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Abstract In this article, we consider the problem of

reshaping a deformable linear object (DLO) like wires,

cables, ropes, and surgical sutures. The solution to this

problem would be useful for many fields, especially in-

dustrial manufacturing, where the DLO manipulation

is still frequently carried out by human workers. In this

work, a new model-based manipulation technique for

reshaping a DLO is addressed employing a sequence

of grasping and releasing primitives performed by a

single-armed robot equipped with a gripper. A deci-

sion process selects the optimal grasping point exploit-

ing an error minimization approach and chooses the

related releasing point. This decision process performs

a spline interpolation between the error values obtained

from candidate grasping points and chooses the optimal

point that owns a minimum error. The multivariate dy-
namic spline model of the DLO is exploited for selecting

the optimal grasping point and predicting the DLO be-

havior during the manipulation process. Because of its

advantages over other integration methods, the sym-

plectic integrator is utilized for iteratively solving the

DLO dynamic model. Simulation results of reshaping

a DLO lying on a table are presented to evaluate the

proposed technique. These results illustrate the inter-

mediate deformation steps which lead the DLO from

its starting state to the desired one. They demonstrate

that our proposed technique can efficiently manipulate

the DLO into various shapes in few steps.
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1 Introduction

Humans can handle and manipulate deformable ob-

jects, such as clothes, sheets, wires, ropes,and so on,

smoothly and without any issue. On the other hand,

manipulating deformable objects using robots is still

challenging despite the several attempts of the robotics

community [30]. The main reasons for these limitations

are the complexity of deformable object dynamics, lim-

ited capability in measuring the deformable object state,

and unpredictable initial configuration. Due to these
limitations, most of the procedures in the assembly pro-

cess that contains deformable objects are still performed

manually. Deformable object manipulation has a va-

riety of applications in many fields such as domestic

facilities, assistive dressing, folding clothes [28], gar-

ment sorting, food industry [22], and healthcare (like

robotic surgery [14]). Furthermore, it plays a vital role

in aerospace [33], automotive [15], manufacturing, and

electromechanical industries [11]. Sanchez et al. intro-

duce a very thoughtful survey exploiting the robots for

deformable object manipulation in domestic and indus-

trial applications [30].

Manipulating Deformable Linear Objects (DLOs),

like ropes, cables, tubes, strings, catheters, surgical su-

tures, and so on, is considered in this paper. The ef-

fective solutions to this manipulation issue will help

in implementing the robots in many subfields of the

wide world of industrial manufacturing. For example,

in the automotive industry, manipulating DLO is es-

sential for the planning and installation of electrical ca-
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bles inside the vehicle system. Also, in medical surgery,

DLO manipulation plays a vital role in the suturing

process where a flexible wire needs to be knotted [24].

Likewise, this manipulation issue has an essential role

in other fields like power distribution and architecture.

The problem of manipulating DLOs was previously

investigated. The most commonly investigated task in

DLOs robotic manipulation is tying knots. Yamakawa

et al. [37] suggested a trajectory planning scheme whereby

the knot could be knotted at high-speed by a single

robot arm depending on a precise dynamic model of

the robot and the rope. The usage of recurrent neu-

ral networks for learning the knotting trajectories has

been investigated by Mayer et al. [23]. Lee et al. [17]

have suggested learning from demonstration (LfD) for

learning a function which maps a couple of correspon-

dence points and reduces a bending cost. Battaglia et

al. [2] and Li et al. [18] model ropes by a mass-spring

system and employ graph networks for learning the dy-

namics of the rope. Nevertheless, they suppose that the

physical state of the rope is fully observable. A motion

planner is proposed in [29] for bi-manual manipulation

of DLOs. This planner is used to tie multiple knots in

an experimental setup. This strategy, however, is re-

stricted to knotting problems. Instead of avoiding con-

tacts, Zhu et al. [40] investigated the problem of robotic

manipulation of DLOs with environmental contacts.

Inserting DLO in a hole is another commonly stud-

ied task, because of many valuable applications in the

assembly operations [39]. A hand-eye system was de-

veloped in [13] to insert a cord into a hole through the

usage of stereo vision, to compute the relative loca-

tion between cord tip and hole. A method for insert-

ing string through narrow openings employing an ap-

proximate Jacobian for estimating the string motion

was proposed in [36]. Zanella et al. [39] have inserted a

DLO into a hole through estimating the force that acts

on the DLO, employing the analysis of the feedback

from a tactile sensor via a Recurrent Neural Network

(RNN). A model-based manipulation scheme for linear

flexible objects is presented by Cheng et al. [5]. They

suggested a 3D geometric model for the DLO which

was exposed to gravity in addition to a physical repre-

sentation with several links combined by revolute joints.

They displayed the feasibility of their scheme by achiev-

ing the plug task, in which a robot employed to unplug

a power cable from a socket and then plug it into an-

other.

Vision or/and tactile data are employed in many ap-

proaches to this style of problem. Frequently vision is

utilized alone because of its effectiveness in data gath-

ering [31]. Though, this solution may be unsuccessful

in the existence of different lighting settings and occlu-

sions. The implementation of tactile sensors increases

the success rate through overcoming many environment

restrictions [26]. Hence, there have been several articles

that combine vision and tactile data in one approach

to estimate the object features [4], [3].

Programming by demonstration directly utilizes the

experience of an expert and transforms it into a tech-

nical system. A skill controller is built to resolve a hose

inserting task through an event-driven hybrid controller

[12]. The parameters of the controller are determined

from the human demonstrations. A methodology to cre-

ate an automatic program for achieving a DLO-in-hole

task was introduced in [1]. A series of topological con-

tact DLO states and the environment was obtained

from a human demonstration in a virtual setting. One

major limitation is the difficulty in handling the po-

sitioning inaccuracies. To summarize, programming by

demonstration provides a promising path for teaching

manipulation skills. On the other hand, in general, it

is not robust against environmental location uncertain-

ties and initial state changes between demonstration

and autonomous implementation.

Only a few works try to consider the control of DLO

shape by a robot. Rambow et al. [27] applied a single

teleoperated demonstration for mounting a flexible tube

in a desired shape by the usage of a two-armed robot. A

learning-based system depending on a human demon-

strator was introduced by Nair et al. [25], in which a

robot takes a series of images illustrating small defor-

mations of a DLO from a starting to the desired state.

Then, by following the provided demonstration steps,

the robot performed a series of actions for leading the

DLO to the desired shape. Baxter robot was arranged

in [25] for gathering interaction data with the DLO for

500 hours. These data were employed for learning a dy-

namic model of DLO manipulation which is then uti-

lized for imitating the human demonstration. Yan. et al.

[38] presented a model-based and visual robot manip-

ulation of DLOs. They showed DLO state estimation

using self-supervised training on actual images. With

estimated DLO configurations, they trained a differen-

tiable and quick neural network dynamic model which

includes the physics of the mass-spring system. Indeed,

the desired outcomes still seem far away, despite the in-

vested sources in the last years. If applicable, classical

engineering methods give considerably superior results

at the expense of flexibility and generality.

The main objective of this article is to reshape a

DLO from an initial configuration to a desired one. We

assume that the manipulation will be accomplished us-

ing a single-armed robot equipped with a gripper. The

single-arm can grasp a DLO from a selected point and

move it to another one on the same plane (the table sur-
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face). Moreover, the manipulation system is assumed to

be able to detect the initial state of the DLO by using

an appropriate vision system. For instance, the tech-

nique proposed in [7] may be used for providing the

initial DLO state for starting the algorithm. Then, the

manipulation technique will perform a series of grasp-

ing and releasing primitives for reshaping the DLO as

desired. The optimal grasping point at each primitive is

selected by the decision process which employs an error

interpolation and then determines the related releasing

point. To this end, a multivariate dynamic spline model

is utilized as a mathematical model for the DLO. This

model enables a real-time and fast evaluation of the

DLO behavior during the manipulation procedure. The

symplectic integrator is employed for solving the DLO

model iteratively to interpolate the DLO state during

the manipulation. This symplectic integrator is selected

because it is the most stable and the fastest compared

to other integrators as reported in our previous work

[16].

This is the first work, to the best of our knowledge,

that focuses on the problem of the autonomous reshap-

ing of a DLO from a general shape into a desired one,

without the need to illustrate the intermediate defor-

mation steps. Besides, the states of the DLO are di-

rectly estimated from the exact dynamic model. There

are many benefits of this choice. First, it enables incor-

porating physics priors concerning the DLO behavior

when it is manipulated. Such models of dynamics give

more realistic behavior estimations over a longer hori-

zon than pixels-learned dynamic models. Second, the

states of the DLO do not depend on the environment

or the DLO appearance. Consequently, the dynamics in

a setting can be utilized in other visually altered set-

tings directly.

The remainder of this paper is prepared as follows.

The main features of the mathematical DLO dynamic

model are summarized in Sec. 2. The symplectic inte-

grator scheme is presented in Sec 3. Furthermore, Sec. 4

introduces the proposed manipulation technique. Addi-

tionally, Sec. 5 presents the simulation results. Finally,

Sec. 6 drafts out the conclusions and future work.

2 DLO Dynamic Model

To successfully predict the DLO behavior, its deforma-

tion/flexibility model is required. This model implies

an accurate representation of both the mechanical be-

havior and the geometry of the DLO. After defining the

model, a computationally effective manner is required

to evaluate this model over time and to solve the in-

quiries of motion planning. DLOs are characterized by

their shape variations, due to the impact of forces and

various environmental constraints. DLO modeling, in

general, is a complex and major challenge with a wide

range of purposes. Many methods for the DLOs mod-

eling are discussed previously. These methods include

Mass-spring [20], Elastic rod [19], Multi-body [32], Fi-

nite element [10], Dynamic spline [35], and other meth-

ods. Lv, et al. [21] produced a recent review paper that

discussed the approach, advantages, and drawbacks of

each DLO modeling method. The dynamic spline is a

modeling method that offers a strong theoretical basis,

higher authenticity, and a continuous model. A multi-

variate dynamic spline is utilized to model the DLO

in this article. Moreover, a symplectic integration ap-

proach is employed to iteratively resolve the model and

interpolating the DLO state throughout the manipu-

lation process. We decided to exploit the symplectic

integrator due to its advantages over other approaches,

as proved previously in [16].

The DLO shape can be represented effectively by

a third-order spline basis that is a function of a free

coordinate u. This coordinate u denotes the position

along the DLO. It is equal to zero at one endpoint and

equal to L at the other endpoint, given that L is the

DLO length. This could be written mathematically as:

q(u) =

nu∑
i=1

bi(u)qi, (1)

where q(u) = (x(u), y(u), z(u), θ(u)) = (r(u), θ(u))

is the fourth-dimensional configuration functional space

of the DLO. It contains the three linear coordinates

x, y, z that provide the DLO position at point u, in addi-

tion to the DLO axial twisting θ. Moreover, bi(u) is the

ith spline polynomial basis utilized to define the DLO

state. Furthermore, qi are called the control points.

They are appropriately selected coefficients utilized to

accurately interpolate the DLO state through the bi(u)

basis functions. The number of control points is denoted

by nu.

For several reasons, this mathematical model for the

DLO is very successful. First, the calculation of the spa-

tial derivatives executed in a straightforward manner,

i.e.

q(j)(u) =

nu∑
i=1

b
(j)
i (u)qi, (2)

where q(j) is the jth derivative of q. Indeed, it can be

identified by the same coefficients besides the simple-

to-compute derivatives of bi(u). Second, the proprieties

of the spline basis confirm the reduction of the model

curvature [6], which characterizes the physical behav-

ior of the DLO. Third, this model enables to represent
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a general nonlinear function with smoothness features

as a linear combination of the nonlinear basis function

bi(u), that relies only on the free variable u, by the

linear coefficients qi.

The DLO dynamic model can be described, by em-

ploying the system’s Lagrange equations, as a function

of the control points qi:

d

dt

(
∂K

∂q̇i

)
= Fi −

∂U

∂qi
, i = 1, 2, . . . , nu, (3)

where Fi denotes the applied external force to the ith

control point, K represents the total kinetic energy, and

U is the whole potential energy. The effect of stretching,

bending, torsion, and gravity on DLO is responsible for

producing this potential energy. It is worth mentioning

that, in the case of dynamic splines, the control points

are used as the number of degrees of freedom.

The DLO overall dynamic model could be written,

according to the approach described in [34], by expand-

ing Equ. (3) to all control points.

Mq̈ = F + P , (4)

where F represents the vector that consists of the whole

external forces, incorporating gravity. P refers to the

vector that includes all elastic forces. The complete de-

tails of the overall DLO dynamic model and its related

terms, which we used in this work, are existed in [16].

At each simulation step, solving the system can be

accomplished by employing a simple LU decomposition.

Furthermore, at every time step, the control points’

positions and velocities can be obtained by integrat-

ing the accelerations. Many integration methods can

be utilized, but several problems may arise. These prob-

lems include the long integration time, numerical insta-

bility, and the inappropriateness for long-time predic-

tions. The use of the symplectic integrator will alleviate

these problems, as we proved in our previous work [16].

This symplectic integrator and its specifications are ad-

dressed in more detail in the next section.

3 Symplectic Integrator

The symplectic integration scheme is employed for solv-

ing the model iteratively and interpolating the state of

the DLO throughout the manipulation. This symplectic

integrator got particular attention because of its merits

over other approaches in resolving the dynamic equa-

tions. The previous results in [16] demonstrated the

ability of this symplectic integrator to surpass other in-

tegration approaches in predicting the behavior of the

DLO. These results confirmed that the symplectic in-

tegrator is the most stable and the fastest integrator

against the other considered integration approaches.

In nonlinear dynamics, symplectic integration is com-

monly utilized. It is developed as the numerical solution

of Hamiltonian equations that given by:

ṗ = −∂H
∂q

and q̇ =
∂H

∂p
, (5)

where q represents the position coordinates, p refers to

the momentum coordinates, and H denotes the Hamil-

tonian that can be obtained from:

H(p, q) = K(p) + U(q), (6)

where K refers to the kinetic energy, and U represents

the potential energy. Collection of position and momen-

tum coordinates (q, p) is known as canonical coordi-

nates. The initial step for utilizing the symplectic inte-

grator, in our case, is to convert the Lagrangian equa-

tions into Hamiltonian. This conversion is carried out

following the procedure discussed in-depth in [16]. For-

est [8,9] produced the general form of the symplectic

integrator in the fourth order as follows:

q1 = q0 + c1τ
∂K
∂p (p0) , p1 = p0 − d1τ

∂U
∂q (q1) ,

q2 = q1 + c2τ
∂K
∂p (p1) , p2 = p1 − d2τ

∂U
∂q (q2) ,

q3 = q2 + c3τ
∂K
∂p (p2) , p3 = p2 − d3τ

∂U
∂q (q3) ,

q4 = q3 + c4τ
∂K
∂p (p3) , p4 = p3 − d4τ

∂U
∂q (q4) ,

(7)

where τ denotes the size of the time step. q0 and p0
refers to the initial values, and q4 and p4 refers to the

numerical solution after τ . Also, the numerical coeffi-

cients ci and di are uniquely computed from:

c1 = c4 = 1
2(2−β) , c2 = c3 = (1−β)

2(2−β) ,

d1 = d3 = 1
(2−β) , d2 = −β

(2−β) , d4 = 0,

β = 21/3.

(8)

4 The Proposed Manipulation Technique

The new manipulation technique for reshaping a DLO

on a table will be presented in detail in this section. We

assume utilizing a robot with a single arm to reshape

the DLO that is lying on a table. The robot arm has

a gripper to interact with the DLO. This gripper has
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two degrees of freedom (one for opening/closing the two

fingers and one rotational for the orientation). The ma-

nipulation will be achieved using a sequence of picking

(grasping) and releasing primitive motions. The robot

arm will move only one point from the DLO current

state (grasping primitive) to the related point in the

desired or goal state (releasing primitive). These mo-

tions will be repeated with other points until reaching

a certain level of error (error threshold) between the

desired and the current DLO state. A decision process

will be responsible for selecting the optimal grasping

point and its related releasing point in each iteration.

A DLO is lying freely on a table, in front of the

robot, at a certain height z*. A fixed camera pose is

assumed above the table to obtain the input image ini-

tially. The robot’s interaction with the DLO is limited

to two simple primitive motions which are grasping the

DLO at the location (x1, y1) and releasing it at the

location (x2, y2), where x1, y1, x2, y2 are the coordi-

nates in the table plane. The grasping (x1, y1, z*) and

releasing (x2, y2, z*) coordinates can be estimated in

the base frame because both the camera pose and table

height are known with respect to the robot base frame.

During the grasping motion, the robot firstly will ap-

proach the grasping point (x1, y1, z*) from the top,

with an offset of 0.05 meter along the z-axis, and open

the gripper. It descends along the z-axis with a linear

motion until it reaches z*, then the gripper will close.

Then, it moves towards the releasing point (x2, y2, z*).

After reaching the releasing point, the gripper will open

before rising back to the same offset. In both grasping

and releasing motions, the motion planning of the robot

arm will be automatically performed using the native

robot’s inverse kinematics solver.

A flow chart of the proposed manipulation technique

is shown in Fig. 1. The technique is begun by setting

the control points, let us name them I0, equal to the

current DLO configuration. As stated before, we pre-

sume that a vision system, like the one described in

[7], can be employed at this initial stage to detect the

DLO and produce a spline-based representation for the

DLO shape. Also, Idesired represents the control points

of the desired or target DLO configuration. The deci-

sion process will select the optimal grasping point and

the related releasing point using the initial configura-

tion I0 and the desired state Idesired.

The decision process divides the DLO into small seg-

ments. So, the DLO has optional grasping points (ns)

at the beginning and the ending of each segment. The

decision process chooses only k points at equal distances

over the DLO optional grasping points. k is a small in-

teger number. For example, if k = 6 and ns = 101, the

candidate grasping points will be 1, 21, 41, 61, 81, 101.

The decision process will use the spline-based dynamic

model to simulate the evolution of the DLO accord-

ing to the applied actions. It begins with the candidate

grasping point number 1 and applies the action u1 to

move this point to the related point on the desired DLO

state. This action u1 is simulated by a force vector that

is proportional to the difference between the position of

the desired point and the actual point. The evolution

of the DLO control points will be determined after this

action u1 by the help of the dynamic model. This DLO

state is denoted by s1. This process will be repeated

with the remaining candidate grasping points using the

actions u2, u3, . . . , uk, respectively. The produced DLO

states will be represented by s2, s3, . . . , sk, respectively.

The stage of selecting the optimal grasping point

will compute the norm of the error for each candidate

grasping point and its candidate state after applying

the candidate action. This error is the difference be-

tween the desired state Idesired and the candidate states

s1, s2, . . . , sk, respectively. Using the candidate grasp-

ing points and the related error norm, a spline interpo-

lation will be accomplished. Then, the grasping point

with the minimum error norm is selected to be sent to

the robot arm. The robot arm will perform the grasping

and releasing motion primitives. Then the DLO current

state will be updated to be I1 and the decision process

will be repeated. The repetition process will continue

until reaching a certain level for the norm of the error

(error threshold) which means that the current state

and the desired state are nearly the same.

We may wonder if we can simply identify the grasp-

ing point by selecting an arbitrary point from those

points which do not coincide with the desired state.

This is obviously very ineffective because it ignores the

interconnection property of the DLO. Furthermore, if

we pick the free points only (those do not coincide), we

cannot guarantee to reshape the DLO because the ap-

proach would basically intend to clean the whole free

points up to the last one. Also, a large number of mo-

tion primitives will be required. Another trivial solution

would be to obey the order along the path, but the in-

terlinked nature of the DLO is not considered in this sit-

uation. Indeed, every time a new point is placed, other

previously placed points may be moved erroneously.

5 Simulation Results

In order to assess the proposed manipulation technique

that is discussed in the previous section, numerical sim-

ulations have been performed on MATLAB. The DLO

state evolution is aimed at this section. This DLO is

influenced by internal inertial and elastic forces besides

the external forces such as the gravitational force, the
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Fig. 1 Overview of the proposed DLO manipulation technique.

Table 1 Model Parameters.

Parameter Symbol Value Unit

DLO Length L 2.0 m

Radius of the DLO circular Section R 1e-3 m

Young’s Modulus : stretching,
twisting, and bending [s t b]

E [5000 5 0.5]e6 N/m2

Volume Density ρ 2.7e3 kg/m3

Poison’s Ratio ν 0.33 -

Yield Stress - [100 100 100]e6 N/m2

Break Point Stress - [1 1 1]e10 N/m2

Number of Control Points nu 9 -

Number of Spline Samples ns 101 -

Gravitational Acceleration g 9.81 m/sec2

friction force between the DLO and the table, and the

applied action force from the gripper of the robot arm.

All the simulations have been achieved utilizing the

multivariate dynamic spline-based model in Eq. (4). In

these simulations, the symplectic integrator is used to

solve the dynamic model iteratively. During this work,

the simulations have been implemented on Ubuntu 18.04.5

LTS operating system, processor intel core i5-3210M

CPU@2.50GHz x 4, RAM 8GiB.

In these simulations, the material of the DLO is se-

lected to be aluminum. The DLO length L is equal to

2 meters. Moreover, the numbers of control and sam-

ple points along the DLO are set to be equal to 9 and

101, respectively. These numbers are selected to be suf-

ficiently small but produce a good interpolation capa-

bility. The model parameters which are utilized in these

simulations are presented in Table 1.

The DLO that is lying on a table is simulated using

the spline-based dynamic model. While, in these simu-

lations, the table itself is simulated by a spring and a

damper. The generated force from the spring and the

damper is called the normal force and it will affect the

DLO state. This normal force will make a balance with

the other forces that influence the DLO such as the

gravitational force. So, the DLO will be kept stabilized

at a certain height z*= 0 m and did not fall below this

height value. The spring constant is equal to 5 kN/m,

while the damper constant is equal to 40 Ns/m.

The friction force vector, that affects each control

point of the DLO due to contact with the table, is repre-

sented by Ffriction. This friction force can be calculated

from:

Ffriction = β atan(αV ), (9)

where V is the velocity vector of the control point. β

and α are constants and equal 50 and 0.1, respectively.

In this work, the robotic arm is just simulated by a

force vector and denoted by Frobot. This force vector is

proportional to the difference between the position of

the desired point and the actual point. It is calculated

from:

Frobot = γ(Pdesired − Pcurrent), (10)

where Pdesired and Pcurrent are the coordinate of the

desired and the current point of the DLO state, re-

spectively, while γ is a constant and tuned to be equal

250 N/m.

Figure 2 shows the sequence of DLO states results

from the deformation steps which are carried out by the

robot iteratively, from the initial I0 to the target or de-

sired shape Idesired, in 6 successful experiments. These
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Fig. 2 Sequence of DLO states that resulted from the deformation steps carried out by the robot iteratively, using the new
manipulation technique, in 6 successful simulation experiments.

results demonstrate that the proposed model-based ma-

nipulation technique can reshape the DLO into a vari-

ety of shapes, with different initial configurations, in

only a few steps. A sample video to show the numeri-

cal simulation of the sixth experiment in Fig. 2 can be

found in the link 1. In this video, the computing time

for all primitive motions is about xxx seconds.

Figure 3 presents the error norm versus the grasping

points for each iteration of the first simulation experi-

ment in Fig. 2. In each subfigure, the blue circles rep-

resent the error norm at the candidate grasping points

(1, 21, 41, 61, 81, 101). While the spline interpolated

curve is represented by the dashed red line. In each it-

eration, the decision process will choose the grasping

point with minimum error norm (the point indicated

by a blue star) from the interpolated data and send its

value to the robot arm.

1 https://www.dropbox.com/s/uvhaxd0u4r5w8su/video_

for_spline_4_motions.avi?dl=0

6 Conclusions

This research introduces a new model-based manipula-

tion technique for reshaping a deformable linear object

(DLO) by a single-armed robot. This new technique

performs the manipulation process employing a series

of grasping and releasing primitives. The optimal grasp-

ing point and its related releasing point are chosen by

a decision process. This process makes a spline inter-

polation between the acquired error values from candi-

date grasping points and selects the optimal point that

has a minimum error. The proposed technique utilizes

the multivariate dynamic spline model for representing

the DLO and its behavior during the manipulation pro-

cess. Also, the symplectic integrator is used for solving

the DLO dynamic model iteratively and interpolate the

DLO shape. It is selected because it is the most stable

and the fastest integrator compared to other considered

integration schemes. In order to evaluate the manipu-

lation technique, MATLAB simulations for reshaping a

DLO lying on a table are accomplished. The obtained

results demonstrate the intermediate deformation steps

 https://www.dropbox.com/s/uvhaxd0u4r5w8su/video_for_spline_4_motions.avi?dl=0
 https://www.dropbox.com/s/uvhaxd0u4r5w8su/video_for_spline_4_motions.avi?dl=0


8 Alaa Khalifa, Gianluca Palli

Fig. 3 Error norm versus the grasping points for each iteration of the first simulation experiment in Fig. 2.

which lead the DLO from its initial configuration to the

desired one. Finally, these results prove that the new

technique can manipulate the DLO into various shapes

in few steps.

Although the presented work in this paper concen-

trated on reshaping a DLO lying on a table, our goal

in future work is the extension of the study to reshape

DLOs, like electric wires, in the assembly and manu-

facturing processes. The proposed manipulation tech-

nique will be validated using the practical experiments.

The proposed technique will be extended to manipu-

late multi-branch DLOs, like the pre-gathered wiring

harness involved in the aerospace and automotive in-

dustries.
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