. 

Furthermore, the hypothesis that an ipsilateral increase in alpha power may reflect functional 

inhibition of distractors is not supported by the present findings, since the alpha power was greater, 

overall, in distractor-absent compared to distractor-present trials, and this difference was 

maintained over repetitions, while distractor interference (i.e., RTs) habituated. The filtering 

mechanism based on ipsilateral increase in alpha power may be more easily engaged in a proactive 

control context, where the occurrence of the distractor is somehow anticipated, and not in an 

unpredictable context such as the present one (Vissers et al., 2016). 

Taken together, these findings show that implicit learning mechanisms, such as those triggered by 

stimulus repetition, play an important role in modulating the impact of emotional distractors. 

Micucci et al. (2020) previously showed that a high occurrence of distractors prompts an attenuation 

of emotional interference, compared to a context with rare distractors, but the present study 

reveals that only the formation of a clear memory trace of the stimulus exemplar throughout 
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repetitions activates an efficient filtering mechanism that not only suppresses behavioral 

interference but also prevents early motivational engagement, reflected in the LPP modulation, at 

least for unpleasant contents. Moreover, the exclusive OR recovery of novel emotional distractors 

further supports the hypothesis that novelty and emotion share the same motivational circuits that 

evolved to support adaptive perceptual and motor processes in survival contexts (Bradley, 2009). 

The activation of several cortical and subcortical structures sensitive to emotional processing (e.g., 

the locus coeruleus and the amygdala) is also enhanced in response to novel neutral stimuli, 

compared to repeated ones, suggesting that novelty is integral of their function (Bradley et al., 2015; 

Schomaker & Meeter, 2015; Schwartz et al., 2003; Wright et al., 2003; Zald, 2003). In the absence 

of any stored information (i.e., past experience) regarding the stimulus, novel stimuli reflexively 

engage the motivational circuits, primarily because they may be dangerous. On the other hand, it is 

also evident that repeated experience refines the orienting response mechanism in order to detect 

only those stimulus changes that may have implications for survival. 
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Figure captions 

 

Figure 1: Schematic diagram showing the sequence of events in the present study. Two blocks of 

repeated distractors (habituation phase) were followed by one block consisting wholly of novel 

distractors (novel phase). The trial sequence was the same in each block, with an initial dark-gray 

blank screen appearing for 500 msec, followed by a Gabor patch presented for 150 msec. In some 

trials, a picture (neutral, pleasant, or unpleasant) appeared simultaneously with the Gabor patch, 

flanking it on the left or right, and stayed on the screen until the Gabor patch disappeared. 

Participants were instructed to focus their attention on the Gabor patch and to determine its 

orientation (vertical or horizontal) by pressing one of two buttons while ignoring the distracting 

scenes. Then a blank screen that ranged from 1000 to 1750 msec was presented.  

Figure 2: (a) RTs in the discrimination orientation task for each trial type. Behavioral interference is 

plotted as a function of block, showing that pleasant and unpleasant distractors initially produced 

enhanced interference compared to neutral scenes, but that this slowing declined with repetition. 

Novel distractors prompted a full recovery of emotional interference. Error bars show ±1 SEM 

calculated within participants using the method of O’Brien and Cousineau (2014). (b) Single subject 

plot of the RT difference between emotional (average of pleasant and unpleasant) and neutral 

distractors (i.e. affective modulation). Line represents the mean.  

Figure 3: The effects of distractor repetition on the LPP amplitude. (a) Grand-averaged ERP 

waveforms (average across the sensor cluster, 3b) for pleasant, neutral, and unpleasant distractors 

across the two blocks of the habituation phase and the final novel block. Insets show the back view 

of scalp topography (450–900 msec) of the LPP enhancement for pleasant and unpleasant 

distractors, compared to neutral distractors. (b) The sensor cluster used for statistical analyses is 
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reported on the sensor map (gray dots). (c) The line graph shows the mean of the LPP amplitude 

(window 450-900 ms) for distractor-absent, pleasant, neutral, and unpleasant distractors as a 

function of block. (d) Single subject plot of the LPP affective modulation (emotional minus neutral), 

separately for pleasant (blu dots) and unpleasant distractors (red dots). Line represents the mean.  

Figure 4: The effects of distractor repetition on the alpha-ERD. (a) Time-frequency plot for neutral, 

unpleasant, and pleasant distractors (average over blocks). (b) The line graph illustrates the mean 

of alpha-ERD (8–14 Hz) in the window 450–900 ms after stimulus onset for distractor-absent, 

pleasant, unpleasant, and neutral pictures as a function of block. (c) Single subject plot of alpha-ERD 

affective modulation (emotional minus neutral), separately for pleasant (blu dots) and unpleasant 

distractors (red dots). Line represents the mean. (d) The sensor cluster used for statistical analyses 

is reported on the sensor map (gray dots). (e) The line graph illustrates the mean alpha-ERD for 

distractor-absent trials, and for contralateral and ipsilateral distractors (averaged across picture 

content) as a function of block. (f) Scalp topography of alpha-ERD for distractor-absent trials, and 

for trials with distractors (averaged across picture contents) as a function of distractor lateralization 

(to the left or right of the central gabor).  

 


