

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

COMPARING DIRECT CARBONATE and STANDARD GRAPHITE 14C DETERMINATIONS of BIOGENIC CARBONATES

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:

COMPARING DIRECT CARBONATE and STANDARD GRAPHITE 14C DETERMINATIONS of BIOGENIC CARBONATES / Bright J.; Ebert C.; Kosnik M.A.; Southon J.R.; Whitacre K.; Albano P.G.; Flores C.; Frazer T.K.; Hua Q.; Kowalewski M.; Martinelli J.C.; Oakley D.; Parker W.G.; Retelle M.; Do Nascimento Ritter M.; Rivadeneira M.M.; Scarponi D.; Yanes Y.; Zuschin M.; Kaufman D.S.. - In: RADIOCARBON. - ISSN 0033-8222. - STAMPA. - 63:2(2021), pp. 387-403. [10.1017/RDC.2020.131]

Availability:

This version is available at: https://hdl.handle.net/11585/845600 since: 2024-05-22

Published:

DOI: http://doi.org/10.1017/RDC.2020.131

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version. This is the final peer-reviewed accepted manuscript of:

Bright J.; Ebert C.; Kosnik M.A.; Southon J.R.; Whitacre K.; Albano P.G.; Flores C.; Frazer T.K.; Hua Q.; Kowalewski M.; Martinelli J.C.; Oakley D.; Parker W.G.; Retelle M.; Do Nascimento Ritter M.; Rivadeneira M.M.; Scarponi D.; Yanes Y.; Zuschin M.; Kaufman D.S.: *Comparing direct carbonate and standard graphite 14C determinations of biogenic carbonates.*

RADIOCARBON. Vol. 63 ISSN 0033-8222

DOI: 10.1017/RDC.2020.131

The final published version is available online at:

https://dx.doi.org/10.1017/RDC.2020.131

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (<u>https://cris.unibo.it/</u>)

When citing, please refer to the published version.

1	Comparing direct carbonate and standard graphite ¹⁴ C determinations from an assortment
2	of biogenic carbonates
3	
4	Jordon Bright ^{1*} , Chris Ebert ² , Matthew A. Kosnik ³ , Darrell S. Kaufman ¹ , Katherine Whitacre ¹ ,
5	John R. Southon ⁴ , Paolo G. Albano ⁵ , Carola Flores ^{6,7} , Thomas K. Frazer ⁸ , Quan Hua ⁹ , Michal
6	Kowalewski ¹⁰ , Julieta C. Martinelli ¹¹ , David Oakley ¹² , Wesley G. Parker ¹³ , Michael Retelle ¹⁴ ,
7	Matias do Nascimento Ritter ¹⁵ , Marcelo M. Rivadeneira ^{6,7,16} , Daniele Scarponi ¹⁷ , Yurena
8	Yanes ¹³ , Martin Zuschin ⁵
9	
10	¹ School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, 86011, USA
11	² Center for Ecosystem Sciences and Society, and Department of Biological Sciences, Northern
12	Arizona University, Flagstaff, AZ, 86011, USA
13	³ Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
14	⁴ Keck Carbon Cycle AMS Laboratory, Department of Earth System Science, University of
15	California at Irvine, Irvine, CA 92697, USA
16	⁵ Department of Paleontology, University of Vienna, Althanstrasse 14, Vienna, Austria
17	⁶ Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Av. Ossandón 877, C.P. 1781681,
18	Coquimbo, Chile
19	⁷ Departmento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del
20	Norte, Av. Larrondo 1281, Coquimbo, Chile
21	⁸ School of Natural Resources and Environment, University of Florida, Gainesville, FL, 32611,
22	USA

23	⁹ Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC,
24	NSW 2232, Australia
25	¹⁰ Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
26	¹¹ School of Fishery and Aquatic Sciences, University of Washington, Seattle, WA, 98105, USA
27	¹² Department of Geosciences, Pennsylvania State University, University Park, PA, 16802, USA
28	¹³ Department of Geology, University of Cincinnati, Cincinnati, OH, 45221, USA
29	¹⁴ Department of Geology, Bates University, Lewiston, ME, 04240, USA
30	¹⁵ Centro de Estudos Costeiros, Limnológicos e Marinhos, Campus Litoral Norte, Universidade
31	Federal do Rio Grande do Sul, Imbé, 95625-00, Rio Grande do Sul, Brazil
32	¹⁶ Departmento de Biología, Universidad de la Serena, Av. Raul Bitrán 1305, La Serena, Chile
33	¹⁷ Department of Biological, Geological and Environmental Sciences, University of Bologna,
34	Piazza di Porta San Donato, I-40126 Bologna, Italy
35	
36	* Corresponding author.
37	
38	
39	
40	
41	
42	
43	
44	
45	

46

47 ABSTRACT

48

49	The direct carbonate procedure for AMS ¹⁴ C dating of sub-milligram samples of biogenic
50	carbonate without graphitization is becoming widely used in a variety of studies. We compare
51	the results of 153 paired direct carbonate and standard graphite ¹⁴ C determinations on single
52	specimens of an assortment of biogenic carbonates. An RMA regression shows a strong
53	relationship between direct carbonate and graphite percent Modern Carbon (pMC) values (m =
54	0.996; 95% CI (0.991 to 1.001)). An analysis of differences and a 95% confidence interval using
55	$\pm 1\sigma$ analytical errors on pMC reveals that there is no significant difference between direct
56	carbonate and graphite pMC values for 76% of analyzed specimens, although variation in direct
57	carbonate pMC is underestimated. Offset between the two methods is typically within 2 pMC,
58	with 61% of the differences being positive. Of the 36 samples that did yield significant
59	differences, all but three missed the 95% significance threshold by 1.2 pMC or less. The
60	statistical disagreement in younger samples is driven by low analytical error, not increased
61	variability or bias. Direct carbonate ¹⁴ C dating of biogenic carbonates is a cost-effective and
62	efficient complement to standard graphite ¹⁴ C dating.

63

64 INTRODUCTION

65

An increasing variety of scientific investigations require a large number of radiocarbon analyses
to address their underlying research questions, as exemplified by recent studies assessing the
degree of time-averaging in natural or anthropological shelly accumulations (Kowalewski et al.,

2018; New et al., 2019, Parker et al., 2019; Albano et al., 2020). These studies are generally 69 constrained by their analytical budget rather than by the number of samples suitable for analysis, 70 whereas some are limited by the size of the targeted specimens. This is true for a variety of 71 sample types, including those based on biogenic carbonate. The traditional graphite AMS ¹⁴C 72 technique requires 8 to 10 mg of carbonate, which excludes dating individual small bivalve 73 shells, for example. In response to this growing need, a direct carbonate AMS ¹⁴C sputter 74 method was developed by Longworth et al. (2013) that allows sub-milligram samples of 75 carbonate powder to be analyzed quickly and efficiently. Several publications have highlighted 76 the utility of direct carbonate ¹⁴C dating where it has been used on its own or in combination 77 with amino acid racemization to determine time-averaging in taphonomic studies (Dominguez et 78 al., 2016; Kosnik et al., 2017; Ritter et al., 2017; Parker et al., 2019; Albano et al., 2020) or 79 coupled with standard precision ¹⁴C and uranium/thorium dating to determine coral age 80 distributions (Grothe et al., 2016). 81

82

The direct carbonate AMS ¹⁴C technique uses a cesium sputter source and a metal powder as a 83 catalyst without the need to convert the carbonate sample to graphite, but yields beam currents 84 85 about an order of magnitude lower than the graphite method (Bush et al., 2013; Hua et al., 2019) which leads to the lower precision. Longworth et al. (2013) analyzed several materials with 86 87 percent modern carbon (pMC) between 0.25 and 94.21. Using titanium powder, the method produced 1σ errors that ranged from 0.07 and 0.94 pMC, whereas 1σ errors on the same 88 materials ranged from 0.08 and 0.87 pMC using graphite. Bush et al. (2013) analyzed numerous 89 coral samples containing 0.10 to 89.06 pMC. Using iron powder, the method produced 1σ errors 90 that ranged from 0.31 and 0.62 pMC, whereas 1σ errors on the same materials ranged from 0.03 91

92	and 0.11 pMC using graphite. Subsequent study by Hua et al. (2019) further established the
93	utility of the direct carbonate technique, testing iron (Fe), niobium (Nb), and silver (Ag) powders
94	before concluding that niobium powder was superior because it produced the highest beam
95	current and lowest background. Smith et al. (2010) showed a strong positive relationship
96	between carbon/Fe (μ g/mg) and beam currents (R ² = 0.84). If the amount of carbonate powder
97	and Nb or Fe powder in a target are the same, then the number of Nb ion present is about 60%
98	that of Fe. Therefore, the carbon/metal ion ratio is higher when using Nb, which may explain the
99	higher beam currents of direct carbonate ¹⁴ C determinations that use Nb powder.
100	
101	Several studies have compared small numbers of paired direct carbonate and graphite ¹⁴ C results,
102	showing that the two methods are comparable (Bush et al., 2013; Kosnik et al., 2017;
103	Kowalewski et al., 2018; Hua et al., 2019, New et al., 2019; Albano et al., 2020). In this paper,
104	we have compiled a comprehensive dataset ($n = 153$) of published and unpublished direct
105	carbonate and graphite ¹⁴ C determinations from biogenic carbonates belonging to several
106	taxonomic groups (mollusks, corals, echinoderms, brachiopods) to further quantify any bias in
107	the results based on the direct carbonate method.
108	

109 MATERIALS AND METHODS

110

111 The carbonates featured in this study are all biogenic, as opposed to inorganically precipitated

- 112 carbonate (e.g., limestone, speleothems). Samples comprise primarily aragonitic valves from the
- 113 clams Arctica islandica (Linnaeus, 1767), Chamelea gallina (Linnaeus, 1758), Codakia
- 114 orbicularis (Linnaeus, 1758), Corbula gibba (Olivi, 1792), Dosinia caerulea (Reeve, 1850),

115	Mactra isabelleana d'Orbigny, 1846, Mulinia edulis (King, 1832), Tawera spissa (Deshayes,
116	1835), Tucetona pectinata (Gmelin, 1791), from open nomenclature species of the clams
117	Timoclea and Transennella, from shells of the terrestrial snails Actinella nitidiuscula (Sowerby,
118	1824) and Polygyra septemvolva Say, 1818, and from skeletal material of unidentified corals. As
119	for the calcite polymorph, samples include valves from the brachiopod Gryphus vitreus (Born,
120	1778) and plates from the sand dollars Peronella peronii (Agassiz, 1841) and Leodia
121	sexiesperforata (Leske, 1778). Several samples are shells that contain a mixture of aragonite and
122	calcite polymorphs. These are the gastropods (limpets) Fissurella maxima Sowerby, 1834 and
123	Patella candei d'Orbigny 1840, the mussel Choromytilus chorus (Molina, 1782), the cockle
124	Fulvia tenuicostata (Lamarck, 1819), the scallop Argopecten purpuratus (Lamarck, 1819), and
125	an open nomenclature species of the mussel Modiolus. References pertaining to the
126	mineralogical composition of the biogenic material used in this study are provided in the
127	Supplemental Information.
128	
129	Ninety-three paired carbonate samples were processed at Northern Arizona University's (NAU)
130	Amino Acid Geochronology Lab (AAGL) and NAU's Center for Ecosystem Science and Society
131	(Ecoss) between 2015 and 2019. Most of the samples processed at NAU have been previously
132	published (Kosnik et al., 2017; Oakley et al., 2017; Ritter et al., 2017; Kowalewski et al., 2018;
133	Albano et al., 2020) and are detailed in the Supplemental Information.
134	
135	Sample preparation at NAU followed protocols modified from Bush et al. (2013). Blanks,
136	standards, and unknowns were sonicated in deionized distilled water (DDI water; 16.7
137	Mohm*cm), rinsed three times with DDI water, leached with 2N ACS grade hydrochloric acid,

138	and then finally rinsed three times with DDI to remove surface contaminants before being dried
139	in a 50° C oven overnight. Samples for direct carbonate ¹⁴ C analysis were ground to a fine
140	powder using an agate mortar and pestle and manually mixed with 6.0 to 7.0 mg of metal powder
141	in pre-baked (3 hr at 500° C) Kimble borosilicate glass culture tubes (6 mm OD x 50 mm).
142	Samples processed at NAU before June 2018 were mixed with Fe powder (Alfa Aesar, -325
143	mesh, reduced, 98%) whereas samples processed after June 2018 were mixed with Nb powder
144	(Alfa Aesar Puratronic, -325 mesh, 99.99%), following a change from Fe to Nb powders at the
145	Keck Carbon Cycle AMS facility at the University of California , Irvine (UCI) in 2018.
146	Powdered carbonate sample masses ranged between 0.30 and 0.50 mg, which equates to 36 to 60
147	μg of carbon, respectively. The culture tubes were flushed with N ₂ gas to reduce contamination
148	from atmospheric carbon and capped with Supelco plastic column caps (1/4" OD) until the
149	carbonate-metal powder mixture was pressed into targets.
150	

Samples processed at NAU for standard graphite AMS ¹⁴C analysis were graphitized at NAU's 151 Ecoss lab following UCI protocols (sites.uci.edu/keckams/protocols). An aliquot of 7 to 8 mg of 152 carbonate was placed in 13 x 75 mm BD Vacutainer plastic collection tubes and sealed with a 153 red/grey conventional stopper closure. Ambient atmosphere was removed via vacuum before a 154 small-bore needle was used to dispense 8 ml of ACS grade 85% phosphoric acid into each tube. 155 The tubes were placed in a heating block at 70° C until the effervescence stopped. The evolved 156 157 gas was removed via vacuum. Water vapor was removed by passing the gas through a mixture of liquid nitrogen and ethanol at approximately -50° C. Carbon dioxide was condensed to a solid 158 using a liquid nitrogen bath and the remaining gasses were drawn off. The purified CO₂ was 159

converted to graphite by reaction with Fe powder (Alfa Aesar, -325 mesh, reduced, 98%) in a
hydrogen reducing environment at 550° C for 3 hr (Vogel et al., 1984).
The carbonate-metal or graphite-metal mixtures were pressed into pre-drilled (4.1 mm depth)
aluminum targets at 400 psi, rotated 90°, and pressed again at 400 psi. Direct carbonate targets
were pressed within 72 hr of powdering the first sample. The IAEA C1 blank and IAEA C2
standard were pressed on the same day they were powdered. Processing a direct carbonate ¹⁴ C
sample, from raw shell to a finished pressed target, typically takes about 25 minutes. In
comparison, processing a typical graphite ¹⁴ C sample, from raw shell to final pressed target,
typically takes about 60 minutes. The pressed targets were sent to UCI for AMS ¹⁴ C analysis
(Southon and Santos, 2007).
We compiled 60 additional paired determinations generated at UCI or the Australian Nuclear
Science and Technology Organisation (ANSTO) from Bush et al. (2011), New et al. (2019),
Parker et al. (2019), and Hua et al. (2019). The respective publications provide the lab

175 procedures and methods used for the additional paired determinations. Co-authors contributed all

unpublished ages and previously unreported supporting information from UCI and ANSTO.

177

Radiocarbon concentrations are given as percent of the Modern (pMC) standard following the
conventions of Stuvier and Polach (1977). Sample preparation backgrounds have been subtracted
based on measurements of ¹⁴C-free calcite (IAEA C1) using an isotope mixing calculation
(Donahue et al., 1990). All graphite ¹⁴C determinations have been corrected for isotopic
fractionation according to conventions of Stuvier and Polach (1977) with δ¹³C values measured

Page 10 of 38

183	on prepared graphite using the AMS spectrometer. These can differ from the $\delta^{13}C$ values of the
184	original material and are not provided.
185	
186	Differences were calculated as "direct carbonate – graphite pMC", with errors calculated in
187	quadrature. The bivariate relationship between direct carbonate and graphite pMC values was
188	evaluated using a reduced major axis regression (RMA) analysis. Unlike the classic ordinary
189	least squares regressions (OLS), the RMA – also known as standardized major axis, geometric
190	mean regression, or model II regression – minimizes the residual variation across both axes, not
191	only the Y-axis, and hence accounts for measurement error in both axes (Quinn and Keough
192	2002, Smith 2009). The RMA regression avoids assumptions about the cause-and-effect between
193	direct carbonate and graphite pMC values (Smith, 2009). The PAST 4.03 statistical program
194	(Hammer et al., 2001) was used for the RMA with 95% bootstrapped confidence intervals $[N =$
195	1999].
196	
197	RESULTS AND DISCUSSION
198	
199	Blank (IAEA C1) and Holocene standard (IAEA C2) performance
200	
201	Graphite ¹⁴ C analysis of NAU's marble blank (IAEA C1) yields 0.44 ± 0.25 pMC (n = 8). Direct
202	carbonate ^{14}C analysis of NAU's C1 blank yields 2.16 \pm 0.42 pMC (n = 22) using Fe and 1.49 \pm
203	0.67 pMC (n = 115) using Nb powder. Our direct carbonate blank results are similar to Hua et al.
204	(2019) who demonstrated that Nb powder yields cleaner blanks than either Fe or Ag powders.

The source of the direct carbonate ¹⁴C contamination in the NAU blank is unclear but likely 205

206	stems from a variety of sources including, but not limited to, contamination during processing,
207	carbon contamination in both the metal powders and the C1 powder itself, and uptake from
208	atmospheric sources (Longworth et al., 2013). It is well known that powdered carbonate adsorbs
209	atmospheric CO_2 over several years (Gagnon and Jones, 1993) but it also rapidly adsorbs CO_2
210	after being baked at 500° C to oxidize indigenous and adsorbed carbon (Bush et al., 2013). A
211	small test conducted at NAU reveals that C1 powder mixed with Nb and stored in capped glass
212	ampules under N ₂ and then pressed immediately, pressed after four days, and pressed after nine
213	days yields similar pMC (2.5 ± 0.4 (n = 2); 2.3 ± 0.3 (n = 4); 2.1 ± 0.2 (n = 2), respectively). A
214	subsequent test used a ¹⁴ C-dead <i>Rangia lecontei</i> (Conrad, 1853) shell from the Early and Middle
215	Pleistocene Brawley Formation (Kirby et al., 2007). Targets pressed immediately after
216	powdering and pressed after four and nine days storage under N ₂ yielded similar pMC (1.7 ± 0.1
217	$(n = 4)$; 1.6 ± 0.1 $(n = 4)$; 1.8 ± 0.1 $(n = 4)$, respectively). The small difference in pMC between
218	the C1 blank and the <i>R. lecontei</i> blank is within the range of analytical variability of our C1
219	blank, thus, we contend that the marble and mollusc shell powders do not behave differently
220	during processing. Neither set of blanks suggest that adsorption of atmospheric CO ₂ during
221	processing is a significant source of contamination, unless it occurs almost instantaneously upon
222	powdering. As standard practice, all direct carbonate ¹⁴ C blanks and standards processed at NAU
223	are pressed into targets on the same day they are powdered. Unknowns are powdered, stored
224	under $N_{2,}$ and pressed into targets within 72 hours. The metal powder itself is probably a larger
225	source of carbon contamination (Bush et al., 2013; Hua et al., 2019) than is adsorption of
226	atmospheric CO ₂ .

228	Graphite ¹⁴ C analysis of NAU's Holocene carbonate standard (IAEA C2) yields 40.52 ± 0.74
229	pMC (n = 7). The C2 standard is consistent with the consensus value within 1σ error (41.14 ±
230	0.03 pMC; Rozanski et al., 1992). Direct carbonate ¹⁴ C analysis of NAU's C2 standard yields
231	41.30 ± 0.53 pMC (n = 25) using Fe powder and 40.71 ± 0.60 pMC (n = 114) using Nb powder.
232	Both values are consistent with the consensus value within 1σ error (41.14 ± 0.03 pMC;
233	Rozanski et al., 1992). The difference in mean pMC is likely due to the smaller number of C2
234	standards analyzed with Fe powder. Thus, there is evidence for extraneous young carbon
235	contamination for the C1 and R. lecontei blanks (see previous section), but not for the C2
236	standard. Recently, Hua et al. (2019) demonstrated that the ¹⁴ C level of carbon contamination at
237	ANSTO is similar to the C2 standard pMC. Thus, extraneous carbon contamination would be
238	detectible in the C1 blank, but not in the C2 standard.
239	
240	Key differences between direct carbonate and graphite ¹⁴ C determination for biominerals
241	
242	The traditional graphite ¹⁴ C processing involves dissolving biominerals in phosphoric acid
243	followed by converting the resultant CO_2 to graphite. Negatively charged carbon ions are
244	produced by sputtering a mixture of graphite and iron powder with cesium ions and then
245	extracting the negatively charged carbon ions using an electric potential (Longworth et al.,
246	2013). The direct carbonate ¹⁴ C method bypasses the graphitization process and uses cesium ions

- 247 and an electrical potential to extract negatively charged carbon ions directly from powdered
- 248 carbonate mixed with a metal powder.

250	The presence/absence of the acid dissolution step is a key difference between two methods, and
251	might have interesting implications regarding the sources of carbon measured by the two
252	methods. Various studies suggest that mollusk shells (and other biominerals) contain a few tenths
253	of a percent up to 5% by mass organic material, or "conchiolin" (Fremy, 1855), which is an
254	integral structural component within the biomineral (Galstoff, 1964; Keith et al., 1993; Cuif et
255	al., 2004; Zhang and Zhang, 2006; Hadden et al., 2019). It is unclear if the acid dissolution of a
256	biomineral during traditional graphite ¹⁴ C processing can liberate carbon from conchiolin.
257	Presumably, conchiolin would be an additional source of carbon present only in direct carbonate
258	¹⁴ C determinations. A non-exhaustive literature search suggests that paired shell and conchiolin
259	¹⁴ C ages (or ¹⁴ C activities) are similar (Berger et al., 1965; Burliegh, 1983; Haynes and Mead,
260	1987; Hadden et al., 2019). In some environments, however, organisms may preferentially
261	incorporate significant amounts of ¹⁴ C-dead carbon in their conchiolin that is not present in their
262	soft tissues or shell carbonate (Masters and Bada, 1977; Hadden et al., 2018). We cautiously
263	assume that small amounts of conchiolin in the biominerals featured in this study do not
264	significantly influence the direct carbonate pMC values, but the topic deserves additional study.
265	
266	Direct carbonate versus graphite pMC determinations

267

We compiled pMC values from 153 individual carbonate specimens analyzed using both the direct carbonate and graphite ¹⁴C techniques. Seventy-eight and 75 direct carbonate targets used Fe and Nb powder, respectively (Supplemental Information). Bush et al. (2013) concluded that the direct carbonate ¹⁴C technique is less reliable for their oldest coral samples (> 30 ka BP), thus, their samples yielding \leq 1.3 pMC using graphite are excluded in this comparison. One

sample of *Mactra isabelleana* powder yielded strongly dissimilar graphite (78.5 pMC) and direct 273 carbonate (105.7 pMC) results when analyzed seven months apart. Two samples of Actinella 274 *nitidiuscula* material also produced strongly dissimilar graphite (0.91 and 0.36 pMC) and direct 275 carbonate (2.0 and 2.5 pMC) results, respectively. The reason for the discrepancies is unclear. 276 All three samples used Fe powder in the direct carbonate ¹⁴C determinations. Two of the samples 277 278 yield pMC values close to background and are therefore sensitive to contamination, and the third sample yielded pMC showing bomb ¹⁴C contamination when analyzed with the direct carbonate 279 technique whereas it did not when analyzed as graphite, thus, these three samples were excluded 280 281 from further discussion. The remaining 150 specimens yield graphite and direct carbonate pMC values between 2.2 and 106.0 (Supplemental Information). 282

283

Notably, the 1 σ pMC analytical errors associated with the direct carbonate ¹⁴C technique are typically two to eight times higher than for their graphite counterpart (Fig. 1A). There is a moderately weak negative relationships between the magnitude of the relative 1 σ analytical errors and a sample's graphite pMC when using Fe (r = -0.62) and Nb (r = -0.17) in direct carbonate ¹⁴C analyses (Fig. 1B). With better counting statistics and less proportional background interference, direct carbonate pMC measurements on young samples tend to be indistinguishable from their graphite counterpart measurements as compared to older samples.

An RMA regression shows a strong relationship between direct carbonate and graphite pMC (n = 150) (Fig. 2A). The slope of an RMA regression line is defined as the standard deviation of the y-axis values (direct carbonate pMC) divided by the standard deviation of the x-axis values (graphite pMC). The y-intercept is defined by the regression line passing through the bivariate

Radiocarbon

296	centroid, or the point $(\overline{x},\overline{y})$, which here would be the mean of the graphite pMC values and the
297	mean of the direct carbonate pMC values, respectively. The RMA regression using our entire
298	compilation (Fig. 2A) yields a slope near 1.000 (0.996 ± 0.003 ; 95% bootstrapped CI [N = 1999]
299	of 0.991 to 1.001), and a y-intercept slightly above 0.00 (0.42; 95% bootstrapped CI [N = 1999]
300	of 0.15 to 0.67) (Fig. 1A). We observe slight differences in the RMA regression results when the
301	direct carbonate ¹⁴ C determinations using Fe and Nb are assessed individually (Figs. 2B and 2C).
302	Variability in the direct carbonate ¹⁴ C determinations using Fe powder is similar to that of their
303	graphitized counterparts (i.e., RMA slope of 0.999± 0.003; Fig. 2B). In contrast, the lower RMA
304	slope of 0.988 ± 0.006 for the Nb-graphite pairs (Fig. 2C) reveals that the direct carbonate ¹⁴ C
305	determinations using Nb powder yield pMC values that are slightly less variable than their
306	graphite counterparts. The difference in the Fe-only and Nb-only RMA regression slopes is small
307	and overlap at 2σ errors. Thus, we contend that the differences in pMC values between the direct
308	carbonate and graphite ¹⁴ C techniques is insignificant for most analytical goals.
309	
310	The vast majority of direct carbonate pMC values are comparable to their graphite counterparts.

Seventy-seven percent of differences are ± 1.0 pMC, and 94% percent are ± 2.0 pMC. Overall, 311

we observe that 61% of differences are positive (Fig. 2A). When considered individually, 312

however, 69% of the direct carbonate ¹⁴C determinations using Fe yield positive differences 313

whereas the direct carbonate ¹⁴C determinations using Nb yield differences that are more equally 314

distributed, but still with a slight positive skew (53%) (Figs. 2B and 2C). The mean value of the 315

differences is 0.19 pMC (95% CI: 0.04 to 0.34 pMC) for the entire compilation, indicating that 316

317 the direct carbonate ¹⁴C technique yields pMC values slightly higher than the graphite technique.

Much of the offset in contained in the direct carbonate determinations using Fe powder, 318

however. When considered individually, the mean value of the Fe-graphite differences is 0.26 319 pMC (95% CI: 0.06 to 0.46 pMC), whereas the mean of the Nb-graphite differences is roughly 320 half that, at 0.11 pMC (95% CI: -0.23 to 0.34 pMC). Dividing the differences by the direct 321 carbonate pMC value yields a coefficient of variation of 0.9% (95% CI: -0.65% to 1.58%) for the 322 entire compilation. When considered individually, the coefficient of variation for the Fe and Nb 323 324 differences are 1.6% (95% CI: 0.3% to 2.8%) and 0.3% (95% CI: -0.3% to 0.6%) respectively. Collectively, this reveals a slight positive bias in direct carbonate ¹⁴C measurements relative to 325 the graphite technique, with a more pronounced bias when using Fe powder. 326

327

The reason for the positively skewed differences (Fig. 2A, Fig. 2B) and for why the two metal 328 powders perform differently is unclear. One potential explanation is the adsorption of young 329 atmospheric CO₂ during the powdering process (e.g., Kosnik et al., 2017). However, adsorption 330 of CO₂ reasonably should affect all of the biomineral powders similarly, and not show a 331 332 preference for the samples using Fe powder. Kosnik et al. (2017) suggested that perhaps the blank (marble) powder adsorbs CO₂ less efficiently than the biomineral powders, which would 333 lead to excess adsorbed atmospheric CO₂ influence on biomineral pMC after blank subtraction. 334 335 A blank under-correction of this sort should also affect the carbonate powders mixed with both metals similarly, rather than preferentially affecting the carbonate powders mixed with Fe (Figs. 336 2B and 2C). Finally, we did not detect any adverse adsorption of atmospheric CO_2 in our blank 337 marble powder or on ¹⁴C-dead mollusk shell powder after storage under N₂ for up to 9 days (see 338 previous discussion of blank performance). Thus, adsorption of CO₂ during powdering does not 339 340 adequately explain the higher tendency for positive differences when using Fe powder (Fig. 2B). 341 It is conceivable that the more equitable differences using Nb powder (Fig. 2C) is related to the

342	improved beam current and reduced uncertainties when using Nb powder (Hua et al., 2019). We
343	believe that our compilation is the largest of its kind, but it may still be too small to determine
344	the reason for the positive skew in differences when using Fe powder (Fig. 2B).
345	
346	The majority of the individual differences in our compilation (76%) include 0 at 95% CI,
347	indicating there is no significant difference between the majority of paired direct carbonate and
348	graphite pMC values (Supplemental Information). However, 36 of the differences (24%) do not
349	meet this criterion. These differences are evenly split between direct carbonate ¹⁴ C
350	determinations using Fe powder ($n = 19$) and Nb powder ($n = 17$) (Table 1). Thirty-one of the 36
351	differences that do not include 0 are from samples that yield > 50 pMC as graphite, and the
352	remaining five come from samples that yield < 50 pMC as graphite (Table 1). All five of the
353	older samples yield differences that miss the 95% CI threshold by 0.5 pMC or less (Table 1). For
354	the younger samples, 28/31 of the differences miss the 95% CI threshold by less than 1.2 pMC.
355	The remaining three differences miss the 95% CI threshold by 1.3, 1.7, and 1.8 pMC (Table 1).
356	
357	We acknowledge and caution that our study is limited to comparing the results of one direct
358	carbonate and one graphite ¹⁴ C analyses per individual biomineral specimen. Several of the
359	results complied from Bush et al. (2013) comprise multiple analyses per coral specimen, but the
360	overwhelming majority of our comparisons are based on single paired results (Supplemental
361	Information). We calculated the weighted mean of the graphite and direct carbonate ¹⁴ C values
362	(weighted by 1/variance) and determined the number of biomineral specimens with 1σ analytical
363	errors that overlapped the weighted mean. Ninety-three percent of the graphite pMC values
364	overlap the weighted mean (versus the expected 68%), but only 45% of the direct carbonate

pMC values do (versus the expected 68%). Thus, the reported uncertainty in the direct carbonate 365 ¹⁴C determinations underestimates the actual variance. We also suspect that some of the 366 differences noted in this study may reflect slight variability between subsamples of a single 367 biomineral specimen. Future comparative studies would benefit from analyzing each specimen 368 multiple times with each AMS ¹⁴C technique to more fully assess if there are statistically 369 370 significant differences between the two techniques. Researchers typically only date a biomineral specimen once rather than multiple times, thus our study is more directly analogous to that 371 approach. Keeping in mind that the direct carbonate pMC variance is underestimated and that we 372 373 are using a single paired graphite and direct carbonate comparison per specimen, we contend that our study shows that the differences between the direct carbonate and graphite ¹⁴C techniques is 374 insignificant for most analytical goals. 375

376

We also observe a potentially interesting association between particular taxa and the differences 377 378 that do not include 0 at a 95% CI. For example, the clams Arctica islandica (6/6 analyses) and Modiolus sp. (4/10 analyses), the sand dollar Peronella peronii (5/12 analyses), and the 379 brachiopod Gryphus vitreus (3/6 analyses) appear to be disproportionately affected (Tables 1 and 380 381 2). The cause of this pattern is unclear. Carbonate mineralogy can be excluded because both aragonitic samples and calcitic samples populate the group (Table 1). Furthermore, some 382 383 differences from the same taxon do include 0 at a 95% CI, for example, the remaining 3/6384 Gryphus vitreus shells (Table 2). Thus, neither the organism (in a broader taxonomic sense) nor the carbonate mineralogy of the various skeletal materials is a satisfactory explanation. Using Fe 385 or Nb powder for direct carbonate ¹⁴C analysis does not explain why some taxa seem more 386 387 affected than others (Table 1). The apparent patterns in Tables 1 and 2 may be an artifact of the

388 small sample sizes per taxon, but it may hint that taxonomy or perhaps environmental variables 389 specific to the habitat or life cycle of each taxon requires further consideration (e.g., Kosnik et 390 al., 2017; Hadden et al., 2018). Larger sample sizes and additional tests are needed to better 391 understand what may be causing differences between direct carbonate and graphite pMC 392 determinations.

393

To further explore the relationship between the direct carbonate and graphite ¹⁴C methods, the 394 pMC differences shown in Figure 2A are plotted with respect to their respective taxonomic 395 396 classifications in Figure 3. As noted previously in our discussion, the direct carbonate pMC values are more consistently higher than their graphite equivalents (Fig. 3). There are hints in 397 Figure 3 that some biogenic carbonates might be prone to producing direct carbonate pMC 398 values that are systematically offset from their graphite counterpart, although again, the sample 399 sizes per taxon are admittedly small (1 to 24 individuals). The metal powder used in the direct 400 carbonate ¹⁴C technique again does not appear to be a controlling factor at the taxonomic level 401 (Fig. 3). Note that the brachiopod *Gryphus vitreus* yields exclusively negative differences using 402 Nb powder, the clams *Tucetona pectinata* and *Transennella* sp. yield exclusively positive 403 differences using Fe powder, and the echinoderm Peronella peronii yields positive differences in 404 nine of 11 analyses using Nb powder (Fig. 3). Additional work is need to determine whether the 405 perceived taxonomic differences are real, for example if different taxa or perhaps different shells 406 407 from different environments contain consistently different amounts of conchiolin with different ¹⁴C activities than the surrounding shell carbonate (Hadden et al., 2018), or whether the 408 perceived differences are merely an artefact of small sample sizes. 409

To summarize, we find that 114/150 (76%) of the direct carbonate pMC values in this 411 compilation are statistically indistinguishable from their paired graphite pMC values (i.e., 412 differences include 0) at the 95% confidence interval, and of the 36 samples that are not, all but 413 three are less than 1.2 pMC beyond the 95% confidence threshold. All direct carbonate ¹⁴C 414 determinations, even the three with the largest differences exceeding the 95% CI threshold, show 415 416 offsets from their graphite pMC values that are insignificant for most analytical goals. We can confidently demonstrate that in the large majority of cases the direct carbonate ¹⁴C technique 417 yields pMC values from a variety of biogenic carbonates that are indistinguishable to pMC 418 values produced using the more costly and time-intensive graphite ¹⁴C technique. Additional 419 work is needed to better understand the origin of the increased uncertainty in the direct carbonate 420 ¹⁴C determinations, but even with this uncertainty, the technique is appropriate for a wide range 421 PR of applications. 422

423

424 CONCLUSIONS

425

This study compared 153 individual biogenic carbonate samples from echinoderms, mollusks, 426 brachiopods and corals that have been dated using both direct carbonate and graphite ¹⁴C 427 techniques. Three samples were excluded from discussion because their direct carbonate and 428 429 graphite pMC values were strongly discordant. The remaining 150 samples range from 2.2 to 106.0 pMC. The direct carbonate ¹⁴C technique produces 1σ pMC errors that are primarily two 430 to 8 times higher than the associated graphite errors, and there is a weak negative correlation 431 between the magnitude of the 1σ error differences and a sample's graphite pMC value. Our 432 comparison of 150 paired direct carbonate and graphite ¹⁴C determinations reveals a strong RMA 433

regression relationship between the two techniques (m = 0.996; 95% CI (0.991 to 1.001)), and 434 pMC values that are statistically indistinguishable from each other in 76% of the samples (at 435 95% CI). The variance in direct carbonate pMC values is underestimated, however. All but three 436 of the direct carbonate ¹⁴C determinations in this study were within 1.2 pMC of the 95% CI 437 threshold of being statistically indistinguishable from their graphite equivalent. Some types of 438 439 biogenic carbonates appear to produce direct carbonate pMC values that are consistently offset from their graphite values, but sample sizes are small and the paired pMC values still statistically 440 overlap in the vast majority of cases. The direct carbonate ¹⁴C technique yields pMC values that 441 overwhelmingly are indistinguishable from the standard graphite ¹⁴C technique, but with the 442 added benefit of more efficient laboratory preparation and processing. 443

444

445 ACKNOWLEDGEMENTS

446

This study is a collaboration between the Amino Acid Geochronology Laboratory and the Center
for Ecosystem Science and Society at Northern Arizona University, the Keck Carbon Cycle
AMS Laboratory at the University of California-Irvine, and the Australian Nuclear Science and
Technology Organisation.

451

452 This work is supported by grants NSF-1855381 (DSK), EAR-1559196 (DS), FONDECYT

453 3170913 (CF), FONDECYT 3160342 (JCM), FONDECYT 1140841, 1181300 and 1191452

454 (MMR), IODP/CAPES-091727/2014, and CNPq/MCTI-422766/2018-6 (MNR), EAR-1559196

455 (MK), NSF-1802153 (YY), and NSF-GRFP-1610397 (WGP). We thank Dan Cameron, Kathryn

456 Geyer, and Aibhlin Ryan (NAU) for assisting with the direct carbonate ¹⁴C samples. We thank

457	Jenny E. Ross for providing the <i>R. lecontei</i> shell from the Brawley Formation, and both Austin
458	Hendy (Natural History Museum of Los Angeles County) and Charles L. Powell, II, for
459	assistance with the taxonomic references. Thoughtful comments from the Associate Editor Pieter
460	Grootes and two anonymous reviewers greatly improved this manuscript.
461	
462	REFERENCES
463	
464	Agassiz L. 1841. Monographies d'Échinodermes vivans et fossiles. Échinites. Famille des
465	Clypéasteroides. 2 (Seconde Monographie). Des Scutelles. Neuchâtel, Switzerland, i-iv, 1-151,
466	pls 1-27.
467	
468	Albano PG, Hua Q, Kaufman DS, Tomašových A, Zuschin M, Agiadi K. 2020. Radiocarbon
469	dating supports bivalve-fish age coupling along a bathymetric gradient in high-resolution
470	paleoenvironmental studies. Geology 48:589-593, doi:10.1130/G47210.1.
471	
472	Berger R, Fergusson GJ, Libby WF, 1965. UCLA radiocarbon dates IV*. Radiocarbon 7:336-
473	371, doi:10.1017/S0033822200037310.
474	
475	Born I. 1778. Index rerum naturalium Musei Cæsarei Vindobonensis. Pars I.ma. Testacea.
476	Verzeichniß der natürlichen Seltenheiten des k. k. Naturalien Cabinets zu Wien. Erster Theil.
477	Schalthiere. [1-40], 1-458, [1-82]. Vindobonae; (Kraus).
478	

21 Cambridge University Press

- 479 Burleigh R. 1983. Two radiocarbon dates for freshwater shells from Hierakonpolis:
- 480 Archaeological and geological implications. Journal of Archaeological Science 10:361-367,
- 481 doi:10.1016/0305-4403(83)90074-2.
- 482
- Bush SL, Santos GM, Xu X, Southon JR, Thiagarajan N, Hines SK, Adkins JF. 2013. Simple,
- 484 rapid, and cost effective: a screening method for ¹⁴C analysis of small carbonate samples.
- 485 Radiocarbon 55:631-640, doi:10.1017/S0033822200057787.
- 486
- 487 Conrad TA. 1853. Descriptions of new fossils shells of the United States. Journal of the
- 488 Academy of Natural Sciences of Philadelphia 2:273-276.
- 489
- 490 Cuif J-P, Dauphin Y, Berthet P, Jegoudez J. 2004. Associated water and organic compounds in
- 491 coral skeletons: Quantitative thermogravimetry coupled to infrared absorption spectrometry.
- 492 Geochemistry, Geophysics, Geosystems 5, Q11011, doi:10.1029/2004GC000783.
- 493
- 494 Cusack M, Parkinson D, Freer A, Perez-Huerta A, Fallick AE, Curry BB. 2008. Oxygen isotope
- 495 composition of *Modiolus modiolus* aragonite in the context of biological and crystallographic
- 496 control. Mineralogical Magazine 72:569-577.
- 497
- d'Orbigny AD. 1834-1847. Voyage dans l'Amérique méridionale (le Brésil, la République
- 499 orientale de l'Uruguay, la République Argentine, la Patagonie, la République du Chili, la
- 500 République de Bolivia, la République du Pérou), exécuté pendant les années 1826, 1827, 1828,
- 501 1829, 1830, 1831, 1832 et 1833, 5(3):Mollusques: i-xliii, 1-758, lám 1-85. París/Estrasburgo.

502	
503	d' Orbigny AD. 1839-1842. Mollusques, Echinodermes, Foraminifères et Polypiers recueillis
504	aux Iles Canaries par MM. Webb et Berthelot et décrits par Alcide d'Orbigny. Mollusques. 117
505	p., pl. 1-7, 7B (p. 1-24 [Aug. 1839], 25-48 [Sept. 1839], 49-72 [Oct-1839], 73-104 [Jan. 1840],
506	105-136 [Mar. 1840],137-143 [Apr. 1840], 145-152 [Aug. 1842] pl. 1 [Jul. 1836], 2 [Dec. 1836],
507	3 [May 1842], 4-5 [June 1840], 7 [May 1842], 6,7B [Aug. 1842]. Béthune, Paris.
508	
509	Deshayes, GP, Milne-Edwards H. 1835. Histoire Naturelle des Animaux sans Vertèbres,
510	présentant les caractères généraux et particuliers de ces animaux, leur distribution, leurs classes,
511	leurs familles, leurs genres, et la citation des principales espèces qui s'y rapportent, par J.B.P.A.
512	de Lamarck. Deuxième édition, Tome sixième. Histoire des Mollusques. iv + 600 pp. J. B.
513	Baillière: Paris.
514	
515	Dominguez JG, Kosnik MA, Allen AP, Hua Q, Jacob DE, Kaufman DS, Whitacre K. 2016.
516	Time-averaging and stratigraphic resolution in death assemblages and Holocene deposits:
517	Sydney Harbour's molluscan record. Palaios 31:564-575, doi:10.2110/palo.2015.087.
518	
519	Donahue DJ, Linick TW, Jull AJ. 1990. Isotope-ratio and background corrections for accelerator
520	mass spectrometry radiocarbon measurements. Radiocarbon 32:135-142,
521	doi:10.1017/S00338222000040121.
522	
522 523	Dubois, P. 2014. Calcification in echinoderms. In: Jangoux M, Lawrence JM, editors.
522 523 524	Dubois, P. 2014. Calcification in echinoderms. In: Jangoux M, Lawrence JM, editors. Echinoderm Studies 3. Rotterdam: Balkema. p. 109-178.

23

Cambridge University Press

525	
526	Fenger T, Surge D, Schone B, Milner N. 2007. Sclerochronology and geochemical variation in
527	limpet shells (Patella vulgate): A new archive to reconstruct coastal sea surface temperature.
528	Geochemistry Geophysics GeoSystems 8, Q07001, doi:10.1029/2006GC001488.
529	
530	Flores, C., Gayo, E.M., Salazar, D., Broitman, B.R. 2018. δ ¹⁸ O of <i>Fissurella maxima</i> as a proxy
531	for reconstructing Early Holocene sea surface temperatures in the coastal Atacama desert (25°S).
532	Palaeogeography, Palaeoclimatology, Palaeoecology 499:22-34,
533	doi:10.1016/j.palaeo.2018.03.031.
534	
535	Fremy ME. 1855. Recherches chimiques sure les os. Annales de Chimie et de Physique 43:47-
536	107.
537	
538	Gagnon AR, Jones GA. 1993. AMS-graphite target production methods at the Woods Hole
539	Oceanographic Institution during 1986-1991. Radiocarbon 35:301-310,
540	doi:10.1017/S0033822200064985.
541	
542	Galstoff PS. 1964. The American Oyster Crassostrea virginica Gmelin. Fishery Bulletin of the
543	U.S. Fish and Wildlife Service 64, 480 p.
544	
545	Gmelin JF. 1791. Vermes. In: Gmelin JF. (Ed.) Caroli a Linnaei Systema Naturae per Regna Tria
546	Naturae, Ed. 13. Tome 1(6). G.E. Beer, Lipsiae [Leipzig]. pp. 3021-3910.

- 548 Goetz AJ, Steinmetz DR, Griesshaber E, Zaefferer S, Raabe D, Kelm K, Irsen S, Sehrbrock A,
- 549 Schmahl WW. 2011. Interdigitating biocalcite dendrites for a 3-D jigsaw structure in brachiopod
- shells. Acta Biomineralia 7:2237-2243, doi:10.1016/j.actbio.2011.01.035.
- 551
- 552 Grothe PR, Cobb KM, Bush SL, Cheng H, Santos G.M, Southon JR, Edwards RL, Deocampo
- 553 DM, Sayani HR. 2016. A comparison of U/Th and rapid-screen ¹⁴C dates from Line Island fossil
- corals. Geochemistry, Geophysics, Geosystems 17:833-845, doi:10.1002/2015GC005893.
- 555
- Hadden CS, Loftis KM, Cherkinsky A. 2018. Carbon isotopes (δ^{13} C and Δ^{14} C) in shell
- 557 carbonate, conchiolin, and soft tissues in eastern oyster (*Crassostrea virginica*). Radiocarbon
- 558 60:1125-1137, doi:10.1017/RDC.2018.27.
- 559
- 560 Hadden, CS, Loftis KM, Cherinsky A, Ritchison BT, Lulewicz IH, Thompson, VD. 2019.
- 561 Radiocarbon in the marsh periwinkle (*Littorina irrorata*) conchiolin: applications for
- archaeology. Radiocarbon 61:1489-1500, doi:10.1077/RDC.2019.53.
- 563
- Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: Paleontological statistics software package for
- education and data analysis. Palaeontologia Electronica v. 4, no. 1, 9 pp.
- http://palaeo-electronica.org/2001_1/past/issue1_01.htm. Accessed version 4.03, June 30, 2020.
- 567
- 568 Haynes CV, Jr, Mead AR. 1987. Radiocarbon dating and paleoclimatic significance of subfossil
- 569 Limicolaria in northwestern Sudan. Quaternary Research 28:86-99,
- 570 doi:10.1016/0033-5894(87)90035-4.

571	
572	Hua Q, Lavchenko VA, Kosnik MA. 2019. Direct AMS ¹⁴ C analysis of carbonate. Radiocarbon
573	61:1431-1440, doi:10.1017/RDC.2019.24.
574	
575	Jones CA. 2010. Mineralogy and seasonal growth of south Pacific mussel valves [MS thesis].
576	The University of Alabama, Tuscaloosa, Alabama, 73 pp.
577	
578	Keith J, Stockwell S, Ball D, Remillard K, Kaplan D, Thannhauser T, Sherwood R. 1993.
579	Comparative analysis of macromolecules in mollusc shells. Comparative Biochemistry and
580	Physiology B 105:578-496, doi:10.1016/0305-0491(93)90078-J.
581	
582	Kennedy WJ, Taylor JD, Hall A. 1969. Environmental and biological controls on bivalve shell
583	mineralogy. Biological Review 44:499-530.
584	
585	King PP. 1832. Description of the Cirrhipeda, Conchifera and Mollusca, in a collection formed
586	by the officers of H.M.S. Adventure and Beagle employed between the years 1826 and 1830 in
587	surveying the southern coasts of South America, including the Straits of Magalhaens and the
588	coast of Tierra del Fuego. Zoological Journal 5: 332-349.
589	
590	Kirby SM, Janecke SU, Dorsey RJ, Housen BA, Langenheim VE, McDougall KA, Steely AN.
591	2007. Pleistocene Brawley and Ocotillo Formations: Evidence for initial strike-slip deformation
592	along the San Felipe and San Jacinto Fault Zone, southern California. The Journal of Geology

593 115:43-62, doi:10.1086/509248.

595	Kosnik MA, Hua Q, Kaufman DS, Kowalewski M, Whitacre K. 2017. Radiocarbon-calibrated
596	amino acid racemization ages from Holocene sand dollars (Peronella peronii). Quaternary
597	Geochronology 39:174-188, doi:10.1016/j.quageo.2016.12.001.
598	
599	Kowalewski M, Casebolt S, Hua Q, Whitacre KE, Kaufman DS, Kosnik MA. 2018. One fossil
600	record, multiple time resolutions: Disparate time-averaging of echinoids and mollusks in a
601	Holocene carbonate platform. Geology 46:51-54, doi:10.1130/G39789.1.
602	
603	Lamarck J-BM de. 1819. Histoire naturelle des animaux sans vertèbres. Tome sixième, 1re
604	partie. Paris: published by the Author, $vi + 343$ pp.
605	
606	Leske NG. 1778. Additamenta ad Jacobi Theodori Klein Naturalem Dispositionem
607	Echinodermatum et Lucubratiunculam de Aculeis Echinorum Marinorum. 216p.
608	
COO	Linnaux C 1759 Systems Naturas per rages tris naturas secundum alagass ordinas genera
609	Linnaeus C. 1738. Systema Naturae per regna tria naturae, secundum classes, ordines, genera,
610	species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata [10th revised
611	edition], vol. 1: 824 pp. Laurentius Salvius: Holmiae.
612	
613	Linnaeus C. 1767. Systema naturae per regna tria naturae: secundum classes, ordines, genera,
614	species, cum characteribus, differentiis, synonymis, locis. Ed. 12. 1., Regnum Animale. 1 & 2.

615	Holmiae, Laurentii Salvii. Holmiae [Stockholm], Laurentii Salvii. pp. 1-532 [1766] pp. 533-1327
616	[1767].
617	
618	Longworth BE, Robinson LF, Roberts ML, Beaupre SR, Burke A, Jenkins WJ. 2013. Carbonate
619	as a sputter target material for rapid ¹⁴ C AMS. Nuclear Instruments and Methods in Physics
620	Research B 294:328-334, doi:10.1016/j.nimb.2012.05.014.
621	
622	Masters PM, Bada JL. 1977. Racemization of isoleucine in fossil molluscs from Indian middens
623	and interglacial terraces in southern California. Earth and Planetary Science Letters 37:173-183,
624	doi:10.1016/0012-821X(77)90162-5.
625	
626	Molina DJI. 1782. Compendio de la historia geografica natural y civil del Reyno de Chile.
627	Premiera parte. Madrid. 418 pp.
628	
629	New E, Yanes Y, Cameron RAD, Miller JH, Teixeira D, Kaufman DS. 2019. Aminochronology
630	and time averaging of Quaternary land snail assemblages form colluvial deposits in the Madeira
631	Archipelago, Portugal. Quaternary Research 92:483-496, doi:10.1017/qua.2019.1.
632	
633	Nielsen JK, Helama S, Rodland D, Nielsen JK. 2007. Eemian marine mollusks and barnacles
634	from Ristinge Klint, Denmark: hydrodynamics and deficiency. Netherlands Journal of
635	Geoscience 86:95-115.
636	

637	Oakley DOS, Kaufman DS, Gardner TW, Fisher DM, VanderLeest RA. 2017. Quaternary
638	marine terrace chronology, North Canterbury, New Zealand, using amino acid racemization and
639	infrared-stimulated luminescence. Quaternary Research 87:151-167, doi:10.1017/qua.2016.9.
640	
641	Olivi G. 1792. Zoologia Adriatica, ossia catalogo ragionato degli animali del golfo e della lagune
642	di Venezia. Bassano [G. Remondini e fl.]. [ix] + 334 + xxxii pp., 9 pls.
643	
644	Parker WG, Yanes Y, Hernández EM, Hernández Marreno JC, Paris J, Surge D. 2019. Scale of
645	time-averaging in archaeological shell middens from the Canary Islands. The Holocene 1-14,
646	doi:10.1177/0959683619883020.
647	
648	Paul D, Mauldin R. 2013. Implications for Late Holocene climate from stable carbon and oxygen
649	isotopic variability in soil and land snail shells from archaeological site 41KM69 in Texas, USA.
650	Quaternary International 308-309:242-252, doi:10.1016/j.quaint.2012.08.006.
651	
652	Quinn GP, Keough MJ. 2002. Experimental design and data analysis for biologists. Cambridge
653	University Press, Cambridge, UK. 537 pp.
654	
655	Reeve LA. 1850. Monograph of the genus Artemis . pp. pls 1-10 in Reeve LA. Conchologia
656	Iconica. London : L. Reeve & Co. Vol.6.
657	

658	Ritter MN, Erthal F, Kosnik MA, Coimbra JC, Kaufman DS. 2017. Spatial variation in the
659	temporal resolution of subtropical shallow-water molluscan death assemblages. Palaios 32:572-
660	583, doi:10.2110/palo.2017.003.
661	
662	Roger LM, George, AD, Shaw J, Hart, RD, Roberts M, Becker T, McDonald BJ, Evans, NJ.
663	2017. Geochemical and microstructural characterization of two species of cool-water bivalves
664	(Fulvia tenuicostata and Soletellina biradiata) from Western Austraila. Biogeosciences 14:1721-
665	1737, doi:10.5194/bg-14-1721-2017.
666	
667	Rozanski K, Stichler W, Gofiantini R, Scott EM, Beukens RP, Kromer B, Van Der Plicht J.
668	1992. The IAEA ¹⁴ C Intercomparison Exercise 1990. Radiocarbon 34:506-519,
669	doi:10.17/S0033822200063761.
670	
671	Say T. 1818. Account of two new genera, and several new species, of fresh water and land
672	snails. Journal of the Academy of Natural Sciences of Philadelphia 1: 276-284.
673	
674	Smith RJ. 2009. Use and misuse of the reduced major axis for line-fitting. American Journal of
675	
	Physical Anthropology 140:476-486, doi:10.1002/ajpa.21090.
676	Physical Anthropology 140:476-486, doi:10.1002/ajpa.21090.
676 677	Physical Anthropology 140:476-486, doi:10.1002/ajpa.21090. Smith AM, Hua Q, Williams A, Levchenko V, Yang B. 2010. Developments in micro-sample
676 677 678	Physical Anthropology 140:476-486, doi:10.1002/ajpa.21090. Smith AM, Hua Q, Williams A, Levchenko V, Yang B. 2010. Developments in micro-sample ¹⁴ C AMS at the ANTARES AMS facility. Nuclear Instruments and Methods in Physics Research
676 677 678 679	Physical Anthropology 140:476-486, doi:10.1002/ajpa.21090. Smith AM, Hua Q, Williams A, Levchenko V, Yang B. 2010. Developments in micro-sample ¹⁴ C AMS at the ANTARES AMS facility. Nuclear Instruments and Methods in Physics Research B 238:919-912, doi:10.1016/j.nimb.2009.10.064.
676 677 678 679 680	Physical Anthropology 140:476-486, doi:10.1002/ajpa.21090. Smith AM, Hua Q, Williams A, Levchenko V, Yang B. 2010. Developments in micro-sample ¹⁴ C AMS at the ANTARES AMS facility. Nuclear Instruments and Methods in Physics Research B 238:919-912, doi:10.1016/j.nimb.2009.10.064.

681	Southon J, Santos GM. 2007. Life with MC-SNICS. Part II: Further ion source development at
682	the Keck Carbon Cycle AMS Facility. Nuclear Instruments and Methods in Physics Research B
683	259:88-93, doi:10.1016/j.nimb.2007.01.147.
684	
685	Sowerby, GB, I. 1824. Descriptions, accompanied by figures, of several Helices, discovered by
686	T. E. Bowdich, Esq. at Porto Santo. Zoological Journal 1: 56-58 [March].
687	
688	Sowerby GB., I; Sowerby, GB, II. 1832-1841. The conchological illustrations or, Coloured

figures of all the hitherto unfigured recent shells. London, privately published.

690

- 691 Stuvier M, Polach HA. 1977. Discussion reporting of ¹⁴C data. Radiocarbon 19:355-363,
- 692 doi:10.1017/S0033822200003672.
- 693
- Tschudin P. 2001. Shell morphology, shell texture and species discrimination of Caribbean
- 695 *Tucetona* (Bivalvia, Gylcymeridae). Journal of Paleontology 75:658-679.

696

- 697 Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed
- 698 carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics
- 699 Research 223:289-293.

- Yanes Y, Al-Qattan NM, Rech JA, Pigati JS, Dodd JP, Nedila JC. 2019. Overview of the oxygen
- isotope systematics of land snails from North America. Quaternary Research 91:329-344,
- 703 doi:10.1017/qua.2018.79.

704	
705	Zhang C, Zhang R. 2006. Matrix proteins in the outer shells of Molluscs. Marine Biotechnology
706	8:572-586, doi:10.1007/s10126-005-6029-6.
707	
708	FIGURE CAPTIONS
709	
710	Figure 1. Cross-plots comparing analytical errors for direct carbonate and graphite pMC from the
711	same biogenic carbonates. A - cross-plot of 1σ analytical errors produced by the graphite ${}^{14}C$
712	method versus the 1σ analytical errors produced by the direct carbonate ¹⁴ C method. Dashed line
713	is a 1-to-1 line. B - cross-plot of graphite pMC versus the ratio of direct carbonate to graphite 1σ
714	pMC analytical errors. Moderate negative correlations are defined by the coarse (Fe; $r = -0.62$)
715	and fine (Nb; $r = -0.17$) dashed lines. Solid black circles in both panels – Fe powder. Solid white
716	circles in both panels – Nb powder.
717	
718	Figure 2. Reduced Major Axis (RMA) regression of paired direct carbonate and graphite pMC
719	determinations. A –relationship using all data. B – relationship using iron (Fe) powder. C –
720	relationship using niobium (Nb) powder. Analysis performed using PAST 4.03 statistical
721	software (Hammer et al., 2001). Inset diagrams are frequency histograms of pMC differences,
722	calculated as "direct – graphite pMC".
723	
724	Figure 3. Differences in pMC (direct carbonate – graphite) from an assortment of biogenic
725	carbonates. Bp -brachiopod, G - gastropod, E - echinoderm, B - bivalve mollusk. Note that most
726	differences are positive and that some biogenic carbonates more consistently yield either

727	negative (e.g., Gryphus vitreus) or positive (e.g., Transennella sp.) differences, while others are
728	more evenly distributed (e.g., Dosinia caerulea, coral skeletons). See Supplemental Information
729	for additional information on taxonomy and carbonate polymorphs. Solid black circles- Fe
730	powder. Solid white circles – Nb powder.
731	
732	
733	
734	
735	
736	
737	
738	
739	
740	
741	
742	
743	
744	
745	
746	
747	
748	
749	

Table 1 Detailed breakdown of the taxa, generalized biological group, carbonate polymorph,

standard graphite pMC values, direct carbonate metal powder, and absolute pMC value of

individual differences that exclude 0 at 95% CI.

753

Taxon	Group	Polymorph	Graphite	Direct	Absolute pMC
			pMC	carbonate	beyond 95% CI
				powder	
Actinella nitidiuscula	snail	aragonite	10.9	Nb	0.53
Argopecten purpuratus	scallop	mixed	68.9	Fe	0.18
Argopecten purpuratus	scallop	mixed	70.5	Fe	0.10
Arctica islandica	clam	aragonite	50.5	Fe	0.89
Arctica islandica	clam	aragonite	50.9	Fe	0.65
Arctica islandica	clam	aragonite	51.4	Fe	0.13
Arctica islandica	clam	aragonite	55.5	Fe	0.07
Arctica islandica	clam	aragonite	74.0	Fe	1.80
Arctica islandica	clam	aragonite	75.3	Fe	0.11
Codakia orbicularis	clam	aragonite	103.3	Fe	0.70
Codakia orbicularis	clam	aragonite	103.3	Fe	1.72
unidentified coral	coral	aragonite	2.6	Fe	0.25
Corbula gibba	clam	aragonite	94.7	Nb	1.30
Dosinia caerulea	clam	aragonite	66.5	Nb	0.26
Dosinia caerulea	clam	aragonite	77.2	Nb	0.35
Fissurella maxima	limpet	mixed ^a	28.3	Nb	0.08
Fissurella maxima	limpet	mixed ^a	48.8	Nb	0.07
Gryphus vitreus	brachiopod	calcite	76.1	Nb	0.24
Gryphus vitreus	brachiopod	calcite	87.4	Nb	0.29
Gryphus vitreus	brachiopod	calcite	88.9	Nb	0.36
Leodia sexiesperforata	echinoderm	calcite	104.9	Fe	0.30
Modiolus sp.	mussel	aragonite	52.3	Fe	0.14
Modiolus sp.	mussel	aragonite	61.6	Fe	0.04
Modiolus sp.	mussel	aragonite	76.1	Fe	0.45
<i>Modiolus</i> sp.	mussel	aragonite	79.4	Fe	0.32
Mulinia edulis	clam	aragonite	93.2	Fe	0.38
Patella candei	limpet	mixed ^a	77.2	Nb	0.25
Patella candei	limpet	mixed ^a	88.1	Nb	0.19
Peronella peronii	echinoderm	calcite	57.0	Nb	1.01
Peronella peronii	echinoderm	calcite	62.1	Nb	1.17
Peronella peronii	echinoderm	calcite	72.4	Nb	1.17
Peronella peronii	echinoderm	calcite	77.2	Nb	0.83
Peronella peronii	echinoderm	calcite	77.7	Nb	1.15
Polygyra septemvolva	snail	aragonite	33.0	Nb	0.43
Transennella sp.	clam	aragonite	77.2	Fe	0.06
Tucetona pectinata	clam	aragonite	59.0	Fe	0.06

^a "mixed" refers to shells that contain both calcite and aragonite polymorphs.

755

757 Table 2 Summary of the taxa, sample size (n), generalized biological group, carbonate

- polymorph, number of differences that include 0 at 95% CI, and publication information for
- r59 samples featured in this study.
- 760

Taxon	n	Group	Polymorph	Residuals	Reference
		_		include 0	
Actinella nitidiuscula	6 ^a	snail	aragonite	3/4	New et al. (2019)
Argopecten purpuratus	5	scallop	mixed	3/5	this study
Arctica islandica	6	clam	aragonite	0/6	this study
Chamelea gallina	1	clam	aragonite	1/1	this study
Choromytilus chorus	12	mussel	mixed ^b	12/12	this study
Codakia orbicularis	6	clam	aragonite	4/6	this study
unidentified coral	20	coral	aragonite	19/20	Bush et al. (2011)
Corbula gibba	3	clam	aragonite	2/3	Albano et al. (2020)
Corbula gibba	2	clam	aragonite	2/2	this study
Dosinia caerulea	24	clam	aragonite	22/24	this study
Fissurella maxima	10	limpet	mixed ^b	8/10	this study
Fulvia tenuicostata	8	cockle	mixed ^b	8/8	Hua et al. (2019)
Gryphus vitreus	6	brachiopod	calcite	3/6	this study
Leodia sexiesperforata	1	echinoderm	calcite	0/1	Kowalewski et al. (2018)
Mactra isabelleana	1ª	clam	aragonite	0/1	Ritter et al. (2017)
Modiolus sp.	10	mussel	aragonite	6/10	this study
Mulinia edulis	5	clam	aragonite	4/5	this study
Patella candei	5	limpet	mixed ^b	3/5	Parker et al. (2019)
Peronella peronii	11	echinoderm	calcite	6/11	Kosnik et al. (2017)
Polygyra septemvolva	2	snail	aragonite	1/2	this study
Tawera spissa	1	clam	aragonite	1/1	Oakley et al. (2017)
Timoclea sp.	1	clam	aragonite	1/1	this study
Transennella sp.	4	clam	aragonite	3/4	this study
Tucetona nectinata	3	clam	aragonite	2/3	Kowalewski et al. (2018)

- Tucetona pectinata3clamaragonite2/3Kowalewski et al. (2018)761^a Two analyses of Actinella nitidiuscula and one analysis of Mactra isabelleana yield widely
- 762 different direct carbonate and graphite pMC values and are excluded from discussion and
- 763 statistical analysis. See Supplemental Information.
- ^b "mixed" refers to shells that contain both calcite and aragonite polymorphs.

