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Abstract—Heavily quantized fixed-point arithmetic is becom-
ing a common approach to deploy Convolutional Neural Net-
works (CNNs) on limited-memory low-power IoT end-nodes.
However, this trend is narrowed by the lack of support for
low-bitwidth in the arithmetic units of state-of-the-art embedded
Microcontrollers (MCUs). This work proposes a multi-precision
arithmetic unit fully integrated into a RISC-V processor at the
micro-architectural and ISA level to boost the efficiency of heavily
Quantized Neural Network (QNN) inference on microcontroller-
class cores. By extending the ISA with nibble (4-bit) and crumb
(2-bit) SIMD instructions, we show near-linear speedup with
respect to higher precision integer computation on the key
kernels for QNN computation. Also, we propose a custom
execution paradigm for SIMD sum-of-dot-product operations,
which consists of fusing a dot product with a load operation,
with an up to 1.64 × peak MAC/cycle improvement compared
to a standard execution scenario. To further push the efficiency,
we integrate the RISC-V extended core in a parallel cluster of 8
processors, with near-linear improvement with respect to a single
core architecture. To evaluate the proposed extensions, we fully
implement the cluster of processors in GF22FDX technology.
QNN convolution kernels on a parallel cluster implementing the
proposed extension run 6 × and 8 × faster when considering
4- and 2-bit data operands, respectively, compared to a baseline
processing cluster only supporting 8-bit SIMD instructions. With
a peak of 2.22 TOPs/s/W, the proposed solution achieves efficiency
levels comparable with dedicated DNN inference accelerators and
up to three orders of magnitude better than state-of-the-art ARM
Cortex-M based microcontroller systems such as the low-end
STM32L4 MCU and the high-end STM32H7 MCU.

Index Terms—IoT, Quantized Neural Networks, Embedded
Systems, Fixed-Point Arithmetic, Low-bitwidth Integer Arith-
metic, Low-power design, RISC-V, Parallel Ultra Low-Power
Computing.

I. INTRODUCTION

In the last years, we are assisting at an exponential growth
of the Internet-of-Things (IoT) interconnected devices pervad-
ing several application domains such as agriculture, health
monitoring [1], structural health monitoring [2]. This scenario
requires the IoT end-nodes to acquire data from low-power
sensors and send it wirelessly through the network[3], after
applying signal processing algorithms.

Machine Learning (ML) algorithms, including state-of-the-
art Deep Learning (DL), not only empower the IoT nodes
with smart capabilities widening the IoT applications with

Manuscript received December 1, 2012; revised August 26, 2015. Corre-
sponding author: A. Garofalo (email: angelo.garofalo@unibo.it).

DL-enhanced tasks but they provide “information distillation”
solutions to extrapolate actionable information from the raw
data acquired by sensors. Their capability of “squeezing” raw
data in a much more semantically dense format (e.g., extract-
ing classes, high-level features, symbols) allows the wireless
transmission of a limited amount of condensed information.
This feature alleviates the traffic on the IoT network and
reduces security and reliability issues, nowadays exacerbated
by the significant increase of raw data flowing through the
network [4]. The clear benefits of embedding intelligence on
IoT nodes have attracted the attention of a wide research area,
intending to deploy DL functionality at the extreme-edge of
the IoT. This effort has to run against the high computational
and memory requirements of leading DL methods that clash
with the usual scarcity of computing and memory resources
of deeply embedded systems powered by batteries or energy
harvesters.

One of the key characteristics of Deep Neural Networks
(DNN) exploited in all different flavors of computing plat-
forms from high-performance to low-power is their resiliency
to strong arithmetic quantization. While DNN tasks typically
run on GPUs or FPGAs devices in data centers, characterized
by a power envelope that is orders of magnitude higher than
what is sustainable on extreme-edge devices, dedicated DNN
accelerators are starting to gain traction for ultra-low power
devices [5], [6]. However, these heavily specialized solutions
are often not affordable in the extremely cost-conscious and
fragmented IoT market. MCUs are the standard computing
platforms, thanks to their flexible software programmability,
low-cost and low-power characteristics. However, they present
severe limitations in memory footprint and computing re-
sources, preventing them from meeting latency and accuracy
requirements of advanced DL-enhanced applications. This is
the field where arithmetic quantization can provide a break-
through enabling the execution of state-of-the-art DNN at the
edge of the IoT.

More specifically, to reduce the model size of modern DNN
topologies and make them fit the limited storage available
on MCUs, recent progress in DL training methodologies
has introduced novel quantization methods. These techniques
represent the network weights and activations with 8-bits (or
even smaller) data types, usually adopting fixed-point formats,
incurring a limited or negligible loss in accuracy[7], [8],
[9]. The limited footprint and the good accuracy achieved
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make Quantized Neural Networks (QNNs) the natural target
to embed intelligence on MCU-based platforms and encourage
many efforts by industry and academia to enable the QNN
computation on microcontroller-based systems. In this context,
it is worth citing the CMSIS-NN library [10] developed by
ARM for 16-bit and 8-bit QNNs on Cortex-M based systems
and PULP-NN [11], an open-source library 1 targeting RISC-
V processors and supporting heavily quantized NNs on 8-, 4-
, 2-, 1-bits data, as well as Mixed-Precision QNNs. On the
hardware side, modern MCUs lack support at the Instruc-
tion Set Architecture (ISA) level for low bit-width integer
Single-Instruction-Multiple-Data (SIMD) arithmetic instruc-
tions. Modern MCUs adopting commercial ISAs only support
16-bits (e.g., ARMv7E-M) or 8-bits (e.g., RV32IMCXpulpV2
[12], ARMv8.1-M [13]) data. Hence, sub-byte quantization
remains an effective technique to compress the footprint of
DNN models on top of these devices [7], but it incurs in
performance and energy overhead during the computation,
as demonstrated in [11], [14]: low precision data has to be
unpacked to the lowest precision operand supported by the
underlying hardware and then packed into SIMD registers
before feeding the multiply-accumulate (MAC) units [11].

In this work, we tackle this problem by designing an
energy-efficient multi-precision arithmetic unit, targeting the
computing requirements of low bit-width QNNs, with the
support for sub-byte SIMD operations (8-, 4-, 2-bits). To
provide the highest flexibility, the unit is integrated into a
cluster of MCU-class RISC-V cores, provided with a new set
of ISA domain-specific instructions, namely XpulpNN.

The main contributions of this paper are the following:

• We design a multiple-precision Dot-Product (Dotp) Unit
featuring single-cycle latency operations on SIMD vec-
tors of 16- down to 2-bit precision elements. We present
micro-architectural optimizations and power-aware tech-
niques to achieve high energy proportionality and effi-
ciency.

• We integrate the unit into an open-source RISC-V pro-
cessor [12], further extending the core with novel fused
mac&load instructions, aiming at increasing the utiliza-
tion of the SIMD Dot-Product unit in the core towards
the theoretical bound of 1 (0.92 in the best case scenario).

• To exploit the low bit-width integer SIMD computation
enabled by the designed hardware, we extend the ISA
of the core with domain-specific instructions, namely
XpulpNN. We map the XpulpNN extensions on top of the
extended core, and we enhance the GCC toolchain with
machine descriptions of the new instructions to have a
full hardware-software interface;

• We integrate the extended core in an eight cores Parallel
Ultra-Low-Power (PULP) computing cluster, showing
that we improve the performance of QNN kernels almost
linearly with respect to the single-core execution;

• We implement the PULP cluster integrating the proposed
core in GF 22nm FDX technology to evaluate the area,
power, and performance overhead of the core and the

1https://github.com/pulp-platform/pulp-nn.git

whole system with respect to the baseline RI5CY core
and the PULP cluster integrating it, respectively;

• We compare a PULP system with the proposed ex-
tension with state-of-the-art architectures and software.
When running QNN convolution layers, we are able
to demonstrate at least two orders of magnitude bet-
ter performance and energy efficiency with respect to
commercially available solutions such as STM32H7 and
STM32L4 microcontrollers leveraging ARMv7E-M ISA,
and up to 10× better performance and energy efficiency
compared to a baseline PULP system implemented in the
same technology, paying an area overhead of only 17.5%
and 4.1% with respect to the baseline core and cluster
respectively.

The orders of magnitude improvements achieved with the
proposed work compared with state-of-the-art MCUs demon-
strate for the first time that software programmable edge
inference of QNN models at ASIC-like efficiency is indeed
possible on MCU-class devices, with an additional cost of
area that is risible if compared to the one of dedicated accel-
erators. These results can be achieved by coupling architectural
and power-aware micro-architectural design with leading-edge
near-threshold FDX technology.

II. RELATED WORK

Multi-precision low bit-width arithmetic is considered a
well-established solution to deploy memory and power-hungry
AI models at the extreme edge of IoT. It has been widely
demonstrated that the precision of heavily quantized AI mod-
els is not significantly impacted in many IoT applications [7],
[9]. Moreover, integer low bit-width arithmetic is advantageous
at the edge of IoT for two reasons: it lowers the memory costs
of the application, and it can reduce the latency and the energy
of the computation if the underlying hardware supports low
bit-width operations in an efficient way.

This scenario has motivated the design of specific arithmetic
units to fulfill the AI requirements and improve the efficiency
of the modern highly-quantized Neural Networks workload
at the extreme edge of IoT. This trend impacts all the main
categories of edge-AI computing platforms, usually grouped
into three classes of devices: dedicated accelerators, FPGA
solutions, and embedded Microcontroller (MCU) systems. We
leave out GP-GPUs, certainly valuable for the Cloud Com-
puting environment, but with a power envelope unaffordable
for deeply embedded edge computing platforms working in
a power envelope ranging from 10 mW to 100 mW. In this
section, we recap the main state-of-the-art advancements in
the computing arithmetic for AI as well as their use in each
of the computing platform categories mentioned above, and
we give insight on their applicability for DL deployment at
the extreme-edge of the IoT.

A. Multi-Precision Arithmetic Units

The efficacy of low bit-width arithmetic architectures for
QNNs workload has been widely demonstrated in the domain
of dedicated accelerators. For example, in [15] the authors
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propose a bit-serial based MAC unit that operates on 1- to 16-
bit multi-precision operand, while the second is always a single
bit operand. The system is designed for the best efficiency,
achieving a peak of 50.6 TOPS/W at a throughput of 184
GOPS. Another valuable example is [16], a DNN accelerator
that embeds an energy-scalable multi-precision integer arith-
metic unit and delivers 76 Gops/s with an efficiency of up to
10 Tops/s/W. Authors in [16] present a parallel Multiply-and-
Add architecture based on the Booth-Wallace multipliers that
can be reconfigured to perform 4b-to-16b × 16b operations.
In the floating-point (FP) format domain, the authors present a
MAC unit supporting reduced-precision FP16 and FP8 formats
and also fixed-point arithmetic, achieving up to 75 TOPS/W
efficiency.

Reduced FP formats have been widely explored also in
the arithmetic units of GPUs, such as in the A100 Tensor
Core by Nvidia [17]. The re-configurable architecture of the
A100 can process FP64 formats (targeting High-Performance
computing) down to the more efficient FP8, including the sup-
port for Brain Float 16b (BF16) and mixed-precision formats,
specifically targeting Neural Networks. The A100 platform
also supports integer arithmetic computation for inference
tasks, with operands precision down to 4-bit (INT4).

While multi-precision arithmetic units are widely explored
in ASIC solutions, few examples are presented in the do-
main of fully programmable edge devices, especially in the
integer domain. GAP-8 [18], to deal with QNN workload,
integrates into its architecture a dedicated CNN accelerator,
which consists of a re-configurable arithmetic unit capable
of supporting 8-bit × 8-bit or 16-bit × 4-bit operations. A
different approach is shown in [19], where the authors present
a re-configurable Parallel Balanced-Bit-Serial (PBBS) vector
processing tile. It is suitable to improve the efficiency of sub-
byte SIMD arithmetic operations of heavily leakage-dominated
ultra-low-power design. However, the code serialization de-
grades heavily the performance in near- and super-threshold
operating points.

B. Dedicated Accelerators

Dedicated accelerators are top-in-class for what concerns
performance and energy efficiency on the QNN workloads.
Having a highly specialized data-path, they can achieve per-
formance in the order of 1 - 10 Gops/s with efficiency in the
range of 10 - 100 Tops/s/W. A valuable example is Orlando
[20], which reaches few TOPS/W of efficiency.

The arithmetic precision drop is a valuable technique to
further improve the QNN efficiency also on ASIC accelerators
[21]. UNPU [15] is an example of an accelerator supporting
fully-variable weight bit-precision and capable of achieving a
peak energy efficiency of 50.6 TOPS/W at a throughput of 184
GOPS. Moons et al. [16] presented ENVISION, an energy-
scalable multi-precision DNN accelerator delivering 76 Gops/s
with an efficiency of up to 10 Tops/s/W.

The high performance and energy efficiency achieved by
these accelerators are counterbalanced by their poor flexibility,
which makes the end-to-end deployment of real-sized DNNs
harder. Moreover, even if modern dedicated architectures have

a data-path somehow re-configurable (for example, allowing
the execution of convolutions with different kernel sizes, 3x3,
5x5 or they provide the possibility to handle inception layers
and/or residual connections), they can not be configured to
support different kind of applications. In the IoT domain,
instead, this flexibility is crucial. The DNN inference is usually
only one part of a bigger application, where we additionally
may want to handle peripherals, process the data through
linear algebra, domain-to-domain transforms (even recurring to
floating-point numbers), and manage the wireless transmission
of the high-level compressed results. The poor flexibility and
the high-cost per device make the ASIC solutions unattractive
for their use as sensor-nodes at the extreme edge of the IoT.

C. FPGAs

The recent development of heterogeneous FPGAs such as
the Xilinx Zynq family has enabled a higher level of flexibil-
ity to build CNN acceleration systems. Embedding general-
purpose processors on the FPGA boards allows managing the
program flow, handling the I/O sub-system, memory accesses,
and communication, hence making easier to program the
device and interact with external devices and sensors.

FPGAs usually come with DSP-capable hardware, but they
have a power envelope in the Watt order. Thus the reduction
of numerical precision for CNN models plays a key role in
achieving good performance and energy efficiency. In the lit-
erature, we can find several FPGA-based solutions that exploit
16-bit fixed-point operands, such as in [22], but an ever-
increasing number of works explore byte or sub-byte arith-
metic. Qiu e al. [23] proposed a CNN accelerator supporting
8- and 4-bit data on a Xilinx Zynq board, while [24], [25] rely
on ternary and binary networks. While most FPGA solutions
feature a power envelope that can not meet the IoT end-nodes
requirements, a new family of FPGAs announced by Lattice,
namely Sense-AI [26], provide comprehensive hardware and
software solutions for always-on artificial intelligence (AI)
within a power budget between 1 mW and 1 W.

However, these ultra-low-power FPGA families feature lim-
ited LUTs capability and still are too expensive for many
applications where MCUs are traditionally chosen thanks to
their low cost. On the other hand, their efficiency remains
way lower than what ASICs can offer. In addition, they
can be reconfigured using a Hardware Description Language
(HDL), increasing the productivity with respect to the above-
mentioned ASIC solutions; still, their adoption remains an
obstacle for the average IoT programmer, who demands for
the highest flexibility of micro-controller systems.

D. Software Programmable solutions

Commercially available software-programmable general-
purpose processors provide the highest flexibility for the
deployment of the QNN at the extreme-edge. However, the
ultra-low-power MCUs are not fast enough, if compared to
ASICs, to sustain the QNN workload. Some programmable
architectures, for example, exploit the computing power of
multi-core processors, such as Raspberry Pi 3+ [27] or Pi
4, powered by a multi-core 64-bit System-on-Chip by ARM.
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Other solutions couple a programmable core with a dedicated
accelerator to improve performance. Notable examples are
Kendryte [28], a dual-core RISC-V SoC outfitted with a CNN
accelerator for AI applications, or more established devices
like Movidius [29], or finally the Edge TPU 2 coupled with a
CPU. Although these platforms are relatively inexpensive and
flexible, their power consumption is too high as well. In the
ultra-low-power domain, ARM proposed Trilium [30], a het-
erogeneous compute platform that provides flexible support for
ML workloads. In many IoT applications, the cost constraints
are very tight, and it is desirable to reduce area while having
an MCU with boosted computing capabilities.

To enhance the performance of MCU systems, a recent
effort by both academia and industry tries to extend them by
either enriching their Instruction Set Architectures (ISAs) with
custom instructions tailored for specific application domains
or coupling the MCUs with ASIC accelerators.

ARMv7e provides SIMD instructions for 16-bit data, and
the current generation of Cortex-M cores integrates this in-
struction set. Commercial embodiments of this ISA show a
power envelope of few milliWatts, fitting the power budget of
the IoT end-nodes. For example, STMicroelectronics proposed
low-end (STM32L4 3 family of microcontrollers, based on the
Cortex-M4 cores) and high-end (STM32H7 4 family embed-
ding the Cortex-M7 cores) micro-controllers supporting DL
processing at the edge. On the RISC-V side, the XpulpV2 ISA
extensions [12] are meant for efficient digital signal process-
ing, exploiting the SIMD paradigm down to 8-bit vector data.
On top of this ISA, near-threshold multi-core heterogeneous
platforms have been built to push the performance and the
efficiency of QNN workloads. The commercially available
GAP-8 [18] embeds a cluster of 8 RISC-V cores and a CNN-
specialized accelerator that can give the MCU a 5 to 10×
energy efficiency boost.

To provide these architectures with an efficient software
back-end, the literature presents several solutions that achieves
promising results on QNN workloads. It is worth citing the
CMSIS-NN [10] library, developed by ARM to target their
Cortex-M cores. As an additional contribution, this library
has been extended to support heavily-quantized and mixed-
precision kernels [14]. On the RISC-V side, PULP-NN [11]
provides a solid back-end for RISC-V based multi-processors
systems, supporting byte as well as sub-byte and mixed-
precision QNN kernels.

Even if the sub-byte integer arithmetic is already adopted
in training and quantization flows and ASIC/FPGA-based
systems, it does not find enough room in the new generation
of architectural solutions for MCU-based systems. The new
generation of the ARM ISA for Cortex-M core [13], tailored
for the QNN workload, features hardware loops, conditional
execution instructions, and 8-bit SIMD instructions like the
ones presented in [12]. However, it will not support lower-
precision SIMD arithmetic.

Our work aims at bridging this ISA and hardware gap to im-
prove the computing efficiency of heavily-quantized NN work-

2https://cloud.google.com/edge-tpu
3https://www.st.com/resource/en/datasheet/stm32l476je.pdf
4https://www.st.com/resource/en/datasheet/stm32h743bi.pdf

loads at the extreme-edge of the IoT on fully-programmable
MCU devices, nearing the level of specialization and energy
efficiency of custom accelerators without forgoing flexibility.
To this purpose, we extend the work presented in [31] and
propose an energy-efficient multi-precision integer Dotp Unit,
supporting SIMD vector operations on 16- down to 2-bit
precision elements. To exploit the designed hardware in a fully
programmable context, we integrate it into a parallel ultra-low-
power (PULP) architecture of 8 RISC-V cores, extending their
ISA with specific extensions consisting of low bit-width SIMD
arithmetic operations and a family of mac&load instructions.

By exploiting the proposed SIMD Dotp Unit and its in-
tegration into a tightly coupled cluster of 8 processors, our
contribution outperforms the state-of-the-art hardware and
software solutions by at least two orders of magnitude in terms
of performance and efficiency.

III. BACKGROUND

A. Quantized Neural Networks (QNNs)

Quantized Neural Networks (QNNs) are the result of post-
training quantization or quantization-aware training [32] pro-
cedures. After the quantization, each tensor t of the QNN (e.g.,
weights w, input activations x, or outputs y) can assume only
a finite set of values which are defined in a specific real-valued
range [αt, βt). These discretized real values can be mapped,
through bijective functions, into pure integer numbers called
integer images of the real-valued discretized tensors. More in
detail the N -bit integer image t̂ of the tensor t is connected
to its real-valued quantized counterpart through the following
function:

t = αt + εt · t̂ , (1)

where εt = (βt − αt)/(2
N − 1). We call εt the quantum

because it is the smallest amount that we can represent in
the quantized tensor. Without loss of generality, we further
constraint αx = αy = 0 for the input activations and
the output features of each QNN layer. After mapping all
the tensors in the integer domain, the application of the
QNN operators (Linear Operator, Batch-Normalization, and
the Quantization/Activation) can operate directly on the integer
images:

LIN : ϕ =
∑
n

wm,nxn ⇐⇒ ϕ̂ =
∑
n

ŵm,n · x̂n (2)

BN : ϕ′ = κ · ϕ+ λ ⇐⇒ ϕ̂′ = κ̂ · ϕ̂+ λ̂ . (3)

In the LIN operator, the accumulator of the dot product
operation will be represented, in general, with higher precision
(e.g., 32 bits) with respect to the two inputs, since the quantum
used to represent the accumulator ϕ̂ will be smaller than that
of the two operands (εϕ = εwεx). The same consideration also
holds for the output of the Batch-Normalization operator. The
final Quantization/Activation operator provides a non-linear
activation semantic, which is essential for QNNs to work, and
collapses the accumulator into a smaller desired bitwidth:

QNT/ACT : ŷ = m · ϕ̂′ � d ; m =

⌊
εϕ′ · 2d

εy

⌋
. (4)
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Fig. 1. The Parallel Ultra-Low-Power (PULP) system, consisting of a state-
of-the-art microcontroller system accelerated by a parallel cluster of 8 RISC-V
based processors.

d is an integer chosen during the quantization process in
such a way that εϕ/εy can be represented with sufficient
accuracy inside m. The BN and QNT/ACT operators can also
be implemented through a stair-case function by folding the
BN and QNT/ACT parameters into a set of thresholds. The
staircase-function compares ϕ with a set of 2N thresholds
to compress the result into N bits, with a computational
complexity of O(N). To implement the quantization with
a thresholding-based method, we would need to store 2N

thresholds per output channel, which leads to a large memory
footprint for real-world convolution kernels. Since the compu-
tational complexity is comparable between the two methods
for real-world layers, we will always assume in the rest of
the manuscript that the Quantization and Normalization steps
are implemented with the BN and QNT/ACT operators, as
explained in this section.

B. PULP cluster

Parallel Ultra-Low Power (PULP) is an open-source
computing platform leveraging near-threshold computing to
achieve high energy efficiency, leveraging parallelism to im-
prove the performance degradation at low-voltage [33]. The
PULP cluster we assume as a reference, depicted in Figure 1, is
composed of eight RI5CY cores [12], each featuring a 4-stage
in-order single-issue pipeline and implementing the RISC-V
RV32IMCXpulpV2 Instruction Set Architecture (ISA). The
XpulpV2 is a custom extension to the RISC-V ISA [12]
meant for efficient digital signal processing computation. To
this purpose, it includes hardware loops, post-modified access
load and store instructions, as well as the support for SIMD
operations down to 8-bit integer vector operands.

The cores of the baseline cluster synchronize through a
shared Tightly Coupled Data Memory (TCDM) of 128 kB,
divided on multiple-banks with a banking factor of two (i.e.,
16 banks for the 8-cores configuration). The cores access the
memory through a low latency logarithmic interconnect that
serves the memory accesses in one cycle.

Meant to accelerate a microcontroller system, the PULP
cluster communicates with its host through an AXI interface.
It is also served with a DMA dedicated to the data transfers
between the TCDM and the second level of memory, hosted by

the microcontroller system, which also contains the program
instructions for the cluster cores.

Each core fetches the instructions from a hierarchical in-
struction cache organized on two levels (the first private to
each core, the second shared) to optimize the hit rate. The
cluster is also provided with a Hardware Synchronization Unit
that manages synchronization and thread dispatching, enabling
low-overhead and fine-grained parallelism, thus high energy
efficiency: each core waiting for a barrier is brought into a
fully clock gated state.

C. QNN Execution Model

The software stack used in this paper to assess the results
of the ISA extensions and the architectural explorations is
derived from the open-source PULP-NN library5, tailored for
optimized parallel execution of QNN kernels on PULP and
the above mentioned XpulpV2 ISA. In this work, we further
extend the sub-byte symmetric convolution kernels of this
library with the Xpulpnn ISA instructions.

The PULP-NN library relies on the Height-Width-Channel
(HWC) data layout and on an execution flow optimized for
resource-constrained microcontrollers. A convolution layer is
implemented as a combination of three distinct phases.

im2col: This step takes the 3-D input activations in format
(H,W,C) and, for a given output position, arranges its full
receptive field along the filter and input channel dimensions
into a 1-D vector. In this way, the full convolutional layer
operation is converted into a scalar product between this vector
and flattened weights. PULP-NN performs this operation for 2
output pixels concurrently, creating two distinct im2col buffers
of Cin × F × F elements each.

Matrix Multiplication: This step is the core of convolution,
and it performs a sum-of-dot-product operation between the
current im2col buffer and the sets of filters to produce higher
precision results (the intermediate values of the output acti-
vations), which usually feature 32-bits. The kernel is highly
optimized with the XpulpV2 instructions: hardware loops
(lp.setup), load with post-increment (p.lw) and the SIMD sdotp
(sum-of-dot-product) instruction which delivers 4 MACs in
one cycle latency on 8-bit SIMD operands. As shown in
Figure 2, to optimize performance the MatMul uses activations
from two im2col buffers (associated to two spatially adjacent
output pixels) and the quantized weights from four filter banks
associated to four output channels. Exploiting the data locality
within the RF enables the computation of eight output pixels
per each iteration of the MatMul inner loop (4 channels × 2
adjacent pixels). This “4×2” structure is the result of a design
space exploration aiming at finding the data reuse condition
maximizing throughput [11]. Due to the limited amount of
slots available in the RI5CY register file to store operands and
accumulators, no further reuse can be exploited on RI5CY – in
fact, wider MatMul structures (e.g., 4×4) would be detrimental
as the additional accumulators would exceed the number of
available registers, as visible from the Figure 2. This causes
the compiler to continuously spill operands back and forth
from the stack, introducing significant overhead [11];

5https://github.com/pulp-platform/pulp-nn
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w1

w2

w3

w4 Out_ch

(Out_w, Out_h)

× =

x1 x2 x3 x4

S1 S5

S2 S6

S3 S7

S4 S8

S9 S13

S10 S14

S11 S15

S12 S16

MatMul Innermost loop structure (example on 8-bit)

Register File Resources required 4x2 kernel 4x4 kernel

Loop Setup 2 2

Addresses for MEM access 6 8

MAC operands 6 8

MAC accumulators 8 16

Total 22 34 (does not fit) 

Add. Im2col elements
for 4x4

Add. Im2col elements
for 4x4

8-bit SIMD register

(a) Layout and hardware resources (registers) of the “4×2” and the
“4×4” layouts of the MatMul kernels.

lp.setup l1, l2,end     # HW loop setup
p.lw w1, 4(aw1!)    # Load with post-increment
p.lw w2, 4(aw2!)    ## of the address
p.lw w3, 4(aw3!)
p.lw w4, 4(aw4!)
p.lw x1, 4(ax1!)
p.lw x2, 4(ax2!) 
pv.sdotusp.b s1, x1, w1    # 8-bit SIMD sum-of-dot-product
pv.sdotusp.b s2, x1, w2    ## instruction. One cycle latency
pv.sdotusp.b s3, x1, w3
pv.sdotusp.b s4, x1, w4
pv.sdotusp.b s5, x2, w1
pv.sdotusp.b s6, x2, w2
pv.sdotusp.b s7, x2, w3
pv.sdotusp.b s8, x2, w4end:

Pseudo-assembly code of the 4x2 Matmul

Wi Xi : weight/activation elements
AWi AXi : addresses for the MEM access
Si : accumulators
Li : loop setup

(b) Assembly code of the innermost loop of the “4×2” MatMul kernel .
The figure puts in perspective the RF resources needed to run the loop.

Fig. 2. The Figure shows the structure and the assembly code of innermost loop of the MatMul kernel of the PULP-NN library. The “4×2” kernel structure
fetches two activations (x1 and x2) from two different im2col buffers and the weights (w1 to w4) from four different filter sets to compute eight intermediate
results (s1 to s8), requiring 22 registers available in the RF of RI5CY. The “4×4” layout can not be implemented on RI5CY, since the registers needed for
the computation would not fit efficienctly the RI5CY register file.

Quantization: As discussed in Section III-A, intermediate
accumulators require 32-bit precision, and they need a final
step of normalization and quantization to be represented in low
bit-width form. These functions consist of one MAC operation,
one shift, and one clip instruction per each accumulator to be
quantized back into the desired precision. Contrarily to other
quantization strategies such as thresholding-based quantization
[14], the computational complexity of using explicit integer
Batch-Normalization does not depend on the output activation
precision. As a result, the Quantization stage adopted in this
work will affect the overall performance to a higher degree
when the precision is lower, and the MatMul is proportionally
faster. Nevertheless, the advantage of this type of quantization
resides in the lower memory footprint of its parameters with
respect to thresholds. Per each output channel, we need to
store 2N thresholds for a final N−bit output activation. This
behavior is more representative of the real-world QNN based
tasks as shown, for example, in [34]. After normalization and
quantization, the result is stored back into an 8-bit variable.
For sub-byte operands, more output activations are compressed
and stored back always into an 8-bit variable (which would
contain either two 4-bit or four 2-bit elements) to reduce the
memory footprint of the quantized output feature mapped.

IV. XPULPNN EXTENSIONS

This section presents the design of a high-efficient Dot-
Product Unit supporting SIMD operations on vectors of 16b
down to 2b elements. We integrate the unit into the RI5CY
pipeline [12], and we extend its RISC-V ISA with a new set
of extensions, namely XpulpNN, needed to effectively exploit
the arithmetic unit. Then, we introduce the concept of the
Mac&Load computation, presenting two different variants and
comparing their benefits and their drawbacks. In the end, we
integrate the RI5CY core extended with the new instructions
into a parallel ultra-low-power cluster of eight processors, and
we describe the software stack needed to execute the QNN
convolution kernels on top of the XpulpNN ISA.

A. Multi-Precision Dot-Product Unit

The proposed Multi-Precision Dot-Product unit, depicted
in Figure 3, computes the dot product operation between two
SIMD registers and accumulates the partial results over a 32-
bit scalar register through an adder tree, in one clock cycle
of latency. The SIMD vectors are symmetric and can contain
two 16-bit, four 8-bit, eight 4-bit, or sixteen 2-bit elements.
We support the dotp operations interpreting the operands as
signed or unsigned. Hence, we provide the inputs of the SIMD
multipliers with an extra bit that sign- or zero-extends the
actual single N−bit element of the SIMD vector. Therefore,
each element is an (N + 1)−bit signed word (Figure 3).

A common problem with an N-bit multiplier is that its
output requires doubling the precision of the inputs (2N-bits)
to cover the entire dynamic range of a multiplication operation.
In some architectures, an intermediate register is used to store
part of the multiplication result. In our case, being the elements
of the SIMD vector 16- down to 2-bits, the dotp operations are
implemented in hardware with a number of multipliers equal
to the number of elements of the SIMD vector, followed by
an adder tree that sums up the partial products, without any
extra register to store the intermediate results. The stand-alone
multiplier is designed to minimize the area-delay product,
and it exploits a carry-save format without performing the
carry propagation between different elements of the SIMD
vector before the sum up phase performed by the adder tree.
The sum-of-dot-product (sdotp) operation, which is the SIMD
equivalent of a MAC operation, is supported by adding to the
multipliers an additional 32-bit scalar operand at the input of
each adder tree.

We integrate the Dotp unit into the pipeline of the RI5CY
core, as depicted in Figure 4. The strategies examined during
the design of the Dotp unit always consider such integration,
optimizing the execution of dotp operations not only at the
arithmetic level but also at the higher core-system level.

Our decision to replicate the hardware resources over dif-
ferent bitwidth dot product operations in the Dotp unit aims
at minimizing the impact of the additional hardware on the
critical path of the RI5CY core, which involves the path
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SLICER
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OpA
(32b SIMD vector)

OpC
(32b scalar)

OpB
(32b SIMD vector)

Dotp Result
(32b scalar)

Integer Dotp-Unit

Fig. 3. Block diagram of the RI5CY Dot-Product Unit. To support the XpulpNN SIMD dotp-based operations, the 8×4 and the 16×2 SIMD MAC Units
have been added. The figure includes the clock gating blocks needed to reduce the operand switching activity.

from the processor to the data memory and vice versa. The
dotp operations are near to be timing critical since more
logic is required with respect to a single-cycle multiplication
operation due to the presence of the adder trees, needed to sum
up all the partial products. Hence, sharing the multiplication
resources among all the different bitwidth ”regions”, or even
only sharing the adder tree to sum up over all the partial
multiplication contributions, would be detrimental from the
timing viewpoint: the additional combinatorial logic to select,
split and distribute the operands and to enable the selected
bit-width SIMD operation would have a negative impact on
the overall speed.

The main drawback of our choice is in terms of area since
we replicate hardware resources. As a direct consequence, the
power consumption of the core system suffers a slight increase
as well. To mitigate this effect on power consumption, we add
a set of registers on the inputs of each bit-width region, and
we perform clock gating to avoid switching for operands not
involved in the current SIMD operation.

Despite a non-negligible impact on the total area of the EX-
stage of the RI5CY core (18.4% of overhead with respect to
the baseline EX-stage), the extended unit does not increase
the critical path of the system, and it does not require pipeline
stages in between the multiplication and the accumulation
phases. Pipeline registers would result in execution stalls
when computing back-to-back operations, introducing a huge
overhead to the QNN workload, where most of the compu-
tation consists of sum-of-dot-product operations. Moreover,
the dynamic power consumption of the core is kept almost
unchanged thanks to our power-aware design, as shown in
Section VI-A.

TABLE I
OVERVIEW OF XpulpNN INSTRUCTIONS FOR nibble (4-BIT) AND crumb
(2-BIT) VECTOR OPERANDS. i IN THE TABLE REFERS TO THE INDEX IN

THE VECTOR OPERAND (i ∈ [0; 7] FOR nibble AND i ∈ [0; 15] FOR crumb).

ALU SIMD Op. Description for nibble
pv.add[.sc].{n, c} rD[i] = rs1[i] + rs2[i]
pv.sub[.sc].{n, c} rD[i] = rs1[i] - rs2[i]
pv.avg(u)[.sc].{n, c} rD[i] = (rs1[i] + rs2[i])>>1
Vector Comparison Op.
pv.max(u)[.sc].{n, c} rD[i] = rs1[i] > rs2[i] ? rs1[i] : rs2[i]
pv.min(u)[.sc].{n, c} rD[i] = rs1[i] < rs2[i] ? rs1[i] : rs2[i]
Vector Shift Op.
pv.srl[.sc].{n, c} rD[i] = rs1[i] >> rs2[i] Shift is logical
pv.sra[.sc].{n, c} rD[i] = rs1[i] >> rs2[i] Shift is arithmetic
pv.sll[.sc].{n, c} rD[i] = rs1[i] << rs2[i]
Vector abs Op.
pv.abs.{n, c} rD[i] = rs1[i] < 0 ? -rs1[i] : rs1[i]
Dot Product Op.
pv.dotup[.sc].{n, c} rD = rs1[0]*rs2[0] + ... + rs1[7]*rs2[7]
pv.dotusp[.sc].{n, c} rD = rs1[0]*rs2[0] + ... + rs1[7]*rs2[7]
pv.dotsp[.sc].{n, c} rD = rs1[0]*rs2[0] + ... + rs1[7]*rs2[7]
pv.sdotup[.sc].{n, c} rD = rs1[0]*rs2[0] + ... + rs1[7]*rs2[7] + rD
pv.sdotusp[.sc].{n, c} rD = rs1[0]*rs2[0] + ... + rs1[7]*rs2[7] + rD
pv.sdotsp[.sc].{n, c} rD = rs1[0]*rs2[0] + ... + rs1[7]*rs2[7] + rD

B. SIMD Extensions and Microarchitecture

To exploit the low bit-width integer SIMD computation
enabled by the designed hardware, we extend the ISA of
the target core with domain-specific instructions, namely
XpulpNN. The proposed instructions, listed in Table I, extend
the RV32IMCXpulpV2 ISA [12] with SIMD operations for
4-bit and 2-bit operands, namely nibble (indicated with n) and
crumb (indicated as c) respectively, to improve the efficiency
of low bit-width QNN kernels.

XpulpV2 supports three addressing variations: the first one
uses two registers as source operands (pv.instr.{b,h}), the
second variation uses one register and one immediate as
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Fig. 4. The RI5CY pipeline. The Figure highlights the hardware blocks which
extend the core micro-architecture to support the XpulpNN ISA.

source operands (pv.instr.sci.{b,h}), while the last one uses
one register and replicates the scalar value in a register as
the second operand for the SIMD operation (pv.instr.sc.{b,h}).
Because of the limited room left in the encoding space of
the baseline ISA, we propose the new XpulpNN crumb and
nibble operations only in two addressing variants, and we do
not implement the instruction format which uses an immediate
value as the second operand (i.e., pv.instr.sci.{b,h}). Based on
our experience, we argue that this choice is not a concern for
the execution of QNN kernels: an immediate value can be
stored in advance into a register without additional overhead.

The core of the XpulpNN ISA extension consists of the
SIMD dot product instructions on packed vectors of 4-, 2-
bit elements. The packed input registers can be interpreted as
both signed or unsigned, or the first signed and the second
unsigned. The accumulator, as well as the third scalar input in
the sum-of-dot-product, can be either signed or unsigned. In
addition to the dot product we support other SIMD instructions
like maximum, minimum, and average for nibble and crumb
packed operands, useful to speed-up the pooling layers and
the activation layers based on the Rectified Linear Unit (ReLu)
function. A group of arithmetic and logic operations (addition,
subtraction, shift) completes the set of the XpulpNN SIMD
instructions.

C. Compute&Update Instruction

In this section, we propose our hardware solution to further
increase the speed-up of the QNN workload on RISC-V based
pipelines. To perform a MAC operation or a SIMD dot product
instruction on a RISC-based in-order single-issue processor,
we first need to bring the two operands involved in the
computation into the RF at the cost of two load operations.
This means that only one-third of the executed instructions are
relevant to the computation itself (i.e., the MAC instruction).
We can formalize the concept defining the MAC operation
efficiency (OPEF) metric that, in the case highlighted before,
is equal to 0.33.

Since most of the QNN workload consists of MAC opera-
tions, we want that the OPEF is as high as possible to achieve
high performance and efficiency, knowing that it cannot be
higher than one on a single-issue processor (by construction).

Data reuse at the RF level is an effective strategy to increase
the OPEF of the MAC computation, as reported in [11] and
already discussed in Section III-C. The innermost loop of the
MatMul kernel of PULP-NN (Fig. 2) reuses two activations in
the RF over 4 filters. This layout reduces the cost of the sdotp
operations down to only six loads, bringing the OPEF to 0.57,
with an improvement of 1.72 × compared to the baseline.

Our solution to improve the MAC efficiency even more
without giving up the flexibility of a general-purpose RISC-V
processor consists of the architectural and micro-architectural
design of Mac&Load instructions, aiming at an OPEF close to
1. We explore two different designs of the Mac&Load opera-
tions for integration in XpulpNN and discuss their respective
benefits and the drawbacks, aiming at the best trade-off be-
tween performance and implementation costs in terms of area,
timing, and power consumption. To introduce the intuition at
the basis of the Mac&Load paradigm, we discuss the assembly
code of the MatMul kernel reported in Figure 2.(b). To hide
the overhead of load operations, we propose to fuse the inner
loop SIMD MAC (pv.sdotp) with the load within a single
Mac&Load instruction. This is possible since the increment
value (one word) is the same for all iterations, so it can be
hardwired into the micro-architecture without being encoded
into the instruction itself.

In the first design of the Mac&Load instruction, which we
called Compute&Update (“C&U”), one of the operands of the
Dotp Unit (e.g., one of the weights) is updated with a new
memory element from the Load-Store Unit (LSU) of the core
as soon as the SIMD MAC operation consumes it. The LSU
accesses the memory location indicated by the “rs1” operand,
as depicted in Figures 5.(a) and 5.(b). Afterward, the address
consumed by the LSU is updated by one word in the ALU and
stored back into the RF, similarly to the post-increment load
of the XpulpV2 ISA [12]. Data hazards, if any, are handled
by stalling the pipeline exploiting the same signals of normal
load instructions.

The RI5CY general-purpose RF (GP-RF) has two write
ports, but the C&U instruction requires three accesses to store
the output of the dotp operation, the updated address, and the
new memory element. To avoid an additional cycle of latency,
we would need to extend the GP-RF with one additional write
port, which would be too expensive in terms of power and
area. Our lightweight solution is therefore to provide the EX-
stage of the core with a very small register file dedicated
to this computation paradigm, namely the Neural Network
Register File (NN-RF, as visible in Figure 5.(b)). The NN-RF
is provided with one read port to feed the MAC unit with one
operand and one write port to receive a new data word coming
from the memory through the LSU. The NN-RF is sized in a
way that all the loads related to the update of the weights in
the innermost loop of the MatMul kernel are masked. From
our exploration, the optimal number of registers is 4.

As visible from Figure 5.(a), the addressing of the NN-
RF registers (“NN-RF[i]” field) is hard-encoded into the
instruction to compress as much as possible all the necessary
information to execute the C&U in the 32-bits of the encod-
ing space. This causes the addition of four different C&U
instructions, each one controlling one register of the NN-RF.
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Compute&Update Instruction: Encoding.

(a)

pv.cusdot{up,usp,sp}.{h,b,n,c}.{NN-RF[i]} rD,rs1,rs2 

31 0

sig/unsig NN-RF[i] DT OPCODE

{up,usp,sp}

rDrs1rs2

{h,b,n,c}

NN-RF addressing
0 ≤ i ≤ 3 

2nd MAC 
operand (RF)

Addr for next 
mem access

Accumulator
(RF)

NN-RF
weights

wport

DOTP
UNIT

ALU‘4
’

‘+’
LSU

rs1

GP-RF rs2

rD

out

(b)

Decoder ID/EX
EX/WB

pv.cusdotusp.h.0  zero,aw1,r0
pv.cusdotusp.h.1  zero,aw2,r0
pv.cusdotusp.h.2  zero,aw1b,r0
pv.cusdotusp.h.3  zero,aw2b,r0
lp.setup l1, l2,end
p.lw x1, 4(ax1!)
p.lw x2, 4(ax2!)
pv.cusdotusp.b.0  s1, aw1, x1
pv.cusdotusp.b.1  s2, aw2, x1
pv.cusdotusp.b.0  s3, aw3, x1
pv.cusdotusp.b.1  s4, aw4, x1
pv.cusdotusp.b.2  s5, aw1b,x2
pv.cusdotusp.b.3  s6, aw2b,x2
pv.cusdotusp.b.2  s7, aw3b,x2
pv.cusdotusp.b.3  s8, aw4b,x2end:

8-b innermost loop MatMul with C&U

GP-RF Occupation: 22 regs

• 2 regs for loop setup;
• 10 regs for addresses;
• 8 regs for accumulators;
• 2 regs for activations;

INIT
NN-RF

Computation of 8 SIMD 
MAC with 2 explicit 

loads

(c)

Fig. 5. In (a), the prototype of the Compute&Update (C&U) instruction is reported: the MSBs encode the interpretation of the operands, “NN-RF[i]” selects
the current NN-RF register, “rs1” is the address for the next memory access, “rs2” is the second operand for the MAC unit, while DT encodes the data type
of the operands (symmetric) and “rD” is the accumulator. In (b), we see the datapath to enable the C&U instruction. We add the NN-RF with one write port
(connected to the LSU that fetches the new data accordingly to the “rs1” address) and one read port (multiplexed with the operand coming from the GP-RF)
to feed the DOTP Unit. The ALU accepts the “rs1” operand to increment it by one word (“ +4”) and store it back to GP-RF. (c) depicts the innermost loop
of the MatMul kernel. Before the loop, we need extra instructions to initialize the dedicated NN-RF registers that do not affect the performance. Inside the
loop we occupy 22 regs of the GP-RF and reduce the load costs for the MAC down to 2 operations, bringing the OPEF to 0.8.

We added support for a C&U version of all the sdotp based
instructions, interpreting the operands as signed/unsigned-
signed/unsigned (sp,usp,up) and supporting 16-bit down to 2-
bit SIMD operands (h,b,n,c).

To enable the MAC computation with one operand coming
from the NN-RF, the Dot-Product unit is further modified by
multiplexing its first operand coming from the GP-RF with the
read port of the NN-RF (see Figure 5.(b)). Anytime the C&U
instruction is issued in the EX-stage, the Dotp-Unit fetches its
first operand (the weight element in the case of the PULP-NN
MatMul) from the NN-RF. This micro-architecture enables the
execution of the C&U instruction in one clock cycle of latency
when the pipeline is fully operative and no stalls occur on the
LSU-memory interface.

By replacing the pv.sdotusp instructions with the C&U
equivalents in the innermost loop of the MatMul kernel, we
are able to reduce the costs of explicit loads down to 2 with 8
SIMD MAC operations, as reported in Figure 5.(c) where we
take as an example an 8-bit kernel. More in depth, we need
some instructions of initialization to fill the NN-RF registers
with the first operands involved in the MAC computations
inside the loop. These few extra instructions do not affect
the performance since they lay outside the critical loop. This
implementation of the MatMul increases the OPEF to 0.8,
further gaining a 1.40× of improvement with respect to the
original PULP-NN solution.

Despite the efficiency improvement achieved, we noticed
some limitations related to the C&U operation. The main
drawback is that we need to update the NN-RF register con-
sumed with the MAC operation at each instruction execution.
This is not a concern from a functional point of view since we
are always able to mask all non-necessary loads into the fused
instruction. However, the load operations are performed by the
Load unit of the core, causing energy-expensive accesses to
the memory and interconnect. In the context of tightly coupled
shared-memory clusters, these additional loads create unnec-
essary contention, which degrades the overall performance.

Moreover, due to this “context-based” dependency, in the
MatMul we need to use two different registers of the GP-

RF to address the same weight location in the memory. If we
refer to Figure 5.(c), the “aw1” address will be incremented by
the pv.cusdotusp.b.0 instruction by one word to fetch the next
weight from the memory. The consumed and discarded weight
is also needed in the computation with the “x2” activation
element. To fetch the correct weight again, we must occupy
another register, namely “aw1b”.

The weakness is that we are not exploiting data locality on
the weight elements anymore, and we are occupying redundant
registers into the GP-RF. The number of occupied registers
remains unchanged with respect to the MatMul of the PULP-
NN library. Hence, also in this case, it is not possible to exploit
the “4 × 4” MatMul data layout and its superior data reuse
characteristics.

D. NN Sum-of-Dot-Product Instruction

The alternative version of the Mac&Load instruction we
propose, namely “nn sum-of-dot-product (nnsdotp)”, over-
comes the flexibility issues of the C&U presented above but
requires more hardware resources to be integrated with the
micro-architecture of the core. More in detail, we provide a
solution that allows the operands stored into the NN-RF to be
kept there as long as needed before being updated with the
load operation of the fused nnsdotp instruction. This reduces
the memory traffic, allows a higher grade of flexibility for data
reuse (we are not limited by the compiler scheduler on the
time we can keep an operand into the GP-RF), and solves the
problem of using two different registers to encode the same
address. The drawback of the nnsdotp is that the encoding
of the new instruction is more complex. The functionality
described above is encoded in a 5-bit Immediate field. This
reduces the number of bits available to address another register
of the GP-RF to feed the MAC unit with the second operand.
Due to the regular structure of the MatMul though, this is
not a concern at all. Rather, we can extend the NN-RF with
two additional registers to host the two activation elements
involved in the innermost loop computation of the MatMul.
At the cost of a larger NN-RF compared to the solution
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nn_sdotp Instruction: Encoding.

(a)

(b)

31 0
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mem access

Accumulator
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4 0
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2.1:address of the weight NN-RF 0≤i≤3 
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‘insn[24:20]’ control

act.s

NN-RF

24 20

pv.nnsdot{up,usp,sp}.{h,b,n,c} rD, rs1, Immediate pv.nnsdotusp.h zero, aw1,16
pv.nnsdotusp.h zero, aw2,18
pv.nnsdotusp.h zero, aw3,20
pv.nnsdotusp.h zero, aw4,22
pv.nnsdotusp.h zero, ax1,8
lp.setup l1, l2, end
pv.nnsdotup.h zero,ax2,9
pv.nnsdotusp.b s1, aw2, 0
pv.nnsdotusp.b s2, aw4, 2
pv.nnsdotusp.b s3, aw3, 4
pv.nnsdotusp.b s4, ax1, 14
pv.nnsdotusp.b s5, aw2, 17
pv.nnsdotusp.b s6, aw4, 19
pv.nnsdotusp.b s7, aw3, 21
pv.nnsdotusp.b s8, aw1, 23end:

8-b innermost loop MatMul with nnsdotp

GP-RF Occupation : 15 regs

• 2 regs for loop setup;
• 5 regs for addresses;
• 8 regs for accumulators;

INIT
NN-RF

Computation of 8 SIMD 
MAC with 1 explicit load

(c)

Fig. 6. (a) reports the encoding of the nn sdotp instruction and describes the Immediate field. (b) depicts the micro-architecture design to support the
instruction in the RI5CY pipeline. (c) shows the MatMul innermost loop implemented with the nn sdotp instruction, highlighting the utilization of the GP-RF.

adopted with the C&U instruction, this solution guarantees
more flexibility and performance.

As visible in Figure 6.(a), the 5-bit immediate addresses the
NN-RF operands to be used in the current MAC operation:
Bit 0 selects the activation register, bit 1&2 select the weight
register, and bits 3&4 are set when we want to update either
the addressed activation register or the weight register, re-
spectively. Since we cannot update both weight and activation
registers concurrently having a single LSU, these bits of the
Immediate are mutually exclusive. To support this mechanism
in hardware (see Figure 6.(b)), we provide the NN-RF with
an additional read port that is multiplexed with the operand
coming from the GP-RF to feed the Dotp Unit, as described
above. Only when the nnsdotp instruction is issued, the Dotp
Unit will receive both input operands from the NN-RF. The
immediate bits act as control signals for the NN-RF.

The hardware cost of the nnsdotp instruction consists of
the additional NN-RF with one write, two read ports, and
some logic to distribute the operands to the Dotp-Unit. The
arithmetic blocks are already present in the micro-architecture.
Hence, the impact of both the Mac&Load instructions pro-
posed is negligible in terms of the maximum frequency of the
RI5CY core. From a power consumption point of view, the
nnsdotp implementation has a non-negligible impact due to
the additional NN-RF with two read ports and one write port.
To avoid unnecessary switching activity when the nnsdotp is
not executed, we perform operand isolation on the critical
operands (e.g., at the input of the multiplexers of the Dotp
Unit) and apply clock gating in the NN-RF block.

The implementation of the MatMul kernel using the nnsdotp
instructions is reported in Figure 6.(c). Before entering the
innermost loop of the MatMul we need to initialize all the NN-
RF registers. In this case, contrarily to the previous kernel with
the C&U instruction, we pay only one explicit load instruction
to perform the same number of dotp instructions, increasing
the OPEF up to 0.88, with an improvement of 1.1× with
respect to the C&U case.

A major benefit of the kernel highlighted in Figure 6.(c)
is that the occupancy of the GP-RF registers is reduced by
15 registers. This results by moving all the operands in the
dedicated NN-RF, keeping the GP-RF free to host addresses
for intermediate values and accumulators.

This condition leaves space for the implementation of the

4x4 MatMul layout, implemented using the nn_sdotp instruction.

pv.nnsdotusp.b s5,  aw1, 1

pv.nnsdotusp.b s6,  aw2, 3

pv.nnsdotusp.b s7,  aw3, 5

pv.nnsdotusp.b s8,  ax4, 15

pv.nnsdotusp.b s9,  aw1, 0

pv.nnsdotusp.b s10, aw2, 2

pv.nnsdotusp.b s11, aw3, 4

pv.nnsdotusp.b s12, ax1, 14

pv.nnsdotusp.b s13, aw1, 17

pv.nnsdotusp.b s14, aw2, 19

pv.nnsdotusp.b s15, aw3, 21

pv.nnsdotusp.b s16, aw4, 23(end):

pv.nnsdotusp.h zero, aw1,16

pv.nnsdotusp.h zero, aw2,18

pv.nnsdotusp.h zero, aw3,20

pv.nnsdotusp.h zero, aw4,22

pv.nnsdotusp.h zero, ax1,8

lp.setup l1, l2, end

pv.nnsdotup.h zero,ax2,9

pv.nnsdotusp.b s1, aw1, 0

pv.nnsdotusp.b s2, aw2, 2

pv.nnsdotusp.b s3, aw3, 4

pv.nnsdotusp.b s4, ax3, 14

INIT 
THE 
NN-RF

Fig. 7. Detail of the “4×4” MatMul layout using the nn sdotp. Storing the
SIMD sdotp operands into the NN-RF reduces the pressure on the GP-RF.
More room is left to host more accumulators. The assembly code shows how
the innermost loop of the MatMul fit the register resources of the RI5CY core,
thanks to the nn sdotp instruction.

“4 × 4“ MatMul structure. We need to fetch two additional
elements from im2col memory buffers, whose addresses are
stored into the GP-RF while the elements itself into the NN-
RF. Reusing the weights also over the new activations, we
can compute two additional pixels over four adjacent output
channels (8 additional accumulators). Doing the math the
occupancy of the GP-RF is of 32 registers (including the
control registers for the HW loop), fitting the availability
of the RI5CY GP-RF. This intuition is demonstrated by the
implementation of the “4× 4” kernel highlighted in Figure 7.
Following exactly the same strategy as in the other cases
with the initialization of the NN-RF, we pay a single load
instruction to execute 16 sdotp operations, pushing the OPEF
to 0.94, very close to the structural limit of 1.

To assess the benefits of the mac&load instructions at the
micro-architecture level, we run simulations of the extended
core executing multiple variants of the MatMul kernel: first
using only the SIMD operations (pv.sdotp), and then using the
C&U instruction and the nn sdotp operation. For the latter
case, also the optimized kernel layout is considered. Figure 8
reports the number of cycles required to perform a SIMD
MAC operation (i.e., one dotp 8-bit operation counts as one
MAC). As visible, the C&U improves the efficiency by 1.39
× with respect to the SIMD case. Thanks to the enhanced
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Fig. 9. Inverse of the MAC Operation Efficiency (lower is better) of the
PULP cluster on 8-bit Matrix Multiplication (MatMul) kernels.

nn sdotp instruction, after initializing the NN-RF registers,
the innermost loop of the MatMul runs 1.10 × faster than in
the C&U case and 1.53× faster than the SIMD case. Finally,
optimizing also the MatMul layout, we gain an additional 1.07
× improvement with respect to the “4×2” layout and the
nn sdotp, with only 1.08 cyc/MAC, 1.65× higher than the
SIMD case.

V. XPULPNN INTEGRATION

A. Cluster integration

After evaluating the improvement of the XpulpNN ISA on
a single-core execution of the MatMul kernel, we integrate the
extended RI5CY core into a PULP cluster of eight processors.
Since the QNN workload is highly parallelizable, we expect
a near-linear scaling of the performance when moving from
single- to multi-core contexts [11]. We report in Figure 9 the
results of the execution of the 8-bit MatMul kernel in terms of
cycle needed by each core to execute a SIMD MAC operation,
considering the execution of the kernel first with the C&U
and then with the nn sdotp instruction. The analysis carried
out shows some drawbacks of the C&U instruction that limits
the efficiency of the computation in a multi-core context. As
visible from Figure 9, when executing the MatMul kernel with
C&U on eight cores, its efficiency decreases with respect to the

single-core execution. As described in Section IV-C, the C&U
generates non-negligible traffic on the core-memory interface.
This traffic results in many TCDM contentions in a multi-core
context, causing each core to wait for the data from memory
for more than one cycle. Splitting the L1 memory over more
banks, we are able to partially limit this effect. More in detail,
if we consider a banking factor of four (“BF4”) (i.e., we
double the baseline banking factor of two), the efficiency of the
computation on eight cores increases by 5%, almost reaching
the ones of the single core. However, this choice has a non-
negligible impact on the power consumption of the system.
Instead, the nn sdotp does not suffer from this limitation,
thanks to its capability to keep in the NN-RF one operand
as long as we need, reducing the traffic on the core-memory
interface when not needed. In a baseline configuration of the
cluster (i.e., banking factor 2), the nn sdotp reaches almost
the same efficiency as in the “BF4” configuration.

B. Compiler & Parallel Programming Support

All the instructions of the XpulpNN ISA extensions can
be inferred in the C code through the explicit invocation
of built-in functions. In contrast with assembly inlining, this
approach enables the lowering of built-ins into the high-level
intermediate representation (IR) used by the compiler backend,
allowing target-specific optimization passes to maximize the
reuse of operands and efficiently schedule the instruction flow.
This mechanism is essential to model the accesses to NN-
RF consequent to Compute&Update semantic. Programmers
do not have the visibility of the variables stored in NN-RF
registers since their updates are hidden side effects from the
C code perspective. The backend IR associated with the built-
ins maintains track of these relations, and optimization passes
take them into account.

This approach, of course, restricts the flexibility for the av-
erage embedded system programmer. However, our purpose is
to expose the PULP-NN library functions as APIs. Practically,
programmers never have to dig into a list of optimized low-
level primitives, but they can select a library function (e.g., a
convolution kernel). An example of this integration is in [34],
where the backend library is integrated into a vertical QNNs
deployment flow.

VI. EXPERIMENTAL SETUP AND RESULTS

In this section, we evaluate XpulpNN both from a physical
viewpoint, measuring and discussing the costs of the micro-
architectural implementation in terms of area, power, and
timing overheads with respect to the baseline RI5CY core
and from a performance and energy efficiency perspective,
comparing the execution of QNN workloads on top of the
presented architectures with the State-of-the-Art Hardware and
Software solutions.

To this purpose, we integrate both the RI5CY and the ex-
tended RI5CY cores into a Parallel Ultra-Low-Power (PULP)
cluster of eight processors and perform a full implementation
of the system in the Global Foundries 22nm FDX technol-
ogy. We synthesize the two clusters with Synopsys Design
Compiler-2018.3, and we perform a full place & route flow
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Fig. 10. Placed and routed design of the PULP cluster with eight extended
RISCY cores, supporting the XpulpNN ISA.

using Cadence Innovus 17.11, in the worst-case corner (SS,
0.59V, −40◦/ 125◦). The floorplan of the cluster is reported
in Figure 10. The total area of the cluster and of the core and
the timing results are obtained from layout measurements. To
perform power overhead evaluations, we run timing-annotated
post-layout simulations in the typical corner and in different
operating points, targeting common QNN workloads as well
as general-purpose applications. Thus, all the results presented
in the following include the overheads (i.e., timing, area,
power) caused by the clock tree implementation, accurate
parasitic models extraction, cell sizing for setup fixing and
delay buffers for hold fixing (neglecting these would cause
significant underestimations in the clock tree dynamic power).

To compare our solution with the State-of-the-Art in terms
of performance and energy efficiency, we benchmark a set
of convolution layers. In the context of this work, we focus
on the implementation of the PULP cluster since we target
a parallel execution of the QNN workload. We assume then
that the cluster is connected to a simulated micro-controller
system that has the only duty of activating the cluster and
hosts an L2 level of memory containing the application code.
Since our goal is to improve the computing efficiency of the
core kernels of a QNN inference task, we choose the layers
such that their parameters fit the L1 memory of our systems
to avoid additional overhead due to the memory transfers.
However, the selected convolution layers are representative of
the common tiles used in such types of devices to deploy QNN
inference [34]. The benchmarked layers operate on a 16 × 16
× 32 input tensor with a filter size of 64 × 3×3×32 and on
a 32×32×32 input tensor with a filter size of 64×3×3×32
respectively. As described in Section III-C, after the MatMul
kernel, the intermediate results are compressed back into the
desired precision through batch-normalization and activation
functions.

A. Implementation Results

Table II shows a comparison between the RI5CY core and
the extended RI5CY, implementing the XpulpNN ISA (with
the mac&loadv2), in terms of area and power consumption,
estimated on post-layout simulations of different applications.
The total area of the extended RI5CY is 0.041mm2, with

TABLE II
AREA AND POWER CONSUMPTION RESULTS. WE CONSIDER TYPICAL

AND WORST CASE CORNERS FOR EACH OPERATING POINT (HV= 0.8 V,
LV=0.65 V). LIST OF CORNERS USED FOR IMPLEMENTATION: HV TYP:

TT, 25°C, 0.80 V; HV SS: SS, 125°C/-40°C, 0.72 V; LV TYP: TT,
25°C, 0.65 V; LV SS: SS, 125°C/-40°C, 0.59 V. WE ALSO USE FAST

CORNERS FOR HOLD FIXING. IN ALL CORNERS WE USE ALL
PERMUTATIONS OF PARASITICS (CMIN/CMAX/RCMIN/RCMAX).

CORNERS USED FOR POWER ANALYSIS: HV OP: TT, 25°C, 0.80 V, 660
MHZ. LV OP: TT, 25°C, 0.65 V, 450 MHZ.

Maximum Frequency [MHz]
of the cluster with Ext. RI5CY cores

HV LV HV SS LV SS
PULP Cluster 660 450 400 200

RI5CY Ext. RI5CY
(baseline) (with nn sdotp)

Area [um2] (Overhead vs. baseline [%])
Tot. Cluster 970856 1011254 (4.1%)
Tot. Cluster 995210 1053446 (5.9%)
(32 tcdm banks)
Total Core 35131 41296 (17.5%)
EX-Stage 13385 17744 (32.6%)

Power Consumption of the CORE [mW]
on an 8-b MatMul (Overhead vs. baseline [%])

HV LV HV LV
Leak. Power 2.13 0.96 2.22 0.99
Dyn. Power 2.94 1.30 3.01 1.32
Tot. Power 3.05 1.35 3.12 (2.1%) 1.39 (2.5%)

Power Consumption of the CORE [mW]
on a GP-application (Overhead vs. baseline [%])

HV LV HV LV
Leak. Power 0.108 0.055 0.122 0.065
Dyn. Power 1.73 0.76 1.76 (1.7%) 0.78 (2.6%)
Tot. Power 1.84 0.82 1.88 (2.17%) 0.85 (3.7%)

Total Power Consumption of the PULP cluster [mW]
(Overhead vs baseline [%])

HV LV HV LV
MatMul 8-bit 41.8 19.3 41.6 19.3 (0.02%)

(with nn sdotp) – – 43.7 (5.11%) 21.5 (11.5%)
MatMul 4-bit – – 35 16.1

(with nn sdotp) – – 41.2 19
MatMul 2-bit – – 42.9 19.1

(with nn sdotp) – – 48.9 24.1
GP Application 27.6 12.9 28.3 (2.4% ) 13.3 (3.1%)

an overhead of 17.5% with respect to our baseline. Such
increment is mostly due to the addition of the multipliers in
the Dotp-Unit of the baseline core and of the extra-registers to
build the NN-RF. The cluster area instead is of 1 mm2 with
the new core, 4% higher than the baseline. In Table II, we take
into account also the cluster implementation with a banking
factor of four to highlight the cost of this exploration in terms
of area overhead. The cost of doubling the banking factor
results in an additional area overhead of 4.2%. As introduced
in Section IV-B, the duplication of the hardware resources
into the Dotp-Unit allows us not to affect the critical path
of the system. The maximum frequency achievable by both
considered cores (RI5CY and the extended RI5CY) is the
same.

Despite a non-negligible area overhead, the power con-
sumption of the core is not affected significantly, as well
as the power of the whole cluster system. To provide an
accurate power estimation of the cores and characterize the
whole system-level power consumption, we conduce post-
layout power simulations in two different voltage corners:
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Fig. 11. Performance of the 8 core PULP clusters over different bit-width
precision Convolution kernels, implemented with the instructions presented in
this work. The lighted bars (higher-performance) refers to the MatMul kernel
only, while the darker ones include also the quantization procedure (hence,
the whole convolution). The cluster runs in the best performance operating
point, at 660 MHz, 0.8 V in the typical corner.

the high-voltage corner (TT, 660 MHz, 0.80V) and the low-
voltage one (TT, 450 MHz, 0.65V). We test 8-bit Dot-product
based operations, the new nibble and crumb instructions, as
well as the mac&load in its final version (nn sdotp). Each
kernel considered in the comparison is compiled with an
extended GCC 7.1 toolchain that supports both XpulpV2 and
XpulpNN extensions. The Value Change Dump (VCD) traces
are generated with Mentor Modelsim 10.7b and analyzed by
Synopsys Prime Time 2019.12 to extract the power numbers.
As visible in Table II, thanks to the clock gating techniques
and to the operands isolation and despite the bigger core area,
the extended RI5CY core runs an 8-bit Matrix Multiplication
kernel (both the cores are using the 8-bit SIMD arithmetic
instructions of the XpulpV2 ISA) in almost the same power
envelope of the baseline core, with a power overhead of only
3% in both considered corners. The same reasoning applies
if we consider a General Purpose application, consisting of
a mixture of the plain RISC-V ISA (RV32IMC) instructions
such as load/stores, arithmetic, and control operations. This
achievement is also visible at the system level, comparing
the PULP cluster power consumption, demonstrating the light-
weighted nature of the ISA extensions proposed in this work,
and furthermore showing that we do not jeopardize the energy
efficiency of the core on general-purpose benchmarks.

B. Benchmarking

To evaluate the performance and the energy efficiency
gain achieved with the proposed XpulpNN extensions, we
benchmark the convolution layers discussed above in different
bit-width symmetric configurations (8-, 4-, and 2-bits). The
kernels run on the extended RI5CY core, using different
instructions of the XpulpNN ISA: classical SIMD operations,
compute&update, nn sdotp and the nn sdotp optimizing the
layout of the MatMul. This analysis aims at measuring the
impact of the extensions on the whole convolution kernel of
the PULP-NN library. The performance achieved, as well as
the energy efficiency, are measured at the high-voltage corner
(TT, 0.8 V, 25*C) and the low-voltage corner (TT, 0.65 V,
25°C) respectively of the post-layout simulations and reported
in Figure 11 and 12 respectively. The peak performance and

1.41x

1.52x

1.36x

1.21x

1.41x

1.20x

Fig. 12. Energy efficiency of the convolutions on the 8 core PULP clusters.
The graph compares the solutions described in this work. The lighted bars
(higher-performance) refers to the MatMul kernel only, while the darker ones
include also the quantization procedure (hence, the whole convolution). The
cluster runs in the best efficiency operating point, at 450 MHz, 0.65 V, in the
typical corner.

efficiency of the convolution layers are reached by implement-
ing the MatMul kernel with the nn sdotp instruction and an
optimized 4×4 layout. In the 8-bit case, the improvement
with respect to the classical SIMD implementation of the
MatMul is 1.55× and 1.41× in terms of performance and
efficiency, respectively. The little degradation of these two
metrics compared to the ideal case where we consider only
the execution of the MatMul kernel (bars in transparency in
the Figure) is due to the quantization and compression of the
intermediate MatMul results.

The impact of the quantization is much higher on the 4-
and 2-bit convolution layers, especially when we refer to the
optimized MatMul kernels. The reason for this behavior is
that the computational cost for quantization does not depend
on the bit-width of the compressed output feature map, mean-
ing that it consists of the same operations no matter what
is the precision of the final results. Considering the same
layer parameters, the lower the precision of the MatMul,
the less the iterations of the innermost loop (since in one
dotp based operation we are actually performing 4, 8 or 16
effective MACs). Hence, the effective improvements in the
MatMul kernel using the nn sdotp instruction are mitigated
by the batch-normalization and activation step on 4- and 2-
bit convolution layers. As visible from the Figure 11, the
performance improvement with respect to the classical SIMD
implementation of the MatMul passes from 1.66× (1.56×) on
the 4-bit (2-bit) MatMul itself to 1.45× (1.32×) on the whole
4-bit (2-bit) convolution layer. Obviously, these results directly
translate into a corresponding degradation of energy efficiency.
However, thanks to the optimized 4×4 MatMul kernel and the
nn sdotp instruction, we boost the convolution efficiency by
up to 1.41× with respect to the SIMD implementation.

Despite the small degradation of performance and efficiency
due to the quantization phases of sub-byte output activations,
these cumulative improvements on the QNN kernels demon-
strate the effective strategy of extending the ISA with domain-
specific lightweight instructions to obtain high performance
and energy efficiency on highly quantized QNN kernels,
without affecting the system on other domain applications
efficiency.
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Fig. 13. The Figure shows the comparison of this work with the State-of-
the-Art (high-end STM32H7 and low-end STM32L4 MCUs) and with the
baseline RI5CY cluter, in terms of performance. The PULP clusters run in
two operating points: high-voltage (0.8 V, 400 MHz) and low-voltage (0.65
V, 200 MHz). 8-, 4- and 2-bit simmetric convolution kernels are benchmarked
to carry out the comparison.
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Fig. 14. Energy efficiency comparison of the this work with State-of-the-
Art and the baseline RI5CY clusters. 8-, 4- and 2-bit simmetric convolution
kernels are benchmarked to carry out the comparison.

C. Comparison With the State-of-the-Art

To put our achievement in perspective, we compare our
results with state-of-the-art existing hardware and software
solutions in terms of performance and energy efficiency. To
carry out the comparison, we run the convolution layers
on the RI5CY cluster using the PULP-NN library [11] and
on two off-the-shelf STM32H7 and STM32L4 commercial
microcontrollers previously introduced in Section II, using
the extended CMSIS-NN library [14]. The performance and
energy efficiency results are summarized in the Figure 13
and 14 respectively. For the implemented PULP cluster (with
RI5CY and the extended RI5CY cores), we report two oper-
ating points: one at high-voltage, 0.8 V, 400 MHz and one
at low-voltage, 0.65 V, 200 MHz, with the purpose to give
insights on how much performance we trade-off with the
energy efficiency at the highest voltage and vice versa. It is
important to note that, since the STM32 MCUs are commercial
products signed-off in the SS corners, the power analysis of
our solution is carried out in the SS operating points (i.e.,
considering 400 MHz (200MHz) as the frequency for the
best performance (efficiency) points) for a fair comparison.
As visible from Figure 11, with the same operating condition,
we improve the performance of the 4-bit (2-bit) convolution
layers by 6× (8.7×) with respect to the RI5CY cluster.
Thanks to the nn sdotp we are also able to increase by

1.6× the performance on 8-bit convolutions. Almost the same
grade of improvement is reached on the energy efficiency
of such kernels, demonstrating that both clusters run almost
in the same power envelope despite the enhanced ISA and
the additional hardware. Also, the convolution kernels on the
XpulpNN PULP cluster at the high(low)-voltage operating
point run from 298× to 812× (149× to 406×) faster than
the same kernels executing on the low-end STM32L4 using
the CMSIS-NN library. In terms of energy efficiency, we
outperform this microcontroller system by up to 356× in
the best case (2-bit convolution, low-voltage operating point).
Our performance gain with respect to the high-end Cortex-
M7 based STM32H7 microcontroller is more limited than
the previous case since the STM32H7 runs at 480 MHz and
features a dual-issue core. In this case, we outperform its
performance by up to 119×. Being a high-end microcontroller
system, the STM32H7 suffers in terms of energy efficiency,
where we do better by up to three orders of magnitude, as
visible in Figure 14.

The presented results, coming out from the state-of-the-art
comparison, are the consequence of the following insights:
contrarily to ARM Cortex-M cores, the proposed solution
has hardware support for 8-, 4- and 2-bit SIMD dotp-based
operations and for the mac&load instruction. The STM32
based systems consist of a single-core chip, while our target
architecture is a computing cluster of eight processors to
improve the efficiency of the computation. The remaining
performance/efficiency is gained due to the more scaled tech-
nology used to implement the PULP cluster compared to the
one of the STM32L4 (90nm) and of the STM32H7 (40nm). In
the end, the carried-out analysis shows for the first time that we
can achieve ASIC-like energy efficiency on QNN workloads
on fully programmable tiny MCU systems of the extreme-
edge of the IoT. This outcome is obtainable by coupling the
power-aware micro-architecture design and its integration in
a multi-core computing cluster architecture with leading-edge
near-threshold FDX technology.

VII. CONCLUSION

In this work we have presented a 2-bit to 16-bit multi-
precision Dotp Unit that enables efficient computation of
heavily QNN kernels at the extreme edge of IoT. We have inte-
grated the unit into an open-source RISC-V processor, namely
RI5CY, and we have performed optimizations at the core level
to guarantee high energy efficiency in dotp-based computation.
To exploit the designed hardware, we have provided the
extended core with a set of low bit-width SIMD arithmetic
extensions to the RISC-V ISA and we have shown the benefits
at the ISA levels of implementing QNN kernels with the
new proposed instructions. Furthermore, we integrated the
new extended RI5CY core in a multi-core computing cluster,
showing a near-linear speedup of the performance compared
to the single-core execution. The implementation of the PULP
cluster in leading-edge gf22 nm FD-SOI technology showed
that: thanks to the design of a multi-precision low bit-width
Dotp unit and the power-aware optimizations performed at the
core level, the extended core does not jeopardize the efficiency
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of RI5CY on general-purpose applications; given the same
technology, the energy efficiency on byte and sub-byte kernels
has been improved by up to one order of magnitude with
respect to RI5CY. Our work shows at least two orders of
magnitude improvements in performance and energy efficiency
than state-of-the-art hardware and software solutions based on
ARM Cortex-M cores. This scenario paves the way to software
programmable QNN inference at the extreme edge of the IoT,
promising ASIC-like efficiency with higher flexibility.
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