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Abstract. Since their appearance, computer programs have embodied
discipline and structured approaches and methodologies. Yet, to this day,
equipping machines with imaginative and creative capabilities remains
one of the most challenging and fascinating goals we pursue. Intelligent
software agents can behave intelligently in well-defined scenarios, relying
on Machine Learning (ML), symbolic reasoning, and the ability of their
developers for tailoring smart behaviors to specific application domains.
However, to forecast the evolution of all possible scenarios is unfeasible.
Thus, intelligent agents should autonomously/creatively adapt to the
world’s mutability. This paper investigates the meaning of imagination in
the context of cognitive agents. In particular, it addresses techniques and
approaches to let agents autonomously imagine/simulate their course of
action and generate explanations supporting it, and formalizes thematic
challenges. Accordingly, we investigate research areas including: (i) rea-
soning and automatic theorem proving to synthesize novel knowledge via
inference; (ii) automatic planning and simulation, used to speculate over
alternative courses of action; (iii) machine learning and data mining, ex-
ploited to induce new knowledge from experience; and (iv) biochemical
coordination, which keeps imagination dynamic by continuously reorga-
nizing it.

Keywords: Multi-agent systems, imagination, BDI, cognitive agents,
XAI.

1 Introduction

Imagination is among the most powerful tools humankind has ever had. Funda-
mentally, imagination is responsible for the spontaneous creation of novel ideas
which do not originate directly from the human senses. Such a mental process
enabled humans to design complex concepts and artifacts, shaping the societies
we live in nowadays [1].
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Over the years, imagination and creativity have been considered the nemesis
of discipline and structured approaches in general [2]. Indeed, at an individual
level, imagination is a relatively simple process. It can be conceived as a never-
ending activity occurring within each person’s mind along their entire lifetime.
Such activity copes with reorganizing a person’s beliefs, perceptions, feelings, and
habits repeatedly to generate novel believes, abilities, desires, insights about the
future, and needs—which in turn may motivate novel activities.

Let us consider two simple examples commonly dealt with:

Counterfactual thinking: it is a retrospective “what if” analysis, elaborating
how things could have been different (e.g., regretting a decision, “I should
have behaved differently”) – also known as staircase wit – from which a lesson
is supposably learned.

Speculative thinking: mentally simulating possible future scenarios according
to models of (i) the world, and (ii) other agents/humans behaviours—e.g.,
imaging the effect a proposed example might have on the reader.

There, imagination is a key enabler for intelligent behavior.
In modern Artificial Intelligence (AI), many research efforts are devoted to

the engineering of smart mechanisms, which enable software agents to behave
intelligently in well-defined scenarios. Most of these mechanisms are either based
on Machine Learning (ML) or on symbolic reasoning (including planning or au-
tomatic theorem proving) [3]. Nevertheless, the capability of software agents
(intended as intelligent virtual entities) to behave intelligently strongly depends
on their developers’ capability of tailoring smart behaviors on the particular sce-
nario the software agents operate into. Arguably, however, it is unfeasible for
developers to forecast all possible evolutions a real-world scenario may be sub-
ject to. Accordingly, intelligent software agents should also adapt to the world
by autonomously figuring out how to deal with its mutability—similarly to what
a human would do. Notably, one of the significant areas where adaptability is
expected to play a major role is XAI. Indeed, there is an increasing push for
intelligent systems capable of explaining their own behavior [4]. However, cur-
rent research efforts are mostly focused on supporting data scientists in drawing
explanations in particular cases. Even when explanations are delegated to au-
tonomous agents, their capability to generate effective explanations still relies
on their developers’ foresight. In other words, the problem of letting agents au-
tonomously generate explanations is still open.

Human beings heavily leverage on imagination to adapt to the world. In par-
ticular, they exploit both counterfactual and speculative thinking to adapt the
way they interact with their interlocutor. Arguably, similar mechanisms could be
conceived for agents willing to attain the capability of generating explanations.

Accordingly, in this paper, we discuss (i) what imagination may mean for
software agents, (ii) how it could be technically realized within modern agent
frameworks, (iii) what is the role of imagination-equipped agents in modern
data-driven AI, and (iv) how can imagination support the autonomous genera-
tion of explanations. In doing so, we restrict our scope to the case of cognitive
agents, as their abstractions are rich enough to capture a general – yet precise
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– notion of imagination. In particular, we focus on the Belief-Desire-Intention
(BDI) agent architectures as they represent the best viable bridge among theory
and practice—being backed by effective technologies such as Jason [5].

Within the scope of this paper, we conceive imagination as a non-terminating
background activity carried on by an agent behind the scenes, possibly while do-
ing anything else. The imagination activity takes care of continuously revising an
agent’s internal knowledge, possibly (i) obliterating useless information; (ii) syn-
thesizing novel information out of the current and previous experience; (iii) dis-
missing or generating desires and needs; (iv) critically analyzing the previous
courses of actions w.r.t. their goals; (v) simulating possible similar/alternative
behaviors to be exploited in similar situations; and (vi) looking for post-hoc mo-
tivations for their actions. Thanks to such an ability, agents would become not
only able to acquire novel information but also novel capabilities (i.e., procedural
knowledge), possibly acquiring the (bits of) self-awareness required to provide
explanations about their own courses of action.

In practice, the imagination abstraction leverages mechanisms laying at the
intersection of different research areas, such as: (i) symbolic reasoning and au-
tomatic theorem proving (which are exploited to synthesize novel knowledge via
inference), (ii) automatic planning and simulation (which is exploited to specu-
late over alternative courses of action), (iii) machine learning and data mining
(which are exploited to induce new knowledge from experience), and (iv) bio-
chemical coordination (which keeps imagination dynamic by continuously reor-
ganizing it).

The rest of the paper is organized as follows. Section 2 briefly presents the
current background technologies and their state-of-the-art supporting our no-
tion of imagination. Section 3 introduces, defines, and discusses the concept of
imagination and our practical view. Section 4 elicits the challenges related to
our definition of imagination and the related research areas involved. Finally,
Section 5 concludes the paper.

2 State of the Art

The investigation of mechanisms for agents’ imagination roots from cross-disciplinary
components. In particular, this section provides a brief background on (i) hu-
man imagination mechanisms; (ii) cognitive agent architectures; (iii) imagina-
tion mechanisms including inference, data-driven learning, biochemical coordi-
nation, & simulation; and (iv) computational creativity.

2.1 Imagination in Humans

In the late 80s and early 90s, constructivist [6, 7] and developmental [8] ap-
proaches inspired many advancements in AI. In particular, virtual agents have
been equipped with “inherent” learning mechanisms, allowing them to make
sense of their environment and exploit its affordances4 [10, 6]. Such an approach

4 The term, originally coined by Gibson, refers to what the environment offers an
individual [9]
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has been inspired by constructivism [11] and developmental learning, promoted
by the Swiss psychologist Jean Piaget (1930s), and adapted by Drescher into
a bottom-up developmental approach to interact with the surrounding environ-
ment named Schema mechanism [6].

In the context of autonomous agents, such Schemas are pieces of knowledge
processed by the agents to comprehend and react to their environments. The
developmental process of Schemas is characterized by:

Assimilation: describes how humans or agents perceive and adapt to new in-
formation, fitting them into existing cognitive schemas.

Accommodation: restructures existing Schemas to handle novel information.

Intuitively, the cognitive growth of an intelligent system would imply the
evolution/extension of both very specific knowledge and overall dynamics coor-
dinating the several learning-related aspects. In the last decade, constructivist
approaches have been used for smart environments [12, 13] and transport sys-
tems [14]. The studies contributing to these aspects provide contributions highly
specialized in simplistic and very structured domains [15]. Nevertheless, such
individual approaches can be hand-crafted together into architectures relying
on traditional component-based software development methodologies. However,
although the single components can evolve singularly, the reconciling system is
constrained by the the hand-crafted interconnection mechanisms. Consequently,
such lack of flexibility precludes architecture-level evolution (i.e., autonomous
architectural adaptation and growth of the systems) and learning [7].

The lack of generalization characterizing current solutions impedes the ap-
plication of intelligent/learning systems in general-purpose scenarios, being in-
capable of applying themselves autonomously to arbitrary problems. Therefore,
imagination cannot be a cross-system functionality.

2.2 Cognitive Agents

The philosopher Michael Bratman formalized human practical reasoning in the
beliefs-desires-intentions (BDI) model as a way to explaining future-directed
intention [16]. Successively, it became a model to program intelligent agents,
which made its first appearance in the Rational Agency project at the Stanford
Research Institute in the mid 1980s [17]. Such a model is characterized by:

Beliefs: a set of facts and rules representing an agent’s epistemic memory, pos-
sibly containing its knowledge about the world, itself, and other agents.

Desires: a set of goals the agent is willing to achieve, test, or maintain.
Intentions: a set of tasks the agent is currently carrying on.
Plans: a set of recipes representing the agent’s procedural memory, encoding

the procedural know-how about tasks.

Any cognitive feature of a BDI agent may vary during its lifetime. For in-
stance, novel beliefs appear in the agents’ minds whenever they receive novel
perceptions from their sensors, while stale beliefs simultaneously disappear. Sim-
ilarly, novel beliefs may arise while agents interact among each other – or with



Towards Explainable Visionary Agents: License to Dare and Imagine 5

humans – or as they chose to memorize some information they have deducted via
reasoning. The occurrence of relevant events may provoke the desire pool’s up-
date (i.e., acquiring new goals to be achieved/tested/maintained and/or discard
some goals). Agents’ desires eventually lead to spawning novel intentions (activ-
ities to achieve/test/maintain goals the agent is committed to). While carrying
on an intention, agents may select one or more plans among those supporting
the corresponding desire’s accomplishment. Plans may involve the execution of
one or more actions – possibly affecting the world via actuators – or the ac-
complishment of further sub-goals, which may, in turn, require the execution of
further plans as part of the same intention.

In the scope of this paper, it is worth highlighting that the BDI model allows
agents to exhibit more complex behavior than purely reactive models, unbound
to the computational overhead of other cognitive architectures [17]. Furthermore,
being rooted in folk-psychology, it has been outlined as an excellent candidate to
represent everyday explanations [18, 19] (since it is considered as the attribution
of human behavior using “everyday” terms such as beliefs, desires, intentions,
emotions, and personality traits [20, 21]).

The BDI model has also been identified as the most used/suitable archi-
tecture to generate explanations for goal-driven agents/robots [19, 22, 23]. The
trend of attributing to the BDI model the suitability for XAI applications is re-
inforced by user studies supporting the human tendency to attribute a State of
Mind (SoM) to robots and agents. In such a context, the lack of communication
or misalignment due to lack of transparency can result in ill-formed SoM [24].
To avoid such a risk and the consequent drop of trust in the system, BDI agents
are envisioned to employ folk-psychology to explain their SoM [19, 25].

2.3 Mechanisms for Imagination

In our view, the agents’ imagination process must rely on mechanisms employ-
ing different techniques, such as inference, data-driven learning, biochemistry-
inspired coordination, and simulation.

Logic Inference In computational logic [26], inference is the process of rigor-
ously drawing conclusions out of premises. The existing inference procedures
depend on the given logic formalism at hand, and they may serve different
purposes (depending on their nature). Overall, there are three main sorts of
inference: deductive, inductive, and abductive.

Deductive inference dictates under which conditions conclusions can be drawn
out of some axioms, i.e., rules and facts considered true. In other words, de-
duction elicits the knowledge which is possibly implicit into the axioms.

Inductive inference aims at estimating rules out of a number of positive (and
negative) examples of facts satisfying (or violating) the rule. In other words,
induction attempts to generalize principles by distilling patterns from generic
observations/contingencies.
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Abductive inference: aims at hypothesizing which premises could provoke
some evidences, given a number of rules describing how causes provoke ef-
fects. In other words, abduction attempts to speculate on the possible causes
of some phenomenon (e.g., finding the most straightforward and most likely
explanation for an observation), given that the general rules governing that
phenomenon are known.

Logic programming (LP) technologies (e.g., Prolog) enable users – and po-
tentially agents – to encode their knowledge into logic facts and rules, which
may then be queried via logic solvers [27]. Accordingly, by endowing agents
with adequate LP technologies, they can autonomously exploit inference when
required [27].

Learning from Data Data-driven AI falls into the context of the so-called ma-
chine learning (ML). Learning from data is commonly the activity performed via
supervised or unsupervised learning and comprises a broad set of methods and
tools such as reinforcement learning, classification, regression, time series fore-
casting, pattern recognition, generative models [28]. Supervised learning lever-
ages on the existence of many input/expected-output examples and consists of
looking for the best function mapping the available inputs into the correspond-
ing expected outputs. In a sense, supervised learning is very similar to logic
induction, except that it does not assume knowledge to be encoded via logic
clauses, and it is better suited for learning from numeric data. Unsupervised
learning aims at finding similarities and patterns possibly buried into numerical
data without any expected outcome at hand. Thus, pieces of information are
extracted from data through some optimality criterion.

By exploiting the wide availability of task-specific techniques and algorithms
in ML, agents may be equipped with the capability of managing different sorts
of data to serve disparate purposes [29]. For instance, by wrapping neural net-
works, agents may gain image and speech recognition capabilities, as well as the
capability of analyzing and forecasting time-related measurements.

Finally, it is worth mentioning another relevant perspective intersecting ML
and MAS: learning autonomously, continuously, and adaptively to increment
skills and knowledge (a.k.a, lifelong ML or continuous learning—CL henceforth).
In the context of ML, it entails updating the prediction models periodically
with novel tasks and data distributions, still being able to (re)use and retain
knowledge and skills over time. CL is beneficial when data or tasks’ availability
varies over time (i.e., no longer or not yet available), and it is imperative to
consider prior knowledge [30, 31].

Biochemical Coordination Within the scope of self-organizing MAS, bio-
chemical coordination is the study of interaction among agents mediated by
biochemistry-inspired patterns. There, information is modelled as molecules,
i.e., chunks of data characterized by a concentration value denoting their rel-
evance [32]. Such molecules may diffuse among different locations (e.g., to rep-
resent information exchanges), aggregate with each others (e.g., to represent
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more complex data structures), and evaporate, (e.g., reduce their concentration
as the carried information loses relevance). The concentration and nature of
such molecules determine the dynamics of the systems relying on the biochemi-
cal metaphor. A number of coordination rules are commonly in place, affecting
(and being affected by) the concentration of molecules within a given context,
and governing information diffusion, aggregation, evaporation, or generation.

Due to their nature, such sorts of systems are inherently stochastic and fuzzy,
and therefore ideal to realize resilient, robust, and self-organizing applications. In
this context, pieces of information are not solely true or false, but rather more or
less concentrated. Therefore, inconsistencies and contradictory data may simul-
taneously co-exist with no harm, as long as consistent truths eventually emerge
by becoming significantly more concentrated. The combination of such features
determines biochemical coordination mechanisms eligible to support imagina-
tion, as it may spawn several (possibly inconsistent) ideas, properly balancing
evaporation, diffusion, and aggregation to retain only the most useful ones.

Multi-agent Based Simulation Simulation is one of the most employed tech-
niques to identify/reach potentially useful outcomes. Agent simulation technol-
ogy has been outlined as an efficient platform helping to understand autonomous
behavior and decision-making [33]. An agent-based simulation (ABS) model is a
set of interacting intelligent entities that reflect, within an artificial environment,
the relationships in the real world [33]. Thus, ABS is typically used for helping
decision-makers cope with complex and changing environment in the domains
such as UAVs (c.f. [34] and the references therein), IoT, and CPS [35, 36], and
to model and optimize robot behavior [37].

It is worth noticing that most of the works in the ABS literature focus on
inter-agent relationships and their interaction with the environment [17]. Con-
versely, this paper aims at tackling the intra-agent perspective, where agents
should be capable of simulating multiple states of themselves and their actions
within their own “mind”. This internal simulation process is analogous to hu-
man “mental simulation” where humans rely on the ability to construct mental
models to imagine what will happen or what could be [38–40]. Such capability
has helped humans in physical reasoning [41, 42], spatial reasoning, and coun-
terfactual reasoning [43].

Similarly, agents can mimic this “mental” modeling and analyze the assumed
outcomes of its own actions, identify and possibly exploring arguably reason-
ably paths leading to potentially creative scenarios even in robustly novel situ-
ations [40]. Such explorations might lead to totally unforeseen solutions, which
without a simulation based on a trial and error approach would not have been
discovered/investigate. Hence, agents may reflect upon a set of simulations rep-
resenting themselves in different/alternative scenarios.

2.4 Computational Creativity

In its broadest scope, creativity is defined as the ability to generate new forms
and artifacts autonomously [44]. In the literature, creativity is classified as either
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biological (the ability to generate new cells, organs, organisms, or species [44])
or psychological (the ability to generate new ideas and artifacts). Researches in
AI have been pushing to extend the notion of creativity to virtual systems [45].
For example, a recent study, inspired from enactive AI [46, 47], investigates how
computational creativity can be adopted by autonomous agents [48]. Despite
this progress, most of the works in this domain are either carried out at the
conceptual level or solely rely on data-driven mechanisms (e.g., generative ad-
versarial networks, a.k.a. GANs) to generate “creative” contents (e.g., music [49]
or pictures [50]).

In contrast with these works (primarily ML-centered), we envision agents
questioning their beliefs, knowledge, and goals continuously. In particular, agents
should combine classic planning, reinforcement learning, and in-mind simulation
about their future actions to simulate and possibly provide explanations about
their courses of actions.

3 Imagination in Cognitive Agents

Overall, BDI agents’ dynamics are moved by intentions and directed by desires.
Equipped with sensors and actuators, they can respectively perceive and affect
the world they live into. However, an agent’s admissible pool of desires and
plans is defined/constrained by human developers. Indeed, developers tend to
dictate agents’ initial desires and plans to keep their dynamics predictable and
controllable. However, this prevents the full exploitation of agents’ autonomy,
adaptability, and, ultimately, intelligence.

Arguably, to let agents access a higher degree of intelligence, they should be
endowed with the capability of spontaneously generating new desires, acquiring
novel beliefs, and learning novel plans. Briefly speaking, we consider imagination
as the activity devoted to supporting such capability. Thus, we define imagina-
tion as an agent’s intention aimed at maintaining its innate desires of being
creative, curious, and effective. More precisely, in our framework, agents are
assumed to be endowed with (at least) one maintenance desire since their cre-
ation. Such desire pushes them to (attempt to) be creative, curious, and effective
whenever they can. To be creative, an agent should keep looking for novel in-
formation, as well as novel ways to do what it needs to do (i.e., it must keep
trying to enrich its belief and plan bases). To be curious, an agent should keep
exploring the world and search for novel stimuli or just doing things to learn
something new (i.e., it must keep trying to enrich its desires). To be effective
and prove the way it deliberates and acts, an agent should keep improving its
epistemic and procedural knowledge (i.e., improve its belief and plan bases).

To accomplish such an innate desire, BDI agents must spawn an intention
that will be part of them for their whole lifetime. The basic functioning of this
intention is relatively straightforward: to keep revising the agents’ beliefs, de-
sires, and plans to generate novel epistemic/procedural knowledge or improve
the current one. We call this intention “imagination”.
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To accomplish its purpose, the imagination intention may leverage and com-
bine several basic mechanisms coming from different branches of AI. Imagination
can exploit mechanisms deriving from the classes of activities listed below (in-
dependently from technical details). For example,

knowledge acquisition is the process of converting raw data (i.e., percepts or
beliefs) into general and reusable knowledge (e.g., in the form of logic rules
or sub-symbolic predictors)

knowledge synthesis is the process of inferring or distilling novel knowledge
out of pre-existing ones

speculation is the process of exploring alternative truths, situations, or courses
of actions based on previous experiences

knowledge revision is the process of criticizing the pre-existing knowledge,
possibly evicting stale or wrong information

The remainder of this section analyzes how mechanisms from the many
branches of AI may be exploited to support such activities. Figure 1 provides a
summarizing characterization.

Fig. 1. Imagination in cognitive agents: AI mechanisms.

3.1 Acquiring Knowledge via Learning and Induction

BDI agents acquire information either by perceiving the environment or by com-
municating with other agents. In both cases, information comes in the form of
raw data and can be stored either symbolically or sub-symbolically. Each datum
represents a particular event from the external world. While the single event
may be potentially useless per se, the frequent occurrence of similar events may
generate value in the long run. Indeed, agents – similarly to humans – may distill
valuable knowledge out of statistically relevant anterior experience (i.e., data).

Differently from data, however, knowledge is an aggregated and reusable form
of information. It must be reusable because that is what makes it valuable enough
to memorize it. It must be aggregated because agents’ cognitive resources (such
as computational power and memory) are inherently limited, in practice, and
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such limitations affect how and to what extent data can be actually reused.
However, the way data is actually aggregated to make it reusable depends re-
markably on its nature.

In case data is symbolically represented, it is interpreted as logic facts and
stored into symbolic knowledge bases that the agent may efficiently update and
query. When this is the case, logic induction may be used to distill rules out of
facts. While facts are contingent, rules are synthetic, and they may be reused
in several similar situations. Furthermore, symbolic rules are human-intelligible.
Thus, they can be used by agents as a basis to construct explanations for their
reasoning or behavior.

Conversely, when data is represented sub-symbolically, machine learning can
be exploited to draw knowledge out of it. When this is the case, data is inter-
preted as tensors of numbers used to train a predictor (e.g., a neural network).
This usually makes knowledge both aggregated and reusable, despite not di-
rectly intelligible (and explainable) for humans. Accordingly, induction can be
exploited by agents willing or requiring to manipulate symbolic information, ei-
ther because they need to take discrete decisions or because they care about the
intelligibility of their decisional process. Conversely, machine learning can be
exploited by agents needing to manipulate sub-symbolic information—possibly
because they need to take fuzzy decisions, and can tolerate errors to a certain
extent.

3.2 Synthesizing Knowledge via Deduction, Abduction, and
Generative Methods

The external world is not the only source of valuable knowledge. Indeed, in-
telligent agents should also be able to synthesize novel knowledge out of what
they already know. The way they do so, however, may vary depending on the
nature of the knowledge at hand. For instance, when knowledge is represented in
symbolic form, deductive or abductive reasoning procedures may be exploited to
infer novel information out of it. Conversely, when knowledge is sub-symbolically
represented, generative methods may be exploited instead.

In particular, deductive reasoning may be exploited to make implitic knowl-
edge explicit. In fact, deduction can derive specific facts out of rules. In other
words, it is dual w.r.t. induction. Thanks to deduction, agents may for instance
select useful knowledge for the contingent situation they are immersed into, out
of general rules. Similarly, abductive reasoning may be exploited by agents will-
ing to draw hypotheses about the causes which lead to a particular situation. In
other words, abduction let agents synthesize likely facts which justify the facts
they already know to be true, according to the rules they know to hold in a
particular context. Accordingly, abduction is one of the mechanisms supporting
speculative thinking.

Conversely, generative methods – such as GAN – may be exploited by agents
needing to produce human-comprehensible representations (e.g. audio, video,
etc.) of categories they already know how to recognize and manipulate—such as
faces [51], shapes [52], handwriting [53], speech, etc. These representations might
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serve as key enablers for explainable synthesized knowledge. In turn, generative
methods may be key enablers for (i) computational creativity, as they let agents
produce original representations; (ii) counterfactual thinking, as they support
the generation of variants of any given concept; and (iii) effective human-ma-
chine interactions, as they let agents enrich their interactions with humans with
randomly-generated examples or analogies.

3.3 Speculating via Simulation and Planning

Mentally simulating scenarios is a fundamental human capability [39]. Once
people have enough information about the characterization and dynamics of the
surrounding world, simulating the effects of their actions becomes a common
practice (to a certain extent). Often, it is only after having mentally simulated
the most likely outcomes of their course of actions that an individual chooses
how to act. Then, by comparing the actual outcomes with the expected ones,
humans may learn how to improve their behavior w.r.t. their goals. Furthermore,
even when a direct experience is lacking, simulating the possible effects of a given
action is still better than acting randomly.

In the AI literature, planning is the activity performed by agents willing to de-
liberate what to do in a particular context. Planning algorithms commonly lever-
age on rich descriptions of (i) the environment, (ii) agents’ actions, (iii) their ef-
fects, and (iv) some description of the target goal the agent is willing to achieve.
Through such descriptions, planning algorithms (attempt to) compute viable
workflows of actions that should lead agents towards the target goal. However,
even when only a few agents and small deterministic environments are involved,
planning is computationally costly. Therefore, when complex non-deterministic
environments are in place (where several agents interact in non-trivial ways),
planning may quickly become unfeasible.

Scientific researchers often tackle the complexity of systems by simulating
simplified parametric models executed multiple times, with randomly generated
parameters. Doing so allows drawing statistical conclusions based on the data
generated by such in-silico experiments. Accordingly, agents may follow a similar
approach, in their minds, to decide what to do or what to expect. In other words,
agents may leverage simulation to realize speculative thinking.

MAS have been exploited for the purpose of simulation since their very
beginning—cf. ABS in Section 2.3. However, currently, most ABS research ef-
forts are devoted to exploiting MAS in simulations rather than the opposite.
Conversely, the idea of letting an agent simulate itself and its environment is
quite new—other than very challenging. According to such a perspective, we
envision equipping each agent with an ABS sub-system capable of simulating an
entire MAS. Using inner simulations, agents could then try out different actions
and sequence of actions that are otherwise too costly or even dangerous to try
in the real environment, other than retrying the same scenario over and over
again with different rules or parameters. Similarly to humans, agents may then
exploit such capability to autonomously discover plans, rules, or even policies
for situations that they have either already experienced, or not.
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3.4 Adaptively Revising Knowledge via Biochemical Coordination

Simulating the world to discover novel plans, rules, or – more generally – back-
ground knowledge may eventually lead to the creation of chunks of potentially
useless information. By doing so, efficiency issues in both information storage
and retrieval may arise. However, a more conservative strategy may prevent
agents from discovering novel and potentially useful information. Accordingly,
some general strategies should be exploited to allow each agent to decide what
knowledge to retain and discard dynamically.

Here we welcome the idea that no “one size fits all” solution exists to select
knowledge based on expected utility. Indeed, any predefined strategy may be
affected by the biases of who designed it or be tailored to a particular scenario
while being sub-optimal in other ones. For this reason, we argue that an adaptive
strategy based on a biochemical metaphor would be preferable.

From such a perspective, we assume the many mechanisms proposed so far
– inference, machine learning, planning, simulation – to produce information in
the form of molecules. Agents’ minds can then be conceived as containers of
molecules of different sorts—e.g., beliefs, neurons, plans, etc. Such molecules’
concentration may increase over time as the corresponding information may be
produced multiple times or on a per-usage basis. For instance, the same rule
may be induced from different data in different instants or be frequently used.
Similarly, different runs of a simulation may lead to the frequent exploitation of
similar courses of action. This, in turn, may lead an agent to increase the con-
centration of one or more plans. At the same time, we assume the information
is subject to evaporation on a uniform basis. In other words, all sorts of infor-
mation evaporate at the same pace. As a global effect, only relevant information
would be able to survive, in the long run – where by relevant we mean either fre-
quently generated or frequently used, without requiring to a-priori define what
is actually relevant.

Finally, aggregation and mutation mechanisms may fit the picture by sup-
porting random and periodic modifications or combinations of pre-existing in-
formation—e.g., by merging similar plans/rules into more articulated ones, or
by slightly altering some parameter of a wrapped neural network to change its
behavior. Such random modifications may then be adaptively confirmed or dis-
carded, depending on whether they result to be relevant or not for the agent. In
the former case, their concentration would increase, whereas in the latter case,
it would decrease.

4 Open Challenges

As we discussed in the previous sections, imagination within the context of agent
intentions entails the provision of continuous knowledge acquisition, synthesis,
revision and exploration. While we identified both the existing approaches (cf.
Section 2) as well as the specific research areas (cf. Section 3) to investigate, we
acknowledge the existence of key challenges to tackle in the process. These are
summarized as follows:
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C1) Knowledge heterogeneity. Acquisition of knowledge is essential to feed a cre-
ative process, whether it is intending to combine information to derive new
insights, for synthesizing explainable knowledge, for confronting different
views, or even for exploration of uncharted territory. Nevertheless, agents will
be exposed to the challenge of extreme variety among the different knowledge
sources that they run across. Solving semantic and data-representation het-
erogeneity issues arising from this diversity will be a necessary step. An ex-
ample would be using knowledge graph matching and fusion techniques [54].
Moreover, given the need for integrating symbolic and sub-symbolic sources,
tools and techniques for a coherent integration between both will have to be
studied [55].

C2) Goal generation. A fundamental step in a creative cycle is establishing clear
goals, even if these may be updated in the future. While a goal may define
an overall scope for the development of creative activities, in some cases, the
goals may not be entirely known a priori. In such conditions, goal genera-
tion [56] must be part of the creative process that needs to be incorporated
into the agent model [57].

C3) Knowledge alignment. Even when knowledge heterogeneity has been ad-
dressed, it will still be required to align different understandings of observed
phenomena relevant to the creative plan’s scope. For example, if knowledge
sources’ provenance is dissimilar, simply aligning terminologies and concepts
is not enough [58]. At this point, it is crucial to study models that allow han-
dling contradictions, assumptions, explainable outcomes, and interpretations
as part of the knowledge alignment task [59, 60].

C4) Information uncertainty. Creative agents must take into account not only
the potential inaccuracy of their information sources but also the eventual
uncertainty of their own artificial imagination. The exploration and naviga-
tion over radically new ideas and approaches entail high risk, meaning that
oftentimes they may lead to dead-ends. Agents may need to incorporate risk
management strategies [61] allowing them not to constrain themselves only
to safe knowledge but leave enough space for behavioral models that adapt
to different levels of uncertainty. This also applies to uncertainty in XAI
outcomes and their consequences on inter-agent agreements.

C5) Reasoning complexity. The generation of new knowledge may require reason-
ing over potentially large and/or complex knowledge graphs [62]. Depending
on the complexity of these graphs’ underlying logics, reasoning tasks may be-
come increasingly expensive in terms of computation. Moreover, the agents’
autonomous nature will necessitate further exploration of decentralized rea-
soning techniques, including partial knowledge and probabilistic approaches.
An additional challenge to tackle is the combination of explicable results of
data-driven AI predictions. Multi-agent speculative reasoning may need to
be combined with machine learning outcomes to address this challenge.

C6) Hypotheses evaluation. Agents will be able to propose hypotheses that may
need to be validated or refuted [63]. This ability should be accompanied by a
robust framework for managing assumptions, claims, justifications, explana-
tions, and proofs [64, 65]. As explained in the previous point, reasoning and
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sub-symbolic outcomes have to be evaluated with respect to the hypotheses.
Agents may eventually have different or plainly contradictory points of view,
for which reconciling mechanisms may need to put in place. While in some
cases competitive approaches may be preferred (e.g., working towards the
same goal but under different imaginative hypotheses and assumptions), in
others, it might be necessary to align and establish a cooperation scheme.

C7) Explicable knowledge revision. When the results of explicable machine learn-
ing and, in general, generated sub-symbolic knowledge are produced, agents
need to navigate through them and understand their implication over ex-
isting information [66]. This may lead to invalidating previous beliefs or to
changing the uncertain status or certain facts. The challenge of explaining
these decisions, and providing justification of the imaginative paths taken
by a community of agents, shall be addressed to understand the path that
leads to creative activities. The provenance of knowledge and the changes
may lead to even reconsidering information that was deemed false or invalid
in a previous iteration.

C8) Exploration. Agent imagination requires substantial space for the exploration
of new knowledge and experimentation through novel approaches. Although
exploratory agents have been studied in the past [67], it remains a challenge
to establish a formal framework for discovery in large knowledge spaces.
Approaches like link traversal of knowledge graphs may serve as a starting
point, although they may need to be extended to a cooperative scenario
where different agents run exploratory tasks under coordination mechanisms.

C9) Accountability. Imaginative processes in multi-agent systems entail the ex-
ploration and creation of new knowledge, as well as the validation of previous
and new ideas. The consequences of these actions may lead to decisions and
actions for which there should be clear responsibilities. In that context, the
provenance information emanating from exploratory processes and knowl-
edge revision decisions will need to be associated with trust mechanisms
allowing to ensure proper attribution to an agent or a person embodied by
an agent. Furthermore, accountability [68] in terms of ethical and even legal
terms should be studied, not only from a purely technical perspective (e.g.,
accountability networks, knowledge graph ledgers) but also from a psycho-
social point of view (i.e., human-agent accountability).

5 Conclusions

This paper provided a ground for discussing the meaning of imagination in the
setting of cognitive agents, selected possible tools and approaches, and elicited
the envisioned contextual challenges. In particular, the investigated research are
(i) reasoning and automatic theorem proving, (ii) automatic planning and sim-
ulation, (iii) machine learning and data mining, and (iv) biochemical coordi-
nation. Finally, the intuitions proposed directions collapsed in the definition of
challenges in the areas of knowledge heterogeneity, goal generation/definition,
knowledge alignment, information uncertainty, reasoning complexity, hypothesis
evaluation, explicable knowledge revision, exploration, and accountability.
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To address these challenges, in the future we plan to explore a number of
practical research directions aimed at creating the technological playground for
supporting our notion of imagination. For instance, the problem of letting agent
programming technologies support several logics and inference procedures, is far
from being solved [69]. A similar statement holds for the simulation of large-
scale MAS composed by cognitive agents. For this reason, our first efforts shall
be devoted to (i) the development (resp. extension) of novel (resp. existing)
agent programming framework to support inductive, and abductive reasoning –
for instance, via the 2P-Kt technology [70] –, (ii) the development of simulation
frameworks for cognitive agents, supporting virtualization of both space and time
– for instance via the Alchemist simulator [71] –, (iii) blending (either existing or
novel) agent programming frameworks and mainstreamML frameworks—such as
TensorFlow, PyTorch, etc. Conversely, concerning the design of and biochemical
coordination at the single agent level, we argue that further research is needed.
Along this path, our first step will consist of a formalization, aimed at further
clarifying possibilities and challenges.
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5. Rafael H Bordini and Jomi F Hübner. Bdi agent programming in agentspeak using
jason. In International workshop on computational logic in multi-agent systems,
pages 143–164. Springer, 2005.



16 G. Ciatto, A. Najjar, J.P. Calbimonte, and D. Calvaresi

6. Gary L Drescher. Made-up minds: a constructivist approach to artificial intelli-
gence. MIT press, 1991.
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