ARCHIVIO ISTITUZIONALE
ONIVERSITA DI BOLOGNA DELLA RICERCA

Alma Mater Studiorum Universita di Bologna
Archivio istituzionale della ricerca

Forward-Reverse Observational Equivalences in CCSK

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

Published Version:

Lanese I., PhillipsI. (2021). Forward-Reverse Observational Equivalences in CCSK. Springer Science and
Business Media Deutschland GmbH [10.1007/978-3-030-79837-6_8].

Availability:
This version is available at: https://hdl.handle.net/11585/847057 since: 2022-01-24
Published:

DOI: http://doi.org/10.1007/978-3-030-79837-6_8

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Universita di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

(Article begins on next page)

24 December 2024

http://doi.org/10.1007/978-3-030-79837-6_8
https://hdl.handle.net/11585/847057

This is the final peer-reviewed accepted manuscript of:

Lanese, I., Phillips, I. (2021). Forward-Reverse Observational Equivalences in CCSK.
In: Yamashita, S., Yokoyama, T. (eds) Reversible Computation. RC 2021. Lecture
Notes in Computer Science, vol 12805. Springer, Cham, pp. 126-143

The final published version is available online at
https://dx.doi.orq/10.1007/978-3-030-79837-6 8

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Universita di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

https://cris.unibo.it/
https://dx.doi.org/10.1007/978-3-030-79837-6_8

Forward-Reverse Observational Equivalences
in CCSK*

Tvan Lanesel[0000—0003—2527—9995] and ITain PhﬂlipSQ[0000—0001—5013—5876]

! Focus Team, University of Bologna/INRIA
2 Imperial College London

Abstract. In the context of CCSK, a reversible extension of CCS, we
study observational equivalences that distinguish forward moves from
backward ones. We present a refinement of the notion of forward-reverse
bisimilarity and show that it coincides with a notion of forward-reverse
barbed congruence. We also show a set of sound axioms allowing one to
reason equationally on process equivalences.

Keywords: CCSK, forward-reverse bisimilarity, forward-reverse barbed
congruence, axiomatization

1 Introduction

Building concurrent systems is difficult and error-prone, since one has to reason
on a large number of possible interleavings; yet concurrency is a must in current
systems, such as the Internet, the Cloud, or parallel processors.

Reversible computing, allowing a system to execute both in the standard,
forward direction, as well as backwards, recovering past states, has a number
of interesting applications, including low-energy computing [18], simulation [6],
biological modelling [5,33] and program debugging [11,24,21]. Many of these ap-
plications involve concurrent systems. Thus, a number of works have proposed re-
versible extensions of concurrent formalisms, including CCS [9,30], w-calculus [8],
higher-order 7 [20], Petri nets [25], and the Erlang [22] programming language.
Given the relevance of analysis techniques for concurrent systems, also a num-
ber of analysis techniques have been considered, e.g., following the session types
approach [27,3,7]. Notions of observational equivalence have also been used in a
few works, such as [30,26,1,2], yet the question of which notions of observational
equivalence are suitable for reversible processes, and how they can be exploited
to actually reason about them, has seldom been considered.

In this paper we tackle this issue. In particular, we consider a setting where
reversibility is observable, that is forward actions are observationally distinguish-
able from their undo. This means that we are interested in systems where re-
versibility is relevant, e.g., recovery protocols, reversible debuggers, and so on.

* The first author has also been partially supported by French ANR project DCore
ANR-18-CE25-0007 and by INAAM — GNCS 2020 project Sistemi Reversibili Con-
correnti: dai Modelli ai Linguaggi. We thank reviewers for their helpful comments.

2 I. Lanese and I. Phillips

If instead one considers reversibility as an implementation detail only, then also
more abstract notions where forward moves can be matched by backward moves
and vice versa could be of interest. We leave this analysis for future work. Also,
we consider causal-consistent reversibility [9], which is currently the most used
notion of reversibility for concurrent systems. It states that any action can be
undone, provided that its consequences, if any, are undone beforehand. Among
its properties, it ensures that every reachable state is also reachable by forward
computation. This contrasts with other approaches, used, e.g., in biological mod-
elling [33], where causes can be undone without undoing their consequences, thus
leading to new states. This setting will be left for future work as well. Finally,
we will focus on strong equivalences, where internal steps need to be matched
by other internal steps. Weak equivalences, which abstract away from internal
steps, are of course also relevant, but before tackling them the strong setting
needs to be well understood, hence we leave also this analysis for future work.

In the setting of causal-consistent reversibility, we define and motivate a no-
tion of (strong) revised forward-reverse bisimilarity, also comparing it with alter-
native formulations (Section 4). We support our proposal with two contributions:
(i) we show that it admits an equivalent formulation in terms of forward-reverse
barbed congruence (Section 5); (ii) we prove sound a number of axioms which
can be used to reason equationally about reversible systems (Theorem 4.10).

From a technical point of view, we work on CCSK, which is the instance
on CCS of a general approach to reverse process calculi presented in [30]. The
reason for this design choice is that CCSK history representation as keys en-
sures, differently from alternative approaches such as the one of RCCS [9], no
redundancy in process representation, and this is fundamental to have simple
axioms. We will come back to this point in the related work (Section 6), where
we will also contrast our proposal with other proposals in the literature.

For space reasons, most proofs are available only in the companion technical
report [23].

2 CCSK

As anticipated in the Introduction, we base our work on CCSK as defined in [30],
with a minor change that we will discuss in Remark 4.2. We recall below the
syntax and semantics of CCSK, referring to [30] for more details. CCSK is built
on top of CCS, adding a mechanism of keys to keep track of which part of the
process has already been executed. Hence, during forward computation, executed
actions are not discarded, but just labelled as already been executed.

We define the actions of CCS, representing communications over named chan-
nels, much as usual. Let A be a set of names, ranged over by a,b,.... Let @ be
the complement of a € A, let A = {@: a € A}, and let Act be the disjoint
union of A, A and {}. Also, let @ = a for a € AU A. Standard prefixes, ranged
over by a, 3, ..., are drawn from Act. Intuitively, names represent input actions,
co-names represent output actions, and 7 is an internal synchronisation.

Forward-Reverse Observational Equivalences in CCSK 3

CCS processes, which we shall also call standard processes, are given by:
PQ=0|aP|P+Q|P|Q|(va)P

Intuitively, 0 is the inactive process, a.. P is a process that performs action o and
continues as P, P + @ is nondeterministic choice, P | Q is parallel composition
and restriction (va)P binds channel a (both occurrences in input actions and
in output actions) inside P. We do not consider renaming, adding it will not
change the results of the paper. A channel is bound if inside the scope of a
restriction operator, free otherwise. Function f£n(P) computes the set of free
names in process P.

CCSK adds to CCS the possibility of going backwards. In order to remember
which input interacted with which output while going forward, at each forward
step fresh keys are created, and the same key is used to label an input and the
corresponding output.

We denote the set of keys by Keys, ranged over by m,n,k,.... Prefixes,
ranged over by m, are of the form a[m] or a. The former denotes that « has
already been executed, the latter that it has not.

CCSK processes are given by:

XY :=0|nX|X+Y|X|Y|(va)X

hence they are like CCS processes but for the fact that some prefixes may be
labelled with a key. In the following, we will drop trailing Os.

We use predicate std(X) to mean that X is standard, that is none of its
actions has been executed, hence it has no keys. We assume function toStd(X)
that takes a CCSK process X and gives back the standard process obtained by
removing from X all keys. Finally, we consider function keys(X) which computes
the set of keys in CCSK process X.

In a CCSK process we distinguish free from bound keys.

Definition 2.1 (Free and bound keys). 4 key k is bound in a process X iff
it occurs either twice, attached to complementary prefixes, or once, attached to
a T prefir. A key k is free if it occurs once, attached to a non-t prefix.

Intuitively, all the occurrences of a bound key are inside the process, while a
free key has another occurrence in the environment.

Figure 1 shows the forward rules of CCSK. Backward rules in Figure 2 are
obtained from forward rules by reversing the direction of transitions.

Rule (TOP) allows a prefix to execute. The rule generates a key m. Fresh-
ness of m is guaranteed by the side conditions of the other rules. Rule (PRE-
FIX) states that an executed prefix does not block execution. The two rules for
(CHOICE) and the two for (PAR) allow processes to execute inside a choice or a
parallel composition. The side condition of rule (CHOICE) ensures that at most
one branch can execute. Rule (SYNCH) allows two complementary actions to
synchronise producing a 7. The key of the two actions needs to be the same.
Rule (RES) allows an action which does not involve the restricted channel to
propagate through restriction.

4 I. Lanese and I. Phillips

Bln]

X x 2 X
(TOP) j:f]i() (PREFIX) o, m£n
a.X —5 afm].X alm]. X —5 ajm].X’
(cHOIE) X ol xt stay) Y 2Ly sed(X)
x+vymoxiyiy xyvy Mo x gy
(PAR) Xi@]—)f X" m ¢ keys(Y) Yi[m—]>f Y' m ¢ keys(X)
x|y 2™ xy x|y 2™ x|y
alm] ’ alm] ’
(SYNCH) = !)f[m] Y 1Y o)
x|y 2, Xy
a[m] /
RES) —— X ¢ (aa}

(va)X ﬂ)‘f (va) X’

Fig. 1. Forward SOS rules for CCSK

The forward semantics of a CCSK process is the smallest relation — ; closed
under the rules in Figure 1. The backward semantics of a CCSK process is the
smallest relation —,. closed under the rules in Figure 2. The semantics is the
union of the two relations. We shall let u range over transition labels a[m)].

As standard in reversible computing (see, e.g., [30] or the notion of coherent
process in [9]), all the developments consider only processes reachable from a
standard process.

Definition 2.2 (Reachable process). 4 process X is reachable iff there exists
a standard process P and a finite sequence of transitions from P to X.

We recall here a main result of reversible computing, useful for our develop-
ment: the Loop Lemma states that any action can be undone, and any undone
action can be redone.

, a[m]

Lemma 2.3 (Loop Lemma [30, Prop. 5.1]). X Mf X iff X' —, X.

3 Syntactic Characterisation of Reachable Processes

In this paper we discuss relevant notions of observational equivalence for CCSK.
However, since, as described above, only reachable processes are of interest, we
need to understand the structure of reachable processes. Hence, as a preliminary
step, we propose in this section a sound and complete syntactic characterisation
of reachable processes. This result is interesting in itself, since a similar prelim-
inary step is needed for most of the reasonings on a calculus such as CCSK.
Notably, many works in the literature study properties that reachable processes

Forward-Reverse Observational Equivalences in CCSK 5

Bln] /
(BK-TOP) Std([X]) (BK-PREFIX) X — X m#n
afm]. X 2%, aX afm]. X 2%, afm]. X"
x 2 xt stay) Y MLy sea(x)

(BK-CHOICE) o o

X+Y — X'+Y X+Y — X +Y

a[m]

X a—[m]—n X" m ¢ keys(Y) Y —,. Y m ¢ keys(X)

alm]

(BK-PAR) o
Xy &5, XY Xy 25, x|y

alm] a[m]

——,. XY —,. Y

x|y 2 x|y

X

(BK-SYNCH) (a#7)

alm]

X —,. X

(va)X Mn (va)X'

(BK-RES) a ¢ {a,a}

Fig. 2. Reverse SOS rules for CCSK

satisfy, but they do not provide a complete characterisation, see, e.g., [20, Lemma
3]. We are not aware of any such characterisation for reversible CCS.

A main item in the characterisation of reachability is that keys should define
a partial order, thus given a process X we define a partial order <y on keys(X)
as follows.

Definition 3.1 (Partial order on keys). We first define a function ord(-)
that given a process computes a set of relations among its keys. The definition
is by structural induction on X.

ord(0) =0 ord(a.X) = ord(X)
ord(X +Y) = ord(X) Uord(Y) ord(X |Y) = ord(X) Uord(Y)
ord(a[n].X) = ord(X) U {n < k|k € keys(X)}
ord((va)X) = ord(X)

The partial order <x on keys(X) is the reflexive and transitive closure of
ord(X).

The definition above captures structural dependencies on keys. Combined
with the property that prefixes that interact have the same key (see rule (SYNCH)
in Figure 1), it captures a form of Lamport’s happened-before relation [17]
adapted to synchronous communication.

In order to characterise reachable processes we need to define contexts.

Definition 3.2 (Context). A CCSK context is a process with a hole, as gen-
erated by the grammar below:

C:=e|n.C|C+Y |X+C|C|Y |X|C|(va)C

We denote with C[X] the process obtained by replacing e with X inside C.

6 I. Lanese and I. Phillips

We can now present our characterisation of reachable processes.

Definition 3.3 (Well-formed process). A process X is well-formed if all the
following conditions hold:

1. if X = Cla.Y] then std(Y), that is standard prefizes have standard contin-
uations;

2. if X = C[Y +Y'] then std(Y) Vv std(Y’), that is in choices at most one

branch is non-standard;

each key occurs at most twice;

4. if a key occurs twice, then the two occurrences are attached to complementary
prefixes;

5. if a key n occurs twice, then there are C, Y, Y’ such that X = C[Y |Y'],
and both Y and Y’ contain exactly one occurrence of n;

6. if X = C[(va)Y] and a key n occurs in a prefix on channel a inside Y, then
n occurs twice inside Y ;

7. <x is acyclic.

o

Thanks to conditions 3 and 4 each key is either free or bound.
Each well-formed process X is reachable from toStd(X).

Lemma 3.4. Let X be a well-formed process. Let k..., k, be a fixed total order

on keys(X) compatible with <x. Then there is a computation toStd(X) M>f
AN

The classes of reachable and well-formed processes coincide.

Proposition 3.5 (Reachable coincides with well-formed). X is reachable
iff it is well-formed.

The results above, enabled by the syntactic characterisation of reachable
processes, are needed for our development, but can also help in general in the
study of the theory of CCSK. Indeed, we can for instance derive as a corollary
the Parabolic Lemma [30, Lemma 5.12], which can be rephrased as follows.

Corollary 3.6 (Parabolic Lemma [30, Lemma 5.12]). Each reachable pro-
cess is forward reachable.

Proof. Thanks to Proposition 3.5 a reachable process is also well-formed. Hence,
it is forward reachable thanks to Lemma 3.4.

4 Revised Forward-Reverse Bisimilarity

In this section we move to the main aim of this work, namely the definition of
a strong observational equivalence for CCSK able to distinguish forward steps
from backward ones. We consider as starting point for our analysis the notion
of forward-reverse bisimulation introduced in the original CCSK paper [30, Def-
inition 6.5], and rephrased below.

Forward-Reverse Observational Equivalences in CCSK 7

Definition 4.1 (Forward-reverse bisimulation). A symmetric relation R is
a forward-reverse bisimulation if whenever X RY :

1. keys(X) =keys(Y);
2. if X %4 X' then there is Y’ such that Y %5 Y’ and X' RY”';
3. if X L. X' then there is Y’ such that Y %5, Y’ and X' RY".

We first notice that clause 1 is redundant. Indeed, given a reachable process
X we know that there is a computation toStd(X) —7% X. Thanks to the Loop
Lemma, we also have a computation X —* toStd(X), whose labels exhibit all
the keys in keys(X). Thus, any process Y related to X by the bisimulation
should match these labels because of clause 3, hence it should have at least the
same keys. By symmetry, it should actually have exactly the same keys.

However, we claim that requiring to match all keys in the labels, as done
implicitly by clause 3, is too demanding. The intuition under this claim is that
keys are only a technical means to:

1. distinguishing executed from non-executed prefixes, and the choice of the
key is irrelevant for this purpose;

2. coupling together prefixes that synchronised (see rule (SYNCH) in Figure 1):
in this case the choice of the key is irrelevant as well, but it is important
whether two occurrences refer to the same key (highlighting a performed
synchronisation) or to different keys (denoting independent actions).

As for item 2, keys can be safely a-renamed provided that all the occurrences
of a given key are renamed in the same way. Now, keys are linear in the sense
of [15], that is each key can occur at most twice because of condition 3 in the
characterisation of reachable processes (Definition 3.3, see also Proposition 3.5).
One can think of an occurrence attached to a 7 prefix as two occurrences attached
to complementary actions. Now, a key k is bound (cfr. Definition 2.1) if both
its occurrences are in the considered process, hence k can be safely a-renamed
without affecting the context. For instance, we want to equate a[n]|a[n] and
a[m] | a[m]. If instead a key k is free in a process, then the other occurrence
can appear in the context: here a-equivalence needs to be disallowed to ensure
compositionality. Indeed, we cannot equate a[n] and @[m], since in a context such
as - | a[n] the former needs to synchronise to go back, while the latter does not.

We decided to embed a-conversion of bound keys in the semantics. Given
our choice of not observing bound keys, this is needed for compositionality rea-
sons. Indeed, otherwise one could distinguish processes such as a[n]|a[n]|b and
a[m]|a[m]|b since the former can take a forward transition with label b[m],
while the latter can not, due to the side condition of rule (PAR). Thanks to
a-conversion, the two processes can both take a forward transition with label
b[m], provided that the latter first a-converts m to a different key.

We will come back to this issue in the discussion after Proposition 4.9, show-
ing that dropping a-conversion of bound keys would break congruence of bisim-
ilarity. Note that such an issue does not occur in [15], since they never create
new linear prefixes, while we do create new keys.

8 I. Lanese and I. Phillips

In the light of the discussion above, we extend the semantics of CCSK with
a structural equivalence, defined as the smallest equivalence relation (that is,
reflexive, symmetric, and transitive relation) closed under the following rule:

X = X[n/m] m bound in X, n ¢ keys(X)

where [n/m] denotes the substitution of all the occurrences of key m with key n.
Notice that structural equivalence preserves well-formedness (this can be checked
by inspection of the conditions in Definition 3.3), but it is not a congruence, since,
e.g., 7[n] = 7[m] but 7[n].7[n] #Z 7[n].7[m]. To avoid this issue we would need
explicit binders for keys, but we prefer to avoid them to stay as close as possible
to the original CCSK.

We also need to introduce rules enabling the use of structural equivalence in
the derivation of transitions:

y=x x oy x =y

(EQUIV) e
y 2y
mrEquy) Y =X X ol xr xr =y
VRN

Due to the problem above, these rules can only be used as last rules in a deriva-
tion.

Remark 4.2. The introduction of structural equivalence and of the related rules
is the only difference between our semantics of CCSK and the one in [30]. Note
that with a little abuse of notation from now on arrows - s £, and & refer
to the semantics which includes structural equivalence.

Notice that the change to the semantics has no impact on well-formedness
and on Proposition 3.5.

Thanks to structural equivalence we can show that keys attached to 7 labels
are irrelevant.

Proposition 4.3. For each X T X7 and n not free in X we have X Tl e

with X" = X'.

Proof. The proof is by induction on the derivation of X ﬂ X'’. The induction
is trivial if n ¢ keys(X). If n is bound then one can apply rule (EQUIV) or
(BK-EQUIV) to first convert n to any fresh key. O

Actually, by applying rule (EQUIV) or (BK-EQUIV) one can also obtain
X=X

Given the result above, one could even use just label 7 instead of 7[m]. We
prefer however not to do it so that all the labels feature a key. This is handy
when writing rules such as (RES).

We can revise the notion of forward-reverse bisimulation (Definition 4.1) as
follows:

Forward-Reverse Observational Equivalences in CCSK 9

Definition 4.4 (Revised forward-reverse bisimulation). A symmetric re-
lation R is a revised forward-reverse bisimulation (revised FR bisimulation for
short) if whenever X RY :

1. if X ﬁ>f X' then there is Y’ such that Y i>f Y and X' RY’;
2. if X L. X' then there is Y’ such that Y %5, Y’ and X' RY".

The revised forward-reverse (FR) bisimilarity, denoted as ~y, is the largest re-
vised FR bisimulation.

For uniformity, such a definition requires to match bound keys in labels,
however thanks to structural equivalence and Proposition 4.3 this does not allow
one to distinguish processes that only differ on bound keys. Indeed, structural
equivalence is a bisimulation.

Proposition 4.5 (Structural equivalence is a bisimulation). X =Y im-
plies X ~, Y.

Proof. The thesis follows by coinduction, using Proposition 4.3 to match labels
whose keys have been a-converted (and, as such, are bound, and can only be
attached to 7 labels). O

We now use revised FR bisimilarity to show on an example that, as expected,
bound keys are not observable.

Ezample 4.6. We show that a@[n]|a[n] ~; a[m]|a[m]. To this end we need to
show that the relation:

R ={(@aln]|a[n],a[m]|a[m])} U 1d

where Id is the identity relation on reachable processes is a bisimulation.

This is trivial since the only possible transition is a backward 7[k] for any
key k (using rule (BK-EQUIV)), leading to @|a on both the sides. Any further
transition can be matched so to remain in the identity relation Id. Notice that
one can obtain the same result directly from Proposition 4.5.

We now show some properties of revised FR bisimilarity. They will also be
useful in the next section, to prove a characterisation of revised FR bisimilarity
as a barbed congruence.

First, two equivalent processes are either both standard or both non-standard.

Lemma 4.7. If X ~, Y then std(X) iff std(Y).

Proof. A process is non-standard iff it can perform backward transitions. The
thesis follows. O

Also, equivalent processes have the same set of free keys.

Lemma 4.8. If X ~, Y and key n is free in X then key n is free in' Y as well.

10 I. Lanese and I. Phillips

XY =Y|X (PAR-COMM)
X|Y|2)=(X|Y)|Z (PAR-ASS)
X[0=X (PAR-UNIT)
X+Y=Y+X (CH-COMM)
X+Y+2)=(X+Y)+X (CH-ASS)
X+0=X (CH-UNIT)
X+P=X iff toStd(X) = P (CH-IDEM)
(va)(vb)X = (vb)(va)X (RES-COMM)
(va)(X|Y)=X|(va)Y iff a ¢ £n(X) (RES-PAR)
(va)(X +Y) = ((va)X) + ((ra)Y) (RES-CH)
(va)ym.X =m.(va)X iff a ¢ fn(m) (RES-PREF)
(ra)0 =0 (RES-DROP)
(va)a.P =0 iff a € fn(a) (RES-LOCK)
(va)X = (vb)X[b/al iff b ¢ £n(X) (RES-ALPH)

Fig. 3. CCSK axiomatisation

We now show that revised FR bisimilarity is a congruence.

Proposition 4.9 (Revised FR bisimilarity is a congruence). X ~, Y
implies C[X] ~p C[Y] for each C such that C[X] and C[Y] are both reachable.

Note that a-conversion of bound keys is needed to prove congruence w.r.t.
parallel composition. Otherwise, processes a[n]|a[n] and a[m]|a[m] would be
distinguished by a parallel context performing a transition creating a new key
m, since this would be allowed only in the first case. Thanks to a-conversion, this
is possible in both the cases, by first a-converting m in a[m]|a[m] to a different
key.

We now study the axiomatisation of revised FR bisimilarity. While we are
not able to provide a sound and complete axiomatisation, we can prove sound
a number of relevant axioms. These allow one to reason equationally on CCSK
processes.

We consider the list of axioms in Figure 3. Most axioms are standard CCS
axioms [28], extended to deal with non-standard prefixes. There are however a
few interesting differences. E.g., we notice the non-standard axiom (CH-IDEM).
Indeed, the left-hand side of the standard axiom X + X = X is not reachable
if X is not standard, and X + X = X is an instance of (CH-IDEM) if X is
standard. We also note that in rule (RES-LOCK) replacing o with 7 would be
useless since the resulting process would not be reachable.

Theorem 4.10. The axioms in Figure 3 are sound w.r.t. revised FR bisimilar-
1ty.

Forward-Reverse Observational Equivalences in CCSK 11

(va)(@.Pla.Q) = 7.(va)(P| Q) (RES-EXP)
(va)(@n].X |a[n).Y) = 7[n].(va)(X |Y) (RES-EXP-BK)
T|r=77 (TAU-EXP)

T[n]| T =7ln].7 (TAU-EXP-BF)

T[n] | T[m] = 7[n].7[m] (TAU-EXP-BK)

Fig. 4. Sample instances of the Expansion Law

Proof. For each axiom, instances of the axiom form a bisimulation, hence the
thesis follows. O

Probably the most relevant axiom in CCS theory is the Expansion Law [28],
which can be written as follows:

Pi|Py=) {a.(P{|P): Py 5 P} +> {on.(PL|Py): Py Py} +
> A (P{|Py): PL % P, Py = P}

where) is n-ary choice.
It is well-known [30] that the Expansion Law does not hold for reversible
calculi, and indeed we can falsify it on an example using revised FR bisimilarity.

Ezample 4.11. We show here that a | b %4 a.b+b.a. Indeed, a | b can take forward
actions a[n], b[m], and then undo a[n], while a.b 4+ b.a cannot. Notably, also
ala % a.a, since a|a can take forward actions a[n], a[m], and then undo a[n],
while a.a cannot.

This shows that classical CCS bisimilarity [28] is not as distinguishing, on
CCS processes, as revised FR bisimilarity. Indeed, as expected, revised FR bisim-
ilarity is strictly finer.

Proposition 4.12. P ~;, Q implies P ~ @ where ~ is classical CCS bisimilar-
ity [28], while the opposite implication does not hold.

Proof. Classical CCS bisimilarity corresponds to clause 1 in the definition of
revised FR bisimilarity. The failure of the other inclusion follows from Exam-
ple 4.11. L

We show below that even if the full Expansion Law does not hold, a few
instances indeed hold.

Proposition 4.13. The instances of the Expansion Law in Figure J are sound
w.r.t. revised FR bisimilarity.

Proof. Instances of axioms (RES-EXP) and (RES-EXP-BK) form a revised FR
bisimulation. The last three axioms form a revised FR bisimulation as well. [

12 I. Lanese and I. Phillips

5 Forward-Reverse Barbed Congruence

In order to further justify the definition of revised FR bisimilarity, we show it
to be equivalent to a form of forward-reverse barbed congruence.

As classically [14,34], an (open) barbed congruence is obtained by defining a
set of basic observables, called barbs, and then taking the smallest equivalence
on processes closed under contexts and under reduction requiring equivalent
processes to have the same barbs. In our setting of course reductions can be
both forwards and backwards. We start by defining barbs.

Definition 5.1 (Barbs). A process X has a forward output barb at a, written

la, iff X Mf X' for some n and X'. A process X has a backward (input or

output) barb at an] (o # 7), written Topn, iff X ﬂ)r X' for some X'.

We notice some asymmetry in the definition. The issue here is that we want
to distinguish processes such as a[n] and b[n] (or @[n] and b[n]), but there is
no context undoing any of the prefixes such that both the compositions are
reachable. Hence, we need (backward) barbs distinguishing them. This issue does
not occur in forward transitions. Indeed, allowing one to observe also forward
input barbs or keys in forward barbs would not change the observational power.

We can now formalise the notion of forward-reverse barbed congruence.

Definition 5.2 (Forward-reverse barbed congruence). A symmetric rela-
tion R is a forward-reverse (FR) barbed bisimulation if whenever X R Y':

— X lg implies Y |z;
- X Toz[n] implies Y Ta[n] ;

T[n]

—if X M)f X' then there is Y' such thatY —; Y’ and X' RY’;

i X X7 then there is Y! such that Y T, Y and X' R Y.
Forward-reverse (FR) barbed bisimilarity, denoted as ~uyp, is the largest FR
barbed bisimulation. A forward-reverse (FR) barbed congruence is a FR barbed
bisimulation such that X R'Y implies C[X]| R C[Y] for each C such that C[X]
and C[Y] are both reachable. We denote as ~. the largest FR barbed congruence.

As discussed above, we sometimes need barbs to require to match free keys,
e.g., to distinguish a[n] from b[n]. Indeed, in this case there exists no context
able to force the match such that both the compositions are reachable. Such a
context would need to include occurrences of both @[n] and b[n], but then any
composition involving such a context would not be reachable.

However, when such a context exists, processes which differ for free keys only
can be distinguished without the need for barbs, as shown by the example below.

Ezample 5.3. We show that a[n] . a[m] without relying on barbs. Indeed, if
we put the two processes in the context e | a[n] they behave differently:

aln]|a[n] —>,ala while @m]|aln]

Forward-Reverse Observational Equivalences in CCSK 13

cannot perform any backward 7 move. We remark that both the processes above
are reachable.

However, bound keys are not observable, as shown in Example 4.6 for revised
FR bisimilarity. We will show that this holds as well for FR barbed congru-
ence, since actually revised FR bisimilarity coincides with FR barbed congru-
ence (Corollary 5.12). This can be seen as a justification of our choice of revised
FR bisimilarity. Revised FR bisimilarity, as usual for bisimilarities, is easier to
work with since it has no universal quantification over contexts. For instance, it
allowed us to easily prove the equivalence in Example 4.6.

First, revised FR barbed bisimilarity implies FR barbed congruence.

Theorem 5.4. X ~, Y implies X ~. Y.

Proof. Tt is trivial to show that ~; is a FR barbed bisimulation. Congruence
follows from Proposition 4.9. O

We now move towards the proof of the other inclusion in the equivalence
between revised FR bisimilarity and FR barbed congruence.
To this end, we introduce below the notion of fresh process.

Definition 5.5 (Fresh process). Given a process X, the corresponding fresh
process toFresh(X) is inductively defined as follows:

toFresh(0) =0
toFresh(r.X) = fP.0+ m.(f7.0 + X)
toFresh(X +Y) = toFresh(X) + toFresh(Y)
toFresh(X |Y) = toFresh(X)|toFresh(Y)
toFresh((rva)X) = (va)toFresh(X)

where, in the clause for prefix, i is the number of prefixes before w in a pre-visit
of the syntaz tree of X. We call f¥ (where p stands for previous) and ff (where s
stands for subsequent) fresh names and the corresponding prefizes fresh prefizes.

A process is fresh if it is obtained by applying function toFresh(-) to some
reachable process X .

Note that all fresh names are pairwise different. Indeed the use of a pre-visit
of the syntax tree is just a way to generate fixed, pairwise different fresh names
for each prefix; any other algorithm with the same property would be fine as
well.

Ezample 5.6 (Function toFresh(-)). Consider the process X = a.b.0|a@.b.0. We
have toFresh(X) = f1.0+a.(f5.0+ f£.0+b.(f;.040)) | f£.0+a@.(f5.0+ fF.0+
b.(f5.040)). Note that, e.g., executing a will disable the forward barb at f{ and
enable the one at f;.

Fresh processes are closed under reductions not involving fresh names.

14 I. Lanese and I. Phillips
Lemma 5.7. X & Y iff toFresh(X) £ toFresh(Y) and p does not contain
a fresh name.

Fresh processes obtained from reachable processes are reachable.
Lemma 5.8. Let X be a reachable process. Then toFresh(X) is reachable.
Proof. By inspection of the conditions in Definition 3.3. O

Intuitively, in a fresh process one is always able to distinguish which prefix
of the original process has been done or undone by checking which barbs have
been enabled or disabled. Indeed, using the names in the definition, performing
the i-th prefix enables the barb at ff and disables the one at f, while undoing
7w does the opposite.

This is formalised by the following lemma.

Lemma 5.9. If W is fresh, W 25 W' and W £ W”, and W' and W" have
the same barbs then there exists a substitution o on keys such that ' = p” o and
W' =W"c. The substitution is the identity if the transition is backwards.

Next proposition shows that to check barbed congruence it is enough to
consider contexts which are parallel compositions with fresh processes.

Proposition 5.10. The relation

R={(C[X],ClY]) | W|X ~pu W|Y VW fresh, C context
such that C[X],C[Y],W | X, W |Y are all reachable}

is a barbed congruence.

We can now show that FR barbed congruence implies revised FR. bisimilarity,
hence the two notions coincide.

Theorem 5.11. The relation R ={(X,Y) | X ~.Y} is a revised FR bisim-
ulation.

Corollary 5.12. ~. and ~y coincide.

Proof. By composing Theorem 5.4 and Theorem 5.11. O

6 Related Work

In [19], CCSK has been proved equivalent to RCCS [9], the first reversible process
calculus, thus, in principle, our results apply to RCCS as well. However, the
mechanism of memories used in RCCS introduces much more redundancy than
the key mechanism used in CCSK, hence a direct application of our results to
RCCS is not easy. Let us take as example [9, page 299] the process

R =((2),a,0)-(1)>0]((1),3,0) - (2)>0

Forward-Reverse Observational Equivalences in CCSK 15

obtained by performing the synchronisation from () > (a.0]@.0). To apply com-
mutativity of parallel composition to R we need not only to swap the two sub-
processes, but also to exchange all the occurrences of 1 with 2 in the memories,
otherwise the obtained process would not be reachable. This particular issue
has been solved in successive works on RCCS [16], yet similar issues remain
since, e.g., the history of a thread is duplicated every time a process forks, hence
the application of an axiom may impact many subprocesses which are possibly
syntactically far away. In such a setting it is not clear how to write axioms.

We now discuss various works which focus on observational equivalences with
backward transitions. The seminal paper [10] discusses bisimulations with reverse
transitions much before causal-consistent reversibility and CCSK or RCCS were
introduced, yet it briefly anticipates the notion of causal-consistent reversibility
but discards it in favour of a total order of actions. In this case the bisimilarity
coincides with CCS bisimilarity. A total order of actions is also considered in
n [26]. They study testing equivalences in a CCS with rollback and focus on
finding easier characterisations of testing semantics. As such, their results are
not directly related to ours.

It is shown in [29] that the process graphs of CCSK processes are so-called
prime graphs, which correspond to prime event structures. Due to the keys these
structures are ‘non-repeating’, i.e. no two events in a configuration can have the
same label. It is further shown [29, Theorem 5.4] that FR bisimilarity corresponds
to hereditary history-preserving bisimilarity [4,12] on non-repeating prime event
structures.

Equivalences for reversible CCS are also studied in [1,2] via encodings in con-
figuration structures. Their main aim is to show that the induced equivalence on
CCS coincides with hereditary history-preserving bisimilarity. Differently from
us, they work on RCCS instead of CCSK, and, unsurprisingly given the dis-
cussion above, they do not consider axiomatisations. In [2] no notion of barbed
congruence is considered, and their notions of bisimulations are triples instead
of pairs as in our case, since they additionally need to keep track of a bijection
among identifiers (which are close to our keys). Barbed congruence is consid-
ered in [1], but they only allow for contexts which are coherent on their own,
thus disallowing interactions between the context and the process in the hole
when going backwards. This has a relevant impact on the theory, as discussed
in [1] itself (see [1, Example 3]). Also, they consider only processes without
auto-concurrency and without auto-conflict [1, Remark 1].

A hierarchy of equivalences with backward transitions, including hereditary
history-preserving bisimilarity, was studied in the context of stable configura-
tion structures in [31]. A logic with reverse as well as forward modalities which
characterises hereditary history-preserving bisimilarity was introduced in [32].

CCSK has been given a denotational semantics using reversible bundle event
structures in [13]. Although equivalences are not discussed there, this opens the
way to defining an equivalence on CCSK processes based on an equivalence
between their denotations as reversible event structures.

16 I. Lanese and I. Phillips

7 Conclusion and Future Work

We have discussed strong observational equivalences able to distinguish forward
and backward moves in CCSK. As shown on many occasions, a main difference
w.r.t. the theory of CCS is that in CCSK not all processes are reachable, and this
limits what contexts can observe. This motivates, e.g., the use of backward barbs
which are more fine-grained than forward ones in the definition of FR barbed
congruence. As anticipated in the Introduction, other forms of observational
equivalences, such as weak equivalences, are also of interest.

Other interesting directions for future work include comparing the equiva-
lence that our definitions induce on standard processes with known CCS equiv-
alences. We have shown that revised FR bisimilarity is finer than standard
CCS bisimilarity, and we conjecture it to be equivalent to hereditary history-
preserving bisimilarity [12], in line with the results in [29,1,2].

Finally, we have discussed how axiomatisation is easier in calculi such as
CCSK which have no redundancy in the history information. However, this ap-
proach right now does not scale to more complex languages such as the m-calculus
or Erlang. Hence, it would be interesting to study alternative technical means to
represent their reversible extensions with no redundancy (while current versions
have high redundancy), so to allow for simple equational reasoning.

References

1. C. Aubert and I. Cristescu. Contextual equivalences in configuration structures
and reversibility. J. Log. Algebr. Meth. Program., 86(1):77-106, 2017.

2. C. Aubert and I. Cristescu. How reversibility can solve traditional questions: The
example of hereditary history-preserving bisimulation. In CONCUR, volume 171 of
LIPIcs, pages 7:1-7:23. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020.

3. F. Barbanera, I. Lanese, and U. de’Liguoro. A theory of retractable and speculative
contracts. Sci. Comput. Program., 167:25-50, 2018.

4. M. Bednarczyk. Hereditary history preserving bisimulations or what is the power
of the future perfect in program logics. Technical report, Institute of Computer
Science, Polish Academy of Sciences, Gdansk, 1991.

5. L. Cardelli and C. Laneve. Reversibility in massive concurrent systems. Sci. Ann.
Comput. Sci., 21(2):175-198, 2011.

6. C. D. Carothers, K. S. Perumalla, and R. Fujimoto. Efficient optimistic paral-
lel simulations using reverse computation. ACM Transactions on Modeling and
Computer Simulation, 9(3):224-253, 1999.

7. 1. Castellani, M. Dezani-Ciancaglini, and P. Giannini. Reversible sessions with
flexible choices. Acta Informatica, 56(7-8):553-583, 2019.

8. I. Cristescu, J. Krivine, and D. Varacca. A compositional semantics for the re-
versible 7-calculus. In LICS, pages 388—-397. IEEE Computer Society, 2013.

9. V. Danos and J. Krivine. Reversible communicating systems. In CONCUR, volume
3170 of LNCS, pages 292-307. Springer, 2004.

10. R. De Nicola, U. Montanari, and F. W. Vaandrager. Back and forth bisimulations.
In CONCUR, volume 458 of LNCS, pages 152-165. Springer, 1990.

11. J. Engblom. A review of reverse debugging. In Proceedings of the 2012 System,
Software, SoC and Silicon Debug Conference, pages 1-6, 2012.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Forward-Reverse Observational Equivalences in CCSK 17

S. B. Froschle and T. T. Hildebrandt. On plain and hereditary history-preserving
bisimulation. In MFCS, volume 1672 of LNCS, pages 354-365. Springer, 1999.

E. Graversen, 1. Phillips, and N. Yoshida. Event structure semantics of (controlled)
reversible CCS. J. Log. Algebr. Meth. Program., 121:100686, 2021.

K. Honda and N. Yoshida. On reduction-based process semantics. Theor. Comput.
Sci., 151(2):437-486, 1995.

N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. ACM
Trans. Program. Lang. Syst., 21(5):914-947, 1999.

J. Krivine. A verification technique for reversible process algebra. In RC, volume
7581 of LNCS, pages 204-217. Springer, 2012.

L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558-565, 1978.

R. Landauer. Irreversibility and heat generated in the computing process. IBM
Journal of Research and Development, 5:183 —191, 1961.

I. Lanese, D. Medic, and C. A. Mezzina. Static versus dynamic reversibility in
CCS. Acta Informatica, 2019.

I. Lanese, C. A. Mezzina, and J. Stefani. Reversibility in the higher-order -
calculus. Theor. Comput. Sci., 625:25-84, 2016.

I. Lanese, N. Nishida, A. Palacios, and G. Vidal. CauDEr: A causal-consistent
reversible debugger for Erlang (system description). In FLOPS, volume 10818 of
LNCS, pages 247-263. Springer, 2018.

I. Lanese, N. Nishida, A. Palacios, and G. Vidal. A theory of reversibility for
Erlang. J. Log. Algebraic Methods Program., 100:71-97, 2018.

I. Lanese and I. Phillips. Forward-reverse observational equivalences in CCSK
(TR). http://wuw.cs.unibo.it/~lanese/work/CCSKequivTR.pdf.

J. McNellis, J. Mola, and K. Sykes. Time travel debugging: Root causing bugs
in commercial scale software. CppCon talk, https://www.youtube.com/watch?v=
11YJTg_A914, 2017.

H. C. Melgratti, C. A. Mezzina, and I. Ulidowski. Reversing place transition nets.
Log. Methods Comput. Sci., 16(4), 2020.

C. A. Mezzina and V. Koutavas. A safety and liveness theory for total reversibility.
In TASE, pages 1-8. IEEE Computer Society, 2017.

C. A. Mezzina and J. A. Pérez. Causally consistent reversible choreographies: a
monitors-as-memories approach. In PPDP, pages 127-138. ACM, 2017.

R. Milner. Communication and concurrency. PHI Series in computer science.
Prentice Hall, 1989.

I. Phillips and I. Ulidowski. Reversibility and models for concurrency. In SOS,
volume 192(1) of ENTCS, pages 93-108. Elsevier, 2007.

I. Phillips and I. Ulidowski. Reversing algebraic process calculi. J. Log. Algebr.
Program., 73(1-2):70-96, 2007.

I. Phillips and I. Ulidowski. A hierarchy of reverse bisimulations on stable config-
uration structures. Math. Struct. Comput. Sci., 22:333-372, 2012.

I. Phillips and I. Ulidowski. Event identifier logic. Math. Struct. Comput. Sci.,
24(2), 2014.

I. Phillips, I. Ulidowski, and S. Yuen. A reversible process calculus and the mod-
elling of the ERK signalling pathway. In RC, volume 7581 of LNCS, pages 218-232.
Springer, 2012.

D. Sangiorgi and D. Walker. On barbed equivalences in pi-calculus. In CONCUR,
volume 2154 of LNCS, pages 292-304. Springer, 2001.

http://www.cs.unibo.it/~lanese/work/CCSKequivTR.pdf
https://www.youtube.com/watch?v=l1YJTg_A914
https://www.youtube.com/watch?v=l1YJTg_A914

