
10 September 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Montori F., Zyrianoff Ivan Dimitry, Gigli L., Venanzi R., Sindaco S., Aguzzi C., et al. (2021). A Toolchain
Architecture for Condition Monitoring Using the Eclipse Arrowhead Framework. New York : IEEE
[10.1109/IECON48115.2021.9589532].

Published Version:

A Toolchain Architecture for Condition Monitoring Using the Eclipse Arrowhead Framework

Published:
DOI: http://doi.org/10.1109/IECON48115.2021.9589532

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/845989 since: 2022-02-03

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/IECON48115.2021.9589532
https://hdl.handle.net/11585/845989

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

F. Montori et al., "A Toolchain Architecture for Condition Monitoring Using the
Eclipse Arrowhead Framework," IECON 2021 – 47th Annual Conference of the IEEE
Industrial Electronics Society, 2021, pp. 1-6.

The final published version is available online at:
https://dx.doi.org/10.1109/IECON48115.2021.9589532

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/IECON48115.2021.9589532

A Toolchain Architecture for Condition Monitoring
Using the Eclipse Arrowhead Framework

Federico Montori∗†, Ivan Zyrianoff∗†, Lorenzo Gigli∗†, Riccardo Venanzi∗, Simone Sindaco†, Cristiano Aguzzi†,
Federica Zonzini†‡, Matteo Zauli†‡, Nicola Testoni†‡, Enrico Alessi§,

Marco Di Felice∗†, Luciano Bononi∗, Paolo Bellavista∗, Luca De Marchi†‡, Tullio Salmon Cinotti†
∗ Department of Computer Science and Engineering, University of Bologna, Italy

‡ Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”, University of Bologna, Italy
† Advanced Research Center on Electronic Systems “Ercole De Castro”, University of Bologna, Italy

§ Advanced Research and System Platforms RND, Analog, MEMS and Sensors Group, STMicroelectronics, Catania, Italy
Corresponding author’s email: federico.montori2@unibo.it

Abstract—Condition Monitoring is one of the most critical
applications of the Internet of Things (IoT) within the context
of Industry 4.0. Current deployments typically present interop-
erability and management issues, requiring human intervention
along the engineering process of the systems; in addition, the
fragmentation of the IoT landscape, and the adoption of poor
architectural solutions often make it difficult to integrate third-
party devices in a seamless way. In this paper, we tackle these
issues by proposing a tool-driven architecture that supports
heterogeneous sensor management through well-established in-
teroperability solutions for the IoT domain, i.e. the Eclipse
Arrowhead framework and the recent Web of Things (WoT)
standard released by the W3C working group. We deploy the
architecture in a real Structural Health Monitoring (SHM)
scenario, which validates each developed tool and demonstrates
the increased automation derived from their combined usage.

Index Terms—IoT, WoT, Condition Monitoring, SHM, Arrow-
head, Toolchain

I. INTRODUCTION

The Internet of Things (IoT) has evolved rapidly over the
last years, and it is nowadays used in a variety of application
domains [1]. Among others, Condition Monitoring (CM) has
gained considerable interest for industrial deployments of the
IoT. In few words, CM refers to the monitoring of relevant
condition parameters, such as vibration in machinery to iden-
tify faults or abnormal values, as well as forming a basis
for predictive maintenance [2]. Most of these parameters are
acquired by sensors that are deployed in the field. Although
the concept of CM is general and could be applied to different
use–cases, from railway tracks to wind turbines [3], its imple-
mentation is often problematic and may introduce significant
engineering costs. On the one hand, the lack of automation
in the various engineering phases, especially operation and
maintenance, may imply a significant usage of manual work.
This is an overhead in IoT scenarios where many operations
should be managed remotely and automatically [4]. On the
other hand, severe interoperability issues nowadays affect
industrial IoT ecosystem, to the point that manually integrating
legacy appliances constitutes an unbearable cost [5].

In the context of interoperability, we acknowledge the recent
standardization effort on the W3C Web of Things (WoT),

which aims to abstract simple sensors and actuators in an IoT
environment into well-described Web resources [6]. However,
there are still significant issues in automatically integrating
legacy resources and meeting the requirements of a fully-
fledged service-oriented architecture (SOA).
In this paper, we propose a toolchain architecture for the
CM of industrial environments characterized by the presence
of multiple sensors, heterogeneous in terms of capabilities
and specifications. More in detail, we discuss a use–case
related to Structural Health Monitoring (SHM), which is also
a demonstrator for the EU project Arrowhead Tools1, also
available in a video2. The current baseline is constituted by
an SHM sensor network, provided with a W3C WoT interface
that monitors the vibrations over a frame building. Several
requirements emerged during the operational phase, such as
integrating third-party sensors and accessing external SOA
resources, not yet mapped to the W3C WoT. For this reason,
we enhance the baseline by considering a modular architecture
composed of separate tools which integrate heterogeneous
data services into a single fruition channel and automate the
system configuration. As a result, the proposed CM is capable
of: (i) supporting the integration of sensors with external
IoT frameworks, such as the Eclipse Arrowhead framework,
to be part of wider ecosystems and be easily managed by
Orchestration facilities, (ii) integrating third-party sensors via a
seamless and straightforward on-boarding procedure, and (iii)
potentially adjusting the parameters of such sensors without
on-site intervention. We validate the efficacy of the toolchain
through selected experiments and report the observed system
behavior utilizing the MODRON [7] dashboard.

The paper is structured as follows: Section II introduces
the Eclipse Arrowhead framework. Section III presents the
architecture of the whole System-of-Systems, while Section IV
details the implemented tools and components, Section V
describes the experiments and the validation results and,
finally, Section VI concludes the paper and discusses some
future works.

1https://arrowhead.eu/arrowheadtools
2https://youtu.be/f8R5vz6kKN4

II. THE ECLIPSE ARROWHEAD FRAMEWORK

The latest years have been characterized by a fast-paced
industrial revolution, especially in IoT-based ecosystems. In
particular, the concept of Industry 4.0 caused a shift from
the legacy SCADA/DCS systems to more flexible SOA ar-
chitectures, where single systems are consuming or providing
services, and the interactions are loosely coupled to ensure
portability to different scenarios. The Eclipse Arrowhead
Framework is a platform developed within the Arrowhead
Project founded on the concept of Local Clouds: controlled
environments that implement the base concepts of SOA – loose
coupling, late binding, and discovery – and managed by a
single instance of a set of Core Services [8]. Each Local Cloud
hosts a so-called System-of-Systems in which single elements
are generally addressed to as Arrowhead Application Systems
or Arrowhead Tools. They are either service providers, thus
servers that are exposed through endpoints, service consumers,
thus clients that query other services, or both. The Core
Services supervise all these interactions; the most important
ones – the minimum set that must be deployed in a Local
Cloud – are: the Service Registry, the Authorization, and
the Orchestration. The Service Registry records the basic
information of each of the services in the Local Cloud. Each
provider registers itself, enabling discoverability and loose
coupling. The Authorization detains a set of rules that establish
which consumer is authorized to interact with which provider,
also providing a token-based authentication facility. Finally,
the Orchestration enables late binding by allowing the cloud
manager to bind specific consumers to providers at run-time.

III. PROPOSED TOOLCHAIN ARCHITECTURE

The architecture presented in this Section is related to a pilot
use case of the Arrowhead Tools Project. In particular, this
scenario includes a set of inertial sensors for Structural Health
Monitoring (SHM) deployed onto a real building. Sensors are
abstracted into Web Things (WTs) in order to be accessible
via the Web, following the W3C WoT standard [6]. A set
of engineering tools were developed in order to meet the
following project objectives:

1) Integrate the sensor network with established interop-
erability frameworks (Eclipse Arrowhead3) to enhance
the monitoring functions provided to the final user.
Additionally, to provide sensor data persistence via the
MODRON platform [7];

2) Integrate third-parties legacy sensor tools – in our case,
a Gas Sensor – to increase the quality and quantity of
information gathered from the scenario;

3) Automate the configuration of the sensors according to
internal and external factors.

The overall architecture of the use case is shown in Figure 1:
the remainder of the Section is dedicated to outlining the
complex interactions between the components, which are then
explored individually in Section IV.

3https://projects.eclipse.org/projects/iot.
arrowhead

The first project objective is achieved through tool called
WoT-Arrowhead Enabler (WAE), which was presented in its
early version in [9]. The WAE is the main hub for the
translation between the WoT ecosystem and the Arrowhead
System-of-Systems (SoS) in both directions. Since all WTs in
the scenario are registered into a Thing Directory, the WAE
periodically checks for newly registered WTs. Subsequently,
it creates a server that acts as a proxy for the WT for each
of them. Such proxies are called Arrowhead Thing Mirrors
(ATM) and are deployed on the same machine where the
ATM runs. This way, a WoT ecosystem offering a number of
services can be queried and discovered in full using Eclipse
Arrowhead. Therefore, clients do not have to implement the
complete W3C WoT stack. Instead, they can virtually query
WoT sensors via a REST API.

The second objective is achieved through the integration of
third-party sensors within the whole ecosystem. In our use–
case, we utilized an experimental Gas Sensor, as it provides
valuable information for SHM scenarios, e.g. the possibility
to perform degradation analyses based on data coming from
multiple domains. The Gas Sensor has been integrated with
Eclipse Arrowhead via an Arrowhead adapter, as it is ex-
plained in detail in Section IV-B, which makes it a fully-
fledged Arrowhead service provider. Furthermore, the WAE
has been modified to meet an additional requirement, i.e. to
make such third-party service available also within the WoT
ecosystem as a WT. This is implemented similarly to the
point above, i.e. the WAE periodically discovers Arrowhead
services that are suitable to be translated; we defined such
suitability as a particular format of Open API Specifications
(OAS)4. Upon finding the service endpoint, the WAE generates
a new WT, which acts as a proxy for the third-party sensor
and registers it into the Thing Directory of MODRON. This
process is logically similar to the opposite presented above;
however, it features a much more complex translation phase
(WT Description has to be generated from the OAS).

Finally, the third objective is achieved by the Configurator
tool, an Arrowhead service consumer used by a maintenance
operator, able to change the configuration of the sensors at
run-time. To do so, it discovers the WTs from the Arrowhead
Orchestrator, and it issues one or more property changes, such
as the sampling frequency. The whole sensor network has been
redesigned in order to be able to receive commands from the
WTs, enabling two-way communication. The Configurator tool
comes with a Web interface, and it is described in detail in
Section IV-C.

IV. TOOLS AND COMPONENTS

In the Arrowhead Tools project, it is important to outline
the concept of “tool”. An Arrowhead tool is a software
component (or hardware with dedicated software on board)
that improves an established baseline by bringing in additional
automation over the course of one or more phases of the

4https://swagger.io/specification/

Fig. 1. Toolchain architecture of the whole System-of-Systems. Main abbreviations are: WT (Web Thing), SN (Sensor node), CH (Cluster Head), WAE (WoT
Arrowhead Adapter), ATM (Arrowhead Thing Mirror), OAS (OpenAPI Specification), AHA (Arrowhead Adapter).

Arrowhead engineering process [10], [11]. In our use–case,
we can identify as tools:

• The WAE, which operates in the Deployment phase of
the engineering process.

• The Gas Sensor together with its adapter and service de-
scription, which improves the Operation & Management
phase of the engineering process.

• The Configurator, which operates in the Maintenance
phase of the engineering process.

This Section outlines in detail both tools and other components
of the use–case.

A. SHM Sensor Network

A Smart Sensor Network (SSN) composed of low–power,
light–weight and small–footprint accelerometer sensors was
installed on a high–rise (5m height) five–story building for
the purpose of vibration analysis [12]. The physical layer
of the monitoring network is composed of three different
types of devices: (i) multiple peripheral sensor nodes (SNs)
permanently attached to the structure, (ii) a few cluster head
nodes (CHs) orchestrating a small subset of SNs and (iii) one
aggregating unit (Bridge) in charge of data management and
outsourcing. The sensing element consists of a MEMS–based
iNemo inertial measurement unit released by STMicroelec-
tronics, capable to capture dynamic measurements in quite a
broad frequency range, while the core element of the sensor
node is given by an STM32F303 microcontroller unit featuring
a floating point unit for optimized digital signal processing
functionalities; for a detailed hardware description of the SN,
readers are referred to [13]. The processing flow is organized
as follows [7]: once signals are sensed by the peripheral node,

information is then transmitted to the bridge controller through
the companion gateway network interface acting as a CH.
Next, each of the sensors is abstracted into a WT, which acts
as a virtual proxy and exposes data in the form of properties.
Some properties are mutable (e.g. the sampling frequency)
and, when changed by an external mashup application, they
propagate the change over the sensor network to the actual
SN.

B. Gas Sensor and Arrowhead Adapter

Integration is the key enabler for factory digitalization and to
achieve interoperability in Industry 4.0 scenarios. The Arrow-
head Framework provides components’ integration through the
development of a specific component, an Arrowhead Adapter
(AHA). AHA has the pivotal role of overcoming compo-
nents heterogeneity by making them Arrowhead compliant.
It typically targets two integration scenarios, respectively the
legacy component integration, and the heterogeneous compo-
nent integration. In this Section, we showcase the capabilities
of AHA through the integration of a real Gas Sensor with
the Arrowhead Framework. Figure 2 depicts the components’
architecture taking part into the Gas Sensor integration. It is
composed of three main components, the Gas Sensor Node,
the LoraWAN Network, and the AHA.

1) The Gas Sensor Node: The Gas Sensor Node is a sensor
node powered by a B-L072Z-LRWAN1 evaluation board,
which has an STM32L0, by STMicroelectronics, as main core
and an SX1276 device by Semtec as LoRa transceiver. Thanks
to its peripherals (I2C, SPI, etc.), it offers the possibility to
manage different kinds of sensors, to acquire data and send
them through a LoRaWAN network. The sensor managed by

Fig. 2. Gas Sensor Arrowhead Adapter and Network

the board is an experimental Gas Sensor by STMicroelectron-
ics [14]. More in detail, it is a Metal Oxide Semiconductor
(MOX) sensor, based on MEMS technology which can provide
information about the concentration of gas and different kinds
of volatile organic compounds (i.e. Ammonia (NH3), Nitrous
Oxide (N2O) and Methane (CH4)) in the air. The low-power
profile of the MCU, along with long range communication
offered by the LoRa protocol, contribute to the implementation
of a totally autonomous and plug & play sensor-node for SHM.

2) The LoRaWAN Network: The communication with the
sensor node has been implemented using the infrastructure
provided by The Things Network 5, that hosts the Application
Server and the Network Server for the LoRaWAN Network.
A proprietary gateway is used in order to forward data from
the sensor-node to the LoRaWAN Server. The topology of the
network is depicted in Figure 2. The Things Network equips
LoRa Server with an MQTT module that enables the access
to sensor data through a publish-subscribe mechanism.

3) AHA: Arrowhead Adapter: The AHA is the key unit
that bridges any industrial component with the Arrowhead
Framework (red box in Figure 2). It is mainly composed by
two sub-components: an HTTP/REST interface for commu-
nicating with the Arrowhead Framework and for providing
the service, and a component-side interface that communicates
with the integrating system through its specific protocol. In this
case, the Gas Sensor communicates through MQTT. At start-
up time, the Gas Sensor AHA subscribes its MQTT Client
to the Application Server’s MQTT broker and remains in a
wait state for new Gas Sensor data update. At the same time,
the AHA creates a Gas Sensor Service to act as Arrowhead
Provider and to make the Gas Sensor data queryable. AHA
connects to the Arrowhead Core Services and registers the
Provider Server Endpoint to Service Registry. When new Gas
Sensor data are available, the MQTT client receives the update
and stores it into a Persistence Layer. The Persistence Layer
is an abstraction of any type of storage component, spanning
from in-memory storage to any database (DAO pattern is
used) passing through file, JSON, or XML. At this point,

5https://www.thethingsnetwork.org

the Data Adapter is responsible for converting data from the
stored format to a format easily manageable from HTTP/REST
(JSON). Finally, the Provider Server Endpoint listens for direct
requests from Arrowhead consumers and returns data.

C. Configurator

The WoT–Arrowhead Configurator6 is an open–source ap-
plication that provides a friendly browser–based user interface
for managing WTs within the Arrowhead ecosystem. The
application was developed in Typescript using the Angular
framework. It lists all the WTs registered in the Service
Registry, allowing the user to easily check their attributes,
properties, actions, and events in two different modes: (i)
In a raw JSON – adequate for advanced users; (ii) In an
interactive tabular matter, divided in categories (i.e, general
attributes, properties, actions and events) – as depicted in
Figure 3. Furthermore, the Configurator allows the user to
change properties or invoke actions using the graphic in-
terface without needing to have specific knowledge of the
WT interface. The Configurator reads the information of each
Thing Description of available WTs, and only allows to update
writable properties (in our scenario, the sampling frequency);
if present, it displays an array of accepted values for a given
property as a drop-down list. Given that the list of WTs
registered in the Service Registry is maintained and updated by
the WAE, the Configurator guarantees that the web interface
is in synchrony with the rest of the system.

D. MODRON

MODRON is a software framework for sensor–to–cloud
data gathering and management in SHM scenarios [7]. The
system leverages the W3C WoT standard to support multi–
source data acquisition from heterogeneous sensors, which
may use different protocols and sensing principles. The MOD-
RON architecture envisions a layered approach, with an edge
layer on which WTs are exposed and a cloud layer that
includes a suite of services for data storage, aggregation, and

6https://github.com/UniBO-PRISMLab/
wot-configurator

Fig. 3. A screenshot of the Configurator tool.

visualization. On the cloud side, we can find six specific
components: the Thing Discovery Service (TDS), the Thing
Visualizer Service (TVS), the Persister and Analytics mash–
up applications, the Data Aggregator and Plotter. The TDS is
basically a Thing Directory (highlighted in Figure 1) that talks
directly to the edge layer and is responsible for automatically
registering and notifying each new WT that is deployed. The
TVS is a playground where users can visualize and interact
with their WTs thanks to a dynamically generated graphic
interface starting from the TDs. The Persister is in charge
of retrieving data from the WTs by querying them at fixed
intervals or subscribing to their “data publishing” events. Data
is then saved within a distributed database, ensuring their
scalability and availability. The Analytics application extracts
the raw data from the database and performs signal processing
techniques for structural integrity evaluation. Finally, the Data
Aggregator service allows setting aggregation and combination
operations on the data, and the Data Plotter service for the
visualization and export of the data exposed by the Aggregator,
which serves as a user dashboard within our demo.

V. RESULTS AND VALIDATION

In this Section we present the validation of the whole
ecosystem by showcasing two results: (i) the efficacy of the
Configurator, which is able to change the properties of the leaf
SN at runtime, and (ii) the integration of external, non–WoT,
Arrowhead services (in this case, the ST Arrowhead-adapted
Gas Sensor) within the same monitoring facility. These two
achievement significantly enhance the baseline, in which said
operations were done by hand.

Controlling the data rate at which information is gathered
is of the uttermost importance in energy–efficient and respon-
sive monitoring scenarios. As such, being capable to change

this parameter from remote could be even more crucial to
better track potential changes in the vibration signature of
the monitored structure. To cope with this requirement, the
functionality to reconfigure at runtime the sampling frequency
at which each specific SN is working has been enabled by
acting on the corresponding property of the WTs by means
of the Configurator. In the specific case of the frame building,
tests have been performed in which the output data rate of
one sensor node has been decreased from 813Hz to 416Hz,
which are both compatible values with the spectral signature of
the structure since the most energetic components are located
below 200Hz. In Figure 4, a number of snapshots taken
from an experimental test are displayed while configuring the
system to acquire 2000 samples–long time series. In the initial
configuration (step 1), the sampling frequency corresponds to
416Hz, implying a total observation window of 4.807 s; then,
after the Configurator is called, the data rate is set at 833Hz,
thus leading to a new burst duration of 2.401 s. To further cor-
roborate the obtained results, data tips are included in which
the acquisition time for two consequent data points are shown:
as can be observed, this time step halves from 2.4ms (i.e.
1/416) to 1.2ms (i.e. 1/833). All results are shown by means
of the MODRON dashboard. Figure 5 shows the experimental
Gas Sensor on the top, together with its monitored values from
the MODRON dashboard. For displaying purposes, we show
the Gas Sensor in its state of stillness on the left end side,
while on the right-hand side we stimulate it by spraying gas
from a lighter, causing the monitored resistance value (shown
in red) to decrease sharply.

VI. CONCLUSION

In this paper, we tackled the interoperability and manage-
ment issue in IoT–based Condition Monitoring applications.
We provided a concrete experience on how an established
baseline has been improved through the development of engi-
neering tools. In practice, the usage of such tools guarantees an
increased automation in the engineering process of the whole
use case, thus reducing operational costs, as well as facilitating
the on-boarding of third-party legacy devices. Both the Eclipse
Arrowhead framework and the WoT paradigm have been used
extensively in pair. As a future work, we expect to enhance the
automation further by: (i) automatically issue the Configurator
with optimal parameters based on environmental conditions
and (ii) shift the data storage and governance to the cloud, for
a wider fruition by different stakeholders.

ACKNOWLEDGMENT

This research is funded by ECSEL, the Electronic Com-
ponents and Systems for European Leadership Joint Under-
taking under grant agreement No 826452 (Arrowhead Tools),
supported by the European Union Horizon 2020 research
and innovation programme and by the member states, and
by INAIL within the BRIC/2018, ID=11 framework, project
MAC4PRO (“Smart maintenance of industrial plants and civil
structures via innovative monitoring technologies and prog-
nostic approaches”).

Fig. 4. Screenshots showing the temporal effects of the sampling frequency change made through the Arrowhead Configurator tool for 2000 samples length
data series: starting from an initial data rate of 416Hz, which corresponds to 4.807 s (step 1), the acquisition time is halved (i.e. 2.401 s) (step 3) after setting
the sample rate to 833Hz (step 2).

Fig. 5. A snapshot of the Gas Sensor values on the MODRON Dashboard.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “Understanding the internet
of things: definition, potentials, and societal role of a fast evolving
paradigm,” Ad Hoc Networks, vol. 56, pp. 122–140, 2017.

[2] R. B. Randall, Vibration-based condition monitoring: industrial, auto-
motive and aerospace applications. John Wiley & Sons, 2021.

[3] A. Stetco, F. Dinmohammadi, X. Zhao, V. Robu, D. Flynn, M. Barnes,
J. Keane, and G. Nenadic, “Machine learning methods for wind turbine
condition monitoring: A review,” Renewable energy, vol. 133, pp. 620–
635, 2019.

[4] G. Wang, M. Nixon, and M. Boudreaux, “Toward cloud-assisted in-
dustrial iot platform for large-scale continuous condition monitoring,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 1193–1205, 2019.

[5] O. Givehchi, K. Landsdorf, P. Simoens, and A. W. Colombo, “Interop-
erability for industrial cyber-physical systems: An approach for legacy
systems,” IEEE Transactions on Industrial Informatics, vol. 13, no. 6,
pp. 3370–3378, 2017.

[6] M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K. Toumura, and
K. Kajimoto, “Web of things (wot) architecture,” W3C recommendation,
Apr. 2020. https://www.w3.org/TR/wot-architecture/.

[7] C. Aguzzi, L. Gigli, L. Sciullo, A. Trotta, F. Zonzini, L. De Marchi,
M. Di Felice, A. Marzani, and T. S. Cinotti, “Modron: A scalable and
interoperable web of things platform for structural health monitoring,”
in 2021 IEEE 18th Annual Consumer Communications & Networking
Conference (CCNC), pp. 1–7, IEEE, 2021.

[8] J. Delsing, Iot automation: Arrowhead framework. CRC Press, 2017.
[9] L. Sciullo, F. Montori, A. Trotta, M. Di Felice, and T. S. Cinotti,

“Discovering web things as services within the arrowhead framework,”
in 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS),
vol. 1, pp. 571–576, IEEE, 2020.

[10] G. Urgese, P. Azzoni, J. van Deventer, J. Delsing, and E. Macii, “An
engineering process model for managing a digitalised life-cycle of
products in the industry 4.0,” in NOMS 2020-2020 IEEE/IFIP Network
Operations and Management Symposium, pp. 1–6, IEEE, 2020.

[11] G. Kulcsár, M. S. Tatara, and F. Montori, “Toolchain modeling: Com-
prehensive engineering plans for industry 4.0,” in IECON 2020 The 46th
Annual Conference of the IEEE Industrial Electronics Society, pp. 4541–
4546, IEEE, 2020.

[12] F. Zonzini, C. Aguzzi, L. Gigli, L. Sciullo, N. Testoni, L. De Marchi,
M. Di Felice, T. S. Cinotti, C. Mennuti, and A. Marzani, “Structural
health monitoring and prognostic of industrial plants and civil structures:
A sensor to cloud architecture,” IEEE Instrumentation & Measurement
Magazine, vol. 23, no. 9, pp. 21–27, 2020.

[13] N. Testoni, C. Aguzzi, V. Arditi, F. Zonzini, L. De Marchi, A. Marzani,
and T. S. Cinotti, “A sensor network with embedded data processing and
data-to-cloud capabilities for vibration-based real-time shm,” Journal of
Sensors, vol. 2018, 2018.

[14] C. Bruno, A. Licciardello, G. A. M. Nastasi, F. Passaniti, C. Brigante,
F. Sudano, A. Faulisi, and E. Alessi, “Embedded artificial intelligence
approach for gas recognition in smart agriculture applications using low
cost mox gas sensors,” in 2021 Smart Systems Integration (SSI), pp. 1–5,
IEEE, 2021.

	Copertina_postprint_IRIS_UNIBO
	AHT_IECON_2021

