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sEMG-based Regression of Hand Kinematics with Temporal
Convolutional Networks on a Low-Power Edge Microcontroller

Marcello Zanghieri1, Alessio Burrello1, Victor Javier Kartsch Morinigo1, Simone Benatti1,3,
Roberto Meattini1, Gianluca Palli1, Claudio Melchiorri1, Luca Benini1,2

Abstract— Human-Machine Interfaces based on gesture
control are a very active field of research, aiming to enable
natural interaction with objects. A successful State-of-the-
Art (SoA) methodology for robotic hand control relies on
the surface electromyographic (sEMG) signal, a non-invasive
approach that can provide accurate and intuitive control when
coupled with decoding algorithms based on Deep Learning
(DL). However, the vast majority of the approaches so far
have focused on sEMG classification, producing control systems
that limit gestures to a predefined set of positions. In contrast,
sEMG regression is still a new field, providing a more natural
and complete control method that returns the complete hand
kinematics. This work proposes a regression framework based
on TEMPONet, a SoA Temporal Convolutional Network (TCN)
for sEMG decoding, which we further optimize for deployment.
We test our approach on the NinaPro DB8 dataset, targeting the
estimation of 5 continuous degrees of freedom for 12 subjects
(10 able-bodied and 2 trans-radial amputees) performing a set
of 9 contralateral movements. Our model achieves a Mean
Absolute Error of 6.89°, which is 0.15° better than the SoA.
Our TCN reaches this accuracy with a memory footprint of
only 70.9kB, thanks to int8 quantization. This is remarkable
since high-accuracy SoA neural networks for sEMG can reach
sizes up to tens of MB, if deployment-oriented reductions like
quantization or pruning are not applied. We deploy our model
on the GAP8 edge microcontroller, obtaining 4.76ms execution
latency and an energy cost per inference of 0.243mJ, showing
that our solution is suitable for implementation on resource-
constrained devices for real-time control.

Clinical relevance — The proposed setup enables the de-
ployment of sEMG-based regression of hand kinematics for
mechanical hand control via embedded devices, granting nat-
uralness and accuracy with extremely low delay and energy
consumption.

I. INTRODUCTION & RELATED WORKS

Human-Machine Interfaces (HMIs) for gesture control
are gaining traction since they enable smart interaction
with objects using natural hand gestures [1]. A preferred
approach to enable gesture controls relies on mapping the
surface electromyographic (sEMG) signals [2] on a set of
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intended gestures, using Machine Learning (ML) [3] and,
more recently, Deep Learning (DL) techniques [4], [5].

Conventional ML algorithms, such as LDA, SVM, and
ANN, achieve above 80% classification accuracy [3], [6],
even though they are outperformed by DL models, which
can leverage larger datasets, exploit feature learning, and
handle time-windowing of the sEMG signal with no need
for preliminary feature extraction [7], [8].

Although the use of the sEMG signal allows the conven-
tional ML/DL approaches to control both gestures and grasps
with a relative naturalness, the aforementioned systems are
restricted to limited sets of predefined static positions (e.g.
closed hand, pinch grasp, pointing index, etc.), which do not
allow an entirely natural and versatile control.

As a result, targeting hand kinematics with sEMG-based
regression is a promising research direction. Several DL
approaches could tackle regression problems; however, most
of them are computationally intensive and require a high
memory footprint due to large model sizes [4], [5], [9],
hampering deployability on edge devices with real-time
execution constraints.

Thus, a DL reliable framework for energy-efficient plat-
forms requires a careful multimodal HW-SW codesign. In
particular, after finding a high-accuracy deep model, it is
necessary to minimize its size (e.g., via quantization [10]),
then determine the latency and power consumption of the
model inference when it runs on the targeted embedded
device. It is noteworthy that most convolutional networks
proposed for sEMG reach SoA accuracy only at the cost
of model size up to tens of MB [4], lacking deployment-
oriented optimizations, such as stride and dilation, quantiza-
tion [10], or pruning, which can cut down the model size by
more than 10ˆ with only a marginal loss in accuracy [8].

The sEMG regression task has been addressed in several
inspiring works, distinguished by the variable they target:
kinematic (joint angle, joint velocity) or dynamic (finger
force). The position of the joint angles represents the best
indicator for hand kinematics, hence it is the most used
parameter in hand gesture regression. For instance, in [11],
the regression is targeted toward the joint angles of a
dataglove, reaching a median R2 of 0.63 using a Wiener
filter; however, this work does not test other algorithms to
improve the regression score since it is more focused on
the control quality as perceived by users. In [12], a Long
Short-Term Memory (LSTM) deep network is applied on
the same dataset, yielding a Mean Absolute Error (MAE) of
7.04°; the limitation of this work is that it does not explore



purely convolutional networks, which are more amenable
to parallelization and hence more suitable for embedded
control.

Alternative approaches to hand kinematics focus on the
velocity of hand joint movements. For instance, velocity was
targeted in [13], adopting a hybrid classification-regression
setup which thresholds speed into 3 levels, thus still limiting
the prediction to discrete classes. A completely orthogonal
approach for sEMG regression focuses on hand dynamics
instead of kinematics. The work [14] targeted multiple-
Degrees-of-Freedom (multi-DoF) force estimation; however,
force estimation is a more restricted application since it is
limited to grasp movements.

A major shortcoming of all the aforementioned works is
that none of them addresses the problem of deployment onto
embedded control devices. In particular, they do not discuss
how their models cope with resource-constrained platforms,
nor explore techniques such as model search, quantization,
and pruning.

In this work, we address the challenge of sEMG-based
regression to decode hand kinematics. We propose a regres-
sion framework based on a Temporal Convolutional Net-
work (TCN), a DL model for time series modeling suitable
for real-time operation on resource-constrained devices. We
present the following contributions:
‚ We apply the SoA TEMPONet TCN architecture on

NinaPro DB8, a benchmark sEMG regression dataset
also comprising trans-radial amputees, obtaining a Mean
Absolute Error as low as 6.89°, which is 0.15° better
than the dataset’s SoA even if our model’s bitwidth is
reduced to int8, while the SoA network is float32.

‚ We further optimize our TCN framework, identifying
the model size which yields the optimal tradeoff of
regression error vs. memory footprint and MACs; we
preserve regression accuracy, limiting the model size to
70.9 kB and the number of operations to 3.16 MMACs.

‚ We deploy our solution on the GAP8 edge microcon-
troller [15], [16], measuring the performance in terms
of latency and power consumption. We obtain 4.76 ms
latency and 0.243 mJ energy cost per inference, demon-
strating the suitability of our regression TEMPONet for
edge low-power nodes working in real-time.

II. MATERIALS & METHODS

A. Surface Electromyographic Signal

The electromyographic (EMG) signal [17], [18], [19] is
an excellent indicator of muscle activity since it originates
from the ion current through the muscular fibers’ membrane,
triggered by electrical stimuli from the central nervous
system propagating through motoneurons. The EMG typical
amplitude and bandwidth are 10 µV ˜ 1 mV, and up to
2 kHz, respectively. What makes EMG signal challenging is
the intrinsic signal variability and the noise sources, mostly
caused by floating ground, crosstalk, power line interference,
and motion artifacts [20], [3].

Surface EMG (sEMG) is acquired with conductive elec-
trodes placed on the skin surface above the muscles and

collected by an instrumental differential amplifier. By virtue
of its unobtrusiveness, sEMG is the preferred method for
enabling Human-Machine Interfaces (HMIs).

B. NinaPro Database 8

The Non-Invasive Adaptive hand Prosthetics Database 8
(NinaPro DB8) [11], [21] is a public sEMG database for
finger position decoding, intended as a benchmark for esti-
mation/reconstruction of kinematics instead of classification
of gestures or grasps. In particular, contralateral movements
are intended as a target for sEMG regression.

NinaPro DB8 comprises 10 able-bodied subjects and 2
right trans-radial amputees. All participants repeat 9 kinds1

of bilateral mirrored movements, lasting approximately 6 s˜
9 s (i.e., slow on purpose, for transient modelling), inter-
leaved with approximately 3 s of rest. The muscular potential
was recorded using 16 active double-differential sensors
(from a Delsys Trigno IM Wireless EMG system), positioned
on two rows of eight units around the participants’ right
forearm in correspondence to the radiohumeral joint. Hand
kinematics was acquired by an 18-DoF Cyberglove 2 worn on
the left hand, contralateral to the sEMG electrodes forearm,
measuring the angles of the 18 dataglove joints. All signals
were upsampled to 2 kHz and post-synchronized.

In this Xptq ÞÑ Yptq multivariate regression formulation,
the input information is the 16-channel sEMG signal, and
the target is represented by 5 Degrees of Actuation (DoAs),
defined as linear combinations of the 18 DoFs of the
glove [11]. This DoF-to-DoA reduction serves to (i) discard
or downscale irrelevant DoFs, and (ii) directly target DoAs
defined as relevant hand movements.

The SoA on NinaPro DB8 is represented by the LSTM
of [12], which attains a Mean Absolute Error (MAE) of
7.04°. However, the proposed LSTM is not suitable for
deployment on low-power embedded platforms due to its
float32 numeric format. Furthermore, the authors do
not report the essential information about the number of
hidden units, parameters, and MACs of the LSTM employed.
Moreover, LSTMs are in general more difficult to train than
convolutional models [22], a further downside which moti-
vates our exploration of Temporal Convolutional Networks
(as explained in the next Subsection II-C).

C. Temporal Convolutional Networks

In this work, we address sEMG-to-kinematics regression
treating the signal as a time series, exploring variants of
the TEMPONet (Temporal Embedded Muscular Processing
Online Network) topology [7], a Temporal Convolutional
Network (TCN) designed for sEMG classification.

1) Background on TCNs: TCNs are a novel category of
DL models that have become the SoA on several time-series
tasks, outperforming Recurrent Neural Networks (RNNs)
for both training tuning and accuracy [23], [22], [9]. The

1Both single-finger and functional: thumb flexion/extension; thumb
abduction/adduction; index finger flexion/extension; middle finger flex-
ion/extension; combined ring and little fingers flexion/extension; index
pointer; cylindrical grip; lateral grip; tripod grip.
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Fig. 1. The TEMPONet TCN architecure, adapted for regression and further optimized compared to its first proposed version [7].

two specific properties of TCNs reside in their 1D convo-
lutions along time: (i) causality: kernels only embrace a
left-neighborhood of each sample, thus peeking at no future
samples; (ii) dilation: a fixed step d is interleaved between
filter inputs, thus widening the receptive field at constant
model size. A dilated causal convolution works therefore as
follows:

ycout
t “ Convpxq “

Cin
ÿ

cin“1

K´1
ÿ

k“0

Wcin,cout
k xcin

t´d¨k (1)

with x and y input and output feature map respectively, t
time index, cin and cout input and output channel respectively,
K kernel size W P RKˆCinˆCout filter tensor, and d dilation.

2) TEMPONet Architecture: The network we propose in
this work is a further development of SoA TEMPONet [7]
TCN. In addition to modifying it to target regression, we
present a model exploration aimed at identifying the best
tradeoff between accuracy and network size. The net’s archi-
tecture, shown in Figure 1, features 3 Convolutional Blocks,
each stacking:
‚ 2 dilated causal convolutions with kernel size 3, variable

dilation d, and full padding;
‚ 1 convolution with kernel size 5, variable stride s,

followed by an average pooling (kernel 2, stride 2).
The 3 convolutional blocks have dilation d “ 2, 4, 8 and
stride s “ 1, 2, 4, respectively. In our novel exploration for
a more efficient TEMPONet, we reduce the channels of the
3 convolutional blocks compared to the original model of [7].
We halve Block I’s channels from 32 to 16, halve Block II’s
channels from 64 to 32, and we explore different channel
numbers for Block III, namely 32, 48, 64, 96, 128, and
192, searching for the best tradeoff between regression error
and deployment metrics, i.e. model size, MACs, latency, and
energy consumption. This model search on TEMPONet is
novel, since it is not performed in the paper first proposing
it [7].

After the convolutional blocks, 3 Fully Connected (FC)
layers perform the classification. FC I has 4ˆ units as Block
III’s channels (variable number as explained right above),
FC II has 32 units, and FC III has 5 units, corresponding to
the 5 DoAs target of the regression. All layers, except FC
III, have ReLU non-linearity as activation function and are

equipped with Batch-Normalization (BN) to counter internal
covariate shift [24]. FC I and FC II are trained with dropout
with pdrop “ 0.5, to help regularization [25]).

The optimized TEMPONet we propose processes a
256 samples input window (128 ms @ 2 kHz) with less
than 500 k parameters. It is fed by raw signals, thus with
no preprocessing or feature extraction overhead. Size and
computation improvements of the final selected architecture
compared to the original TEMPONet are detailed in Sec-
tion III.

D. Experimental Setup Details

1) Dataset Split: For each of the 12 subjects of NinaPro
DB8, 3 sessions are provided. As recommended by the
dataset’s authors, session 3 (2 repetitions per movement)
was used as test set. Sessions 1 and 2 (10 repetitions
per movement) were merged and used in a 2-fold cross-
validation setup.

2) Preprocessing: The NinaPro DB8 signals made avail-
able at [21] have already been bandpass-filtered with a
4th-order Butterworth between 10 Hz and 500 Hz. Classical
ML models, namely SVM and MLP, which need feature
extraction on every signal window, were trained on the Wave-
form Length (WL) feature extracted from 60 ms-windows
of each channel, with a slide of 100 ms for SVM (largest
computationally affordable training set size) and 25 ms for
MLP. For the SVM, the Radial Basis Function (RBF) kernel
was used, applied to the data scaled to unit variance, and
the C coefficient was tuned separately for each target DoA.
TCNs were directly trained on raw sEMG signals, using time
windows of 128 ms (i.e., 256 samples @ 2 kHz).

3) Machine Learning Setup: Models were implemented
in Python 3.8, using Scikit-learn 0.23 for SVM and MLP
and PyTorch 1.6 for TCNs. The SVM used is a Radial Basis
Function (RBF) kernel SVM, and the MLP was implemented
with 3 hidden layers. TCNs were trained with MAE loss,
AdaM optimizer, initial learning rate 1 ¨10´4, and minibatch
size 64. First, 19 epochs were run in float32 format;
then, post-training quantization to 8 bit (i.e., int8) was per-
formed, and 1 last epoch of quantization-aware training was
run, using PArameterized Clipping acTivation (PACT) [10] as
implemented by NeMO (NEural Minimizer for tOrch, [26],
[27]), an open-source library for CNN minimization to target
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Fig. 3. Example of the regression produced by our TEMPONet: test session of subject 1, DoA angle 5; sEMG signal from sensor 1 shown for reference.

deployment on highly memory-constrained ultra-low power
devices.

4) Model output post-processing: The outputs of all
models were post-processed with an Exponential Moving
Average (EMA):

y1t “ αEMA ¨ y
1
t´1 ` p1´ αEMAq ¨ yt, (2)

with y and y1 the unfiltered and filtered signal, respectively,
t the time index, and αEMA P r0, 1s the decay factor.
The decay factor αEMA was tuned per-subject, per-DoA, for
each model (after the model’s training), using only training
data and optimizing by grid search2. This optimization is
consistent with the ML setup (since no test data are used),
and is performed to tune the compromise between the EMA’s
beneficial smoothing and the inertia deriving from the weight
of past values. It is worth remarking that the EMA is
computed using only outputs yt from the present and the
past: thus, it adds no delay to the setup. The empirical values
obtained for the decaying factor αEMA are reported in the
Results (Section III).

III. EXPERIMENTAL RESULTS

A. Evaluation metrics
Assessing the effectiveness of a regression framework on

the end-to-end control of a robotic hand is not a trivial task.
The evaluation of the MAE is certainly important but it is
necessary to consider, for instance, that a difference between
the value of estimated angles and the ground truth has a
greater impact on control when it occurs during movements
rather than in static phases.

2Although the formula is differentiable, optimization by PyTorch’s auto-
matic differentiation plus SGD proved slower and less accurate than grid-
search sweep.

For this reason, we measure the models’ regression quality
by MAE (measured in degrees), and by a regression accuracy
defined as the frequency of the MAE being below a tolerance
Θtol:

Θtol-accuracy fi
1

T

T
ÿ

t“1

IΘtolpMAEptqq (3)

where I denotes the indicator function

IΘtolpMAEptqq fi

#

1 if MAEptq ă Θtol

0 otherwise.
(4)

We select empirically a regression-accuracy threshold Θtol “

10°, 15°.
These metrics are reliable measures of the end-to-end

quality of the control for several reasons: (i) they are
related to the actual scale of angular positions; (ii) they
are statistically representative, since averages are taken over
joints, movements, and subjects, including two trans-radial
amputees; (iii) MAE is first-order, hence less affected by
outliers than the regression R2. The regression accuracy,
based on a threshold, is even more robust.

B. Models comparison

Results shown in Table I and Figure 2, report the tested
ML (SVM and MLP) and DL (TEMPONet) algorithms along
with the LSTM of [12], used as baseline. In particular,
Figure 2 depicts the search of the optimal size for the
regression TEMPONet, varying the channels of Block III
over the values 32, 48, 64, 96, 128, 196 (as explained in
Subsection II-C.2).

From Table I, we can see that conventional ML frame-
works can not match the state-of-the-art accuracy: the SVM
reaches 7.28° (i.e., `0.24° compared to SoA), while the



TABLE I
REGRESSION QUALITY OF THE EXPLORED MODELS, COMPARED TO THE

SOA OF THE NINAPRO DB8.

Model Format MAE 10˝-accuracy 15˝-accuracy

SVM fp32 7.28° 0.795 0.883
MLP fp32 7.14° 0.799 0.889

LSTM [12] fp32 7.04° n.a.1 n.a.1

TEMPONet2 int8 6.89˝ 0.814 0.900
1Correctness Scores (CS) of [12] are accuracies, but are too ad hoc since
per-joint tolerances are fixed as percentiles after dynamic range clipping.

2Best one selected: Block III with 64 channels.

MLP obtains a MAE of 7.14° (i.e., `0.10° compared
to SoA) Moreover, the SVM has two further limitations:
(i) trying to improve the SVM’s accuracy by increasing
the training set size proved unfeasible due to diverging
training time; (ii) even with the tuned C’s, which regulate
the bias-variance tradeoff per-DoA, the SVM incorporates
on average of 98.3% of the training examples as support
vectors (16-dimensional), which amounts to 1.15 MB of
memory, which is demanding for embedded devices with
strict memory constraints. Note that the latter problem is an
inherent methodological limitation of SVM, whose size can
not be fixed a priori before training.

TCNs are the only model which proved capable of
outperforming the SoA MAE. All reported TEMPONet’s
results refer to networks quantized to int8 format, which
reduces the memory footprint by 4ˆ compared to fp32.
As can be seen from Figure 2, the smallest and largest
TEMPONet experimented show higher errors, indicating that
they produce underfitting and overfitting, respectively, thus
identifying the best bias-variance tradeoff in the in-between
interval t64, 96, 128u. When Convolutional Block III has
64, 96, or 128 channels, TEMPONet’s regression is equally
accurate. It is remarkable that the baseline is surpassed even
operating at a lower precision. In Table I, we report the
MAE and regression-accuracy of our TEMPONet-64 against
the the LSTM of [12] and against the SVM and MLP
implemented in this work.

In particular, with 64-channel Block III, our TEMPONet
has an elbow in the curves regarding model size and MACs,
thus representing the best MAE-vs-deployment tradeoff.
This 64-channel TEMPONet has a memory footprint of
just 70.9 kB and requires the computation of 3.16 MMACs,
which represent a memory reduction of 6.5ˆ and a compu-
tation reduction of 5.3ˆ compared the original TEMPONet
proposed in [7].

In Figure 3, we showcase an example of the regression
output provided by this network. In particular, it is possible
to observe that the output is prompt and accurate for both
narrow and wide movements. The typical errors fall into two
main categories. The first kind of error is an offset, stationary
during each movement; since the output is stationary as
well, this constant difference is not expected to affect the
user’s perceived accuracy; and, if perceived, offsets can be
easily compensated via session-specific recalibration. The
second kind of error are fast erratic segments, which could

be smoothed out by strengthening the EMA post-processing;
the optimal amount of EMA smoothing was optimized as
explained in Subsection II-D.3, to tune the smoothing-delay
tradeoff best for the MAE; the average decay factor obtained
was αEMA “ 0.862, with a standard deviation of 0.044 across
subjects and DoAs.

Finally, we proceeded to implement the 64-channels TEM-
PONet on the commercial microcontroller GAP8 [15], [16],
to measure latency and energy cost per inference. For de-
ployment, we used the open-source tool DORY (Deployment
Oriented to memoRY, [28]), with an extension to the backend
to support dilated convolutions.

When running at 1 V, 100 MHz (the most energy-efficient
configuration), GAP8 has a power consumption of 51.0 mW.
This yields a latency of just 4.76 ms per inference, with an
energy cost of just 0.243 mJ per inference. These values
demonstrate that the selected 64-channel TEMPONet can fit
the strict constraints of resource-limited controllers and real-
time operation. Regarding latency, the consensus on real-
time requirements for artificial hand control is 300 ms [29].
Accounting for the 128 ms input window length, plus the
4.76 ms computation latency, our application matches real-
time requirements with a wide margin, proving capable to
provide a fluid control without a relevant perceived delay.

IV. CONCLUSIONS

In this work, we have presented a setup for sEMG-based
hand kinematics estimation based on a Temporal Convolu-
tional Network, which achieves a lower regression error than
the SoA of the targeted dataset, with the numerical precision
reduced from float32 to int8. We deployed our model
on a low-power edge microcontroller, showing low memory
footprint, computation, and energy cost per inference, thus
proving the suitability of our solution for implementation on
resource-limited embedded controllers working in real-time.
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