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Abstract

We extend to the multidimensional case a Wong-Zakai-type theorem proved by
Hu and Øksendal in [8] for scalar quasi-linear Itô stochastic differential equations
(SDEs). More precisely, with the aim of approximating the solution of a quasilinear
system of Itô’s SDEs, we consider for any finite partition of the time interval [0, T ]
a system of differential equations, where the multidimensional Brownian motion
is replaced by its polygonal approximation and the product between diffusion
coefficients and smoothed white noise is interpreted as a Wick product. We remark
that in the one dimensional case this type of equations can be reduced, by means
of a transformation related to the method of characteristics, to the study of a
random ordinary differential equation. Here, instead, one is naturally led to the
investigation of a semilinear hyperbolic system of partial differential equations that
we utilize for constructing a solution of the Wong-Zakai approximated systems.
We show that the law of each element of the approximating sequence solves in the
sense of distribution a Fokker-Planck equation and that the sequence converges to
the solution of the Itô equation, as the mesh of the partition tends to zero.
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1 Introduction and statement of the main results

Let {B(t)}t∈[0,T ] be a standard one dimensional Brownian motion and, for a given finite
partition π of the interval [0, T ], denote by {Bπ(t)}t∈[0,T ] its polygonal approximation.
Then, under suitable conditions on the coefficients b : [0, T ]×R → R and σ : [0, T ]×R →
R, the solution {Y π(t)}t∈[0,T ] of the random ordinary differential equation

dY π(t)

dt
= b(t, Y π(t)) + σ(t, Y π(t)) · dB

π(t)

dt
, (1.1)

converges, as the mesh of π tends to zero, to the strong solution {Y (t)}t∈[0,T ] of the
Stratonovich stochastic differential equation (SDE, for short)

dY (t) = b(t, Y (t))dt+ σ(t, Y (t)) ◦ dB(t), (1.2)

or equivalently (see [10]) of the Itô SDE

dY (t) =

[
b(t, Y (t)) +

1

2
σ(t, Y (t))∂yσ(t, Y (t))

]
dt+ σ(t, Y (t))dB(t).

This is the famous Wong-Zakai theorem [15],[16] whose extension to the multidimen-
sional case can be found in [13].
In [8] the authors suggested how to modify equation (1.1) to get in the limit the Itô’s in-
terpretation of (1.2): they considered the case with σ(t, x) = σ(t)x, where σ : [0, T ] → R
is a deterministic function, and proved that the solution {Xπ(t)}t∈[0,T ] of the differential
equation

dXπ(t)

dt
= b(t,Xπ(t)) + σ(t)Xπ(t) ⋄ dBπ(t)

dt
, (1.3)

converges, as the mesh of π tends to zero, to the strong solution {X(t)}t∈[0,T ] of the Itô
SDE

dX(t) = b(t,X(t))dt+ σ(t)X(t)dB(t). (1.4)

Here, the symbol Xπ(t) ⋄ dBπ(t)
dt

stands for the Wick product between Xπ(t) and dBπ(t)
dt

.
(We postpone to the next section all the necessary mathematical details for the tools
utilized here). Observe that the achievement of [8] is twofold: existence of a solution
for (1.3) and its convergence towards the solution of (1.4) (see also the related works
[1] and [4]). As far as the existence is concerned, equation (1.3) is not a standard ran-
dom ordinary differential equation but instead an infinite dimensional partial differential
equation. In fact, via equality

Xπ(t) ⋄ dBπ(t)

dt
= Xπ(t)

dBπ(t)

dt
−D∂tKπ(t,·)X

π(t), (1.5)

where Kπ(t, ·) is a deterministic function that verifies the identity

Bπ(t) =

∫ T

0

Kπ(t, s)dB(s),
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while D∂tKπ(t,·) stands for the directional Malliavin derivative along the function s 7→
∂tK

π(t, s), one recognizes equation (1.3) as a nonlinear evolution equation driven by
an infinite dimensional gradient. Nevertheless, the particular form of σ(t, x) considered
in [8] allows for a reduction method which transforms that into a random ordinary
differential equation. We now briefly describe such method: we Wick-multiply both
sides of (1.3) by

Eπ(0, t) := e
−

∫ t
0 σ(s)

dBπ(s)
ds

ds− 1
2
E
[(∫ t

0 σ(s)
dBπ(s)

ds
ds

)2
]
, t ∈ [0, T ],

to obtain

dXπ(t)

dt
⋄ Eπ(0, t) = b(t,Xπ(t)) ⋄ Eπ(0, t) + σ(t)Xπ(t) ⋄ dBπ(t)

dt
⋄ Eπ(0, t),

or equivalently,

dXπ(t)

dt
⋄ Eπ(0, t) = b(t,Xπ(t)) ⋄ Eπ(0, t)−Xπ(t) ⋄ dEπ(0, t)

dt
.

Here, we utilized the identity

dEπ(0, t)

dt
= σ(t)

dBπ(t)

dt
⋄ Eπ(0, t).

Rearranging the terms and exploiting the Leibniz rule for the Wick product we can write

d

dt
(Xπ(t) ⋄ Eπ(0, t)) = b(t,Xπ(t)) ⋄ Eπ(0, t). (1.6)

Now, if we set

X π(t) := Xπ(t) ⋄ Eπ(0, t), t ∈ [0, T ],

and recall that

Eπ(0, t) ⋄ Eπ(0, t) = 1, for all t ∈ [0, T ],

where

Eπ(0, t) := e

∫ t
0 σ(s)

dBπ(s)
ds

ds− 1
2
E
[(∫ t

0 σ(s)
dBπ(s)

ds
ds

)2
]
, t ∈ [0, T ],

we can reduce (1.6) to

dX π(t)

dt
= b(t,X π(t) ⋄ Eπ(0, t)) ⋄ Eπ(0, t). (1.7)

Equation (1.7) doesn’t look simpler than (1.3); however, in (1.7) one can apply the
so-called Gjessing’s Lemma which produces a Wick product-free expression. First, we
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observe that resorting to the definition of {Bπ(t)}t∈[0,T ] (see equation (2.1) below) one
gets the representation ∫ t

0

σ(s)
dBπ(s)

ds
ds =

∫ T

0

σπ(t, s)dB(s),

for a suitable σπ : [0, T ] × [0, T ] → R. With this notation at hand, Gjessing’s formula
can be simply stated as

Z ⋄ Eπ(0, t) = T−σπ(t,·)Z · Eπ(0, t), (1.8)

and

Z ⋄ Eπ(0, t) = Tσπ(t,·)Z · Eπ(0, t), (1.9)

for a general random variable Z belonging to Lp(Ω), for some p > 1. Here, Tf denotes
the operator that translates the Brownian path by the function

∫ ·
0
f(s)ds (see formula

(2.7) below). An application to equation (1.7) of the last two identities leads to the
random ordinary differential equation

dX π(t)

dt
= b

(
t,X π(t) · (Eπ(0, t))−1) · Eπ(0, t); (1.10)

standard assumptions on the coefficients ensure the existence of a unique solution {X π(t)}t∈[0,T ]

which, together with equality Xπ(t) = X π(t) ⋄ Eπ(0, t), provides a unique solution also
for (1.3). It is important to remark that the success of this reduction method is due to
the opposite signs appearing in front of σπ(t, ·) in equations (1.8) and (1.9); this results
in the disappearance of the translation operator, and hence of the Wick product, from
equation (1.7).

Aim of the present paper is the extension to the multidimensional case of the existence
theorem for (1.3) and its convergence to (1.4) proven in [8]. More precisely, for each
finite partition π of the interval [0, T ] we introduce the Cauchy problem

dXπ
i (t)

dt
= bi(t,X

π(t)) + σi(t)X
π
i (t) ⋄

dBπ
i (t)

dt
,

for t ∈]0, T ] and i = 1, ..., d;

Xπ
i (0) = ci ∈ R, for i = 1, ..., d,

(1.11)

where {Bπ(t) = (Bπ
1 (t), ..., B

π
d (t))

∗}t∈[0,T ] stands for the polygonal approximation, rel-
ative to the partition π, of the standard d-dimensional Brownian motion {B(t) =
(B1(t), ..., Bd(t))

∗}t∈[0,T ]; the functions b1, ..., bd : [0, T ]×Rd → R and σ1, ..., σd : [0, T ] →
R are measurable while c ∈ Rd is a deterministic initial condition. System (1.11) should
be thought as a Wong-Zakai-type approximation for the system of Itô’s SDEs

dXi(t) = bi(t,X(t))dt+ σi(t)Xi(t)dBi(t),

for t ∈]0, T ] and i = 1, ..., d;

Xi(0) = ci ∈ R, for i = 1, ..., d.

(1.12)

We will assume throughout the paper the following regularity properties for the coeffi-
cients: they guarantee the existence of a unique strong solution for (1.12).
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Assumption 1.1.

� The functions b(t, x), ∂x1b(t, x),..., ∂xd
b(t, x) are bounded and continuous;

� the functions σ1(t), ..., σd(t) are bounded and continuous.

Our first main theorem concerns the existence of a solution for (1.11). It is worth
mentioning that the reduction method described above doesn’t apply to such systems,
unless very particular cases are considered. In fact, the disappearance of the translation
operator mentioned before takes place only when the same one dimensional Brownian
motion drives all the equations in (1.11) and moreover σ1(t) = · · · = σd(t), for all
t ∈ [0, T ]. Therefore, to prove the existence of a solution for (1.11) we have to employ a
different approach which can be summarized as follows.
Using identity (1.5) we rewrite (1.11) as

dXπ
i (t)

dt
= bi(t,X

π(t)) + σi(t)X
π
i (t)

dBπ
i (t)

dt
− σi(t)D

(i)
Kπ(t,·)X

π
i (t),

for t ∈]0, T ] and i = 1, ..., d;

Xπ
i (0) = ci ∈ R, for i = 1, ..., d.

(1.13)

(Here, D(i) stands for the Mallivian derivative with respect to the i-th component of
the multidimensional Brownian motion {B(t)}t≥0). If we now divide the interval [0, T ]
according to the partition π = {t0, ..., tN} and search on any subinterval ]tk, tk+1] for a
solution to (1.13) of the form

Xπ
i (t) := ui(t, B

π(tk+1)−Bπ(tk)), t ∈]tk, tk+1], i = 1, ..., d

where ui : [0, T ] × Rd 7→ R are deterministic functions, we see that u = (u1, ..., ud) has
to solve a semilinear hyperbolic system of partial differential equations of the type

∂tui(t, x) = −σi(t)∂xi
ui(t, x) + σi(t)

xi

h
ui(t, x) + bi(t, u(t, x)),

for t ∈]tk, tk+1], x ∈ Rd and i = 1, ..., d;

ui(r, x) = αi, for x ∈ Rd and i = 1, ..., d.

(1.14)

Here, h denotes the mesh of the partition π while α1, ..., αd are suitable deterministic
initial conditions. This link to the theory of partial differential equations allows us to
state our first main result whose proof can be found in Section 3. We will deal with
a weak notion of solution, see Definition 2.1 below, that doesn’t require any Malliavin
differentiability property of the solution (as it should be implied by the last term in
(1.13)).

Theorem 1.2 (Existence). Under Assumption 1.1 equation (1.11) possesses a mild
solution {Xπ(t)}t∈[0,T ] in the sense of Definition 2.1 below.

Our second main result shows that system (1.11) is naturally connected with a Fokker-
Planck-type equation which is solved in the sense of distributions by the law of the
mild solution {Xπ(t)}t∈[0,T ]. This establishes a further similarity between the Wong-
Zakai approximating equation (1.11) and its exact counterpart (1.12). This theorem
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generalizes the one obtained in [11] for the scalar problem (1.3). The proof is postponed
to Section 4.

Theorem 1.3 (Fokker-Planck equation). The law

µπ(t, A) := P(Xπ(t) ∈ A), t ∈ [0, T ], A ∈ B(Rd)

of the random vector Xπ(t) solves in the sense of distributions the Fokker-Planck equation(
∂t +

d∑
i,j=1

σi(t)xigij(t, xi)∂
2
xixj

+
d∑

i=1

bi(t, x)∂xi

)∗

u(t, x) = 0, t ∈ [0, T ], x ∈ Rd.

(1.15)

Here, gij : [0, T ]× R → R is the measurable function defined in (4.4) and (4.5) below.

Lastly, we present the convergence of {Xπ(t)}t∈[0,T ] towards the solution of the Itô equa-
tion (1.12), as the mesh ∥π∥ of the partition π tends to zero. For the proof the reader
is referred to Section 5.

Theorem 1.4 (Convergence). The mild solution {Xπ(t)}t∈[0,T ] converges, as the mesh
of π tends to zero, to the unique strong solution {X(t)}∈[0,T ] of the Itô SDE (1.12). More
precisely,

lim
∥π∥→0

d∑
i=1

E [|Xπ
i (s)−Xi(s)|] = 0, for all t ∈ [0, T ].

Remark 1.5. We believe that the idea and approach of this work may be applied to Itô-
type stochastic differential equations driven by fractional Brownian motions (see Section
6.1 in [7]).

The paper is organized as follows: in Section 2 we describe our framework and formal-
ize all the mathematical concepts utilized in the introduction to present the problem;
Section 3 contains the most novel part of our paper that consists in the link between
the Wong-Zakai equation (1.11) and the semilinear hyperbolic system of partial differ-
ential equations (1.14); here, we describe in details the construction of the mild solution
{Xπ(t)}t∈[0,T ]; in Section 4 the proof of Theorem 1.3 on the Fokker-Planck equation
passes through a careful interplay between the Gaussian nature of the noise and struc-
ture of the hyperbolic system; Section 5 concludes the manuscript with the proof of
Theorem 1.4 which greatly benefits from the notion of mild solution introduced in Sec-
tion 2.

2 Notation and preliminary results

In this section we set the notation and prepare the ground for proving our main theorems.
We fix a positive time horizon T and a dimension d ∈ N. Let (Ω,F ,P) be the classical
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Wiener space over the time interval [0, T ] with values on Rd (see for instance [2] or [12]);
we denote by {B(t) = (B1(t), ..., Bd(t))

∗}t∈[0,T ] the coordinate process, i.e.

B(t) : Ω → Rd

ω 7→ B(t)(ω) := ω(t);

by construction, {B(t)}t∈[0,T ] is a standard d-dimensional Brownian motion.
We choose a finite partition π := {t0, ..., tN} of the interval [0, T ], i.e.

0 = t0 < t1 < · · · < tN = T,

and set ∥π∥ := maxk∈{0,1,...,N} |tk − tk−1|. The real number ∥π∥ is called mesh of the
partition π. We will assume without loss of generality that the partition is equally
spaced, i.e. tk =

kT
N
, for all k ∈ {0, ..., N}; in this case we simply have ∥π∥ := T

N
but we

will continue to use the notation π = {t0, ..., tN} and ∥π∥.
We associate to the partition π the polygonal approximation of the Brownian motion
{B(t)}t∈[0,T ]:

Bπ(t) :=

(
1− t− tk

tk+1 − tk

)
B(tk) +

t− tk
tk+1 − tk

B(tk+1), if t ∈ [tk, tk+1[ (2.1)

and Bπ(T ) := B(T ). It is well known that for any ε > 0 and p ≥ 1 there exists a positive
constant Cp,T,ε such that(

E

[
sup

t∈[0,T ]

|B(t)π −B(t)|p
])1/p

≤ Cp,T,ε∥π∥1/2−ε.

We refer the reader to Lemma 11.8 in Hu [6] for a sharper estimate. For i = 1, ..., d, we
set

Σi(s, t) :=

∫ t

s

σi(r)dr, 0 ≤ s ≤ t ≤ T, (2.2)

and observe that∫ t

s

σi(r)Ḃ
π
i (r)dr =

∫ tj

s

σi(r)Ḃ
π
i (r)dr +

∫ tj+1

tj

σi(r)Ḃ
π
i (r)dr + · · ·+

∫ t

tk

σi(r)Ḃ
π
i (r)dr

=Σi(s, tj)
Bi(tj)−Bi(tj−1)

h
+ Σi(tj, tj+1)

Bi(tj+1)−Bi(tj)

h

+ · · ·+ Σi(tk, t)
Bi(t)−Bi(tk)

h
, (2.3)

when tj−1 ≤ s < tj < · · · < tk ≤ t, for some j ≤ k in {1, ..., N − 1}. In particular, if
s, t ∈ [tk, tk+1] for some k ∈ {0, ..., N}, the last expression simplifies to∫ t

s

σi(r)Ḃ
π
i (r)dr = Σi(s, t)

Bi(tk+1)−Bi(tk)

h
.
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It is important to remark that according to (2.3) the quantity
∫ t

s
σi(r)Ḃ

π
i (r)dr is a linear

combination of independent Gaussian random variables with

E
[∫ t

s

σi(r)Ḃ
π
i (r)dr

]
= 0

and

E

[(∫ t

s

σi(r)Ḃ
π
i (r)dr

)2
]
=

1

h

(
Σi(s, tj)

2 + Σi(tj, tj+1)
2 + · · ·+ Σi(tk, t)

2
)

We now set

Eπ
i (s, t) := e

∫ t
s σi(r)Ḃ

π
i (r)dr−

1
2
E
[
(
∫ t
s σi(r)Ḃ

π
i (r)dr)

2
]

and observe that if s, t ∈ [tk, tk+1], for some k ∈ {0, ..., N}, we get

Eπ
i (s, t) = eΣi(s,t)

Bi(tk+1)−Bi(tk)

h
− 1

2h
Σi(s,t)

2

.

It is easy to verify, using the independence of Brownian increments on disjoint subinter-
vals [tk, tk+1], that

Eπ
i (s, tk)Eπ

i (tk, t) = Eπ
i (s, t) (2.4)

when s ≤ tk ≤ t for some k ∈ {1, ..., N − 1} and s, t ∈ [0, T ].
A key role in the following will be played by the notion of Wick product. The Wick
product can be defined for any couple of random variables X and Y belonging to Lp(Ω),
for some p > 1 (see for instance [6],[5] or [9]). Nevertheless, it is enough for our purposes
to discuss the following two particular cases:

� if X belongs to the Sobolev-Malliavin space D1,p, for some p > 1 (see [12]), and
f ∈ L2([0, T ]) is a deterministic function, then

X ⋄
∫ T

0

f(t)dBi(t) := X ·
∫ T

0

f(t)dBi(t)−D
(i)
f X, (2.5)

with D
(i)
f being the directional Mallivian derivative with respect to the i-th com-

ponent of the multidimensional Brownian motion {B(t)}t≥0 in the direction f ;

� if X ∈ Lp(Ω), for some p > 1, and s, t ∈ [tk, tk+1], for some k ∈ {1, ..., N − 1}, we
set

X ⋄ Eπ
i (s, t) := T−σi,kX · Eπ

i (s, t), (2.6)

where T−σi,k stands for the translation operator

(T−σi,kX)(ω) := X

(
ω − ei

Σi(s, t)

h

∫ ·

0

1[tk,tk+1](r)dr

)
. (2.7)

Here, {e1, ..., ed} denotes the canonical bases of Rd (recall that we are working with
a d-dimensional Brownian motion and hence T−σi,k acts only on the i-th component
of {B(t)}t∈[0,T ]).
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We observe that both definitions (2.5) and (2.6) are actually consequences of the general
definition of Wick product: the first one being related to the interplay between Wick
product and Skorohod integral and the latter being nothing else than Gjessing’s Lemma
(recall the use we made of that in the introduction). Proofs of these facts as implications
of the general definition of Wick product can be found in [5].
It is known (see for instance Theorem 14.1 (vi) in [9]) that the translation operator
maps Lp(Ω) into Lq(Ω), for all q < p; therefore, since Eπ

i (s, t) ∈ Lp(Ω) for any p ≥ 1,
we conclude that X ⋄ Eπ

i (s, t) belongs to Lq(Ω), for all q < p. It is immediate to verify
using definition (2.6) that

Eπ
i (s, t) ⋄ Eπ

j (s, t) = Eπ
i (s, t) · Eπ

j (s, t), if i ̸= j,

and

Eπ
i (s, tk) ⋄ Eπ

i (tk, t) = Eπ
i (s, tk) · Eπ

i (tk, t) = Eπ
i (s, t), if s ≤ tk ≤ t ≤ tk+1.

By means of the last identity we can extend definition (2.6) to the case where s and
t do not necessarily belong to the same subinterval [tk, tk+1]. In fact, assume that
tk−1 ≤ s ≤ tk ≤ t ≤ tk+1: then,

X ⋄ Eπ
i (s, t) :=(X ⋄ Eπ

i (s, tk)) ⋄ Eπ
i (tk, t)

=(T−σi,k−1X · Eπ
i (s, tk)) ⋄ Eπ

i (tk, t)

=T−σi,k(T−σi,k−1X · Eπ
i (s, tk)) · Eπ

i (tk, t)

=T−σi,kT−σi,k−1X · Eπ
i (s, tk) · Eπ

i (tk, t)

=T−σi,kTσi,k−1X · Eπ
i (s, t).

The transformation (2.6) inherits from the translation operator a monotonicity property:

if X ≤ Y , then X ⋄ Eπ
i (s, t) ≤ Y ⋄ Eπ

i (s, t).

In particular,

|X ⋄ Eπ
i (s, t)| ≤ |X| ⋄ Eπ

i (s, t). (2.8)

We are now able to formalize the solution concept that we utilize for solving (1.11).

Definition 2.1. A d-dimensional stochastic process {Xπ(t)}t∈[0,T ] is said to be a mild
solution of equation (1.11) if:

1. the function t 7→ Xπ(t) is almost surely continuous;

2. for i = 1, ..., d and t ∈ [0, T ], the random variable Xi(t) belongs to Lp(Ω) for some
p > 1;

3. for i = 1, ..., d, the identity

Xπ
i (t) = ciEπ

i (0, t) +

∫ t

0

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds, t ∈ [0, T ], (2.9)

holds almost surely.
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Remark 2.2. The way one can go from (1.11) to (2.9) is pretty similar to the reduction
method described in the introduction for the scalar case. Namely, if we Wick-multiply
by Eπi (0, t) both sides of

dXπ
i (t)

dt
= bi(t,X

π(t)) + σi(t)X
π
i (t) ⋄

dBπ
i (t)

dt
,

and employ the properties of Wick product mentioned there, we will end up with the
corresponding multidimensional analogue of (1.7), i.e.

dX π
i (t)

dt
= bi(t,X π(t) ⋄ Eπ

i (0, t)) ⋄ Eπi (0, t), (2.10)

where

X π
i (t) := Xπ

i (t) ⋄ Eπi (0, t), t ∈ [0, T ].

We now write (2.10) in the integral form

X π
i (t) = ci +

∫ t

0

bi(s,X π(s) ⋄ Eπ
i (0, s)) ⋄ Eπi (0, s)ds;

this identity together with

Xπ
i (t) = X π

i (t) ⋄ Eπ
i (0, t),

gives

Xπ
i (t) ⋄ Eπi (0, t) = ci +

∫ t

0

bi(s,X
π
i (t)) ⋄ Eπi (0, s)ds.

If we now Wick-multiply both sides above by Eπ
i (0, t), we obtain (2.9). We recall that the

application of Gjessing’s Lemma here doesn’t reduce the previous equation to a random
ordinary differential equation and hence to prove the existence of a solution for (2.9) we
have to resort to the technique described in the next section.

3 Proof of Theorem 1.2

3.1 An auxiliary semilinear hyperbolic system of PDEs

To prove the existence of a mild solution for equation (1.11) we introduce the following
auxiliary semilinear hyperbolic system of partial differential equations

∂tui(t, x) = −σi(t)∂xi
ui(t, x) + σi(t)

xi

h
ui(t, x) + bi(t, u(t, x)),

for t ∈]r, R], x ∈ Rd and i = 1, ..., d;

ui(r, x) = αi, for x ∈ Rd and i = 1, ..., d,

(3.1)
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where α1, ..., αd are constant initial conditions and h denotes the mesh of the partition
under consideration. The validity of Assumption 1.1 implies the existence of a unique
classical solution for the Cauchy problem (3.1) (see for instance [3] and [14]).
Now, if u solves (3.1), then from the trivial identity

∂xi

(
ui(t, x)e

− |x|2
2h

)
= ∂xi

ui(t, x)e
− |x|2

2h − xi

h
ui(t, x)e

− |x|2
2h ,

we can argue that the function

v(t, x) := u(t, x)e−
|x|2
2h , t ∈ [r, R], x ∈ Rd, (3.2)

is a classical solution of
∂tvi(t, x) = −σi(t)∂xi

vi(t, x) + bi

(
t, v(t, x)e

|x|2
2h

)
e−

|x|2
2h ,

for t ∈]r, R], x ∈ Rd and i = 1, ..., d;

vi(r, x) = αie
− |x|2

2h , for x ∈ Rd and i = 1, ..., d.

(3.3)

Rewriting system (3.3) in the mild form
vi(t, x) = αie

− |x−Σi(r,t)ei|
2

2h

+
∫ t

r
bi

(
t, v(s, x− Σi(s, t)ei)e

|x−Σi(s,t)ei|
2

2h

)
e−

|x−Σi(s,t)ei|
2

2h ds

for t ∈ [r, R], x ∈ Rd and i = 1, ..., d,

(recall the definition of Σi(s, t) in (2.2)) and using identity (3.2), we obtain that u solves
ui(t, x)e

− |x|2
2h = αie

− |x−Σi(r,t)ei|
2

2h

+
∫ t

r
bi (t, u(s, x− Σi(s, t)ei)) e

− |x−Σi(s,t)ei|
2

2h ds

for t ∈ [r, R], x ∈ Rd and i = 1, ..., d,

or equivalently,
ui(t, x) = αie

xi
h
Σi(r,t)− 1

2h
Σi(r,t)

2

+
∫ t

r
bi (t, u(s, x− Σi(s, t)ei)) e

xi
h
Σi(s,t)− 1

2h
Σi(s,t)

2
ds

for t ∈ [r, R], x ∈ Rd and i = 1, ..., d.

(3.4)

Note that from the previous identity we get the estimate

|ui(t, x)| ≤|αi|e
xi
h
Σi(r,t)− 1

2h
Σi(r,t)

2

+

∫ t

r

|bi (t, u(s, x− Σi(s, t)ei)) |e
xi
h
Σi(s,t)− 1

2h
Σi(s,t)

2

ds
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≤|αi|e
xi
h
Σi(r,t)− 1

2h
Σi(r,t)

2

+M

∫ t

r

e
xi
h
Σi(s,t)− 1

2h
(Σi(s,t)

2

ds

≤|αi|e
xi
h
Σi(r,t) +M

∫ t

r

e
xi
h
Σi(s,t)ds. (3.5)

Here, M denotes a positive constant satisfying |bi(t, x)| ≤ M , for all t ∈ [0, T ], x ∈ Rd

and i = 1, ..., d.

3.2 Construction of a mild solution for (1.11)

In the sequel, in order to stress the dependence on specific initial conditions, we will
write

u(t, x; r, α) = (u1(t, x; r, α), ..., ud(t, x; r, α))
∗, t ∈ [r, R], x ∈ Rd

to denote the unique classical solution of (3.1). We define the process {Xπ(t)}t∈[0,T ]

inductively:

Xπ(t) :=


u(t, B(t1); 0, c), if t ∈ [0, t1];

u(t, B(t2)−B(t1); t1, X
π(t1)), if t ∈]t1, t2];

· · · · · ·
u(t, B(T )−B(tN−1); tN−1, X

π(tN−1)), if t ∈]tN−1, T ].

(3.6)

We now verify that X(t) is a mild solution of (1.11), that is we check the conditions of
Definition 2.1.

The almost sure continuity of t ∈ [0, T ] 7→ X(t) follows immediately from the continuity
of t ∈ [r, T ] 7→ u(t, x; r, α), for all x ∈ Rd and α ∈ Rd (u is a classical solution of (3.1))
and the fact that for all k ∈ {1, ..., N − 1} we have by construction

lim
t→t−k

Xπ(t) = lim
t→t+k

Xπ(t).

We now verify that Xπ(t) ∈ Lp(Ω), for some p > 1 and all t ∈ [0, T ]. If t ∈ [0, t1], then
by the definition of Xπ(t) and estimate (3.5) we can write

|Xπ
i (t)| =|u(t, B(t1); 0, c)|

≤|ci|e
Bi(t1)

h
Σi(0,t) +M

∫ t

0

e
Bi(t1)

h
Σi(s,t)ds,

and hence

∥Xπ
i (t)∥p ≤|ci|∥e

Bi(t1)

h
Σi(0,t)∥p +M

∫ t

0

∥e
Bi(t1)

h
Σi(s,t)∥pds
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=|ci|ep
Σi(0,t)

2

2h +M

∫ t

0

ep
Σi(s,t)

2

2h ds

=|ci|ep
Σi(0,t)

2

2h +Mte
p
2h

sups∈[0,t] Σi(s,t)
2

. (3.7)

This proves the membership of Xπ
i (t) to Lp(Ω), for all i = 1, ..., d, t ∈ [0, t1] and p ≥ 1.

Let us now take t ∈]t1, t2]; again, by the definition of Xπ(t) and estimate (3.5) we can
write

|Xπ
i (t)| =|u(t, B(t2)−B(t1); t1, X

π(t1))|

≤|Xπ
i (t1)|e

Bi(t2)−Bi(t1)

h
Σi(t1,t) +M

∫ t

t1

e
Bi(t2)−Bi(t1)

h
Σi(s,t)ds,

and hence, using Hölder inequality,

∥Xπ
i (t)∥p ≤∥|Xπ

i (t1)|e
Bi(t2)−Bi(t1)

h
Σi(t1,t)∥p +M

∫ t

t1

∥e
Bi(t2)−Bi(t1)

h
Σi(s,t)∥pds

≤∥Xπ
i (t1)∥q∥e

Bi(t2)−Bi(t1)

h
Σi(t1,t)∥q′ +M

∫ t

t1

∥e
Bi(t2)−Bi(t1)

h
Σi(s,t)∥pds

≤∥Xπ
i (t1)∥qeq

′ Σi(t1,t)
2

2h +M

∫ t

t1

ep
Σi(s,t)

2

2h ds

≤∥Xπ
i (t1)∥qeq

′ Σi(t1,t)
2

2h +M(t− t1)e
p
2h

sups∈[t1,t]
Σi(s,t)

2

.

This last estimate combined with (3.7) provides the desired upper bound for ∥Xπ
i (t)∥p

on the interval ]t1, t2]. It also clear that in a similar manner one obtains analogous esti-
mates for the Lp(Ω)-norm of Xi(t) on any subinterval ]tk, tk+1] for k = 2, ..., N − 1.

We are left with the verification that {Xπ(t)}t∈[0,T ] as defined in (3.6) satisfies identity
(2.9). To this aim we prove the following auxiliary result.

Proposition 3.1. Identity (2.9) is equivalent to

Xπ
i (t) = Xπ

i (tk−1) ⋄ Eπ
i (tk−1, t) +

∫ t

tk−1

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds, t ∈ [tk−1, tk], (3.8)

for all k ∈ {1, ..., N}.

Proof. Assume identity (2.9) to be true; then, for t ∈]tk−1, tk] we can write

Xπ
i (t) =ciEπ

i (0, t) +

∫ t

0

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds

=ciEπ
i (0, t) +

∫ tk−1

0

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds++

∫ t

tk−1

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds

13



=ciEπ
i (0, tk−1) ⋄ Eπ

i (tk−1, t) +

∫ tk−1

0

bi(s,X
π(s)) ⋄ Eπ

i (s, tk−1) ⋄ Eπ
i (tk−1, t)ds

+

∫ t

tk−1

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds

=ciEπ
i (0, tk−1) ⋄ Eπ

i (tk−1, t) +

(∫ tk−1

0

bi(s,X
π(s)) ⋄ Eπ

i (s, tk−1)ds

)
⋄ Eπ

i (tk−1, t)

+

∫ t

tk−1

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds

=

(
ciEπ

i (0, tk−1) +

∫ tk−1

0

bi(s,X
π(s)) ⋄ Eπ

i (s, tk−1)ds

)
⋄ Eπ

i (tk−1, t)

+

∫ t

tk−1

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds

=Xπ
i (tk−1) ⋄ Eπ

i (tk−1, t) +

∫ t

tk−1

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds.

This proves (3.8). If we now start from (3.8) and replace iteratively Xπ
i (tk−1) with

Xπ
i (tk−2) ⋄ Eπ

i (tk−2, tk−1) +

∫ tk−1

tk−2

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds,

and then replace Xπ
i (tk−2) with

Xπ
i (tk−3) ⋄ Eπ

i (tk−3, tk−2) +

∫ tk−2

tk−3

bi(s,X
π(s)) ⋄ Eπ

i (s, t)ds,

and so on, we will end up with (2.9).

Remark 3.2. We observe that according to the definition of Xπ(t) in (3.6), for any
k ∈ {1, ..., N} and t ≤ tk−1 the random vector Xπ(t) depends only on the Brownian
increments on the intervals [0, t1],...,[tk−2, tk−1]. Therefore, the term

Xπ
i (tk−1) ⋄ Eπ

i (tk−1, t), t ∈]tk−1, tk]

in (3.8) can be rewritten for our particular mild solution as

Xπ
i (tk−1)Eπ

i (tk−1, t), t ∈]tk−1, tk].

In fact, according to (2.6) one has

Xπ
i (tk−1) ⋄ Eπ

i (tk−1, t) = T−σi,k−1X
π
i (tk−1)Eπ

i (tk−1, t)

= Xπ
i (tk−1)Eπ

i (tk−1, t).

(The translation acts on a part of Brownian path which is disjoint from the increments
on which Xπ

i (tk−1) depends).
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We are now ready to prove that Xπ(t) defined in (3.6) verifies identity (2.9) through the
equivalent equalities (3.8). Let t ∈ [0, t1]; then, identity (3.4) and definition (3.6) give

Xπ
i (t) =ui(t, B(t1); 0, c)

=cie
Bi(t1)

h
Σi(0,t)− 1

2h
Σi(0,t)

2

+

∫ t

0

bi (t, u(s, B(t1)− Σi(s, t)ei; 0, c)) e
Bi(t1)

h
Σi(s,t)− 1

2h
Σi(s,t)

2

ds

=ciEπ
i (0, t) +

∫ t

0

bi (t, u(s, B(t1)− Σi(s, t)ei; 0, c)) Eπ
i (s, t)ds

=ciEπ
i (0, t) +

∫ t

0

T−σi,0bi (t, u(s, B(t1); 0, c)) Eπ
i (s, t)ds

=ciEπ
i (0, t) +

∫ t

0

bi (t, u(s, B(t1); 0, c)) ⋄ Eπ
i (s, t)ds

=ciEπ
i (0, t) +

∫ t

0

bi (t,X
π(s)) ⋄ Eπ

i (s, t)ds.

This corresponds to (3.8) for t ∈ [0, t1]. Let us now consider the general subinterval
]tk, tk+1], with k ∈ {1, ..., N − 1}; identity (3.4) and definition (3.6) give

Xπ
i (t) =ui(t, B(tk+1)−B(tk); tk, X

π(tk))

=Xπ
i (tk)e

Bi(tk+1)−Bi(tk)

h
Σi(tk,t)− 1

2h
Σi(tk,t)

2

+

∫ t

tk

bi (t, u(s, B(tk+1)−B(tk)− Σi(s, t)ei; tk, X
π(tk)))×

× e
B(tk+1)−B(tk)

h
Σi(s,t)− 1

2h
Σi(s,t)

2

ds

=Xπ
i (tk)Eπ

i (tk, t)

+

∫ t

tk

bi (t, u(s, B(tk+1)−B(tk)− Σi(s, t)ei; tk, X
π(tk))) Eπ

i (s, t)ds

=Xπ
i (tk)Eπ

i (tk, t) +

∫ t

tk

T−σi,kbi (t, u(s, B(tk+1)−B(tk); tk, X
π(tk))) Eπ

i (s, t)ds

=Xπ
i (tk)Eπ

i (tk, t) +

∫ t

tk

bi (t, u(s, B(tk+1)−B(tk); tk, X
π(tk))) ⋄ Eπ

i (s, t)ds

=Xπ
i (tk)Eπ

i (tk, t) +

∫ t

tk

bi (t,X
π(s)) ⋄ Eπ

i (s, t)ds.

This corresponds to (3.8) and the proof is complete.

4 Proof of Theorem 1.3

Let φ ∈ C2
0([0, T ]× Rd); then,

0 =φ(T,Xπ(T ))− φ(0, c)
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=
N∑
k=1

φ(tk, X
π(tk))− φ(tk−1, X

π(tk−1))

=
N∑
k=1

∫ tk

tk−1

[
∂tφ(t,X

π(t)) +
d∑

i=1

∂xi
φ(t,Xπ(t))

d

dt
Xπ

i (t)

]
dt

=
N∑
k=1

∫ tk

tk−1

∂tφ(t, u(t, B(tk)−B(tk−1); tk−1, X
π(tk−1)))dt

+
N∑
k=1

∫ tk

tk−1

d∑
i=1

∂xi
φ(t, u(t, B(tk)−B(tk−1); tk−1, X

π(tk−1)))×

× ∂tui(t, B(tk)−B(tk−1); tk−1, X
π(tk−1))dt.

To ease the notation, we now suppress the explicit dependence on the initial conditions
in the function u and set Z(k) := B(tk)−B(tk−1); therefore, the previous identity reads

0 =
N∑
k=1

∫ tk

tk−1

∂tφ(t, u(t, Z(k)))dt+
N∑
k=1

d∑
i=1

∫ tk

tk−1

∂xi
φ(t, u(t, Z(k)))∂tui(t, Z(k))dt. (4.1)

We recall that ui is a classical solution of (3.1) and hence we get

∂tui(t, Z(k)) = −σi(t)∂xi
ui(t, Z(k)) + σi(t)

Zi(k)

h
ui(t, Z(k)) + bi(t, u(t, Z(k))).

Substituting this identity into (4.1) yields

0 =
N∑
k=1

∫ tk

tk−1

∂tφ(t, u(t, Z(k)))dt

−
N∑
k=1

d∑
i=1

∫ tk

tk−1

∂xi
φ(t, u(t, Z(k)))σi(t)∂xi

ui(t, Z(k))dt

+
N∑
k=1

d∑
i=1

∫ tk

tk−1

∂xi
φ(t, u(t, Z(k)))σi(t)

Zi(k)

h
ui(t, Z(k))dt

+
N∑
k=1

d∑
i=1

∫ tk

tk−1

∂xi
φ(t, u(t, Z(k)))bi(t, u(t, Z(k)))dt

=A− B + C +D,

where

A :=
N∑
k=1

∫ tk

tk−1

∂tφ(t, u(t, Z(k)))dt,

B :=
N∑
k=1

d∑
i=1

∫ tk

tk−1

∂xi
φ(t, u(t, Z(k)))σi(t)∂xi

ui(t, Z(k))dt,
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C :=
N∑
k=1

d∑
i=1

∫ tk

tk−1

∂xi
φ(t, u(t, Z(k)))σi(t)

Zi(k)

h
ui(t, Z(k))dt,

D :=
N∑
k=1

d∑
i=1

∫ tk

tk−1

∂xi
φ(t, u(t, Z(k)))bi(t, u(t, Z(k)))dt.

We now take the expectation of the first and last members above and get

0 = E[A]− E[B] + E[C] + E[D]. (4.2)

Let us analyse E[C]:

E[C] =
N∑
k=1

d∑
i=1

∫ tk

tk−1

E
[
∂xi

φ(t, u(t, Z(k)))σi(t)
Zi(k)

h
ui(t, Z(k))

]
dt

=
N∑
k=1

d∑
i=1

∫ tk

tk−1

E
[
E
[
∂xi

φ(t, u(t, Z(k)))σi(t)
Zi(k)

h
ui(t, Z(k))

∣∣∣Ftk−1

]]
dt; (4.3)

here {Ft}t∈[0,T ] stands for the natural filtration of the Brownian motion {B(t)}t∈[0,T ].
We remark that u(t, Z(k)) depends implicitly also on the increments Z(1), ...., Z(k − 1)
through the initial condition; however, these increments are measurable with respect
to the sigma-algebra Ftk−1

. Therefore, the conditional expectation can be computed as
follows

E
[
∂xi

φ(t, u(t, Z(k)))σi(t)
Zi(k)

h
ui(t, Z(k))

∣∣∣Ftk−1

]
=

∫
Rd

∂xi
φ(t, u(t, x))σi(t)

xi

h
ui(t, x)

e−|x|2/2h

(2πh)d/2
dx

= −
∫
Rd

∂xi
φ(t, u(t, x))σi(t)ui(t, x)∂xi

(
e−|x|2/2h

(2πh)d/2

)
dx

=

∫
Rd

σi(t)∂xi
(∂xi

φ(t, u(t, x))ui(t, x))
e−|x|2/2h

(2πh)d/2
dx

=
d∑

j=1

∫
Rd

σi(t)∂xj
∂xi

φ(t, u(t, x))∂xi
uj(t, x)ui(t, x)

e−|x|2/2h

(2πh)d/2
dx

+

∫
Rd

σi(t)∂xi
φ(t, u(t, x))∂xi

ui(t, x)
e−|x|2/2h

(2πh)d/2
dx

= E

[
d∑

j=1

σi(t)∂xj
∂xi

φ(t, u(t, Z(k)))∂xi
uj(t, Z(k))ui(t, Z(k))

∣∣∣Ftk−1

]
+ E

[
σi(t)∂xi

φ(t, u(t, Z(k)))∂xi
ui(t, Z(k))

∣∣∣Ftk−1

]
;
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in the third equality we performed an integration by parts. Inserting the last expression
in (4.3) gives

E[C] =
N∑
k=1

d∑
i=1

∫ tk

tk−1

E
[
E
[
∂xi

φ(t, u(t, Z(k)))σi(t)
Zi(k)

h
ui(t, Z(k))

∣∣∣Ftk−1

]]
dt

=
N∑
k=1

d∑
i=1

∫ tk

tk−1

E

[
d∑

j=1

σi(t)∂xj
∂xi

φ(t, u(t, Z(k)))∂xi
uj(t, Z(k))ui(t, Z(k))

]
dt

+
N∑
k=1

d∑
i=1

∫ tk

tk−1

E [σi(t)∂xi
φ(t, u(t, Z(k)))∂xi

ui(t, Z(k))] dt.

Note that last term above coincides with E[B] which appear with a negative sign in
(4.2); hence,

− E[B] + E[C]

=
N∑
k=1

d∑
i,j=1

∫ tk

tk−1

E
[
σi(t)∂xj

∂xi
φ(t, u(t, Z(k)))∂xi

uj(t, Z(k))ui(t, Z(k))
]
dt.

Before recollecting all the parts of our computation, we make a further step; if we denote
by G(k)

i,t the sigma algebra generated by the random variable ui(t, Z(k)), for t ∈ [tk−1, tk],
k = 1, ..., N and i = 1, ..., d, we can rewrite the expectation inside the integral above as

E
[
σi(t)∂xj

∂xi
φ(t, u(t, Z(k)))∂xi

uj(t, Z(k))ui(t, Z(k))
]

= E
[
E
[
σi(t)∂xj

∂xi
φ(t, u(t, Z(k)))∂xi

uj(t, Z(k))ui(t, Z(k))
∣∣∣G(k)

i,t

]]
= E

[
σi(t)∂xj

∂xi
φ(t, u(t, Z(k)))ui(t, Z(k))E

[
∂xi

uj(t, Z(k))
∣∣∣G(k)

i,t

]]
= E

[
σi(t)∂xj

∂xi
φ(t, u(t, Z(k)))ui(t, Z(k))g

(k)
ij (t, ui(t, Z(k)))

]
,

where g
(k)
ij : [tk−1, tk] × R → R is a measurable function, whose existence is guaranteed

by Doob’s Lemma, chosen to satisfy

g
(k)
ij (t, ui(t, Z(k))) = E

[
∂xi

uj(t, Z(k))
∣∣∣G(k)

i,t

]
. (4.4)

Now, starting from (4.2) and using the last two identities we obtain

0 =E[A]− E[B] + E[C] + E[D]

=
N∑
k=1

∫ tk

tk−1

E[∂tφ(t, u(t, Z(k)))]dt

+
N∑
k=1

d∑
i,j=1

∫ tk

tk−1

E
[
σi(t)∂xj

∂xi
φ(t, u(t, Z(k)))ui(t, Z(k))g

(k)
ij (t, ui(t, Z(k)))

]
dt

18



+
N∑
k=1

d∑
i=1

∫ tk

tk−1

E[∂xi
φ(t, u(t, Z(k)))bi(t, u(t, Z(k)))]dt

=

∫ T

0

E[∂tφ(t,Xπ(t))]dt

+
N∑
k=1

d∑
i,j=1

∫ tk

tk−1

E
[
σi(t)∂xj

∂xi
φ(t,Xπ(t))Xπ

i (t)g
(k)
ij (t,Xπ

i (t))
]
dt

+

∫ T

0

d∑
i=1

E[∂xi
φ(t,Xπ(t))bi(t,X

π(t))]dt

=

∫ T

0

E[∂tφ(t,Xπ(t))]dt

+
d∑

i,j=1

∫ T

0

E
[
σi(t)∂xj

∂xi
φ(t,Xπ(t))Xπ

i (t)gij(t,X
π
i (t))

]
dt

+

∫ T

0

d∑
i=1

E[∂xi
φ(t,Xπ(t))bi(t,X

π(t))]dt,

where gij : [0, T ]× R → R is defined by

gij(t, y) := g
(k)
ij (t, y), if t ∈ [tk−1, tk]. (4.5)

Observe that the last member above contains expectations of functions of the random
vector Xπ(t), for t ∈ [0, T ]; therefore, writing the law of this random vector as

µπ(t, A) := P(Xπ(t) ∈ A), A ∈ B(Rd),

we can write

0 =

∫ T

0

∫
Rd

∂tφ(t, x)dµ
π(t, x)dt+

d∑
i,j=1

∫ T

0

∫
Rd

σi(t)∂xj
∂xi

φ(t, x)xigij(t, xi)dµ
π(t, x)dt

+
d∑

i=1

∫ T

0

∫
Rd

∂xi
φ(t, x)bi(t, x)dµ

π(t, x)dt

=

∫ T

0

∫
Rd

[
∂tφ(t, x) +

d∑
i,j=1

σi(t)∂
2
xixj

φ(t, x)xigij(t, xi) + ⟨b(t, x),∇φ(t, x)⟩

]
dµπ(t, x)dt.

The last equalities hold for any test function φ ∈ C2
0([0, T ]×Rd) and this completes the

proof of Theorem 1.3.
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5 Proof of Theorem 1.4

The aim of this section is to prove that the mild solution of
dXπ

i (t)

dt
= bi(t,X

π(t)) + σi(t)X
π
i (t) ⋄

dBπ
i (t)

dt
,

for t ∈]0, T ] and i = 1, ..., d;

Xπ
i (0) = ci ∈ R, for i = 1, ..., d,

(5.1)

as defined in (3.6), converges in L1(Ω) to the unique strong solution of the Itô SDE
dXi(t) = bi(t,X(t))dt+ σi(t)Xi(t)dBi(t),

for t ∈]0, T ] and i = 1, ..., d;

Xi(0) = ci ∈ R, for i = 1, ..., d.

(5.2)

First of all, by means of the Itô formula we rewrite equation (5.2) in a form that resembles
identity (2.9). In fact, setting

Ei(s, t) := e−
∫ t
s σi(r)dBi(r)− 1

2

∫ t
s σi(r)

2dr, 0 ≤ s ≤ t ≤ T,

and

Ei(s, t) := e
∫ t
s σi(r)dBi(r)− 1

2

∫ t
s σi(r)

2dr, 0 ≤ s ≤ t ≤ T,

we write

d (Xi(t) ⋄ Ei(0, t)) =d(Tσi
Xi(t) · Ei(0, t))

=Ei(0, t) · dTσi
Xi(t) + Tσi

Xi(t) · dEi(0, t)
+ dTσi

Xi(t) · dEi(0, t).

Now,

dTσi
Xi(t) = [bi(t, Tσi

X(t)) + σi(t)
2Tσi

Xi(t)]dt+ σi(t)Tσi
Xi(t)dBi(t),

dEi(0, t) = −σi(t)Ei(0, t)dBi(t),

and hence

d (Xi(t) ⋄ Ei(0, t))
= [bi(t, Tσi

X(t))Ei(0, t) + σi(t)
2Tσi

Xi(t)Ei(0, t)]dt+ σi(t)Tσi
Xi(t)Ei(0, t)dBi(t)

− σi(t)Tσi
Xi(t)Ei(0, t)dBi(t)− σi(t)

2Tσi
Xi(t)Ei(0, t)dt

= bi(t, Tσi
X(t))Ei(0, t)dt

= bi(t,X(t)) ⋄ Ei(0, t)dt.

This is equivalent to

Xi(t) ⋄ Ei(0, t) = ci +

∫ t

0

bi(s,X(s)) ⋄ Ei(0, s)ds,
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or

Xi(t) = ciEi(0, t) +
∫ t

0

bi(s,X(s)) ⋄ Ei(0, s) ⋄ Ei(0, t)ds

= ciEi(0, t) +
∫ t

0

bi(s,X(s)) ⋄ Ei(s, t)ds.

Here, we utilized the equality

Ei(0, t) ⋄ Ei(0, t) = 1, for all t ∈ [0, T ].

Therefore, the solution of the Itô SDE (5.2) verifies the integral identity

Xi(t) = ciEi(0, t) +
∫ t

0

bi(s,X(s)) ⋄ Ei(s, t)ds, (5.3)

for all t ∈ [0, T ] and i = 1, ..., d. We are now ready to prove the convergence:

|Xπ
i (t)−Xi(t)|

=

∣∣∣∣ci (Eπ
i (t, 0)− Ei(0, t)) +

∫ t

0

bi(s,X
π(s)) ⋄ Eπ

i (s, t)− bi (s,X(s)) ⋄ Ei(s, t)ds
∣∣∣∣

≤ |ci| |Eπ
i (0, t)− Ei(0, t)|+

∫ t

0

|bi(s,Xπ(s)) ⋄ Eπ
i (s, t)− bi (s,X(s)) ⋄ Ei(s, t)| ds

≤ |ci| |Eπ
i (0, t)− Ei(0, t)|+

∫ t

0

|bi(s,Xπ(s)) ⋄ Eπ
i (s, t)− bi(s,X(s)) ⋄ Eπ

i (s, t)| ds

+

∫ t

0

|bi(s,X(s)) ⋄ Eπ
i (s, t)− bi (s,X(s)) ⋄ Ei(s, t)| ds

≤ |ci| |Eπ
i (0, t)− Ei(0, t)|+

∫ t

0

|bi(s,Xπ(s))− bi(s,X(s))| ⋄ Eπ
i (s, t)ds

+

∫ t

0

|bi(s,X(s)) ⋄ Eπ
i (s, t)− bi (s,X(s)) ⋄ Ei(s, t)| ds

≤ |ci| |Eπ
i (0, t)− Ei(0, t)|+ L

∫ t

0

d∑
j=1

∣∣Xπ
j (s)−Xj(s)

∣∣ ⋄ Eπ
i (s, t)ds

+

∫ t

0

|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))| ds;

In the last two estimates we utilized inequality (2.8) together with the Lipschitz conti-
nuity of b, which is implied by Assumption 1.1. We now take the expectation of the first
and last members above to get

E[|Xπ
i (t)−Xi(t)|]

≤ |ci|E [|Eπ
i (0, t)− Ei(0, t)|] + L

∫ t

0

d∑
j=1

E
[∣∣Xπ

j (s)−Xj(s)
∣∣] ds
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+

∫ t

0

E [|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))|] ds.

The previous inequality is valid for all i = 1, ..., d and t ∈ [0, T ]; therefore, summing over
i and setting

Xπ(t) :=
d∑

i=1

E [|Xπ
i (s)−Xi(s)|] ,

we obtain

Xπ(t) ≤
d∑

i=1

|ci|E [|Eπ
i (0, t)− Ei(0, t)|] + Ld

∫ t

0

Xπ(s)ds

+
d∑

i=1

∫ t

0

E [|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))|] ds

=Mπ(t) + Ld

∫ t

0

Xπ(s)ds,

with

Mπ(t) :=
d∑

i=1

|ci|E [|Eπ
i (0, t)− Ei(0, t)|]

+
d∑

i=1

∫ t

0

E [|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))|] ds.

According to Gronwall’s inequality the previous estimate yields

Xπ(t) ≤ Mπ(t) + Ld

∫ t

0

Mπ(s)eLd(t−s)ds; (5.4)

the proof will be complete if we show that Mπ(t) is bounded for all t ∈ [0, T ] and any
finite partition π and that

lim
∥π∥→0

Mπ(t) = 0, for all t ∈ [0, T ];

this will allow us to use dominated convergence for the Lebesgue integral appearing in
(5.4) and conclude that

lim
∥π∥→0

Xπ(t) = lim
∥π∥→0

d∑
i=1

E [|Xπ
i (s)−Xi(s)|] = 0.

We start with the boundedness:

Mπ(t) ≤
d∑

i=1

|ci| (E [|Eπ
i (0, t)|] + E [|Ei(0, t)|])
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+
d∑

i=1

∫ t

0

E [|bi(s,X(s)) ⋄ Eπ
i (s, t)− bi(s,X(s)) ⋄ Ei(s, t)|] ds

≤2
d∑

i=1

|ci|+
d∑

i=1

∫ t

0

E [|bi(s,X(s)) ⋄ Eπ
i (s, t)|] + E [|bi(s,X(s)) ⋄ Ei(s, t)|] ds

≤2
d∑

i=1

|ci|+
d∑

i=1

∫ t

0

E [|bi(s,X(s))| ⋄ Eπ
i (s, t)] + E [|bi(s,X(s))| ⋄ Ei(s, t)] ds

≤2
d∑

i=1

|ci|+ 2dMt.

We now check the convergence:

lim
∥π∥→0

Mπ(t) = lim
∥π∥→0

d∑
i=1

|ci|E [|Eπ
i (0, t)− Ei(0, t)|]

+ lim
∥π∥→0

d∑
i=1

∫ t

0

E [|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))|] ds

=
d∑

i=1

lim
∥π∥→0

∫ t

0

E [|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))|] ds.

We now prove that we can take the last limit inside the integral; first of all, note that
the integrand is bounded: in fact,

E [|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))|] =E [|bi(s,X(s)) ⋄ Eπ

i (s, t)− bi(s,X(s)) ⋄ Ei(s, t)|]
≤E [|bi(s,X(s)) ⋄ Eπ

i (s, t)|] + E [|bi(s,X(s)) ⋄ Ei(s, t)|]
≤E [|bi(s,X(s))| ⋄ Eπ

i (s, t)] + E [|bi(s,X(s))| ⋄ Ei(s, t)]
=E [|bi(s,X(s))|] + E [|bi(s,X(s))|]
≤2M.

We proceed by proving that

lim
∥π∥→0

E [|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))|] = 0.

Let us rewrite the expected value as follows:

E [|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))|]

= E [|bi(s,X(s)) ⋄ Eπ
i (s, t)− bi(s,X(s)) ⋄ Ei(s, t)|]

= E [|Tσi,πbi(s,X(s))Eπ
i (s, t)− Tσi

bi(s,X(s))Ei(s, t)|]
≤ E [|Tσi,πbi(s,X(s))Eπ

i (s, t)− Tσi
bi(s,X(s))Eπ

i (s, t)|]
+ E [|Tσi

bi(s,X(s))Eπ
i (s, t)− Tσi

bi(s,X(s))Ei(s, t)|]
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= E [|bi(s, Tσi,πX(s))− bi(s, Tσi
X(s))|Eπ

i (s, t)]

+ E [|bi(s, Tσi
X(s))||Eπ

i (s, t)− Ei(s, t)|]
≤ LE [|Tσi,πX(s)− Tσi

X(s)|Eπ
i (s, t)]

+ME [|Eπ
i (s, t)− Ei(s, t)|] .

Hence,

lim
∥π∥→0

E [|bi(s,X(s)) ⋄ (Eπ
i (s, t)− Ei(s, t))|]

≤ lim
∥π∥→0

LE [|Tσi,πX(s)− Tσi
X(s)|Eπ

i (s, t)]

+ lim
∥π∥→0

ME [|Eπ
i (s, t)− Ei(s, t)|] .

By the properties of the translation operator,

lim
∥π∥→0

Tσi,πX(s) = Tσi
X(s), in Lp(Ω) for all p ≥ 1;

on the other hand

lim
∥π∥→0

Eπ
i (s, t) = Ei(s, t), in Lp(Ω) for all p ≥ 1.

These two facts imply

lim
∥π∥→0

LE [|Tσi,πX(s)− Tσi
X(s)|Eπ

i (s, t)] = 0,

completing the proof.
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