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Abstract

In this work, we present and evaluate heuristic techniques for a real-world
territory design problem of a major dairy company which produces and dis-
tributes perishable products. The problem calls for grouping customers into
geographic districts, with the objective of minimising the total operational
cost, computed as a function of the fixed costs of the districts and the routing
costs. Two inter-connected decision levels have to be tackled: partitioning
customers into districts and routing vehicles according to complex opera-
tional constraints. To solve the problem, a hybrid multi-population genetic
algorithm is designed, enhanced with several evolution and search techniques.
The proposed design is extensively tested on instances derived from the lit-
erature and on real-world large-scale instances, involving more than 1000
customers. The results show the effectiveness of the different components of
the algorithm and the feedback from the company’s planners confirms that it
produces high-quality, operational solutions. Additionally, we explore some
managerial findings with respect to the adoption of alternative objectives
and service requirements.
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1. Introduction

In many real-world applications of retails goods distribution, customers
are not served on a daily basis; instead, the demand is characterised by some
other periodicity [1, 2]. The delivery patterns must be chosen over a suitable
planning horizon in order to achieve the desired service level and cost benefit.
This specific vehicle routing problem (VRP), known in the literature as the
periodic vehicle routing problem (PVRP), may lead to complex vehicle dis-
patching and routing problems, both for the operators and the drivers—due
to the constraints of distinct visit frequencies and available visit patterns in
the planning horizon, especially for large-scale distribution management.

In order to simplify the daily problem and increase the drivers’ familiarity
with particular districts or areas, companies assign each driver to a fixed set of
customers in the medium-long term (e.g., a semester or a season) [3, 4]. With
increased familiarity, drivers become acquainted with their territories, which
helps them serve their customers more effectively while enhancing service
consistency [5]. At the same time, the operational and administrative work
for operators is simplified. Increasing service consistency is becoming more
important for transportation providers because, as competition increases,
customer satisfaction becomes crucial.

To achieve these benefits, two inter-connected decision levels have to be
tackled: partitioning customers into districts (also called areas or territories)
[6] and routing vehicles according to complex operational constraints [7]. The
process of partitioning the service area into sectors is referred to as districting,
and problems studying the design of efficient territories are classified as dis-
tricting/territory design problems [8] or territory planning problems [3]. In
addition to logistics and transportation, some other important applications
of territory design are political districts, sales territories, school locations,
emergency sites, solid waste collection, and police patrol zones [8, 9].

In this paper, we address a new territory design problem based on the
distribution problem of a major dairy company: the firm needs to rationalise
its distribution network to greatly improve its competitive advantage. This
rationalisation process aims to achieve remarkable savings while preserving
responsiveness and service quality, requiring the joint optimisation of the
distribution districts and the periodic vehicle routes.
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1.1. Our contributions

Given the inherent computational complexity of the problem, both in
terms of the associated optimisation problem and the size of the instances
considered, we decided to solve the problem using a hybrid multi-population
genetic algorithm. This choice is motivated by the fact that the literature
clearly shows that existing exact algorithms for vehicle routing problems re-
lated to our problem can only solve simplified versions of our problem to
optimality, and even these versions involve very small instances with only
a few dozen customers. In contrast, our computational study considers in-
stances with more than 1000 customers.

In the literature, territory design problems are generally addressed with
solution approaches that favor the contiguity and compactness of the de-
signed districts; as a result, the districts have almost round shapes [10, 9].
These approaches are not capable of considering the full complexity of the
routing constraints, since they do not explicitly consider the routing com-
ponent of the problem. This limitation may strongly affect the quality of
the real-world solutions produced. In fact, compactness may be counter-
productive in routing applications, especially in the presence of a periodic
structure—and having partially overlapping territories is not necessarily more
costly. Therefore we designed an integrated routing approach that benefits
from of two intertwined decision levels: partitioning customers into areas and
routing vehicles.

To prove the effectiveness of the proposed algorithm and its components,
we perform extensive computational experiments on instances derived from
the literature and the real world. Furthermore, we explore managerial find-
ings by studying the trade-offs between the service requirements.

The paper is organised as follows. The next section presents the back-
ground of our study, states the problem, and reviews the relevant literature.
The hybrid genetic algorithm is detailed in Section 3. A computational study
is reported and analysed in Section 4. Finally, we give insights about the al-
gorithm usage and its benefits, and indicate future work directions in Section
5.

2. Motivation, problem definition, and related works

The tactical problem addressed in this paper is a real application from
a major dairy company whose core business is the production and distribu-
tion of perishable products (fresh milk, cheese, and butter, to name a few).
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Recently, the competitive dynamics of the dairy industry have changed dras-
tically: to be competitive, it is no longer enough to provide a high-quality
product. The most important product feature has suddenly become price.
As a result, the company has been forced to quickly reduce prices, to be com-
petitive with the other companies. Continuous price reductions, however, are
never sustainable if they are not supported by significant cost cutting. Of
all the possible cost curbing measures, the only feasible one seems to be a
reduction of the distribution costs. In fact, at the moment, the other major
costs—namely, raw materials, machineries and plants, and labor—cannot be
significantly lowered.

The production and distribution processes of the company are highly
complex, relying on a manufacturing structure and a distribution network
made up of several facilities scattered evenly across a large territory, which
make up a smoothly functioning supply network.

The distribution network is organised hierarchically: production facilities

replenish a set of distribution centres, which are strategically located to effi-
ciently cover the distribution area. The products are successively distributed
from these centres to a well-structured network of transit points which are in
charge of the distribution to the final customers. Distribution is performed
by a two-part system: (i) primary shipping, carried out with large trucks,
from the production facilities to the distribution centres and from the distri-
bution centres to the transit points; and (ii) secondary shipping, with smaller
trucks, from the transit points to the final customers.

Our study addresses the secondary shipping from the transit points to
the final customers. Not all customers require service every day, and each
customer is associated with only one transit point. Hence, an instance of
our districting problem is defined by a transit point, which can be in either
an urban or suburban area. Almost all the customers require at least one
visit per working week (Monday to Saturday), and the company’s planners
design template routes with a planning horizon of six days. The template
routes are then implemented daily at the operational level, where last-minute
requirements in the daily operations are taken into account. The use of
template routes simplifies the administrative operations and also improves
the driver’s familiarity with the working regions, the customers, and their
product demands. This familiarity allows a driver to run a route efficiently,
making daily adjustments as necessary; it can also lead to a more accurate
delivery process overall. The template routes, generally implemented for a
variable number of weeks, are revised according to the seasonality of product
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Figure 1: Distribution areas for a transit point.

demand and the acquisition of new customers. In practice, a set of template
routes can be locally revised (routes are selectively updated based on new
requirements) or globally revised (new template routes are generated, usually
every 6-12 months). A crucial objective of the company is to minimise the
total distribution cost while ensuring a high level of service.

Figure 1 shows a sample of distribution areas for a transit point where
each area is identified by a different polygon. Each area is assigned to a driver,
who is in charge of distributing the products to the customers included in the
area. An additional feature of the problem considered in this paper is that
the underlying distribution network is based on a real road network, hence
both distances and travel times are computed using digital maps.

Below, we formally describe the problem addressed in this paper, followed
by a literature review of related works.

2.1. Problem definition

The problem is defined with a planning horizon of nd days represented
by the index set D = {1, 2, . . . , nd}, and a distribution network represented
by a complete directed graph G = (N ′, A), where the set N ′ contains nc + 1
vertices and A is an arc set. The set of arcs A represents the set of all possible
links among the vertices associated with the locations of the customers and
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of the depot. We have N ′ = {0} ∪N , where node 0 represents a depot (or a
transit point) and the set N = {1, . . . , nc} represents nc customers.

A fleet of nv identical vehicles, located at the depot, is available on each
day of the planning horizon. Each vehicle has a capacity Q, a maximum
working time L, and a fixed cost F .

For each customer i ∈ N , the following data are defined.

• A service frequency fi representing the number of times customer i
must be visited during the planning horizon;

• A set Ci ⊆ 2D of allowable day-combinations of fi visit days. For
example, a customer may require two visits (i.e., fi = 2) during the
planning horizon of six days (i.e., nd = 6), and these visits can take
place on one of the following day-combinations: Monday-Thursday,
Monday-Friday, or Tuesday-Friday (i.e., Ci = {{1, 4}, {1, 5}, {2, 5}}.
In the following, set Ci is also used to denote the index set of the
allowable day-combinations;

• A quantity qdi that customer i must receive if visited on day d;

• A service time sdi to complete all operations at customer i if visited on
day d;

• A time window [edi , l
d
i ], where e

d
i and ldi represent the earliest and latest

times for serving the customer i on day d.

In our application, value qdi , a total of all the different products to be deliv-
ered to the customer, is estimated based on historical data. In practice, the
quantities may vary, because during the weekends a customer may require
more products, and distribution is not performed on Sunday. However, daily
quantities {qdi } are generally variable only for customers having high frequen-
cies (5 and 6). The service time sdi depends on both the time required for the
delivery (as a function of the quantity qdi ) and the time spent by the driver on
administrative tasks related to the delivery, which can vary depending on the
customer. Moreover, a customer’s time window can vary during the week,
due to different daily opening hours or customer preference. All vehicles are
saturated in terms of weight capacity, hence values qdi and Q are expressed
accordingly.

The non-negative cost (or distance) matrix [cij ] and time matrix [tij ] are
associated with graph G, where cij and tij represent the transportation cost
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and the time for traversing arc (i, j) ∈ A, respectively. The cost F is an
estimate of the fixed weekly cost for using the vehicle.

A feasible route for a vehicle on day d ∈ D is a simple circuit in G passing
through the depot and a subset of the customers that can be visited on that
day d, and such that:

(i) The sum of the customer demands is less than or equal to Q;

(ii) Each customer on the route is visited within its time window, so if the
vehicle arrives at i on day d before edi , the service is delayed to time edi ;

(iii) The total working time of the route, computed as the sum of the service,
travel, and waiting times, is less than or equal to L.

The cost of a route (routing cost) is given by the sum of the costs cij of
the arcs used by the route.

The problem consists of assigning every customer i ∈ N to exactly one
vehicle (or, equivalently, one area) to ensure driver consistency and designing
at most nv feasible routes for each day d ∈ D. Each vehicle performs at most
one route—or, equivalently, each area is operated at most once for each day
of the planning horizon, so that each customer i ∈ N is visited fi times,
according to a feasible day-combination.

The objective is to minimise the sum of the fixed vehicle costs and the
route costs. It follows that if cost F is set to a large enough constant value,
then the objective is to minimise the number of vehicles (or areas) used and
then minimise the sum of the route costs; whereas if F is set to zero, the
objective reduces to minimising the total routing cost.

Figure 2 gives an example of a solution for the instance data reported in
Table 1. The example involves a three-day planning horizon, eight customers,
and two areas (vehicles) (nd = 3, nc = 8, and nv = 2). For each area,
the figure shows the three vehicle routes corresponding to the different days
of the planning horizon. Customers having the same frequency values are
represented with the same colours.

Hereafter, the following notation and terms are used. For a customer
i ∈ N , the visit days of a day-combination s ∈ Ci are represented by binary
coefficients adsi, where a

d
si is equal to 1 if day d belongs to day-combination s,

0 otherwise. We have that
∑

d∈D adsi = fi, ∀s ∈ Ci, and quantity qdi is equal
to 0 if adsi = 0, ∀d ∈ D, s ∈ Ci (i.e., customer i is not visited on day d). The
terms day-combination and pattern are used interchangeably.
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i fi Ci i fi Ci

1 3 {1, 2, 3} 5 1 {1}, {3}
2 2 {1, 2}, {1, 3} 6 3 {1, 2, 3}
3 1 {1}, {3} 7 2 {1, 2}, {1, 3}
4 1 {1}, {2} 8 1 {2}, {3}

Table 1: Example: customers, frequencies and day-combinations.
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4
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(d) Area 2 - Day 1

0
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(e) Area 2 - Day 2

0
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5

(f) Area 2 - Day 3

Figure 2: Example of a solution for the data of Table 1.

2.2. Related work

To the best of our knowledge, the problem considered in this paper has
never been addressed in the literature. Related problems are location prob-
lems [10] and VRPs [11, 12]. In particular, we deal with the joint optimisation
of districting and routing problems, usually referred to in the literature as
territory design problems (TDPs) [8].

Once the customers are assigned to vehicles, our problem is related to
the PVRP, for which many variants were developed in the decades since its
introduction by Beltrami and Bodin [13]. As noted, the PVRP is a generali-
sation of the classic capacitated VRP, consisting of designing a set of routes
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for a homogeneous fleet of vehicles located at a central depot for each day of
a given p-day period—subject to customers’ day-combinations. The reader
is referred to Francis et al. [14], Irnich et al. [15], Campbell and Wilson [16]
for reviews of relevant models, variants, and solution techniques whereas for
an efficient heuristic algorithm see Vidal et al. [17].

Models proposed in the literature for TDPs can first be classified by
whether or not a routing component is considered, and then by whether
they use continuous or discrete models. Examples of continuous models not
considering the routing component are the ring radial network model [18]
and the disk model [19]. Discrete models that do not consider a routing
component are generally based on p-centers or p-median problems [9, 20].
Discrete routing-based models can be further classified by the time dimension
of the planning horizon (single-period or multi-period problems). Sandoval
et al. [21] propose an exact method based on an integer programming model
which minimizes a p-center dispersion measure. Their approach solved test
instances with up to 300 nodes. Moreno et al. [22] provide a hybrid approach
for solving a territory design problem of a pork and poultry distributor based
in the region of Valparáıso in Chile. Their approach generates the clusters
by a K-means algorithm and then it combines the clusters using an integer
programming model that minimizes the number of territories required to
cover all of the clients. The resulting method allows significant savings when
compared to the original solution used by the company. Solana et al. [23]
consider the same problem considered in Salazar-Aguilar et al. [24], which
requires the division of a geographical area into compact, contiguous and
balanced territories, with respect to one or several measures of activity. They
propose a matheuristic based on a Greedy Randomized Adaptive Search
Procedure (GRASP).

Based on the above classification, our model belongs to the class of dis-
crete, routing-based, multi-period problems; below we review related works.
(For detailed reviews of models not addressed here, the reader is referred to
Kalcsics [9] and the recent book by Rı́os-Mercado [25]). Approaches for TDPs
belonging to this class can be further classified, depending on the way the
routing component is integrated: namely, whether a cluster-based routing or
integrated routing approach is used. In cluster-based approaches [26, 5], two-
stage algorithms are used for the routing, improving the assignment phase
in which customers are assigned to districts or areas. Rodrigues and Ferreira
[27] describe a two-stage algorithm with applications in solid waste collec-
tion where, in the first phase, a sectorization based on electromagnetism and
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Coulomb’s Law (“those belonging to the same sector should demonstrate
some kind of attraction”; those “in different sectors should present some kind
of repulsion”) is followed by a second phase addressing the routing problems
in each sector, modeled as a mixed capacitated arc routing problem. Inte-
grated routing approaches [4] completely integrate the districting and routing
components.

The problem studied in the work by Sungur et al. [26] is a stochastic
multi-period VRP with soft time windows. The stochasticity is the result of
uncertain service times and probabilistic customers. A master plan approach
is used, and robust optimisation handles the uncertainty in the service time.
Schneider et al. [5] developed a two-phase approach to investigate the design
requirements of a TDP subject to time window constraints and then stud-
ied the influence of the constraints on its performance. To improve drivers’
efficiency in logistics operations, Smilowitz et al. [4] enhanced workforce man-
agement by evaluating drivers’ familiarity with both customers and regions,
using the number of repeat visits by each driver to each customer and re-
gion. The authors designed three different heuristic approaches to solve a
variation of the PVRP that includes consistency measures. Another related
problem is the consistent vehicle routing problem (ConVRP) [28, 29, 30, 31],
which aims to design synchronised routes on multiple days to serve a group
of customers—while minimising the total travel cost. A survey of different
modelling concepts and measurements related to ConVRPs can be found in
the work by Kovacs et al. [32].

Problems closely related to ours have also been studied by Lei et al. [33],
Lei et al. [34], Bender et al. [35] and Rodŕıguez-Mart́ın et al. [36].

Lei et al. [33] introduced the multiple travelling salesmen and districting
problem with multi-periods and multi-depots. In their problem, the cus-
tomers must be partitioned into districts, and a depot must be assigned to
each district; in each period of the planning horizon, each customer must
be visited exactly once by a vehicle. The objective function adopted uses
a weighted sum of four measures: the number of districts, the compact-
ness of subdistricts, district similarity in subsequent periods, and salesmen’s
profit. The authors designed an adaptive large neighborhood search heuristic
that was tested on instances with up to 400 customers and a maximum of
three periods. Lei et al. [34] extended this work by considering determin-
istic or stochastic customers. Districts must be determined for each period
of the planning horizon before the stochastic customers are revealed. This
problem is formulated as a multi-objective optimisation problem and solved
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with a multi-objective evolutionary algorithm. In both these problems, each
customer must be served exactly once per period; hence customer visit day-
combinations are not considered.

Bender et al. [35] investigated a multi-period service territory design prob-
lem which calls for partitioning the set of customers into service territories
and determining the visiting weeks and days for each customer such that
all districts, week clusters, and day clusters are balanced and compact. The
main differences compared to our problem are that they prioritised geograph-
ical compactness and modelled visit combinations differently. More precisely,
in their problem the visits of each customer must be periodically recurring
according to a customer-specific weekly pattern; that is, each customer must
be visited every pre-defined number of weeks. Further, there are restrictions
on the number of visits per week and on which weekdays customers may
be visited. The authors proposed a location-allocation heuristic that was
tested on real-world instances involving up to 115 customers and 16 weeks.
Based on the work of Bender et al. [35], Bender and Kalcsics [37] model
a multi-period service territory design problem using a mixed-integer linear
programming formulation. Since the proposed model has a high level of sym-
metry between solutions, the authors try to characterize these symmetries
and propose ideas to eliminate them in the formulation and reduce the search
space. They solve the scheduling component of the problem by a location-
allocation based heuristic which determines visiting schedules for the service
providers for fixed districts. They propose a branch-and-price algorithm to
solve large instances to proven optimality.

The problem most closely related to the one addressed in this paper has
been recently studied by Rodŕıguez-Mart́ın et al. [36]. The authors intro-
duced a new variant of the PVRP in which each customer is served by the
same vehicle/driver on all visits. The resulting problem has been called the
PVRP with driver consistency. A constraint on the maximum number of
customers visited by a vehicle in a period is imposed. The objective is to
minimise the total routing cost over the planning horizon. The authors pro-
posed an integer linear programming formulation for the problem, together
with families of valid inequalities and a branch-and-cut algorithm to solve
the problem to optimality. The resulting algorithm was tested on randomly
generated instances involving up to 71 customers, five periods and four ve-
hicles. Our work considers a more general objective function and, more
importantly, an additional set of operational constraints, such as the vehi-
cle capacity constraints and the time window constraints, which are very
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important in practice.

3. Hybrid genetic search

In this section, we describe a heuristic algorithm based on the hybrid
genetic search with adaptive diversity control metaheuristic proposed by
Vidal et al. [17]. This metaheuristic is one of the most efficient for solv-
ing VRPs, outperforming the current state-of-the-art metaheuristics, such as
tabu search, scatter search, variable neighbourhood search, record-to-record
ILP, and adaptive large neighbourhood search [17]. It combines the ability of
local searches (LS) to find local optima by exploring a region of search space
[38] with that of global searches to identify promising regions by using ge-
netic algorithms (GA); in this paper their metaheuristic is further enhanced.
Algorithms based on their metaheuristic are particularly effective in solving
complex real-world problems [39].

There exists a large body of literature on metaheuristics. The book by
Gendreau and Potvin [40] provides a broad coverage of the concepts, im-
plementations, and applications in this important field of optimisation. In
particular, concerning GAs and evolutionary algorithms, the book by Eiben
and Smith [41] offers a thorough introduction to evolutionary computing, de-
scriptions of popular evolutionary algorithm variants, discussions of method-
ological issues and particular evolutionary computing techniques.

In the following, we denote with P the population, which is a set of
individuals further partitioned into nsp subpopulations, denoted by Ps, s =
1, . . . , nsp. The proposed heuristic is summarised in Algorithm 1, denoted as
hybrid multi-population GA (HMPG).

The method evolves both feasible and infeasible solutions partitioned into
subpopulations. The algorithm first generates an initial population P of fea-
sible solutions (line 2) that is further partitioned into nsp subpopulations
Ps, s = 1, . . . , nsp. At each iteration, the algorithm applies a number of
operators to each subpopulation in order to (i) select two individuals (par-
ents) and combine them to yield two new individuals (offspring) (lines 6-7),
(ii) apply a mutation operator (line 8), and (iii) improve offspring by using
a local improvement procedure (education) (line 9). The new offspring are
then inserted into subpopulations according to a similarity function (line 10)
aimed at grouping individuals with similar solution characteristics together.
The algorithm then proceeds by applying crossover (area-based crossover)
and a local improvement procedure (lines 12-16). These steps generate new
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Algorithm 1 HMPG

Input: A problem instance
Output: Best feasible solution
1: it← 0, itnimp ← 0, itsf ← 0, ∆← ∆0 ⊲ Initialisation
2: Generate the initial population P (§3.7.1)
3: Partition population P into nsp subpopulations {P1,P2, . . . ,Pnsp

}
4: while (itnimp < ITnimp and CPU time < CPUmax) do ⊲ Main loop
5: for all P ∈ {P1, . . . ,Pnsp

} do

6: Select parent solutions P1 and P2 from P (binary tournament)
7: Generate offspring C1 and C2 from P1 and P2 (routing-crossover,

§3.4)

8: Randomly select C1 or C2 and create new solution C3
(mutation, §3.5)

9: Educate offspring C1, C2, and C3 with probability pls (local im-

provement procedure, §3.6)

10: Insert C1, C2, and C3 into subpopulations based on their simi-

larities (§3.7.2)
11: end for
12: Randomly select two subpopulations Pi1 and Pi2 from P
13: Select parent solutions P1 ∈ Pi1 and P2 ∈ Pi2

14: Generate offspring C1 and C2 from P1 and P2 (area-crossover, §3.4)
15: Educate offspring C1 and C2 with probability pls (local improvement

procedure)

16: Insert C1 and C2 into subpopulations based on their similarities

17: for all P ∈ {P1, . . . ,Pnsp
} do

18: if (|P| ≥ ∆) then
19: Select survivors (§3.7.2)
20: end if
21: end for
22: if (itsf = ITsf) then
23: ∆← ∆0fshf(it) (shrinking function, §3.7.2) , itsf ← 0
24: end if
25: if (the incumbent solution has been improved) then itnimp ← 0
26: else itnimp ← itnimp + 1
27: end if
28: it← it + 1, itsf ← itsf + 1
29: end while
30: return best feasible solution
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individuals based on the combination of the area structures of individuals
belonging to different subpopulations, thus diversifying the search. In lines
17-21 of the algorithm, a survivor selection mechanism is executed whenever
the number of individuals in a subpopulation reaches ∆ (line 18). The value
of ∆ is dynamically changed during the iterations (line 23) and updated ev-
ery ITsf iterations based on a shrinking function fshf(.) which reduces the
value of ∆.

In the algorithm, it represents the incumbent number of iterations,
whereas itnimp and itsf are the number of non-improving iterations and the
number of iterations since the value of ∆ was updated, respectively.

Our algorithm mainly differs from the scheme proposed by Vidal et al.
[17] as follows.

• It generates the initial population using a greedy heuristic instead of
randomly generating it.

• It uses a diversification mechanism to combine individuals from differ-
ent subpopulations (lines 12-16).

• It applies a local improvement procedure based on a simulated anneal-
ing (SA) solution framework.

• It dynamically reduces, by means of the shrinking function fshf(.),
the maximum sizes of the subpopulations used to activate the survivor
selection mechanism.

It is worth noting that for solving large-scale instances of our problem,
it is of great important to ensure that Algorithm 1 runs in polynomial time.
Therefore, the different components of the algorithm have been implemented
to guarantee this property. For the sake of the exposition, we omit the
corresponding technical details, and we refer the reader to Vidal et al. [42]
for a general discussion about this issue. In the next subsections, we describe
the different components of Algorithm 1 in detail.

3.1. Solution representation

The first step in defining an evolutionary algorithm is to represent solu-
tions of the underlying problem as individuals. In Algorithm HMPG, individ-
uals are represented by means of two chromosomes.
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Chromosome 1

Area 1 1 1 1 2 2 2 2

Customer 1 2 3 4 5 6 7 8

Day-combination 1 1 2 1 1 1 2 1

Chromosome 2

Day 1 2 3 1 2 3

Routing 1 2 4 1 2 1 3 6 7 5 6 8 6 7

Area 1 2

Figure 3: Chromosome encoding for the solution of Figure 2.

(1) Chromosome 1 represents the partitioning of the customers into areas
and the corresponding pattern of visits. The first tier of the chromosome
contains the area indices and the second and the third tiers give the
customer indices and the associated day-combinations, respectively.

(2) Chromosome 2 represents the vehicle routes and also includes three tiers.
The first tier gives the day of the planning period. The second and the
third tiers contain the vehicle routes and areas, respectively. The vehicle
routes are represented by the sequence of the customers visited. The
routes do not include the depot that is both the start and end of the
route.

Figure 3 provides an example of chromosomes representing the solution re-
ported in Figure 2 for the instance data of Table 1. Note that the customers’
indices reported in the second tier of Chromosome 1 are not necessary; they
have been introduced to clarify the description.

Algorithm HMPG explores both feasible and infeasible solutions. More
precisely, an individual always represents a partition of the set of customers
into different areas, and each customer has been assigned exactly one day-
combination from among all its day-combinations (in Chromosome 1). The
individual is infeasible if a routing constraint is violated by the vehicle routes
represented by Chromosome 2.
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3.2. Greedy algorithm for generating initial population

In this section, we describe a two-phase greedy algorithm (TFG) used
to build feasible solutions and generate the initial population for Algorithm
HMPG (see Section 3.7.1). The greedy algorithm performs the three main tasks
defining our problem: (i) partitioning the customers into areas, (ii) assigning
day-combinations to the customers, and (iii) routing the vehicles according
to constraints.

The proposed algorithm comprises two phases. In the first, the Parti-

tion and pattern assignment, customers are partitioned into areas and day-
combinations are assigned to the customers. In the second phase, the Rout-

ing, vehicle routes are built to serve the customers. In the following the two
phases are described in detail.

Phase 1: Partition and pattern assignment

We define a seed to be a representative customer of an area. For a cus-
tomer i ∈ N we define qi =

∑

s∈Ci

∑

d∈D adsiq
d
i /|Ci| to be an estimate of the

total demand of the customer over the planning horizon, and we also define
Q = ndQ to be the total aggregate capacity of a vehicle along the planning
horizon.

The algorithm starts partitioning customers into areas using customer
demands qi and vehicle capacity Q. The procedure, based on the heuristic
algorithm proposed by Mulvey and Beck [43] for the capacitated p-median
problem, works as follows. Given a set of seeds {s1, s2, . . . , sk} with k ≤ nv,
the partition minimises the total customer assignment regret, where the re-
gret of a customer assignment is defined as the absolute value of the differ-
ence in routing cost between the customer’s first- and second-nearest seeds.
The procedure assigns customers to the seeds by decreasing the regret value.
When (and if) all customers are assigned—that is, customers are all clustered
around the respective seeds, an intracluster phase reassigns each cluster or
area to the seed that minimises the sum of the routing costs between it
and all other cluster members. If a new set of seeds is identified, the assign-
ment/reassignment process is repeated. When the seeds remain stable across
iterations, pairwise interchanges of customers between clusters are performed
to locally optimise the solution. We denote with {s1, s2, . . . , sk} the final set
of seeds computed by the above procedure and with Ah, h = 1, . . . , k, the
resulting clusters or areas. We have

∑

i∈Ah
qi ≤ Q, h = 1, . . . , k.

A step-by-step description of the partition and pattern assignment phase
is given in Algorithm 2. In the algorithm, the set N represents the set
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of remaining customers, whereas sets Ah represents the set of customers
comprising the incumbent area h. Further, set Ad

h is the set of customers as-
signed to day d according to the day-combinations selected for the customers.
Value Qd is the total demand associated with day d, based on the set of cus-
tomers in Ah and the corresponding day-combinations. Value Ld, computed
as the minimum-time arborescence problem rooted at the depot using cus-
tomers in Ad

h (see [44]), represents a lower estimate of the total working
time of the vehicle route on day d, disregarding the time window constraints.
The day-combinations are defined for each customer by means of a func-
tion fdca(.) which computes a correlation between the days of the planning
horizon and the set of available day-combinations for that customer. More
precisely, given i ∈ N , we first compute coefficients pdi =

∑

s∈Ci
adsi/|Ci|,

∀d ∈ D; the day-combination l∗ assigned to customer i is computed as
l∗ = fdca(i,pi) = argmaxs∈Ci

{
∑

d∈D adsip
d
i }. Any ties are broken by select-

ing the combination resulting in the largest total residual vehicle capacity,
computed over the days of the combination and based on values Qd.

The algorithm (line 1) takes as input k seeds and, using the procedure
described above, generates an initial partition Ah, h = 1, . . . , k, of the cus-
tomers. We assume that the number of seeds k selected ensures the existence
of a partition.

The set of remaining customers N to be partitioned is initialised in line
2. For each area h, the candidate area A is initialised as Ah (line 4). The
seed i∗ of the area (line 5) is assigned with a day-combination (line 6), and
the emerging area Ah and sets Ad

h are computed. Customers in A are then
selected based on the routing cost from the seed i∗, in order to try to insert
them into the emerging area Ah (line 8). Given a customer i ∈ A, we first
compute its day-combination l and then check if the corresponding insertions
on the days associated with l are feasible with respect to values Qd and Ld

(lines 8-10). A parameter 0 < ω < 1 is used to reduce the value of the
maximum working time L and compare it to the estimate Ld. If the insertion
of i is feasible, area Ah is updated and i is removed from set N (line 11).
Notice that the day-combinations in steps 6 and 8 are defined using function
fdca(.). If set N is not empty at the end of Algorithm 2, sets Ah, h = 1, . . . , k,
are not a partition of the set of customers. In this case, a new initial set of
seeds must be considered in order to try to define a partition of the customers.
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Algorithm 2 Partition and pattern assignment phase.

Input: Set of k seeds or customers {s1, s2, . . . , sk}
Output: Set of areas {A1, A2, . . . , Ak} representing a partition of the cus-

tomer set and day-combinations {li}
1: Build initial areas {A1, A2, . . . , Ak}

2: N ← N
3: for h = 1, . . . , k do
4: Select the candidate area A← Ah

5: Select the seed customer i∗ ← sh, N ← N \ {i∗}, A← A \ {i∗}
6: Ah ← {i∗}, li∗ ← fdca(i

∗,pi∗) and update Ad
h, d ∈ D

7: while (A 6= ∅) do
8: Select i ∈ A as the closest customer to i∗, li ← fdca(i,pi), A ←

A \ {i}

9: Compute Qd, and Ld, d ∈ D based on Ah, i and li
10: if (Qd ≤ Q and Ld ≤ ωL, d ∈ D) then
11: Ah ← Ah ∪ {i}, update Ad

h, d ∈ D, N ← N \ {i}
12: end if
13: end while
14: end for

return Customers areas Ah, h = 1, . . . , k, and day-combinations {li}
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Phase 2: routing

By the end of the first phase, the customer set N has been partitioned
into k areas (Ah, h = 1, . . . , k) each with its corresponding day-combinations
{li}. For each area, the day-combinations also define the customers to be
served on each day of the planning horizon (Ad

h, d ∈ D, h = 1, . . . , k).
Therefore, the overall problem decomposes into a problem for each area,
which is further decomposed into nd subproblems. Note that after Phase 1,
the vehicle capacity constraints are satisfied because the vehicle capacity Q
is explicitly considered for each day of the planning period when the day-
combinations are defined.

Each subproblem corresponds to a generalisation of the well-known trav-
eling salesman problem with time window constraints (TSPTW), which finds
in a weighted digraph a least-cost tour starting from a selected vertex (the
depot), visiting each vertex of the graph exactly once according to a given
time window, and returning to the starting vertex [45].

Savelsbergh [46] showed that even the problem of verifying if a feasible
TSPTW solutions exists is an NP-complete problem. Our subproblem adds
the maximum working time constraint to the TSPTW. Note that this con-
straint cannot be modelled by associating a generic time window [e0, l0] such
that L = l0−e0 with the depot, because in our case the departure time of the
vehicle from the depot is flexible, and the total working time is a function of
the departure time.

To solve each subproblem, we used the generalised insertion heuristic
for the TSPTW proposed by Gendreau et al. [47], modified to consider the
maximum working time constraint. The algorithm gradually builds a route
by inserting, at each step, a vertex in its neighbourhood on the current
route. This is done by dynamically changing the departure time of the ve-
hicle—while checking the feasibility of the remaining part of the route and
the maximum time duration constraint. The emerging route is also locally
reoptimised. A post-optimisation phase based on the successive removal and
reinsertion of all vertices is also executed after a feasible route has been de-
termined. For the details of the algorithm, the reader is referred to Gendreau
et al. [47].

3.3. Evaluation and similarity functions

Algorithm HMPG considers both feasible and infeasible solutions, using the
following fitness function fP (S) to compute the cost associated with a given
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individual S:

fP (S) = f(S) + α1 · PTW (S) + α2 · PWT (S) + α3 · PV C(S), (1)

where f(S) is the objective value of solution S, as defined in Section 2. The
penalty functions PTW (S), PWT (S), and PV C(S) measure the violations of
the time window, maximum working time, and vehicle capacity constraints,
respectively. Their computation is based on similar functions used in the
literature to penalize infeasible solutions [17, 39]. The corresponding penalty
coefficients α1, α2, and α3 are user-defined parameters.

Let S1 and S2 be two (not necessarily feasible) solutions. For the pair of
solutions (S1, S2) we introduce a similarity function fsf (S1, S2) that measures
how similar solution S1 is to solution S2. Function fsf(S1, S2) is defined as
follows.

Let n1 and n2 be the number of areas forming solutions S1 and S2,
respectively; without loss of generality we assume n1 ≤ n2. We denote
the corresponding index sets of the areas with I1 = {1, 2, . . . , n1} and
I2 = {1, 2, . . . , n2}. The following two additional functions are used to com-
pute function fsf(S1, S2):

• Function fa(h1, h2), h1 ∈ I1, h2 ∈ I2 provides the number of customers
in common between areas h1 and h2 of solutions S1 and S2.

• Function fb(S1, S2, i) ∈ {0, 1} is equal to 1 if customer i has been
assigned the same day-combination in solutions S1 and S2, and 0 oth-
erwise.

Function fsf(S1, S2) is defined as the following weighted function:

fsf(S1, S2) =
β1

nc

∑

h1∈I1

max
h2∈I2
{fa(h1, h2)}+

β2

nc

∑

i∈N

fb(S1, S2, i), (2)

where β1 ≥ 0, and β2 ≥ 0 are user-defined parameters such that β1+ β2 = 1.
In (2) the first summation computes, for each area h1 ∈ I1, the max-
imum number of customers in common with the areas in I2, whereas
the second summation counts the number of customers having the same
day-combinations in solutions S1 and S2. We have that fsf(S1, S2) =
fsf(S2, S1) = 1 if S1 and S2 are identical in terms of the areas defined and
the day-combinations associated with the customers.
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Area 1 1 1 1 2 2 2 2 Area 1 1 1 2 1 2 2 2

P1 Customer 1 2 3 4 5 6 7 8 O1 Customer 1 2 3 4 5 6 7 8

Day-combination 1 1 2 1 1 1 2 1 Day-combination 1 1 1 1 1 1 2 1

Area 1 2 1 2 1 2 1 2 Area 1 2 1 1 2 2 1 2

P2 Customer 1 2 3 4 5 6 7 8 O2 Customer 1 2 3 4 5 6 7 8

Day-combination 1 2 1 2 2 1 1 2 Day-combination 1 2 3 1 1 1 1 2

Figure 4: The 2PX crossover.

3.4. Parent selection and crossover

Parent selection is performed through a binary tournament, which ran-
domly (with uniform probability) picks two individuals (parents) from the
selected population and keeps the one with the best fitness function.

Crossover operators diversify the search by combining the features from
the parents in the offspring. In our algorithm, we propose two different
crossover operators, applied to Chromosomes 1 and 2: area-crossover and
routing-crossover.

The area-crossover operator is a 2-point crossover operator (hereafter de-
noted as 2PX) which works on the first chromosome with the aim to diversify
the search based on the area-customer assignments. Given two parents P1
and P2, two random numbers a and b are chosen in the range [1, nc]. The
two parents are split at points a and b to create two offspring, O1 and O2,
by exchanging the segments [a, b] of the parents. Figure 4 shows an example
based on the instance of Table 1, where the selected segments of parents P1
and P2 are represented with different colors. In the new offspring, customers
not involved in the exchange will maintain the same area indices and day-
combinations of the corresponding parents, while the customers involved in
the exchange (Customers 3, 4, and 5 in the example) will be assigned to new
areas. These customers are first removed from the routes of Chromosome 2
and then (per increasing customer index) re-inserted into the offspring, us-
ing the least extra-cost day-combination among the day-combinations of the
customer. Day-combinations of Chromosome 1 are modified accordingly.

The routing-crossover operator is a 1-point crossover operator (hereafter
denoted as 1PX) which works on the second chromosome to diversify the
search, based on the day-combinations and visit sequences (i.e., the vehi-
cle routes) of the customers. Given two parents P1 and P2, two random
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Day 1 2 3 1 2 3

P1 Routing 1 2 4 1 2 1 3 6 7 5 6 8 6 7

Area 1 2

Day 1 2 3 1 2 3

P2 Routing 1 3 7 1 7 1 5 2 6 4 6 2 6 8

Area 1 2

Day 1 2 3 1 2 3

O1 Routing 1 2 1 2 1 3 5 6 7 4 6 6 7 8

Area 1 2

Figure 5: The 1PX crossover.

numbers a and b are chosen in the range [1,
∑

i∈N fi], where the upper limit
represents the total number of visits of any individual. In this case, only
one offspring is generated. The new offspring O1 is created as follows. The
selected customers in the segment [a, b] of parent P1 are first associated with
the same day-combinations and area in O1. Figure 5 shows an example of an
1PX operator based on the example in Table 1, where customers 2, 1, 3, 6,
and 7 are involved in the crossover operation and appear in O1 as they did
in parent P1. Offspring O1 is then completed with the remaining customers
(4, 5, and 8) not involved with the selected segment of P1. More precisely,
customers in P2 but not P1 are considered in turn, based on the routing
sequence defined by P2 (i.e., 5, 4, and 8), and inserted in O1 in the same
area with the same day-combination as P2. A least-cost insertion criteria is
chosen to define the positions of the customers in the new routes of O1.

3.5. Mutation operation

Mutation is performed by varying the genes of a chromosome to prevent
the algorithm from being trapped in local optima, thus improving the diver-
sity of the solutions. In this paper, we use the following mutation operators.

1. Customer swaps. The operator randomly selects NPMUT pair of cus-
tomers from different areas; for each pair (i, j) of customers the area of
customer i is assigned to customer j, and vice versa (in Chromosome
1). Chromosome 2 is updated by first removing customers i and j and
then selecting (for i followed by j) the least-cost insertions based on
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the day-combinations and vehicle routes. Chromosome 1 is updated
accordingly.

2. Customer moves. The operator randomly selects NCMUT customers;
each one is removed from its original area and re-inserted into a different
area. More precisely, the operator inserts each removed customer into
the least-cost area remaining. The insertion of customers into an area
is performed as for operator Customer swaps.

3. Area opening. The operator randomly selects an area and NCMUT

customers belonging to that area. Then, a new area is created and the
selected customers are moved into it. The insertion of the customers
into the new area is performed as for operator Customer moves.

4. Area closing. The operator randomly selects an area and closes it. All
the customers belonging to the closed area are inserted into the remain-
ing areas by the same insertion heuristic used by Customer moves.

In the above moves, the different day-combinations associated with a
customer are evaluated using a least-cost insertion heuristic operating on
the selected set of routes. Furthermore, for a given individual, each of the
above operators is chosen with equal probability. All random operations are
performed by a uniform distribution over the respective range.

3.6. Local improvement procedure

A crucial feature of evolutionary algorithms is their ability to improve
solutions (based on local improvement procedures or LS) through a process
capable of escaping from local optima and performing an efficient search of
the solution space.

In this section, we describe an SA based algorithm [48] which is an ex-
tension of LS optimisation algorithms. As for general LS algorithms, this
algorithm creates a systematic way to explore the solution space using neigh-

bourhood structures. For a complete overview of SA and related applications,
the reader is referred to Delahaye et al. [49].

Following the SA scheme, the procedure starts with a given solution. At
each iteration of the algorithm, new solutions are generated using neigh-
bourhoods of the current solution. If the new solution improves the current
one, then it replaces the current one. Otherwise, the new solution becomes
the current one with a given probability. This latter move is one of the main
features of SA: the ability to accept solutions that degrade the objective func-
tion. The algorithm uses a parameter, temperature T , initialised at a high
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value. As the temperature decreases, only moves improving the objective,
or having little objective deterioration, are accepted. Allowing moves with
objective degradation ensures that the solution space is thoroughly explored.
Finally, when the temperature tends to zero, no further deterioration of the
objective is accepted. In our implementation, the temperature T is set to an
initial value T0 at the beginning of Algorithm HMPG and decreases according
to a cooling parameter αT ∈ (0, 1), which has a minimum value equal to Tf .
The temperature T is updated at each main iteration of Algorithm 1.

We designed four neighbourhood structures, which are described in detail
below. The four structures are examined in random order (using a uniform
distribution); the sequence is terminated at the first improving move. Within
each structure, the moves are executed in sequence.

3.6.1. Routing improvement

To try to improve the single-vehicle routes on the different days of the
planning horizon, we adopt two well-known neighbourhoods originally de-
signed for the TSP by Lin and Kernighan [50], the 2-opt and 3-opt neigh-
bourhoods. The neighbourhood of the solution of a 2-opt (3-opt) operator
is the set of solutions that can be reached from the solution by deleting two
(three) arcs in the solution, and adding two (three) other arcs in order to
reconnect the route (e.g., see [42] for a detailed description of these moves).

3.6.2. Day-combination improvement

The definition of the day-combinations associated with the customers
plays a crucial role in the quality of the solutions. Hence, we designed two
specific neighbourhoods based on the day-combinations.

(i) Day-combination reassignment. For a customer i ∈ N with associated
day-combination s∗ ∈ Ci, we consider in turn each alternative day-
combination in Ci \ {s∗}. Customer i is removed from its current set
of routes and the day-combinations in Ci \ {s∗} are evaluated to see
if they improve the solution. The operation is repeated by randomly
selecting NCLP customers.

(ii) Route elimination. This neighbourhood reduces the number of routes
in order to decrease the solution cost. Indeed, given a solution with
vehicle routes operating on each day of the planning horizon, an im-
proved solution may be obtained by eliminating a route on one day and
reassigning its customers to the other days. For a given area, we select
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the vehicle route having the minimum percentage of vehicle utilisation
computed with respect to the vehicle capacity. We also try to reassign
the corresponding set of customers to days other than the current day,
using the same procedure used for the day-combination reassignment.

3.6.3. Area improvement

This neighbourhood operator evaluates new customer-area assignments
by repositioning customers among areas.

For a customer i ∈ N we define the set of customers N(i) that contains the
NCCLP customers nearest to i (in terms of the cost matrix [cij ]) belonging
to areas other than the area of customer i. We denote with A(i) the set
of areas associated with the customers nearest to customer i. Based on the
definitions of sets {N(i)}, the following neighbourhoods are considered.

(i) Customer move. This move randomly selects NCLP customers and tries
to move each selected customer i into the least-cost area belonging to
set A(i). The insertion into a new area is performed by choosing the
least extra-cost day-combination for the vehicle routes of the selected
area.

(ii) Customer swap. This move randomly selects NCLP customers. Then,
for each selected customer i and for each j ∈ N(i), i and j are removed
from their respective areas; i is inserted into the area of j, and vice
versa. The insertion is again performed by selecting the least extra-
cost day-combinations.

(iii) Area elimination. This move is based on the area closing move de-
scribed in Section 3.5. The move selects an area having a number of
customers less than or equal to αLP nc (if any), and tries to move each
customer in that area into the least-cost area by means of the same
procedure used for the Customer move.

All random operations are performed by a uniform distribution over the
respective range.

3.6.4. Feasibility improvement

The problem addressed in this paper is characterised by complex routing
constraints. Allowing the search to move to infeasible solutions enlarges the
search space and can lead to high-quality solutions. Indeed, as mentioned
previously, our algorithm considers both feasible and infeasible solutions; in-
feasible solutions are associated with a penalty term in the objective function
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(1). However, this raises the issue of finding correct weights for the penalty
terms [41] and reducing the infeasibility as soon as the penalty terms be-
come dominant in the evaluation function. To resolve this issue, whenever
the penalty term associated with the evaluation of an area exceeds a given
threshold, the area is eliminated and two new areas are created using the
greedy algorithm described in Section 3.2. The threshold is computed as
a function of the number of customers and the number of non-improving
iterations.

3.7. Population management

In this section, we describe the Algorithm HMPG’s generation of the initial
population P and the population management mechanisms which identify
and propagate the characteristics of good solutions and enhance population
diversity.

3.7.1. Population initialisation

To initialise the population P of Algorithm HMPG we use Algorithm TFG

(described in Section 3.2).
Let Qtot =

∑

i∈N

∑

s∈Ci

∑

d∈D adsiq
d
i /|Ci| be an estimate of the total cus-

tomer demand over the planning horizon, and let nv =
⌈

Qtot

ndQ

⌉

be an estimate

of the number of vehicles (or areas) required to serve the whole set of cus-
tomers. The population P is generated by executing the following steps for
a pre-defined number of iterations.

1) Randomly sample the number of seeds k in the interval [nv + STPM , nv].

2) Generate a set of seeds U = {s1, . . . , sk} as follows. Initialise U =
{i} with i randomly sampled from the set N . Then, for each h =
2, . . . , k, set U is expanded with a customer i∗ in N \ U such that
i∗ = argmaxi∈N\U{

∑

j∈U cij}; i.e., the customer that maximises the cost
with respect to the current set of seeds is selected to expand set U . Let
U = {s1, s2, . . . , sk} be the final set of seeds generated.

3) Use the algorithm TFG to generate a solution S using U = {s1, s2, . . . , sk}
as the initial set of seeds (see line 1 of Algorithm TFG).

At Step 2 of the above procedure, a final set U is checked for repetition,
and at each iteration the generated solution S is added to the population P.
Set P contains NSPM solutions, where NSPM is a user-defined parameter.

The whole set of individuals (solutions) P generated is further parti-
tioned into nsp subpopulations by first initialising each subpopulation Ps,
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s = 1, . . . , nsp, with a single solution as follows. We randomly select a solu-
tion S ∈ P that is used to initialise the first subpopulation and is removed
from P; i.e., P1 = {S1} where S1 = S. Then, the next subpopulation Ps is
initialised by selecting the solution S ′ from P such that

∑s−1
h=1 fsf(S

′, Sh) is
minimised (to create diversified initial subpopulations). Set Ps is initialised
as Ps = {Ss}, where Ss = S ′ and solution S ′ is removed from P. The
procedure is repeated up to s = nsp.

Once the initial single-individual subpopulations {P1, . . . ,Pnsp
} have

been identified, each individual S in the remaining set P is inserted into
the appropriate subpopulation as follows. For a solution S we compute

Ψ(S,Ps) =
1

|Ps|

|Ps|
∑

i=1

fsf(S, Si), ∀s = 1, . . . , nsp, (3)

and S is inserted into the subpopulation Ps maximising function Ψ(S,Ps)
(i.e., individuals sharing similar characteristics are inserted into the same
subpopulation).

3.7.2. Multi-population evolution strategy

The multi-population evolution strategy is composed of nsp subpopula-
tions, which are independently managed; their sizes or cardinalities dynami-
cally change during the iterations.

The survivor selection mechanism identifies individuals to make up the
next generation so that population diversity is preserved and elite individ-
uals (in terms of cost) are protected. More precisely, once the cardinality
of a subpopulation Ps is greater than the maximum size ∆ (see line 18 of
Algorithm HMPG), a survivor selection mechanism is used to reduce the num-
ber of individuals in the subpopulation by removing |Ps| −∆ individuals, as
follows.

For each pair of solutions S1, S2 ∈ Ps we compute the function fsf(S1, S2).
Let sfmin and sfmax be the minimum and maximum values obtained in
computing values fsf(S1, S2), respectively. Let Θ be the index set of
pairs (S1, S2), ordered for decreasing values of fsf (S1, S2) in the range
[sfmax− (sfmax− sfmin)/3, sfmax] (pairs outside of that range are excluded),
such that |Θ| ≤ |Ps| − ∆. For a pair h ∈ Θ, we denote the corresponding
pair with (Sh

1 , S
h
2 ) and the value fsf(S1, S2) with sfh.

We first remove from Ps at most |Ps| − ∆ individuals by selecting in-
dividual Sh

1 from each pair (Sh
1 , S

h
2 ), h ∈ Θ; that is, we remove individuals
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Figure 6: Shrinking function fshf (i) with η = 5 and H = 1000

having similar characteristics, in order to preserve population diversity. Let
Ps be the resulting set of individuals. If |Ps| > ∆, then the individuals in Ps

are ordered for increasing values of the fitness function and the first ∆ are
selected to form the new subpopulation; hence elite individuals, in terms of
cost, are selected to form the next generation.

To speed up the computation—while at the same time propagating the
characteristics of good solutions and providing the means for a thorough and
efficient search—the maximum subpopulation size is dynamically reduced
during the different algorithm iterations. More precisely, at a generic iter-
ation of the algorithm the maximum subpopulation size ∆0 is reduced by
means of a shrinking function. The shrinking function, denoted as fshf(.), is
defined as:

fshf(i) = ηe
−i

H 3
√

nc , (4)

where i represents the iteration number and η and H are user-defined param-
eters. Then, the value ∆ is computed as ∆ = ∆0fshf(i). Figure 6 shows an
example of function fshf(i) for different values for the number of customers
nc.

To properly update the subpopulation size, the maximum ∆ is updated
during the main iteration of the algorithm every ISFPM iterations.
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3.8. Termination criteria

To comprehensively address the behaviour of the Algorithm HMPG, the
termination condition combines the maximum number of non-improving it-
erations ITnimp and a maximum CPU time CPUmax.

4. Computational study

We present extensive experimental analysis with three main aims. Firstly,
we evaluate the performance of Algorithm HMPG for test instances from the
literature, and measure the effectiveness of the algorithm by the quality of
the solutions produced. We consider the PVRP with driver consistency, as
considered by Rodŕıguez-Mart́ın et al. [36], and we compare the solutions
produced by the algorithm with the solutions obtained by the exact method
of Rodŕıguez-Mart́ın et al. [36] (Section 4.1). Secondly, we extensively analyse
the performance of our algorithm using real-world instances (Section 4.2) and
conduct experiments to measure the contribution of each main component of
HMPG. Finally, we conclude this section with a sensitivity analysis to evaluate
the impact of different service requirements on the obtained solutions. With
these results, we derive some managerial insights by studying the trade-offs
between the service requirements.

The metaheuristic was coded in C using Visual Studio 2013 and run on
a single thread of a 1.99 GHz Intel i7-8550 CPU under Windows 7 operating
system. In order to identify good parameter values for our algorithm, we
performed a parameter calibration (see Appendix A for the details).

4.1. Results on the instances from the literature

In this section, we evaluate the performance of Algorithm HMPG on the set
of PVRP with driver consistency instances generated by Rodŕıguez-Mart́ın
et al. [36].

Test instances

Rodŕıguez-Mart́ın et al. [36] generated benchmark instances in which
driver consistency is not implicit in the solution of the corresponding PVRP;
hence the corresponding instances cannot be solved as pure PVRP in-
stances. The authors generated instances with a number of customer nodes
in {10, 20, 30, 40, 50, 60, 70}. All the node coordinates were randomly gen-
erated in the interval [0, 100] × [0, 100]. The depot is placed at node 0
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and the customers at the other nodes. The routing costs cij are com-
puted as the Euclidean distance between i and j. The number of peri-
ods ranges between 2 and 5; the number of vehicles available at the de-
pot nv varies between 2 and 4; the vehicle capacity Q varies between 3
and 27. The authors generated a set of 240 instances, which is available at
https://doi.org/10.17632/p4n2xw84bv.1.

Results obtained

On each instance of this set, the algorithm was run ten times using the
set of parameters defined by Table A.6. The branch-and-cut algorithm of
Rodŕıguez-Mart́ın et al. [36] was run on a personal computer with an Intel
Core i7 CPU at 3.4 GHz and 16 gigabytes of RAM, with an imposed time
limit on their method of 7200 seconds. Since our machine was about as
fast as theirs, we applied the same time limit to Algorithm HMPG setting the
maximum CPU time CPUmax to 7200 seconds. Further, since only capacity
constraints are present, parameters α1 and α2 were set to 0, whereas the
value of α3 was set to 50.

Table 2 summarises a comparison of the results reported by Rodŕıguez-
Mart́ın et al. [36] and the results obtained by Algorithm HMPG. In Table 2, the
instances are grouped by number of customers. For each group of instances,
the table gives the number of instances in the group (“#ist’) and compares
our algorithm to the exact method of Rodŕıguez-Mart́ın et al. separating
the results obtained by the instances solved to optimality and the remaining
set of instances (for which optimality was not proved). For each group of
instances and each method, the table shows the number of instances solved
to optimality (“#opt”) and the corresponding average computing time in
seconds (“t”). For Algorithm HMPG, the table also shows the average percent
deviation (“%dev”) of the solutions not solved to optimality. The percent
deviation of a value x with respect to a reference value y is computed as
100× x

y
.

For the instances not solved to optimality by the branch-and-cut, the
table reports the average percent deviation (“%dev”) from the best known
solution cost (computed either by the branch-and-cut or Algorithm HMPG) and
the corresponding average computing time in seconds (“t”) for each method.
The comparison considers only the instances for which the branch-and-cut
was capable of computing feasible solutions (228 out of 240 instances).

Table 2 shows that Algorithm HMPG computed optimal solutions for al-
most all the instances solved to optimality by the branch-and-cut method
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Table 2: Comparison with the exact method of Rodŕıguez-Mart́ın et al. [36].

Solved to optimality Optimality not proved

Branch-and-cut HMPG Branch-and-cut HMPG

nc #ist #opt t #opt %dev t %dev t %dev t

10 24 24 2.0 24 0.4
20 34 34 75.5 34 20.1
30 36 36 261.9 36 80.5
40 33 27 862.0 26 101.2 154.3 100.0 7200.0 100.8 1409.2
50 36 22 770.7 21 102.0 371.5 100.2 7200.0 100.2 1148.7
60 34 19 1762.8 17 101.0 715.4 100.7 7200.0 100.8 1692.3
70 31 17 2036.5 14 101.2 874.6 100.8 7200.0 100.3 1679.4

228 179 172

(172 compared to 179 instances). Moreover, Algorithm HMPG shows an av-
erage percent deviation on the remaining seven instances equal to 101.4%,
which means that high-quality solutions can also be computed for these in-
stances. Of the instances not solved to optimality by the branch-and-cut
method, Algorithm HMPG is capable of computing solutions close to those
computed by the branch-and-cut. It is worth noting that on the group of
larger instances with 70 customers, Algorithm HMPG computed (on average)
better solutions than the branch-and-cut. Finally, the average computing
times of our algorithm are highly competitive with respect to the average
computing times of the branch-and-cut.

Appendix B gives the complete details about the results summarised in
Table 2. The detailed results also show that Algorithm HMPG was capable
of computing feasible solutions for six instances for which the branch-and-
cut failed to compute a feasible solution. Over the ten runs, the differences
among the solution costs computed are limited. Further, Algorithm HMPG

takes full advantage of the total computing time spent as shown by the
average computing times necessary to compute the best solutions found.

4.2. Results on the real-world instances

In this section, we describe the results obtained by Algorithm HMPG on
real-world instances, we investigate the effectiveness of the different algorithm
components, and we present sensitivity analyses.
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Table 3: Type of day combinations.

Freq./Day Mon. Tue. Wed. Thu. Fri. Sat.

2 0 1 0 0 1 0
0 1 0 0 0 1
0 0 1 0 0 1
0 1 0 1 0 0
1 0 0 1 0 0
0 0 1 0 1 0

3 1 0 1 0 1 0
0 1 0 1 0 1

4 1 0 1 0 1 1
0 1 0 1 1 1
0 1 1 1 0 1
1 1 0 1 1 0
1 1 1 0 1 0
1 0 1 1 1 0

5 1 1 1 0 1 1
0 1 1 1 1 1
1 1 1 1 0 1
1 0 1 1 1 1
1 1 0 1 1 1

Test instances

The data for the instances were prepared and provided by the dairy com-
pany that motivated our study. Four different regions (A, B, C, and D)
corresponding to the distribution areas of four transit points or depots were
selected by the company for the computational study. A specific set of cus-
tomers is associated with each region and must be served by the region’s
transit point. In particular, all the depots and corresponding customer lo-
cations have been georeferenced using a digital map; the map was used to
compute distances and travel times by defining the travelling speeds on the
different types of roads, depending on the type of vehicle used for the dis-
tribution. For the sake of our preliminary experiments, small-size instances
were also generated by the company. The data have the following character-
istics.

• Both urban and rural areas are represented by the locations.

• The number of customers ranges from 25 to 1200.

• The planning period is from Monday to Saturday, i.e., nd = 6.
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• All the data associated with the customers were defined based on the
company’s data. The frequencies range from 1 to 6. Table 3 gives
the day-combinations to be considered, based on the frequency values.
Further, customers with a visit frequency equal to 1 can be served
any day of the planning period. A customer with a frequency less
than or equal to 4 receives the same demand quantity on any of its
visits, whereas for customers having frequencies equal to 5 or 6, the
last day (i.e., Saturday) is generally associated with a higher demand
than the weekdays. Regarding the time windows, the customers have
early opening times, so waiting times at the customers are generally
not an issue.

• Only one type of vehicle is used, with a capacity equal to 1450 kilograms
(Q = 1450) and a maximum working time of 420 minutes (L = 420).
The weekly cost F associated with each area is set to 1000.

• The cost matrix cij was defined based on the real routing costs of the
vehicles.

A total of 36 representative instances were prepared by the company. The
instances are grouped by size (“S” for small, “M” for medium, or “L” for
large) and by the corresponding depot (A, B, C, or D).

Results obtained

Algorithm HMPG was run ten times on each instance using the parameter
values given in Table A.6. For the real-world instances, the maximum CPU
time (seconds) CPUmax of Algorithm HMPG depended on the number of cus-
tomers and ranges from 1200 to 10800 seconds. Tables 4 and 5 summarise
the results obtained.

Table 4 gives detailed information about the structure of the best solu-
tions computed by the algorithm for medium- and large-size instances. For
each instance, the table reports the total solution cost (“z”), the routing cost
(“rc”), the area cost (“ac”), and the number of areas (“#ar”). Further, the
table shows information about the average number of customers and routes
per area (“#avg cust.” and “#avg routes”). Information about the maxi-
mum utilisation of the vehicles in terms of capacity and time are also reported
in the table (“UT (Q)” and “UT (T )”). The capacity (time) utilisation of a

33



Table 4: Details about the solutions of real-world instances.

Name nc z rc ac #ar #avg cust. #avg routes UT (Q) UT (L)

MA-01 200 10955.7 2955.7 8000.0 8 25.0 6.0 0.74 0.83
MA-02 400 19917.8 4917.8 15000.0 15 26.7 6.0 0.61 0.82
MA-03 600 28308.9 6308.9 22000.0 22 27.3 6.0 0.58 0.93
LA-01 800 32545.2 7545.2 25000.0 25 32.0 6.0 0.62 0.96
LA-02 1200 50710.1 10710.1 40000.0 40 30.0 6.0 0.57 0.84

MB-01 200 13922.7 3922.7 10000.0 10 20.0 6.0 0.69 0.67
MB-02 400 23099.2 6099.2 17000.0 17 23.5 5.8 0.47 0.64
MB-03 600 30326.1 7326.1 23000.0 23 26.1 5.8 0.52 0.69
LB-01 800 35762.1 8762.1 27000.0 27 29.6 6.0 0.54 0.70
LB-02 1200 76904.3 22904.3 54000.0 54 22.2 5.4 0.65 0.73

MC-01 200 13779.8 4779.8 9000.0 9 22.2 6.0 0.96 0.88
MC-02 400 19367.1 6367.1 13000.0 13 30.8 5.8 0.91 0.94
MC-03 600 23441.8 7441.8 16000.0 16 37.5 6.0 0.68 0.97
LC-01 800 30374.2 10374.2 20000.0 20 40.0 5.9 0.68 0.91
LC-02 1200 69793.2 21793.2 48000.0 48 25.0 5.9 0.62 0.83

MD-01 200 6004.8 1004.8 5000.0 5 40.0 6.0 0.72 0.70
MD-02 400 15387.6 3387.6 12000.0 12 33.3 6.0 0.59 0.81
MD-03 600 22424.8 5424.8 17000.0 17 35.3 6.0 0.75 0.80
LD-01 800 28904.4 6904.4 22000.0 22 36.4 6.0 0.68 0.91
LD-02 1200 52629.5 14629.5 38000.0 38 31.6 5.7 0.87 0.89

route is computed as the ratio between the total vehicle demand (total work-
ing time) of the route and the vehicle capacity Q (maximum working time
L).

Table 5 under section HMPG reports the results obtained for Algorithm
HMPG. For each instance, the table reports the instance name and the cor-
responding number of customers, the cost of the best solution found, the
percent deviation (“%dev”) of the best solution found over the ten runs, and
the average percent deviation of the solutions corresponding to the ten runs
(“%deva”). Column t reports the average computing time of the ten runs in
seconds. The remaining sections of the table are about the effectiveness of
the different components of HMPG, as described in the following.

The results of Table 5 show that Algorithm HMPG reached the imposed
time limit for several instances. These instances represent challenging ter-
ritory design instances. Over the ten runs, HMPG performs on average quite
well, as shown by column %deva. It is worth considering different runs of
the algorithm with the aim of computing improved solutions. Because the
problem with these instances is tactical, the corresponding running times are
compatible with the planning operations of the company.
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Table 5: Results of Algorithm HMPG on real-world instances and the effectiveness of its components.

No-FI No-MP No-SA No-DynPop No-DM HMPG-Lit HMPG

Name nc z∗ %dev %deva t %dev %deva t %dev %deva t %dev %deva t %dev %deva t %dev %deva t %dev %deva t

SA-01 25 1525.7 100.0 100.3 89.6 100.0 100.5 59.5 100.0 100.6 154.6 100.0 100.6 378.2 100.0 100.7 118.3 100.3 101.2 29.5 100.0 100.1 60.5
SA-02 50 2782.0 101.6 102.2 227.9 102.5 102.5 235.7 100.8 101.6 430.9 101.1 101.5 291.3 100.3 101.2 413.4 101.5 102.2 52.2 100.0 101.2 373.5
SA-03 75 2901.3 101.9 102.6 800.6 102.0 103.0 453.6 100.9 101.5 930.7 100.4 102.3 728.4 101.0 101.5 535.4 100.5 102.3 474.9 100.0 101.4 623.0
SA-04 100 4162.2 131.0 134.1 1200.0 102.6 103.3 763.8 100.0 102.4 701.7 101.6 102.1 610.9 102.3 103.0 829.9 103.3 104.7 782.7 100.0 102.8 691.4
SB-01 25 1336.2 100.0 100.1 66.2 100.0 100.3 40.5 100.0 100.3 89.4 100.0 101.1 31.6 100.0 100.2 144.5 100.0 100.2 44.4 100.0 100.0 29.9
SB-02 50 4676.4 100.4 101.1 447.1 101.9 113.2 195.5 101.0 114.6 685.1 100.6 101.0 826.3 100.0 116.6 344.8 115.0 116.2 55.6 100.0 101.0 547.1
SB-03 75 6158.1 105.1 113.9 648.9 101.6 102.8 524.3 101.9 108.3 671.7 102.3 114.3 1039.5 102.3 117.0 1159.8 118.0 118.9 370.1 100.0 101.3 1101.4
SB-04 100 7854.8 110.7 111.4 1200.0 100.0 109.7 891.3 110.6 114.3 1200.0 110.1 110.6 872.7 109.9 111.2 1200.0 110.6 111.8 1195.4 100.0 110.1 1157.2
SC-01 25 1588.3 100.0 100.2 139.4 100.0 100.6 89.3 100.0 100.1 157.6 100.9 141.1 129.5 100.0 101.0 55.5 100.1 147.4 90.8 100.0 100.1 79.4
SC-02 50 4553.3 100.4 101.5 551.5 101.2 101.9 475.1 101.2 102.2 444.5 100.1 100.8 485.1 100.5 101.0 633.8 101.2 101.5 230.6 100.0 100.5 502.7
SC-03 75 6063.7 102.2 102.8 1200.1 106.7 107.4 1019.1 100.4 102.7 1085.4 100.0 103.0 1219.7 100.0 104.1 1168.3 102.4 116.1 920.3 100.0 101.0 1150.9
SC-04 100 7670.4 101.2 106.5 1200.0 106.7 103.6 1035.8 102.8 103.8 1200.5 100.1 102.2 1135.1 101.2 107.8 1113.3 117.0 117.9 666.8 100.0 101.6 1161.4
SD-01 25 1280.0 100.0 100.1 39.8 100.0 100.2 25.1 100.0 100.2 96.9 100.0 100.3 217.6 100.0 100.3 38.0 100.1 100.2 30.2 100.0 100.1 58.7
SD-02 50 2515.4 100.3 100.2 341.2 100.3 100.4 152.6 100.2 100.2 1018.4 100.0 100.1 244.7 100.0 100.1 302.4 100.3 100.5 63.5 100.0 100.1 181.0
SD-03 75 2611.0 100.8 101.4 963.0 101.9 102.5 397.1 101.0 101.6 1140.5 100.4 101.3 671.5 100.9 101.4 782.8 109.7 110.7 233.6 100.0 100.3 467.8
SD-04 100 3702.6 100.2 100.6 1097.9 100.5 101.0 768.8 100.3 100.6 1134.4 100.2 100.8 1106.4 100.0 100.4 943.8 100.1 100.7 332.7 100.0 100.4 887.6

MA-01 200 10955.7 112.8 115.9 3600.0 100.0 107.3 2394.8 106.3 108.3 3600.0 100.6 111.5 3600.0 111.4 115.7 3600.0 113.9 119.4 3600.0 100.0 106.5 3600.0
MA-02 400 19917.8 122.8 124.8 3600.0 112.4 114.6 3600.0 121.5 124.3 3600.0 111.9 118.5 3600.0 119.7 123.9 3600.0 109.5 115.4 3165.7 100.0 109.9 3600.0
MA-03 600 28308.9 109.9 116.6 4800.0 101.8 122.4 4800.0 102.5 113.9 4800.0 108.6 117.3 4800.0 105.9 110.9 4800.0 100.0 110.0 4800.0 100.0 103.4 4800.0
MB-01 200 13922.7 101.9 102.0 3600.0 100.0 101.9 3162.5 101.4 106.8 3600.0 101.4 107.1 3600.0 102.4 105.2 3600.0 101.6 108.1 3518.8 100.0 101.5 3600.0
MB-02 400 23099.2 110.3 118.0 3600.0 106.3 110.7 3600.0 101.3 108.2 3600.0 105.2 110.1 3600.0 109.2 115.0 3600.0 100.0 110.5 3600.0 100.0 108.2 3600.0
MB-03 600 30326.1 122.7 124.3 4800.0 110.1 113.0 4800.0 111.4 114.8 4800.0 112.7 117.5 4800.0 118.3 122.6 4800.0 105.7 109.9 4800.0 100.0 106.7 4800.0
MC-01 200 13779.8 106.1 110.7 3600.0 100.2 107.1 3600.0 108.5 109.6 3600.0 102.5 108.1 3600.0 107.8 109.7 3600.0 117.2 124.8 3261.5 100.0 101.2 3600.0
MC-02 400 19367.1 124.3 140.4 3600.0 103.5 106.2 3600.0 107.7 112.9 3600.0 108.9 120.2 3600.0 115.6 122.2 3600.0 106.4 108.1 3600.0 100.0 105.6 3600.0
MC-03 600 23441.8 - - 4800.0 121.1 136.8 4800.0 127.8 161.1 4800.0 110.9 154.1 4800.0 - - 4800.0 121.6 135.0 4800.0 100.0 110.9 4800.0
MD-01 200 6004.8 100.4 100.6 3224.7 100.2 100.4 1559.3 100.5 100.9 2899.2 100.6 101.1 2405.4 100.0 100.4 3600.0 100.2 100.8 1187.2 100.0 100.3 2339.2
MD-02 400 15387.6 111.3 112.4 3600.0 102.2 102.8 3600.0 104.0 114.0 3600.0 103.0 111.3 3600.0 100.0 113.3 4800.0 109.6 112.8 4014.7 100.0 104.4 4800.0
MD-03 600 22424.8 104.3 111.4 4800.0 105.9 112.2 4800.0 107.0 118.8 4800.0 101.9 108.6 4800.0 109.8 120.5 4800.0 104.0 109.5 4800.0 100.0 102.1 4800.0

LA-01 800 32545.2 119.4 123.0 7200.0 113.1 126.7 7200.0 109.0 127.7 7200.0 122.0 129.1 7200.0 122.3 137.5 7200.0 106.0 112.8 6150.9 100.0 108.4 7200.0
LA-02 1200 50710.1 118.6 126.7 10800.0 112.9 118.7 10800.0 113.6 119.6 10800.0 112.9 118.7 10800.0 120.0 124.2 10800.0 114.6 120.0 10800.0 100.0 105.8 10800.0
LB-01 800 35762.1 132.7 145.6 7200.0 134.8 142.4 7200.0 127.6 143.6 7200.0 131.1 133.0 7200.0 132.7 141.2 7200.0 113.3 117.8 7200.0 100.0 109.6 7200.0
LB-02 1200 76904.3 123.3 155.1 10800.0 107.6 151.8 10800.0 112.0 129.8 10800.0 119.1 149.5 10800.0 129.9 144.3 10800.0 125.0 148.6 10800.0 100.0 122.6 10800.0
LC-01 800 30374.2 - - 7200.0 114.5 140.1 7200.0 119.1 147.7 7200.0 114.4 148.3 7200.0 108.4 161.9 7200.0 122.1 141.0 6122.7 100.0 133.3 7200.0
LC-02 1200 69793.0 117.3 133.7 10800.0 102.6 103.8 10800.0 115.3 124.0 10800.0 102.6 113.7 10800.0 105.1 123.6 10800.0 116.3 126.0 10800.0 100.0 102.9 10800.0
LD-01 800 28904.4 111.9 124.6 7200.0 117.4 126.7 7200.0 131.7 136.9 7200.0 112.9 126.1 7200.0 111.3 120.3 7200.0 109.5 114.8 7107.6 100.0 111.5 7200.0
LD-02 1200 52629.5 129.2 153.5 10800.0 108.8 135.7 10800.0 116.0 150.3 10800.0 118.1 136.1 10800.0 119.5 146.9 10800.0 113.7 114.8 10800.0 100.0 118.1 10800.0

109.9 105.6 107.4 106.1 107.6 108.1 100.0 105.4

35



Table 4 shows that the number of areas in the solutions for large-scale
instances ranges from 20 to 54. The distribution regions of the different
depots are indeed geographically heterogeneous, with both urban and rural
areas, as indicated by the wide range of routing costs as well. In the context of
this study, the main purpose was to serve all the customers with a minimum
total distribution cost. However, serving geographically dispersed customers
can be particularly costly for the company since dedicated routes serving
a few customers on specific days must be required. In terms of capacity
and time utilisation of the vehicles, the data show that the most critical
resource is time, as shown by the maximum utilizations reported by columns
“UT (Q)” and “UT (T )”. Indeed, service and travel times play a crucial role
in the distribution. It is worth noting that all the drivers are employed by
the company. If the driver completes the route before the end of his working
hours, he must complete the working day at the depot from which the journey
started.

Impact of the main HMPG components

To analyse the impact on performance of the various algorithmic com-
ponents of the proposed metaheuristic, we perform experiments on HMPG by
removing each of them in turn. In particular, as mentioned in Section 3,
Algorithm HMPG also introduces new features with respect to the algorithms
proposed by Vidal et al. [17] and Zhou et al. [39]. Hence in this section we
also evaluate the effectiveness of the new features.

We evaluate the following different versions of HMPG.

1. “No-FI”. The feasibility improvement procedure described in Section
3.6.4 is not used.

2. “No-MP”. Only one subpopulation is considered; i.e., a no multi-
population strategy is adopted.

3. “No-SA”. A classical local search is used instead of the SA algorithm
described in Section 3.6. The local search terminates whenever no
improvements can be found.

4. “No-DynPop”. The maximum size of the subpopulation used to acti-
vate the survivor selection mechanism is not dynamically changed (see
Section 3.7.2).

5. “No-DM”. The diversification mechanism from different subpopula-
tions (lines 12-16 of Algorithm 1) is disabled.
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6. “No-MP”, “No-SA”, “No-DynPop”, “No-DM” (denoted as HMPG-Lit).
Furthermore, in this version, we consider only one feasible subpop-
ulation (containing feasible solutions only) and, in addition, we also
consider one infeasible subpopulation (containing infeasible solutions
only).

The last of the six versions listed above has been introduced to simulate
the solution framework proposed by Vidal et al. [17], and thus to compare
the effectiveness of the new components introduced to solve our problem with
respect to the literature.

Table 5 shows the results obtained by the different variants of HMPG using
the same notation described above. In the table, the percentage value in
bold reported under column “%dev” indicates that the corresponding variant
computed a solution having the best solution cost known for the associated
instance. An entry in the table marked with a symbol “-” means that no
feasible solutions were computed by the corresponding method.

The results show that each algorithm component plays an important role
in the good overall performance of the HMPG algorithm. As shown by the av-
erage percentage values reported in the last line of the table, the new features
of our algorithm—namely the feasibility improvement procedure, the SA, and
the diversification mechanism—greatly contribute to its effectiveness. Fur-
ther, in the set of small-sized instances “S” for the variant “No-DynPop”,
the table shows an average computing time of 624.3 seconds and an average
deviation of 101.2%, whereas HMPG shows an average computing time of 567.1
seconds and an average deviation of 100.0%. Hence, the mechanism used to
dynamically change the maximum sizes of the subpopulations is also quite
effective. Finally, version HMPG-Lit was not able to obtain the same best so-
lutions of HMPG. Algorithm HMPG-Lit computed best solutions only for two
instances.

4.3. Sensitivity analyses

In this section, we perform different sensitivity analyses on important
components of the problem in order to generate useful managerial insights
for effective tactical decision making.

It is worth noting that, based on the details reported in Table 4, the ve-
hicle capacity is not a critical component. Moreover, the maximum working
time L is defined based on existing labor laws and regulations, hence investi-
gating alternative scenarios based on the value of L would involve decisions
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not of interest to the company. For this reason, we do not perform analyses
on the values of the vehicle capacity and of the maximum working time L.

We start analysing the impact of the fixed area cost F and the time
window constraints. Then, we focus our attention on the level of the service
quality to the customers. We conclude this section with an analysis of the
impact of the service requirements, based on the frequency of service and the
day-combinations.

The results in this section involve a subset of the whole set of real-world
instances identified with the company’s operators. Moreover, for each in-
stance evaluated in the experiments, Algorithm HMPG is run ten times and
the best solution found over the ten runs is selected as the corresponding
solution. We use the same set of parameters for HMPG defined by Table A.6,
that were used in the previous experiments.

Sensitivity analysis - Fixed cost and time window widths

The first set of experiments evaluates the impact of the fixed cost F used
in the objective function of the problem. As mentioned previously, the value
of F in our experiments (e.g., 1000) was defined by the company’s operators
as the marginal weekly cost for an area or a vehicle. In these experiments,
eight medium- and large-size instances were selected from the whole set.
The solutions when F is set to 1000 are compared with the solutions when
F is set to 0, i.e., when the objective function minimises the total routing
cost disregarding the fixed costs. The solutions when F = 0 provide lower
estimates of the routing costs for all eight instances considered, being the
objective function the pure minimization of the total routing cost.

Figure 7 depicts the results obtained; the corresponding detailed results
can be found in Appendix C. The three figures (a), (b), and (c) show the
real solution costs (z), the routing costs (rc), and the number of areas (#ar),
respectively, for the two cases. The solution cost z corresponds to the real
cost of the solution, therefore it also includes the fixed cost of 1000 in both
scenarios where F = 1000 and F = 0.

Figure 7-a shows that the setting F = 1000 always produces better so-
lutions than F = 0 (i.e., the real solution cost z is smaller), and provides
the right balance of the number of areas (see Figure 7-c). As expected, the
routing costs when F = 0 are always lower, but a trade-off can be found—as
shown by the results of instance MA-03: the gap between the two solution
costs is only about 1.8%. In this solution, two more areas are used when
F = 0, but at a considerably lower routing cost (less than 23% of the solu-
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tion when F = 1000). This suggests that there are alternatives for servicing
the specific territory, at (more or less) the same cost.

To perform a sensitive analysis on the impact of the time windows, ten
medium- and large-size instances are selected from the groups of instances A
and D. We consider different scenarios by varying the time window widths:
for each customer i ∈ N and day d ∈ D, we first compute ∆ = ldi − edi . Then
we define the new time window for customer i on day d to be [max{0, edi −
Γ∆},min{ldi + Γ∆, 1440}] (in our instances, the lower limit 0 and the upper
limit 1440 are never reached). Two different values of Γ were considered: (i)
Γ = −0.1, i.e., the time window is narrowed and (ii) Γ = 0.1, i.e., the time
window is widened.

Figures 8 and 9 show the results obtained over the ten instances. The
different figures report the solution costs, the routing costs, the number of
areas in each instance, and the percent gaps of the two scenarios considered
(i.e., Γ = −0.1 and Γ = 0.1). The corresponding detailed results can be found
in Appendix C. The percent gap of a value x with respect to a reference
value y is computed as 100× (x−y)

y
.

The results show that significant savings can be obtained by enlarging
the time window widths; comparably, reducing the time windows greatly
increases the total cost (e.g., up to about 40% for instance LD-02). This
difference makes it clear that the time window constraints represent a critical
component of the level of service provided to the customers. The results
indicate territories which are particularly sensitive to variations in the time
windows (e.g., see instances MA-02 and MD-02), as evidenced by the changes
in routing costs and number of areas. Given that customers are assigned to
specific depots or transit points, the results of this analysis can also reveal
critical territories (and the corresponding groups of customers) that should
be revised to improve the assignments of customers to depots.

Notice that in our application the time windows are defined by the cus-
tomers, based on their activities and daily operations. In most cases, the
margins for negotiating their definitions are very limited.

To further analyse the results obtained, Figure 10 gives an overview of the
customers distributions of the two larger instances LA-02 and LD-02. The
figure show the distributions of the customers in term of the distances (in
kilometers) from the depot locations. For instance LA-02 about 99% of the
customers are within a distance of 40 kilometers from the depot whereas for
instance LD-02 the percentage is about 94, and that the LD-02 instance also
contains customers which are about 100 kilometers far from the main depot.
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Figure 10: Distribution of the customer distances from the main depots (instances LD-02
and LA-02)

In practice, instance LD-02 involves also rural customers far from the depot
location. This distributions could explain the fact that for the case Γ = −0.1
(i.e., the time windows are narrowed), the increases of the solution costs are
about 36% and 25% for instances LD-02 and LA-02, respectively. In other
words, for a set of customers which are spread over a larger geographical area,
improving the quality of service by ensuring tight delivery windows results
in a more sensitive increase of the distribution cost.

Sensitivity analysis - Customer frequencies

As aforementioned, the definition of the time window depends on the
customer’s preferences, hence it is very difficult to reduce the distribution
cost by revising their values. Another parameter that greatly impacts the
efficiency of a distribution plan is the frequency of visits; however, in this case
the company has larger decision margins in their definition. Thus cost savings
can potentially be achieved by changing the customers’ visit frequencies.

In this section, we describe a new metric, the Marginal Routing Cost

(MRC), associated with the set of customers and used to measure the
marginal impact on the total routing cost of each customer. We propose
a method based on the MRC which selectively revises the visit frequencies
with the aim of reducing the total distribution cost. Below, we describe the
MRC and the method used to revise the frequencies, followed by an analysis
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of its effectiveness.
Given an instance of the problem, let R = {ℓ1, . . . , ℓk} be the index set of

k routes forming a feasible solution with cost z involving v areas. For a route
ℓ ∈ R, bℓ is its routing cost and π(ℓ) is the day of the planning period when
the route is operated. For each i ∈ N , the MRC ui is defined as follows:

ui =
1

fi

∑

ℓ∈Ri

q
π(ℓ)
i

bℓ
Qℓ

, (5)

where Ri ⊆ R is the index set of the routes in solution R serving customer
i, and Qℓ is the total demand of route ℓ. We have |Ri| = fi and z =
vF +

∑

ℓ∈R bℓ = vF +
∑

i∈N fiui, hence ui represents a marginal routing cost
per visit for servicing customer i.

Customers associated with high ui values represent critical customers in
terms of the distribution cost; savings can potentially be achieved by revising
their frequency values. Thus we adopt a simple procedure to revise the
frequencies based on the MRC values. The procedure works as follows.

(i) The MRC ui are sorted for decreasing values; (ui1, ui2, . . . , uinc
) is such

that ui1 ≥ ui2 ≥ · · · ≥ uinc
;

(ii) We consider the first h = Υnc customers having the highest ui values.
Let W = {i1, i2, . . . , ih} be the index set of these customers;

(iii) For each customer i ∈ W with fi > 1 we execute the following steps.

(a) We recompute the customer frequency as f i = fi − 1.
(b) We associate the set of day-combinations as defined by Table 3 to

the new frequency value f i.
(c) We compute

qi = fi
mind∈D:qd

i
>0{q

d
i }+maxd∈D{qdi }

2
, (6)

an estimate of the demand that must be delivered to the customer
at each visit. For our set of instances, values qi result in upper
estimates on the total demand delivered by the routes in R with
the original frequency fi, so the customer frequency is reduced but
the original level of service (in terms of total demand) is preserved.

(d) We compute qdi = ⌈qi/f i⌉, d ∈ D.

(iv) We associate, with each customer i ∈ N , the new frequency value f i

and demands qdi . Based on the new frequency value f i and associated
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day-combinations, we assume qdi = 0 if the customer cannot be served
on day d. The time windows of the customers are left unchanged, hence
the same level of service is preserved regarding time windows as well.

To fully evaluate the impact of the above procedure, a solution method
which provides optimal or close-to-optimal solutions is required. We select
four small-size instances from group D (instances involving up to 100 cus-
tomers), for which Algorithm HMPG has provided close-to-optimal solutions
in the computational study reported in Section 4.1.

Figure 11 reports the results obtained with Υ ∈ {0.1, 0.15} (i.e., the visit
frequencies are revised for either 10% or 15% of the customers). Detailed
results can be found in Table C.17 in Appendix C. Figures (a) and (b) give
the results with Γ = 0.0; Figures (c) and (d) show the results with Γ = 0.1
(the time window widths of all the customers are modified as described in the
previous section). The figures report the solution costs (z) and the percent
gaps of the different scenarios.

Figure 11-a shows that cost savings (up to about 2%) can be achieved
for all the instances. Increasing the value of Υ to 0.15 achieves an additional
savings for instance SD-03. Clearly, savings achieved on a weekly basis can
lead to consistent savings over a medium-term planning horizon. The results
with Γ = 0.1 show that combining changes to the customer frequencies and
the time window widths leads to additional savings, by also reducing the
number of areas used in the solutions.

Finally, with respect to our previous analysis, the impact of the changes
on the data associated with the customers can be gradually tailored by the
value of Υ. Moreover, the definition of the set W can be driven by the
expert knowledge of the company’s operators, making the changes even more
effective in practice.

5. Conclusions and future work

In this paper, we investigated a real-world territory design problem in the
dairy industry that requires the joint optimisation of distribution districts
and periodic vehicle routes. For its solution, we designed a heuristic algo-
rithm based on a hybrid genetic search solution framework enriched with new
features, such as a local search improvement procedure based on a simulated
annealing algorithm framework and a mechanism to dynamically change the
maximum subpopulation sizes.
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Figure 11: Sensitivity analysis on the customer frequencies.
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The proposed algorithm was tested on instances from the literature and
real-world instances. More precisely, we evaluated the performance of the
algorithm on the set of instances of the periodic vehicle routing problem
with driver consistency for which an exact branch-and-cut method has been
proposed in the literature. Our results show that the heuristic computed
optimal solutions for about 96% of the instances solved to optimality by the
exact method, with an average running time of about one third of that of the
exact method. Further, for the instances not solved to optimality by the exact
method, the heuristic algorithm computed better solutions in a fraction of
the computing time of the exact method. The algorithm was also extensively
tested on real-world instances involving more than 1000 customers. Firstly,
an analysis of the impact of the main algorithm’s components showed the
effectiveness of all the different algorithm’s features. Secondly, there are
several managerial insights, based on the results of the sensitivity analysis,
that can be summarised as follows.

• The sensitivity analysis of the fixed cost associated with the areas
showed that the (weighted) objective function in our problem is ef-
fective, and that a trade-off can exist between the area cost and the
routing cost.

• Varying the time window widths can lead to significant cost savings.
However, the company has very little power to change them.

• To evaluate scenarios with varying customer frequencies, we introduce
a metric called theMarginal Routing Cost (MRC). For a given solution,
the metric gives a measure of the impact of each customer’s service cost
on the total routing cost. We design a procedure that makes use of the
MRC values to identify critical customers (in terms of distribution cost)
and revises their visit frequencies in order to reduce the distribution
cost while preserving the level of service. The experiments provide
empirical evidence that the procedure has the potential to contribute
to cost savings.

A preliminary version of the optimization algorithm described in this
paper has been used by the company to evaluate different distribution sce-
narios. In addition to the global optimisation of a scenario, the optimisation
tool has been enriched with additional functionalities, such as evaluating the
addition of new customers to an existing distribution plan. Based on the
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feedback from the company, the main benefits achieved can be summarised
as follows.

• The optimisation provides a highly operational and cost-efficient dis-
tribution plan.

• A distribution plan is created in less time. Moreover, its definition no
longer fully depends on the knowledge of the operators involved in the
planning process, so the company is less dependent on these employees.

• The tool permits to evaluate what-if scenarios. In particular, the MRC
are used to identify critical customers in terms of distribution cost and
revise their visit frequencies. Moreover, what-if scenarios can be used
to enhance the decision-making process.

We see three main topics for future work. First, the algorithm was used as
a stand-alone tool without any graphical user interface. Therefore, the algo-
rithm needs to be integrated into a decision support system that presents the
information graphically to help the users make their decisions more easily.
Second, balance requirements are important in real applications, hence the
territories should also be balanced with respect to some measure (e.g., route
duration or route profit), so we are planning to integrate route balancing
in our solution framework. Finally, the assignment of customers to depots
or transit points greatly impacts the distribution cost, and the results anal-
ysed by the company show that improvements can be made by revising the
distribution areas of the different depots. This will involve partitioning cus-
tomers into groups of depots, adding a higher decision level to our problem;
the result will be a complex location-routing problem. Our aim is to tackle
this challenging optimisation problem by combining different optimisation
techniques.
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Appendix A. Parameter calibration

Table A.6: Parameters used and final values found.

Reference Parameter Description Search

interval

Final value

Algorithm 1 nsp Number of subpopulations 3-8 6
ITnimp Maximum number of non-

improving iterations
200

pls Local search probability (%) 0-100 55
∆0 Initial maximum population

size
10-100 80

ITsf Updating frequency of the sub-
population size (iterations)

10-100 50

Algorithm 2 ω Working time adjust coeffi-
cient

0.8

Fitness function α1 Penalty term for time-window
constraints

0.01M − 0.15M 0.02M

α2 Penalty term for working time
constraints

0.01M − 0.15M 0.1M

α3 Penalty term for capacity con-
straints

0.01M − 0.15M 0.1M

β1 Fitness function weight 0.95
β2 Fitness function weight 0.05

Mutation NPMUT Number of pairs of customers max{10, ⌈0.1nc⌉}
NCMUT Number of customers selected max{2, ⌈0.05nc⌉}

Local improvement T0 Initial temperature 10-1000 100
αT Cooling parameter 0.900-0.999 0.996
Tf Minimum temperature 0.001-0.1 0.02

Neighborhood structures NCLP Number of selected customers max{2, ⌈0.05nc⌉}
NCCLP Number of nearest customers max{5, ⌈0.01nc⌉}
αLP Area elimination coefficient 0.01-0.05 0.02

Population management STPM Threshold for defining the
number of seeds

⌈0.1nv⌉

NSPM Number of initial solutions 100
ISFPM Number of iterations (Shrink-

ing function)
10-100 50

η Shrinking function parameter 3-6 5
H Shrinking function parameter 50-500 100

To produce suitable values for the parameters of the algorithm, we first
defined the values of a set of parameters based on the results of preliminary
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experiments. Then, we selected a second set of parameters to further ex-
tend the parameter calibration. For the second set of parameters, we used
a preliminary meta-calibration based on the covariance matrix adaptation
evolution strategy of Hansen [51]. During meta-calibration, the parameters
are considered to be the decision variables, and the associated objective cor-
responds to the average solution quality of HMPG over ten runs on a set of
training instances. This training set includes eight instances from the set of
real-world instances.

Table A.6 lists the parameters used in our approach, the allowed range for
each parameter, and the final values found by the meta-calibration process.
When a range for a parameter is not reported, the value of the parameter
was fixed during the preliminary experiments. The value of M reported in
the table was set to 1000.

Appendix B. Detailed results on the set of instances of Rodŕıguez-
Mart́ın et al. [36]

Tables B.7-B.13 give the detailed results about the instances of the
PVRP with driver consistency grouped for the number of customers in
{10, 20, 30, 40, 50, 60, 70}.

The tables report for each instances, the relevant data of the instance
(nd, nv, and Q), the cost of the best solution found by the branch-and-
cut and the Algorithm HMPG (“z∗”), and for each method the solution cost
(“z”), the percentage deviation (“%dev”) computed as 100.0× z/z∗. In the
tables, an entry marked with “-” under the branch-and-cut section means
that the algorithm failed to compute a feasible solution for the corresponding
instance. Moreover, for method HMPG, the last four sections of each table
report: the maximum and the average values of the solution cost (section
“z”), the minimum, maximum and average number of iterations performed
to compute the best solution (“Its. to best”), the minimum, maximum and
average time spent to compute the best solution (“Time to best”) and the
minimum, maximum and average total time (“Total time”). The last row of
each table reports (i) the total sum of the costs of the best solutions found
and (ii) the average of the solution costs and of time to best and the total
time.
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Table B.7: Results on instances from the literature with nc = 10.

Branch-and-cut HMPG z Its. to best Time to best Total time

nd nv Q z∗ z %dev t z %dev max avg min max avg min max avg min max avg

2 2 4 698.0 698.0 100.0 0.1 698.0 100.0 698.0 698.0 1 10 6.0 0.02 0.18 0.13 1.6 1.7 1.6
2 2 4 661.0 661.0 100.0 0.1 661.0 100.0 661.0 661.0 1 13 5.8 0.02 0.19 0.08 1.3 1.8 1.5
2 2 4 657.0 657.0 100.0 0.0 657.0 100.0 657.0 657.0 4 11 7.3 0.05 0.17 0.11 1.2 1.8 1.5
2 3 3 790.1 790.1 100.0 0.2 790.1 100.0 790.1 790.1 4 55 34.0 0.05 1.21 0.59 1.9 1.9 1.9
2 3 3 701.3 701.3 100.0 0.2 701.3 100.0 701.3 701.3 4 24 11.5 0.05 0.42 0.18 1.2 1.9 1.6
2 3 3 744.3 744.3 100.0 0.2 744.3 100.0 744.3 744.3 2 15 9.0 0.07 0.21 0.16 1.4 1.7 1.6
3 2 4 936.6 936.6 100.0 0.2 936.6 100.0 936.6 936.6 2 8 5.3 0.03 0.17 0.11 1.6 2.3 1.9
3 2 4 1032.3 1032.3 100.0 0.1 1032.3 100.0 1032.3 1032.3 1 1 1.0 0.01 0.08 0.04 1.6 1.9 1.8
3 2 4 759.6 759.6 100.0 0.0 759.6 100.0 759.6 759.6 1 31 17.8 0.02 0.34 0.21 1.3 1.8 1.6
3 3 3 1123.9 1123.9 100.0 0.6 1123.9 100.0 1123.9 1123.9 1 6 3.3 0.03 0.12 0.05 1.8 1.9 1.9
3 3 3 1189.5 1189.5 100.0 0.3 1189.5 100.0 1189.5 1189.5 1 2 1.5 0.01 0.02 0.02 1.5 1.9 1.7
3 3 3 832.3 832.3 100.0 0.1 832.3 100.0 832.3 832.3 1 4 2.5 0.03 0.07 0.05 1.4 1.6 1.6
4 2 4 1276.7 1276.7 100.0 0.3 1276.7 100.0 1276.7 1276.7 1 12 5.5 0.02 0.26 0.12 2.0 2.3 2.2
4 2 4 1400.1 1400.1 100.0 0.2 1400.1 100.0 1400.1 1400.1 1 3 1.3 0.01 0.04 0.03 1.8 2.1 1.9
4 2 4 1104.3 1104.3 100.0 0.4 1104.3 100.0 1104.3 1104.3 2 16 8.5 0.03 0.37 0.20 1.9 2.3 2.1
4 3 3 1457.3 1457.3 100.0 0.7 1457.3 100.0 1457.3 1457.3 1 20 10.8 0.06 0.74 0.37 2.3 2.9 2.4
4 3 3 1502.9 1502.9 100.0 0.5 1502.9 100.0 1502.9 1502.9 14 127 64.5 0.67 2.22 1.23 2.5 5.8 3.7
4 3 3 1203.3 1203.3 100.0 1.1 1203.3 100.0 1203.3 1203.3 11 44 24.0 0.06 1.44 0.91 3.7 7.7 6.1
5 2 4 1242.9 1242.9 100.0 1.3 1242.9 100.0 1242.9 1242.9 5 23 12.8 0.33 1.41 0.82 3.0 3.8 3.3
5 2 4 1759.9 1759.9 100.0 1.0 1759.9 100.0 1759.9 1759.9 7 18 13.0 0.33 0.69 0.50 3.0 3.3 3.1
5 2 4 1248.4 1248.4 100.0 0.4 1248.4 100.0 1248.4 1248.4 13 47 29.5 0.73 1.02 0.87 2.9 4.0 3.3
5 3 3 1432.1 1432.1 100.0 30.6 1432.1 100.0 1432.1 1432.1 7 28 16.5 0.48 0.67 0.56 2.3 2.9 2.6
5 3 3 1894.5 1894.5 100.0 3.8 1894.5 100.0 1894.5 1894.5 3 7 5.3 0.13 0.44 0.33 6.9 7.3 7.0
5 3 3 1415.0 1415.0 100.0 5.3 1415.0 100.0 1415.0 1415.0 3 8 5.3 0.03 0.16 0.09 2.0 2.4 2.2

27063.0 27063.0 0.32 2.50
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Table B.8: Results on instances from the literature with nc = 20.

Branch-and-cut HMPG z Its. to best Time to best Total time

nd nv Q z∗ z %dev t z %dev max avg min max avg min max avg min max avg

2 2 8 834.5 834.5 100.0 0.1 834.5 100.0 834.5 834.5 58 67 61.8 1.1 1.2 1.2 3.2 3.2 3.2
2 2 8 783.3 783.3 100.0 1.4 783.3 100.0 783.3 783.3 8 32 25.5 0.8 0.8 0.8 2.9 3.2 3.1
2 2 8 801.1 801.1 100.0 0.3 801.1 100.0 801.1 801.1 19 30 24.0 1.5 2.3 1.8 5.6 8.4 6.9
2 3 5 923.7 923.7 100.0 0.8 923.7 100.0 923.7 923.7 67 84 74.5 2.3 2.4 2.3 5.4 6.0 5.7
2 4 4 1138.1 1138.1 100.0 3.1 1138.1 100.0 1138.1 1138.1 11 34 20.5 1.4 2.2 1.9 8.0 9.5 8.6
2 4 4 1034.8 1034.8 100.0 30.7 1034.8 100.0 1034.8 1034.8 71 409 196.5 8.8 20.8 14.4 14.0 30.0 23.6
2 4 4 1003.3 1003.3 100.0 2.1 1003.3 100.0 1003.3 1003.3 33 54 40.5 4.0 6.2 4.8 14.8 17.8 16.0
3 2 8 1085.9 1085.9 100.0 0.5 1085.9 100.0 1085.9 1085.9 25 38 31.8 2.1 3.0 2.6 9.3 9.6 9.5
3 2 8 1160.1 1160.1 100.0 1.0 1160.1 100.0 1160.1 1160.1 22 40 30.5 2.0 2.5 2.2 8.8 9.5 9.2
3 2 8 1009.7 1009.7 100.0 0.7 1009.7 100.0 1009.7 1009.7 6 18 11.5 0.7 1.4 1.0 8.2 10.0 9.2
3 3 5 1231.6 1231.6 100.0 1.2 1231.6 100.0 1231.6 1231.6 15 40 28.3 1.9 4.1 2.8 12.6 15.5 13.6
3 3 5 1383.5 1383.5 100.0 7.7 1383.5 100.0 1383.5 1383.5 21 42 32.8 3.5 5.4 4.5 15.8 17.7 16.7
3 3 5 1193.7 1193.7 100.0 15.9 1193.7 100.0 1193.7 1193.7 45 85 65.5 7.2 12.2 9.7 20.3 26.3 23.8
3 4 4 1367.2 1367.2 100.0 7.8 1367.2 100.0 1368.0 1367.6 45 80 57.0 4.7 5.7 5.3 16.6 20.1 18.5
3 4 4 1504.2 1504.2 100.0 15.9 1504.2 100.0 1504.2 1504.2 55 110 80.8 9.2 16.4 12.2 19.0 32.6 24.9
3 4 4 1339.5 1339.5 100.0 124.1 1339.5 100.0 1343.9 1342.2 169 366 239.3 21.4 45.9 29.7 36.1 65.9 48.6
4 2 8 1335.9 1335.9 100.0 2.0 1335.9 100.0 1335.9 1335.9 159 288 205.5 6.0 10.0 7.4 12.2 16.1 13.6
4 2 8 1310.1 1310.1 100.0 2.0 1310.1 100.0 1310.1 1310.1 52 71 58.8 7.5 9.3 8.2 19.6 22.1 20.5
4 2 8 1208.8 1208.8 100.0 2.0 1208.8 100.0 1208.8 1208.8 45 86 64.3 6.7 8.9 7.9 12.7 13.8 13.2
4 3 5 1436.1 1436.1 100.0 2.3 1436.1 100.0 1436.1 1436.1 43 57 48.8 6.2 9.2 7.6 19.5 24.5 22.6
4 3 5 1538.9 1538.9 100.0 16.8 1538.9 100.0 1546.1 1541.3 68 98 87.5 15.2 18.2 17.0 31.7 33.4 32.9
4 3 5 1377.7 1377.7 100.0 10.7 1377.7 100.0 1377.7 1377.7 48 68 58.0 12.3 16.2 14.4 37.9 40.9 39.4
4 4 4 1676.0 1676.0 100.0 175.6 1676.0 100.0 1717.5 1686.4 28 137 82.8 4.1 19.5 11.6 22.4 33.0 26.9
4 4 4 1711.6 1711.6 100.0 1392.5 1711.6 100.0 1711.6 1711.6 57 662 466.3 9.7 100.4 76.8 28.8 129.4 104.2
4 4 4 1513.6 1513.6 100.0 97.2 1513.6 100.0 1513.6 1513.6 117 370 243.5 25.6 65.8 49.2 65.6 99.3 83.1
5 2 8 1838.3 1838.3 100.0 9.9 1838.3 100.0 1838.3 1838.3 17 27 23.5 4.4 7.0 5.3 26.8 28.7 27.7
5 2 8 1693.3 1693.3 100.0 2.0 1693.3 100.0 1693.3 1693.3 42 96 61.0 5.5 16.7 11.0 21.9 47.1 34.6
5 2 8 1892.9 1892.9 100.0 15.5 1892.9 100.0 1993.9 1929.3 55 354 245.8 4.3 25.0 17.5 18.2 41.3 33.0
5 3 5 2035.6 2035.6 100.0 18.9 2035.6 100.0 2049.2 2039.0 73 119 94.0 19.6 35.6 27.6 76.1 88.9 78.1
5 3 5 1942.3 1942.3 100.0 13.8 1942.3 100.0 2001.9 1963.8 551 622 576.3 34.1 125.2 67.0 48.1 157.1 87.4
5 3 5 2180.0 2180.0 100.0 142.8 2180.0 100.0 2180.0 2180.0 306 426 371.8 68.1 97.2 84.3 117.3 134.7 123.8
5 4 4 2218.7 2218.7 100.0 51.7 2218.7 100.0 2218.7 2218.7 182 255 206.3 34.5 45.6 38.2 70.5 74.1 71.7
5 4 4 2111.6 2111.6 100.0 78.9 2111.6 100.0 2111.6 2111.6 358 408 382.8 65.3 71.0 67.9 93.1 99.7 96.5
5 4 4 2317.7 2317.7 100.0 318.8 2317.7 100.0 2317.7 2317.7 253 814 452.5 55.0 143.2 88.8 94.5 174.5 125.8

49133.1 49210.4 20.7 37.5
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Table B.9: Results on instances from the literature with nc = 30.

Branch-and-cut HMPG z Its. to best Time to best Total time

nd nv Q z∗ z %dev t z %dev max avg min max avg min max avg min max avg

2 2 12 834.0 834.0 100.0 2.2 834.0 100.0 834.0 834.0 10 34 16.5 0.2 0.8 0.4 2.4 3.2 2.7
2 2 12 955.1 955.1 100.0 1.5 955.1 100.0 955.1 955.1 197 240 214.9 5.2 6.6 5.8 9.9 11.9 10.7
2 2 12 815.1 815.1 100.0 1.6 815.1 100.0 815.1 815.1 94 327 224.3 7.3 23.2 16.0 20.3 36.9 29.7
2 3 8 964.6 964.6 100.0 23.4 964.6 100.0 967.6 965.3 161 339 264.8 9.8 14.7 11.8 15.5 22.7 18.5
2 3 8 1096.0 1096.0 100.0 13.2 1096.0 100.0 1096.0 1096.0 16 221 155.0 0.5 7.5 5.4 7.7 14.4 12.4
2 3 8 924.8 924.8 100.0 7.3 924.8 100.0 938.1 933.0 344 494 448.8 10.9 37.5 21.3 16.8 52.1 30.1
2 4 6 1075.2 1075.2 100.0 51.5 1075.2 100.0 1090.4 1079.0 44 353 198.3 4.9 34.5 20.1 24.5 52.3 38.3
2 4 6 1244.0 1244.0 100.0 90.8 1244.0 100.0 1253.1 1246.3 220 632 361.5 47.5 105.9 66.8 78.6 132.4 97.7
2 4 6 1033.1 1033.1 100.0 11.1 1033.1 100.0 1033.1 1033.1 75 207 159.5 8.3 29.5 20.0 35.3 58.9 46.0
3 2 12 1193.6 1193.6 100.0 1.7 1193.6 100.0 1193.6 1193.6 78 601 397.8 9.4 60.9 42.5 30.9 77.1 61.0
3 2 12 1328.1 1328.1 100.0 6.4 1328.1 100.0 1328.1 1328.1 31 425 277.3 7.3 35.0 24.8 46.5 55.2 50.5
3 2 12 1160.4 1160.4 100.0 1.9 1160.4 100.0 1161.7 1160.9 240 706 433.8 26.4 72.1 45.2 45.6 87.3 62.7
3 3 8 1386.1 1386.1 100.0 32.6 1386.1 100.0 1386.1 1386.1 99 147 127.5 13.2 22.9 18.1 39.1 52.4 45.3
3 3 8 1477.9 1477.9 100.0 20.4 1477.9 100.0 1482.2 1479.0 58 234 148.5 7.2 26.5 16.9 32.0 47.6 40.0
3 3 8 1305.1 1305.1 100.0 13.8 1305.1 100.0 1306.9 1305.6 150 397 282.5 18.9 47.7 33.5 44.1 78.5 60.8
3 4 6 1564.9 1564.9 100.0 85.9 1564.9 100.0 1573.0 1568.9 129 175 145.8 22.8 28.3 24.9 52.5 58.2 56.1
3 4 6 1596.0 1596.0 100.0 32.1 1596.0 100.0 1607.3 1601.6 90 176 134.3 14.4 23.6 19.2 42.1 48.3 45.2
3 4 6 1532.6 1532.6 100.0 1130.0 1532.6 100.0 1538.2 1535.0 177 879 444.5 22.8 112.5 58.9 48.1 138.1 83.9
4 2 12 1626.4 1626.4 100.0 22.7 1626.4 100.0 1626.4 1626.4 93 345 242.0 3.4 14.6 10.1 11.1 22.0 17.6
4 2 12 1566.6 1566.6 100.0 12.0 1566.6 100.0 1566.6 1566.6 153 282 225.7 16.9 29.7 25.4 36.4 53.3 46.3
4 2 12 1546.2 1546.2 100.0 9.7 1546.2 100.0 1554.5 1550.4 134 926 368.0 22.3 32.6 25.0 49.7 57.4 53.6
4 3 8 1844.3 1844.3 100.0 45.8 1844.3 100.0 1854.1 1847.6 181 200 189.0 44.3 51.4 47.9 87.2 96.2 92.4
4 3 8 1728.3 1728.3 100.0 88.3 1728.3 100.0 1757.6 1738.0 234 1003 434.5 42.3 78.4 52.3 75.2 89.8 79.3
4 3 8 1783.5 1783.5 100.0 59.1 1783.5 100.0 1789.6 1785.6 111 692 488.0 25.3 109.2 79.3 61.2 140.0 108.3
4 4 6 2031.0 2031.0 100.0 675.5 2031.0 100.0 2031.0 2031.0 192 438 313.8 49.8 78.9 65.0 95.3 124.8 115.1
4 4 6 1867.0 1867.0 100.0 200.8 1867.0 100.0 1887.6 1878.7 951 1221 1081.0 149.0 178.1 164.2 174.2 202.0 184.9
4 4 6 1989.1 1989.1 100.0 241.7 1989.1 100.0 1989.1 1989.1 384 555 469.0 85.9 114.7 100.5 124.6 151.0 138.0
5 2 12 1690.4 1690.4 100.0 10.0 1690.4 100.0 1690.4 1690.4 84 176 126.0 10.3 22.7 15.9 33.8 45.4 38.7
5 2 12 2144.7 2144.7 100.0 11.0 2144.7 100.0 2149.5 2146.5 165 384 245.3 26.5 59.0 39.7 56.2 85.4 69.0
5 2 12 1656.8 1656.8 100.0 7.3 1656.8 100.0 1660.8 1658.2 97 850 368.8 15.9 83.1 40.1 45.0 98.1 64.1
5 3 8 1852.0 1852.0 100.0 233.7 1852.0 100.0 1859.3 1856.9 340 1443 655.8 74.1 170.5 105.0 92.1 185.9 128.4
5 3 8 2410.7 2410.7 100.0 148.5 2410.7 100.0 2410.7 2410.7 334 717 470.5 76.3 160.3 111.8 118.0 196.3 153.0
5 3 8 1829.8 1829.8 100.0 655.6 1829.8 100.0 1844.5 1834.7 1408 2234 1935.6 257.0 372.0 330.5 278.3 390.6 350.0
5 4 6 1978.1 1978.1 100.0 293.3 1978.1 100.0 1998.8 1988.3 577 1326 1014.3 126.1 272.0 211.0 166.7 581.6 316.9
5 4 6 2676.9 2676.9 100.0 3813.7 2676.9 100.0 2676.9 2676.9 466 1029 668.8 128.9 217.7 164.8 173.4 253.8 205.9
5 4 6 2013.3 2013.3 100.0 1372.6 2013.3 100.0 2024.3 2017.9 417 1872 1132.8 93.7 301.9 201.2 130.5 346.0 240.1

55721.5 55809.5 62.3 88.7

Branch-and-cut: exact method of Rodŕıguez-Mart́ın et al. [36].
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Table B.10: Results on instances from the literature with nc = 40.

Branch-and-cut HMPG z Its. to best Time to best Total time

nd nv Q z∗ z %dev t z %dev max avg min max avg min max avg min max avg

2 2 15 897.4 897.4 100.0 9.7 897.4 100.0 901.7 898.5 125 145 138.0 16.2 18.9 17.8 28.7 30.9 30.2
2 2 15 1049.8 1049.8 100.0 15.0 1049.8 100.0 1061.7 1052.8 139 186 155.0 10.0 17.5 13.9 23.9 35.9 31.5
2 3 10 993.0 993.0 100.0 38.6 993.0 100.0 1006.3 998.6 382 798 588.0 64.5 154.7 107.0 94.5 170.2 130.4
2 3 10 1189.7 1189.7 100.0 125.2 1189.7 100.0 1195.1 1191.5 714 1327 955.0 82.3 139.4 104.5 104.6 160.8 126.0
2 4 8 1103.5 1103.5 100.0 171.1 1103.5 100.0 1104.0 1103.6 73 592 217.5 18.0 57.2 32.0 60.9 98.5 77.2
2 4 8 1208.5 1208.5 100.0 108.3 1208.5 100.0 1208.5 1208.5 154 1028 607.8 39.0 177.4 115.7 82.7 202.7 149.6
2 4 8 1249.0 1249.0 100.0 294.5 1249.0 100.0 1298.5 1273.4 189 741 381.5 48.6 65.6 56.2 85.5 97.1 90.7
3 2 15 1285.0 1285.0 100.0 19.5 1285.0 100.0 1308.0 1297.9 320 14593 4028.5 36.4 1614.7 465.6 56.0 1637.7 489.2
3 2 15 1500.0 1500.0 100.0 34.7 1500.0 100.0 1516.1 1511.7 461 3008 1515.8 43.6 290.4 145.9 62.7 310.7 166.0
3 2 15 1520.6 1520.6 100.0 27.6 1520.6 100.0 1545.6 1532.4 444 3898 1638.0 38.9 348.8 146.1 61.6 367.0 168.1
3 3 10 1412.6 1412.6 100.0 38.0 1412.6 100.0 1440.2 1428.4 539 1404 957.8 54.2 148.3 100.1 76.7 169.7 121.8
3 3 10 1618.0 1618.0 100.0 111.5 1618.0 100.0 1647.7 1628.7 35 1890 734.8 4.0 247.9 90.2 29.5 274.1 114.1
3 3 10 1686.3 1686.3 100.0 84.9 1686.3 100.0 1688.9 1687.8 284 1718 909.5 51.8 229.6 134.5 83.9 246.5 158.8
3 4 8 1575.0 1575.0 100.0 4964.2 1575.0 100.0 1634.3 1597.6 2538 6289 3893.8 345.9 1011.4 586.3 371.1 1041.0 614.5
3 4 8 1743.0 1743.0 100.0 330.8 1743.0 100.0 1743.0 1743.0 97 209 179.0 44.8 89.6 58.3 92.7 168.4 114.3
3 4 8 1856.6 1856.6 100.0 3982.3 1856.6 100.0 1862.4 1860.6 61 791 252.5 12.2 136.9 45.5 50.9 161.4 79.0
4 2 15 1869.4 1869.4 100.0 85.4 1869.4 100.0 1874.7 1871.1 213 1001 638.8 36.2 145.9 95.1 65.4 168.6 120.2
4 2 15 1962.4 1962.4 100.0 210.1 1986.4 101.2 1986.4 1979.3 865 6197 3435.3 87.2 650.2 386.3 108.4 660.1 404.0
4 3 10 1750.8 1750.8 100.0 182.4 1750.8 100.0 1780.6 1767.0 537 2066 1310.9 68.0 283.7 175.1 93.4 310.4 201.7
4 3 10 2062.2 2062.2 100.0 3851.2 2062.2 100.0 2094.2 2078.4 1190 4019 2314.8 186.9 568.6 332.8 199.5 598.4 344.5
4 3 10 2158.2 2158.2 100.0 1691.6 2158.2 100.0 2169.2 2164.3 240 1742 1218.8 89.3 284.7 218.5 200.2 315.4 273.7
4 4 8 1797.9 1797.9 100.0 271.1 1797.9 100.0 1814.1 1808.1 1003 2493 1659.8 256.3 284.6 270.6 283.9 313.9 302.6
4 4 8 2100.4 2100.4 100.0 7200.0 2131.2 101.5 2187.0 2174.3 1629 5620 4204.0 255.3 1567.4 891.1 286.0 1613.3 927.2
4 4 8 2314.8 2314.8 100.0 7200.0 2335.4 100.9 2368.4 2364.8 5842 5977 5943.3 859.1 1623.9 1432.7 889.1 1682.9 1484.4
5 2 15 2100.5 2100.5 100.0 187.7 2100.5 100.0 2128.6 2116.8 1249 1931 1568.0 163.7 255.3 206.1 194.2 279.9 236.0
5 2 15 2240.7 2240.7 100.0 112.9 2240.7 100.0 2253.7 2246.1 517 1216 811.8 98.2 174.4 130.2 129.7 194.9 157.2
5 2 15 2165.4 2165.4 100.0 1375.5 2165.4 100.0 2189.1 2181.2 3081 5646 4872.0 492.7 808.3 707.3 525.3 832.6 735.6
5 3 10 2339.7 2339.7 100.0 2606.4 2339.7 100.0 2350.5 2347.6 1366 2738 2269.3 252.8 479.5 411.0 293.8 514.3 447.6
5 3 10 2468.9 2468.9 100.0 2344.1 2468.9 100.0 2484.8 2476.0 1898 3104 2507.3 279.9 571.2 433.9 305.0 610.2 467.9
5 3 10 2426.1 2427.1 100.0 7200.0 2426.1 100.0 2429.0 2426.5 2747 7327 4876.0 481.9 1211.3 815.1 516.9 1244.2 848.5
5 4 8 2508.3 2508.3 100.0 7200.0 2510.1 100.1 2655.4 2551.8 8865 10340 9916.6 1796.9 2215.5 2094.8 1836.4 2266.3 2136.2
5 4 8 2530.5 2530.5 100.0 7200.0 2566.1 101.4 2666.1 2594.8 1279 4327 3452.0 257.0 846.5 677.3 294.4 886.6 716.6
5 4 8 2468.8 2468.8 100.0 7200.0 2489.1 100.8 2537.0 2506.4 1593 1988 1735.3 322.4 410.3 354.1 357.3 450.5 391.0

59285.9 59669.2 359.1 389.6
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Table B.11: Results on instances from the literature with nc = 50.

Branch-and-cut HMPG z Its. to best Time to best Total time

nd nv Q z∗ z %dev t z %dev max avg min max avg min max avg min max avg

2 2 19 1109.1 1109.1 100.0 36.4 1109.1 100.0 1133.1 1117.1 435 644 535.0 56.5 72.8 62.0 74.2 99.5 85.2
2 2 19 1053.5 1053.5 100.0 31.5 1053.5 100.0 1057.4 1054.8 960 1656 1203.0 96.5 144.7 112.6 117.2 162.7 133.6
2 2 19 1050.5 1050.5 100.0 15.5 1050.5 100.0 1070.8 1060.7 677 934 845.0 62.1 80.8 72.9 78.1 97.9 90.1
2 3 13 1213.9 1213.9 100.0 76.5 1213.9 100.0 1227.0 1221.4 169 1793 1331.0 47.0 244.6 181.9 93.1 249.7 203.9
2 3 13 1148.0 1148.0 100.0 137.8 1148.0 100.0 1175.2 1157.1 875 966 922.8 95.5 104.0 100.0 114.5 123.2 119.2
2 3 13 1129.2 1129.2 100.0 47.0 1129.2 100.0 1136.0 1131.7 344 467 397.5 88.9 115.5 100.6 131.9 155.2 142.0
2 4 10 1335.6 1335.6 100.0 580.8 1335.6 100.0 1335.6 1335.6 306 654 493.8 36.4 77.2 58.1 61.0 101.3 82.8
2 4 10 1231.8 1231.8 100.0 1786.9 1231.8 100.0 1231.8 1231.8 3122 4543 3632.3 365.5 548.5 431.1 392.3 571.7 456.3
2 4 10 1229.2 1229.2 100.0 1451.8 1229.2 100.0 1229.2 1229.2 1243 2590 1855.8 152.4 308.3 222.7 176.5 332.1 246.8
3 2 19 1690.0 1690.0 100.0 85.6 1690.0 100.0 1729.6 1705.2 407 686 488.8 50.1 85.4 66.9 76.1 109.0 93.6
3 2 19 1581.6 1581.6 100.0 55.1 1581.6 100.0 1649.4 1615.1 204 327 270.3 32.1 39.7 37.7 55.6 63.4 59.2
3 2 19 1638.7 1638.7 100.0 404.3 1638.7 100.0 1649.1 1643.6 590 1494 1190.5 81.4 228.8 190.1 111.5 256.2 209.3
3 3 13 1815.1 1815.1 100.0 237.1 1815.1 100.0 1847.0 1833.6 1418 1668 1523.8 212.5 251.3 228.9 244.2 281.1 259.8
3 3 13 1714.3 1714.3 100.0 289.4 1714.3 100.0 1715.5 1715.1 1977 2336 2153.7 315.0 369.9 342.6 347.2 404.1 373.8
3 3 13 1691.4 1691.4 100.0 254.6 1691.4 100.0 1695.0 1693.4 1122 4077 2319.3 186.6 681.1 390.9 221.6 714.3 426.6
3 4 10 2012.7 2018.2 100.3 7200.0 2012.7 100.0 2021.9 2017.9 4435 7379 6520.5 768.7 1279.9 1130.9 800.5 1312.1 1164.2
3 4 10 1845.9 1847.0 100.1 7200.0 1845.9 100.0 1847.2 1845.9 4617 9684 6173.5 763.0 1630.9 1031.9 799.2 1667.8 1067.4
3 4 10 1859.6 1866.2 100.4 7200.0 1859.6 100.0 1868.0 1865.4 1615 2832 2111.5 283.1 487.7 368.8 322.5 520.4 404.0
4 2 19 1968.5 1968.5 100.0 782.2 1968.5 100.0 2000.9 1987.1 3922 5120 4404.5 554.1 687.6 604.9 581.8 714.7 633.2
4 2 19 1821.9 1821.9 100.0 1660.5 1821.9 100.0 1888.2 1851.4 3021 3865 3396.0 433.2 534.0 478.0 460.0 560.4 504.6
4 2 19 1815.8 1815.8 100.0 71.8 1815.8 100.0 1868.7 1846.5 1780 12151 5454.3 238.4 1526.5 695.5 265.4 1550.1 720.6
4 3 13 2120.5 2129.3 100.4 7200.0 2120.5 100.0 2129.3 2125.1 3929 9780 6152.5 582.9 1175.6 878.3 606.2 1227.2 913.9
4 3 13 2015.7 2024.0 100.4 7200.0 2015.7 100.0 2034.1 2021.8 2173 10323 6406.3 376.6 1810.3 1120.6 411.8 1846.5 1155.2
4 3 13 1928.4 1928.4 100.0 7200.0 1934.6 100.3 1938.2 1935.8 1418 4534 2456.7 230.9 769.7 410.5 266.3 801.0 444.6
4 4 10 2230.0 2234.4 100.2 7200.0 2230.0 100.0 2270.0 2250.5 5302 11688 8967.5 940.2 2156.7 1654.0 976.2 2194.7 1690.5
4 4 10 2083.6 2083.6 100.0 7200.0 2116.2 101.6 2134.9 2129.5 5894 14850 11615.5 1187.9 2852.3 2251.3 1228.9 2897.5 2295.0
4 4 10 1957.2 1957.2 100.0 4908.7 1957.2 100.0 1959.7 1958.9 4932 5274 5074.0 911.5 930.0 923.1 948.3 964.4 958.4
5 2 19 2486.6 2486.6 100.0 1844.7 2535.2 102.0 2535.2 2534.7 3820 4349 4039.7 611.2 708.1 658.4 642.4 740.9 690.7
5 2 19 2450.3 2450.3 100.0 1930.8 2450.3 100.0 2555.9 2488.4 3452 7870 6274.5 706.0 1435.2 1171.9 747.4 1469.7 1208.9
5 2 19 2466.6 2466.6 100.0 267.4 2466.6 100.0 2551.7 2497.3 2256 4350 3727.8 378.6 705.0 612.0 412.5 741.1 647.4
5 3 13 2719.7 2732.8 100.5 7200.0 2719.7 100.0 2732.8 2719.7 3666 7899 5119.3 766.4 1731.6 1103.5 809.4 1777.2 1148.1
5 3 13 2723.4 2727.8 100.2 7200.0 2723.4 100.0 2778.8 2737.3 2981 6954 4056.0 678.9 1669.7 946.7 722.6 1723.1 994.4
5 3 13 2706.2 2706.2 100.0 7200.0 2706.8 100.0 2706.9 2706.7 1045 5726 2758.8 203.5 1206.0 574.7 248.2 1251.5 613.9
5 4 10 2831.1 2831.1 100.0 7200.0 2831.6 100.0 2859.8 2846.1 957 5325 3303.0 218.6 1224.0 753.7 260.9 1267.9 797.1
5 4 10 3053.7 3071.0 100.6 7200.0 3053.7 100.0 3071.0 3026.4 2081 9010 3974.3 521.4 2185.7 966.3 563.3 2237.0 1015.1
5 4 10 2750.0 2750.0 100.0 7200.0 2791.2 101.5 2845.9 2815.5 3999 4577 4312.0 1000.1 1057.2 1019.2 1044.0 1102.8 1063.6

68609.0 68953.3 609.8 642.0
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Table B.12: Results on instances from the literature with nc = 60.

Branch-and-cut HMPG z Its. to best Time to best Total time

nd nv Q z∗ z %dev t z %dev max avg min max avg min max avg min max avg

2 2 23 1183.5 1183.5 100.0 152.8 1183.5 100.0 1227.1 1195.6 1577 1633 1612.5 245.8 282.9 259.2 275.3 314.6 289.5
2 2 23 1151.3 1151.3 100.0 70.3 1151.3 100.0 1158.5 1153.1 1122 1263 1181.8 101.3 109.2 105.9 119.4 130.0 124.0
2 2 23 1141.7 1141.7 100.0 75.6 1141.7 100.0 1212.9 1183.2 544 1010 719.8 53.4 97.4 69.6 74.3 118.1 90.0
2 3 15 1224.4 1224.4 100.0 419.1 1224.4 100.0 1235.5 1227.1 2543 3044 2918.8 300.2 361.1 345.9 323.9 386.2 370.6
2 3 15 1240.2 1240.2 100.0 2970.3 1240.2 100.0 1324.2 1263.5 3061 3315 3195.1 390.4 435.8 414.3 415.8 460.9 439.6
2 4 12 1348.4 1348.4 100.0 7200.0 1356.5 100.6 1358.8 1356.0 915 4796 3343.0 125.6 669.2 458.0 152.8 694.8 484.1
2 4 12 1332.2 1332.2 100.0 3365.2 1332.2 100.0 1364.5 1343.8 968 2332 1839.3 117.3 655.4 461.1 142.5 716.5 509.2
2 4 12 1332.2 1332.2 100.0 1564.2 1332.2 100.0 1335.3 1333.0 1347 6555 4149.0 167.0 841.8 528.2 192.7 868.1 550.8
3 2 23 1756.6 1756.6 100.0 440.4 1756.6 100.0 1865.5 1854.5 903 2926 1701.3 124.5 396.5 232.2 151.8 424.2 259.5
3 2 23 1710.4 1710.4 100.0 665.0 1710.4 100.0 1775.0 1728.4 2580 4080 2996.5 325.5 376.8 339.7 351.1 394.4 362.9
3 2 23 1606.9 1606.9 100.0 440.9 1606.9 100.0 1632.1 1625.0 1873 4490 3447.5 233.0 1031.9 573.1 257.1 1082.3 596.5
3 3 15 1846.1 1846.1 100.0 1789.8 1846.1 100.0 1907.8 1873.6 3107 3742 3459.7 544.8 647.5 601.9 580.4 682.0 636.8
3 3 15 1856.5 1856.5 100.0 5737.7 1856.5 100.0 1897.9 1895.2 555 4386 2745.0 116.2 733.9 471.0 160.4 766.6 507.7
3 3 15 1748.1 1748.1 100.0 5201.3 1781.0 101.9 1798.5 1795.9 1783 3027 2468.3 290.1 503.7 409.5 323.7 536.7 442.4
3 4 12 2036.0 2081.0 102.2 7200.0 2036.0 100.0 2081.0 2040.2 1329 2973 2187.5 241.8 542.9 399.3 274.6 581.1 434.3
3 4 12 1984.9 1987.7 100.1 7200.0 1984.9 100.0 1987.7 1985.7 4502 6100 4943.0 766.3 1020.4 832.9 803.9 1052.3 867.9
3 4 12 1903.2 1903.2 100.0 7200.0 1927.9 101.3 1933.3 1929.9 1767 3032 2281.0 489.9 534.1 511.6 549.0 629.0 583.2
4 2 23 2217.5 2217.5 100.0 1003.6 2217.5 100.0 2235.4 2223.3 3149 6439 4675.7 522.0 1107.7 796.2 557.0 1142.2 831.5
4 2 23 1991.9 1991.9 100.0 773.9 1991.9 100.0 2001.0 1999.9 6921 10452 9340.8 749.8 1602.8 1355.5 769.6 1630.7 1382.6
4 2 23 2007.9 2007.9 100.0 974.8 2007.9 100.0 2045.6 2024.6 6695 7524 7155.3 961.6 2061.7 1572.8 991.7 2117.0 1616.8
4 3 15 2382.0 2382.0 100.0 6978.9 2382.0 100.0 2410.8 2394.8 9475 9882 9701.0 2411.2 2688.0 2565.0 2462.6 2742.4 2618.1
‘ 3 15 2176.4 2177.2 100.0 7200.0 2176.4 100.0 2177.4 2176.6 4021 9176 6217.3 770.2 1774.4 1198.9 820.3 1813.2 1241.4
4 3 15 2195.6 2195.6 100.0 7200.0 2198.4 100.1 2202.0 2199.6 4007 5751 4700.0 697.6 1027.8 829.3 736.0 1059.8 866.0
4 4 12 2549.5 2728.0 107.0 7200.0 2549.5 100.0 2728.0 2547.2 1068 3096 2419.7 239.8 705.1 549.9 283.1 751.0 594.9
4 4 12 2305.0 2316.4 100.5 7200.0 2305.0 100.0 2316.4 2308.8 2258 8515 5734.1 432.5 1627.0 1096.1 471.5 1667.4 1135.9
4 4 12 2238.5 2238.5 100.0 7200.0 2249.1 100.5 2263.2 2253.8 4754 4807 4771.7 891.3 902.1 894.9 928.8 939.3 932.3
5 2 23 2482.6 2482.6 100.0 364.0 2486.4 100.2 2536.4 2518.0 3182 3404 3330.0 624.4 667.6 653.2 663.1 706.0 691.7
5 2 23 2430.1 2430.1 100.0 505.1 2430.1 100.0 2432.1 2430.9 4462 6627 5767.0 732.1 1098.0 953.6 764.9 1129.9 986.7
5 2 23 2617.3 2617.3 100.0 7200.0 2670.0 102.0 2698.4 2682.7 1459 6063 4016.7 264.8 1648.5 1033.5 304.1 1707.8 1083.9
5 3 15 2721.4 2722.2 100.0 7200.0 2721.4 100.0 2726.2 2723.6 704 6393 2548.0 236.7 1526.7 655.1 295.6 1574.1 703.1
5 3 15 2648.9 2648.9 100.0 7200.0 2707.2 102.2 2728.1 2712.4 8193 9750 9360.8 1715.2 2655.3 2420.3 1756.1 2707.8 2469.9
5 3 15 2847.5 2847.5 100.0 7200.0 2888.9 101.5 2909.9 2896.7 5274 7307 6026.7 803.5 1800.2 1172.7 845.2 1849.2 1217.0
5 4 12 2891.7 2891.7 100.0 7200.0 2947.7 101.9 2949.7 2948.1 813 5514 3538.0 174.6 1227.2 796.0 222.3 1273.9 842.7
5 4 12 2757.7 2757.7 100.0 7200.0 2816.3 102.1 2817.1 2815.7 2930 8239 4723.3 701.8 2256.8 1222.6 728.4 2310.2 1259.4
5 4 12 3099.8 0.0 0.0 7200.0 3099.8 100.0 3101.8 3100.8 5046 5082 5058.3 1223.0 1413.6 1286.6 1276.1 5282.0 2611.5

71313.7 71741.1 801.9 875.3
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Table B.13: Results on instances from the literature with nc = 70.

Branch-and-cut HMPG z Its. to best Time to best Total time

nd nv Q z∗ z %dev t z %dev max avg min max avg min max avg min max avg

2 2 27 1266.3 1266.3 100.0 143.6 1266.3 100.0 1269.4 1267.1 981 1052 1026.3 114.7 122.9 119.9 137.9 146.0 143.1
2 2 27 1219.5 1219.5 100.0 329.5 1219.5 100.0 1243.8 1233.3 598 4169 1827.8 69.2 1155.4 378.8 89.5 1213.5 410.0
2 2 27 1199.9 1199.9 100.0 89.2 1199.9 100.0 1265.9 1242.0 980 6741 2945.3 98.5 973.4 515.4 120.7 1120.9 568.7
2 3 18 1371.1 1371.1 100.0 1295.8 1396.5 101.9 1396.5 1379.0 2218 2265 2135.3 319.8 326.9 324.9 345.4 351.9 350.1
2 3 18 1302.4 1302.4 100.0 4894.7 1302.4 100.0 1318.7 1311.6 719 5300 2852.3 92.6 692.2 373.8 117.8 717.6 399.7
2 3 18 1278.2 1278.2 100.0 343.3 1278.2 100.0 1284.4 1281.7 1909 2023 1968.5 245.4 251.8 249.6 269.3 277.6 274.5
2 4 14 1457.6 1457.6 100.0 7200.0 1457.6 100.0 1458.9 1458.4 1885 10428 6374.3 277.6 1403.4 903.4 309.0 1427.9 933.0
2 4 14 1405.4 1406.9 100.1 7200.0 1405.4 100.0 1406.9 1406.3 6184 12063 8096.5 822.1 1557.9 1063.8 848.6 1582.5 1089.6
2 4 14 1351.4 1351.4 100.0 1839.8 1351.4 100.0 1383.9 1375.0 2005 4774 4023.8 259.9 660.4 537.4 289.0 690.1 564.6
3 2 27 1666.7 1666.7 100.0 596.6 1666.7 100.0 1699.6 1681.8 3282 7120 4614.3 453.5 1120.1 645.9 474.7 1169.3 679.0
3 2 27 1650.9 1650.9 100.0 480.6 1650.9 100.0 1661.8 1655.6 1734 3766 2734.3 226.9 498.1 360.4 255.3 523.4 388.1
3 2 27 1602.4 1602.4 100.0 315.6 1602.4 100.0 1617.0 1611.9 2679 4177 3227.0 335.2 538.8 419.6 360.1 554.7 441.7
3 3 18 1799.0 1799.0 100.0 5929.9 1799.0 100.0 1808.5 1805.1 2191 3418 2746.3 359.5 582.1 464.8 394.4 613.8 498.7
3 3 18 1761.3 1761.3 100.0 3150.7 1761.3 100.0 1777.8 1767.9 2640 12884 9552.8 413.3 1937.6 1561.8 446.4 2030.1 1507.5
3 3 18 1720.3 1720.3 100.0 709.0 1720.3 100.0 1821.5 1753.3 914 3198 2152.0 132.9 489.2 327.0 165.2 518.6 358.2
3 4 14 1960.2 1964.2 100.2 7200.0 1960.2 100.0 1979.7 1966.7 3568 14886 7217.0 610.9 4078.7 1627.6 647.1 4134.4 1669.5
3 4 14 1945.4 1945.4 100.0 7200.0 1954.9 100.5 1976.2 1961.5 3890 6059 5122.8 646.8 1023.8 861.3 677.9 1060.7 895.5
3 4 14 1882.6 1882.6 100.0 7200.0 1897.2 100.8 1943.1 1914.8 1424 5455 3670.8 218.8 573.7 448.8 259.7 595.4 478.0
4 2 27 2186.3 2186.3 100.0 1678.4 2186.3 100.0 2196.4 2188.8 6417 9529 7351.0 1005.8 1442.7 1131.5 1037.6 1474.1 1162.9
4 2 27 2201.7 2201.7 100.0 7200.0 2222.0 100.9 2276.5 2261.1 3057 4538 3816.8 494.7 708.7 603.2 525.0 737.8 634.0
4 2 27 2189.5 2189.5 100.0 284.2 2221.9 101.5 2234.5 2226.1 4224 5364 5036.5 702.5 1490.4 1264.2 735.5 1547.2 1314.2
4 3 18 2372.4 2465.6 103.9 7200.0 2372.4 100.0 2465.6 2373.0 2899 4299 3407.0 559.4 850.1 666.8 619.5 888.9 711.1
4 3 18 2406.0 2525.0 104.9 7200.0 2406.0 100.0 2525.0 2401.5 3262 4202 3597.0 645.4 848.3 719.7 687.8 890.4 761.2
4 3 18 2381.9 2381.9 100.0 7200.0 2385.0 100.1 2395.8 2390.1 3428 6301 4365.8 707.4 1282.7 898.5 748.0 1321.9 940.8
4 4 14 2609.9 2633.7 100.9 7200.0 2609.9 100.0 2633.7 2609.1 1820 2535 2148.8 364.5 515.0 431.8 405.8 553.2 471.8
4 4 14 2595.6 0.0 0.0 7200.0 2595.6 100.0 2595.6 2588.7 4374 5624 5223.0 931.6 1194.7 1097.6 974.4 1240.8 1140.5
4 4 14 2576.5 2589.4 100.5 7200.0 2576.5 100.0 2589.4 2545.0 1117 8539 5695.5 214.5 1645.6 1007.5 254.3 1689.6 1046.5
5 2 27 2885.6 2885.6 100.0 7108.7 2895.2 100.3 2963.9 2912.4 2157 7126 3812.0 479.1 984.7 702.9 661.7 2257.0 1178.0
5 2 27 2621.0 2621.0 100.0 7200.0 2629.0 100.3 2634.8 2632.9 3334 7867 6031.3 742.6 1704.0 1318.1 786.2 1748.5 1361.8
5 2 27 2580.4 2580.4 100.0 5430.7 2580.4 100.0 2636.6 2616.7 396 13918 5140.8 62.7 3443.9 1190.1 103.5 3493.9 1233.5
5 3 18 3418.0 0.0 0.0 7200.0 3418.0 100.0 3418.0 3405.2 2178 11006 6501.3 593.6 4027.1 2274.1 651.1 4103.4 2339.3
5 3 18 3190.8 0.0 0.0 7200.0 3190.8 100.0 3190.8 2935.7 4788 7352 6051.8 1242.3 1915.5 1568.5 1290.6 1968.6 1620.6
5 3 18 2751.9 2773.1 100.8 7200.0 2751.9 100.0 2773.1 2750.2 1305 11245 8033.8 290.0 2829.9 2011.6 339.5 2880.7 2061.3
5 4 14 3416.9 0.0 0.0 7200.0 3416.9 100.0 3423.8 3420.0 2117 4735 3576.5 629.1 1446.8 1077.5 685.3 1509.4 1136.9
5 4 14 3192.0 0.0 0.0 7200.0 3192.0 100.0 3196.5 3191.2 4510 7018 5694.5 1285.6 1921.2 1546.5 1342.4 1976.4 1600.6
5 4 14 2888.0 2888.0 100.0 7200.0 2919.4 101.1 2976.1 2940.7 4040 12209 7754.8 991.5 2994.0 1896.2 1026.9 3045.3 1942.4

76459.1 76461.2 905.3 953.0
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Table C.15: Sensitivity analysis on the time windows width (group A).

Γ = −0.1 Γ = 0.0 Γ = 0.1

Name z rc ac z rc ac z rc ac

MA-01 13651.0 3651.0 10000.0 10955.7 2955.7 8000.0 9733.6 2733.6 7000.0
MA-02 25570.1 5570.1 20000.0 19917.8 4917.8 15000.0 18408.4 4408.4 14000.0
MA-03 33106.1 7106.1 26000.0 28308.9 6308.9 22000.0 23611.6 5611.6 18000.0

LA-01 37132.1 8132.1 29000.0 32545.2 7545.2 25000.0 28561.1 7561.1 21000.0
LA-02 63582.6 13582.6 50000.0 50710.1 10710.1 40000.0 40978.1 8978.1 32000.0

Appendix C. Detailed results on the sensitivity analyses

Tables C.14-C.17 gives detailed results of the sensitivity analyses. The
tables reports the total solution cost (“z”), the routing cost (“rc”), the area
cost (“ac”), and the number of areas (“#ar”).

Table C.14: Sensitivity analysis on the value of F .

F = 1000 F = 0

Name z rc ac #ar z rc ac #ar

MA-02 19917.8 4917.8 15000.0 15 21872.2 4872.2 17000.0 17
MA-03 28308.9 6308.9 22000.0 22 28826.4 4826.4 24000.0 24
LA-01 32545.2 7545.2 25000.0 25 34231.1 7231.1 27000.0 27

MB-02 23099.2 6099.2 17000.0 17 25654.1 5654.1 20000.0 20

MC-01 13779.8 4779.8 9000.0 9 14745.2 4745.2 10000.0 10
MC-03 23441.8 7441.8 16000.0 16 24366.3 7366.3 17000.0 17
LC-01 30374.2 10374.2 20000.0 20 32923.6 9923.6 23000.0 23

MD-03 22424.8 5424.8 17000.0 17 24266.3 5266.3 19000.0 19
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Table C.16: Sensitivity analysis on the time windows width (group D).

Γ = −0.1 Γ = 0.0 Γ = 0.1

Name z rc ac z rc ac z rc ac

MD-01 2372.2 372.2 2000.0 1280.0 280.0 1000.0 1277.7 277.7 1000.0
MD-02 2519.2 519.2 2000.0 2515.4 515.4 2000.0 2512.4 512.4 2000.0
MD-03 3675.5 675.5 3000.0 2611.0 611.0 2000.0 2588.4 588.4 2000.0

LD-01 4808.8 808.8 4000.0 3702.6 702.6 3000.0 3689.8 689.8 3000.0
LD-02 7102.9 1102.9 6000.0 6004.8 1004.8 5000.0 4927.3 927.3 4000.0

Table C.17: Sensitivity analysis on the customer frequencies.

Γ = 0.0 Γ = 0.1
Name z rc ac z rc ac

SD-01 1280.0 280.0 1000.0 1277.7 277.7 1000.0
Υ = 0.0 SD-02 2515.4 515.4 2000.0 2512.4 512.4 2000.0

SD-03 2611.0 611.0 2000.0 2588.4 588.4 2000.0
SD-04 3702.6 702.6 3000.0 3689.8 689.8 3000.0

SD-01 1275.2 275.2 1000.0 1273.3 273.3 1000.0
Υ = 0.10 SD-02 2462.5 462.5 2000.0 1412.1 412.1 1000.0

SD-03 2572.3 572.3 2000.0 2540.7 540.7 2000.0
SD-04 3656.2 656.2 3000.0 2597.6 597.6 2000.0

SD-01 1274.3 274.3 1000.0 1272.2 272.2 1000.0
Υ = 0.15 SD-02 2461.5 461.5 2000.0 1417.5 417.5 1000.0

SD-03 2555.6 555.6 2000.0 2534.9 534.9 2000.0
SD-04 3654.4 654.4 3000.0 2600.3 600.3 2000.0
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