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Highlights: 

 Primary producer biomass is 90% lower in A. taxiformis than in E. brachycarpa habitat.  

 From native to invasive seaweeds, epifaunal assemblages lost 40% of their diversity. 

 Seaweed biomass was the structural attribute explaining the epifaunal variation. 

 We suggest a complete shift from native to invasive seaweeds could impair rocky shore 

habitats. 
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Abstract 22 

Invasive seaweeds are listed among the most relevant threats to marine ecosystems worldwide. 23 

Biodiversity hotspots, such as the Mediterranean Sea, are facing multiple invasions and are expected 24 

to be severely affected by the introduction of new non-native seaweeds in the near future. In this 25 

study, we evaluated the consequences of the shift from the native Ericaria brachycarpa to the 26 

invasive Asparagopsis taxiformis habitat on the shallow rocky shores of Favignana Island (Egadi 27 

Islands, MPA, Sicily, Italy). We compared algal biomass and species composition and structure of 28 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



 2 

the associated epifaunal assemblages in homogenous and mixed stands of E. brachycarpa and A. 29 

taxiformis. The results showed that the biomass of primary producers is reduced by 90% in the A. 30 

taxiformis invaded habitat compared to the E. brachycarpa native habitat. The structure of the 31 

epifaunal assemblages displayed significant variations among homogenous and mixed stands. The 32 

abundance, species richness and Shannon-Wiener diversity index of the epifaunal assemblages 33 

decreased by 89%, 78% and 40%, respectively, from homogenous stands of the native E. brachycarpa 34 

to the invasive A. taxiformis. Seaweed biomass was the structural attribute better explaining the 35 

variation in epifaunal abundance, species richness and diversity. Overall, our results suggest that the 36 

shift from E. brachycarpa to A. taxiformis habitat would drastically erode the biomass of primary 37 

producers and the associated biodiversity. We hypothesize that a complete shift from native to 38 

invasive seaweeds could ultimately lead to bottom-up effects on rocky shore habitats, with negative 39 

consequences for the ecosystem structure, functioning, and the services provided.  40 

 41 

Keywords: habitat shift; alga; Ericaria brachycarpa; epifauna diversity; Cystoseira sensu lato; rocky 42 

shore; Marine Protected Area 43 

 44 

Introduction 45 

Invasive species are globally recognized among the main drivers of habitat shift in both terrestrial 46 

and marine ecosystems . In marine environments, decades 47 

of human activities related to global aquatic trade have enabled the dispersion of invasive species 48 

among distant geographic areas worldwide (Bax et al., 2003; Williams and Smith, 2007; Molnar et 49 

al., 2008; Servello et al., 2019). In addition, the rise in seawater temperature caused by global 50 

warming has allowed non-native species to cross environmental and geographical barriers, facilitating 51 

their expansion and in turn eroding indigenous resistance (Occhipinti-Ambrogi and Galil, 2010; Lo 52 

Brutto et al., 2019). Concerns over ecological and social-economic consequences have led researches 53 

to investigate the effects of invasive species on many marine ecosystems around the world. 54 
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 3 

Seaweeds are a significant component of marine non-native and invasive species (227 taxa 55 

globally), with some of them being responsible for drastic habitat shifts (Williams and Smith, 2007). 56 

Studies have highlighted how invasive seaweeds can negatively impact the recipient habitats by 57 

reducing biomass of primary producers, biodiversity, and nutrient flows, compromising ecosystem 58 

functioning (Boudouresque et al., 2005; Streftaris and Zenetos, 2006; Thomsen et al., 2014; Maggi 59 

et al., 2015; Ramsay-Newton et al., 2017; Geburzi and McCarthy, 2018). Interestingly, the effects of 60 

non-native seaweeds seem to change depending on the complexity of the recipient habitat (Thomsen 61 

et al., 2014). In less structured habitats (e.g. soft bottoms), the introduction of non-native seaweeds 62 

enhances structural complexity that may favor the increase in biodiversity and food web length 63 

(Dijkstra et al., 2017). Conversely, the introduction in well-structured habitats (e.g. seagrass 64 

meadows, algal canopies) may alter the diversity and function, depending on the structural features 65 

of the recipient habitat (Engelen et al., 2013; Veiga et al., 2014, 2018).   66 

Macroalgal complexity plays a significant role in shaping the abundance, richness and structure of 67 

epifaunal assemblages associated with both non-native and native seaweeds (Chemello and Milazzo, 68 

2002; Jormalainen and Honkanen, 2008; Pitacco et al., 2014; Veiga et al., 2014; Maggi et al., 2015; 69 

Dijkstra et al., 2017; Veiga et al., 2018; Chiarore et al., 2019). Algae with a high structural 70 

complexity, expressed as a combination of attributes, such as degree of branching, thallus width and 71 

height, and wet weight, can support well-structured epifaunal communities (Hacker and Steneck, 72 

1990; Chemello and Milazzo, 2002; Jormalainen and Honkanen, 2008; Pitacco et al., 2014; Veiga et 73 

al., 2014; Bitlis, 2019; Chiarore et al., 2019). Studies comparing the epifaunal diversity between 74 

invasive and native seaweeds revealed that, when invasive species are structurally less complex than 75 

native ones, they support low abundance and richness, and a simplified structure of epifaunal 76 

assemblages (Navarro-Barranco et al., 2018; Veiga et al., 2018). However, when native macroalgae 77 

are less complex, the abundance and diversity of epifauna associated with invasive seaweeds may be 78 

higher (Veiga et al., 2014; Dijkstra et al., 2017). This indicates that the effects of invasive seaweeds 79 

on epifaunal assemblages may change depending on both the invasive and the native seaweed 80 
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 4 

structural features. However, other studies have shown that native and invasive seaweeds with similar 81 

morphologies can host either similar (Suárez-Jiménez et al., 2017) or different epifaunal diversity 82 

(Navarro-Barranco et al., 2019). Overall, these contrasting evidences suggest that, apart from 83 

seaweed morphology, other factors can be involved in structuring the associated assemblages. 84 

In the last decades, the Mediterranean basin has witnessed an increase in the number of non-native 85 

and invasive seaweeds, with consequent modification of biodiversity and ecosystem functioning of 86 

coastal areas (Ribera Siguan, 2002; Streftaris et al., 2005; Streftaris and Zenetos, 2006; Piazzi and 87 

Balata, 2009; Musco et al., 2014; Bulleri et al., 2016; Corriero et al., 2016; Giangrande et al., 2020). 88 

In particular, Asparagopsis taxiformis (Delile) Trevisan de Saint-Léon is listed among the 100 worst 89 

invasive species in this basin (Streftaris and Zenetos, 2006). The earliest reports of its presence in the 90 

Mediterranean Sea date back to 1798-1801 in Alexandria (Egypt) as a result of trading operations 91 

and the opening of the Suez Canal (Verlaque et al., 2015). It was first recorded along the Italian coast 92 

on the western shore of Sicily, close to the city of Trapani, in May 2000 (Barone et al., 2003). While 93 

A. taxiformis has been suspected of producing harmful effects on native habitats (Barone et al., 2003), 94 

as far as we know, only one study assessed its effects on biodiversity, in particular by comparing the 95 

vagile macrofauna associated with this species to that of the native Halopteris scoparia (Linnaeus) 96 

Sauvageau indicating that A. taxiformis hosted less diverse epifaunal assemblages compared to native 97 

algae (Navarro-Barranco et al., 2018).  98 

Along the Italian coast, gametophytes of A. taxiformis can colonize coastal areas dominated by 99 

habitat-forming seaweeds, mainly belonging to the genus Cystoseira - recently divided into three 100 

genera Cystoseira, Gongolaria and Ericaria and hereafter referred to as Cystoseira sensu lato to 101 

include all three genera (Orellana et al., 2019; Molinari Novoa and Guiry, 2020). Cystoseira sensu 102 

lato species are important ecological engineers, greatly increasing the habitat surface, complexity and 103 

productivity in coastal ecosystems from the infra-littoral zone to the upper circalittoral zone. 104 

(Giaccone et al., 1994; Bulleri et al., 2002; Falace and Bressan, 2006; Ballesteros et al., 2009; 105 

Mancuso et al., 2021b). By creating shelter, Cystoseira sensu lato species improve the biodiversity 106 
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 5 

of their related assemblages, leading to the development of well-structured food webs  (Schiel and 107 

Foster, 2006; Cheminée et al., 2013; Mineur et al., 2015; Mancuso et al., 2021b). According to the 108 

European Water Framework Directive (2000/60), they are also considered indicators of good water 109 

and environmental quality (European Commission, 2000).  110 

In a recent study, we discovered that A. taxiformis had a less diverse and less structured molluscan 111 

assemblage than E. brachycarpa; however, no information about other epifaunal components 112 

associated with seaweeds was reported, nor information about intermediate states, such as mixed 113 

stands of E. brachycarpa and A. taxiformis (Mancuso et al., 2021a). Here, we compared the structure 114 

of the epifaunal community (amphipods, molluscs and annelids) associated with three plausible 115 

alternative states of the transition between the native Ericaria brachycarpa (J.Agardth) Orellana & 116 

Sansón and the invasive A. taxiformis. In particular, we characterized and compared the biomass and 117 

the diversity (richness, evenness, structure and composition) of the epifauna associated with the 118 

fronds of homogenous and mixed stands of E. brachycarpa and A. taxiformis. Moreover, we explored 119 

the variation of the epifaunal diversity in relation to the structural features of the two algae (dry 120 

weight, thallus volume, canopy volume, and interstitial volume). We hypothesize that shifting from 121 

habitats dominated by E. brachycarpa to those dominated by A. taxiformis will have a negative 122 

impact on the associated biodiversity, resulting in low abundances and diversity of each epifaunal 123 

component. 124 

 125 

Materials and Methods 126 

Study area and algal species characteristics 127 

The research was performed on the southwestern, shallow rocky shore of Favignana Island 128 

(Sicily, Italy), within the Egadi Islands Marine Protected Area (MPA) in June 2011 (Fig. 1). The 129 

region consists of gently sloping (5°-10°) carbonate rocky platforms and scattered boulders (Pepe et 130 

al., 2018) that provide substrates for well-developed macroalgal vegetation. 131 
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 6 

In this area, A. taxiformis was first recorded in 2000 (Barone et al., 2003). Since then, no studies 132 

have explored the temporal effects of this invasive species on native habitats. Although today A. 133 

taxiformis is well established in the area, previous surveys allowed the identification of three sites 134 

with distinctive habitats corresponding to three possible alternative states of the transition from native 135 

to invasive seaweed habitats: Scoglio Corrente  (37° 55' 2.0778" N, 12° 17' 6.0432" E) characterized 136 

by stands of E. brachycarpa (100% coverage); Scoglio Palumbo  (37° 55' 10.4226" N, 12° 18' 137 

41.097" E) hosting stands of A. taxiformis (100% coverage)  (37° 55' 35.385'' N, 138 

12° 16' 39.514'' E) with mixed stands of E. brachycarpa (~50% coverage) and A. taxiformis (~50% 139 

coverage) (Fig. 1). In this study, we decided to use these three sites to compare the epifaunal 140 

communities associated with three plausible alternative states of the transition from native to invasive 141 

habitats.  142 

Ericaria brachycarpa is a brown seaweed (Fucales) characterized by caespitosus thalli up to 20-143 

25 cm in height with several perennial axes, up to 2-6 cm in height, connected to the substratum by a 144 

more or less compact discoid base formed by haptera (Molinari Novoa and Guiry, 2020). The apices 145 

of the axes are flattened, smooth and not very prominent. Branches are cylindrical with smooth bases, 146 

or covered with tiny spinose appendages that are typically fertile in the spring-summer season 147 

(Gómez-Garreta et al., 2002; Mannino and Mancuso, 2009; Cormaci et al., 2012). Like other 148 

Cystoseira sensu lato species, E. brachycarpa displays seasonal differences in vegetative 149 

development (Gómez-Garreta et al., 2002). At the study sites, new branches of E. brachycarpa grow 150 

from the perennial axes in spring (May-June) providing new substrate and shelter for colonizing 151 

fauna, while in autumn (September-October) E. brachycarpa starts to become quiescent, losing 152 

almost all branches, leaving perennial axes that persist throughout the cold winter season. 153 

Asparagopsis taxiformis is a red alga (Bonnemaisoniales) common in the tropics and subtropics 154 

across the globe. The species experiences a heteromorphic life cycle, with an erect gametophyte 155 

alternating with a filamentous sporophyte known as Falkenbergia hillebrandii (Bornet) Falkenberg 156 

(Andreakis et al., 2004; Ní Chualáin et al., 2004). The gametophytes are characterized by sparsely 157 
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 7 

branched, creeping stolons and erect shoots from which several side branches grow in all directions. 158 

The latter ramifies over and over again giving the thallus a plumose appearance. In the study area, A. 159 

taxiformis develops in the upper sublittoral zone of the rocky substrate or as an epiphyte of other algal 160 

species. The gametophytes are present during all seasons with a maximum occurrence in spring  161 

(Barone et al., 2003). 162 

 163 

 164 
 165 
Fig. 1 Location of the three study sites (red dots) along the rocky-shore of Favignana Island MPA 166 

(green dot), Trapani, Sicily, Italy. SC = Scoglio Corrente, SP = Scoglio Palumbo, CG = Cala Grande. 167 

 168 

Sampling and analysis of epifauna 169 

Samples were collected by scuba diving at a depth of 5-7 m. For each site (hereafter referred to 170 

as habitat), two areas (5 x 5 m) were haphazardly selected. For each area, 10 thalli of E. brachycarpa 171 

from homogenous stands (100% algal coverage), 10 thalli of E. brachycarpa from mixed stands and 172 

10 gametophytes of A. taxiformis from homogenous stands (100% algal coverage) were collected (n 173 

= 20 per habitat). Thalli were collected 50cm apart to avoid spatial autocorrelation among samples. 174 

Underwater, each thallus and the associated epifauna were enveloped in a plastic bag, then the alga 175 

was detached from the substrate and the plastic bag was immediately closed to prevent the escape of 176 

vagile fauna. After collection, each sample was carefully drained of seawater in order to prevent 177 
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 8 

escape of small epifauna and stored at -20°C until laboratory analysis. In the laboratory, each thallus 178 

of E. brachycarpa and gametophytes of A. taxiformis were transferred into buckets abundantly rinsed 179 

under running water, allowing the associated fauna to detach from the algae. Then, the water was 180 

sieved through a 1 mm mesh. After sorting, molluscs, amphipods, and annelids were stored in 70% 181 

seawater ethanol solution and subsequently counted and identified to species, or the nearest possible 182 

taxonomic level. Taxonomy and nomenclature were updated according to the World Register of 183 

Marine Species database (WoRMS Editorial Board (2021)).  184 

 185 

Seaweed structural attributes  186 

For each thallus of E. brachycarpa and gametophyte of A. taxiformis collected, we measured 4 187 

structural features (thallus volume, canopy volume, interstitial volume, and biomass), to explore their 188 

relationships with the diversity indices calculated for the epifaunal assemblages. Thallus volume was 189 

measured as the variation of volume, in ml, after the immersion of a thallus into a graduated cylinder 190 

filled with seawater. Canopy and interstitial volumes were estimated according to Hacker and Steneck 191 

(1990). The canopy volume (CV, the volume, in ml, created by the overall dimension of a 192 

thallus submerged in seawater) was defined as the volume of a theoretical cylinder (193 

), h is the length of the thallus from the base to its apical portion of the thallus, 194 

including epiphytes, and r is the radius calculated as an average measure of the radius of the thallus 195 

measured with a ruler (+/- 1 mm) at the apical, median, and basal parts. The interstitial volume (IV, 196 

the volume, in ml, of water among the branches of the alga) was obtained by subtracting the thallus 197 

volume (TV) from the canopy volume CV .  198 

Finally, the biomass of the macroalgae was calculated as dry weight (DW, gr) after drying in a 199 

stove at 60 °C for 48 h (Stein-Taylor et al., 1985). Biomass was used as a proxy for the primary 200 

production of each habitat.  201 

 202 

Data analysis 203 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



 9 

For each epifaunal species, we calculated total abundance (N), frequency (F%; the percentage of 204 

samples in which a particular species is present) and dominance index (D%; the percentage of the 205 

rate between the percentage of individuals of a particular species and the total number of individuals 206 

within the sample) (Magurran, 1988). The epifaunal assemblages of each habitat were characterized 207 

according to total abundance of individuals (N), rarefied species richness (S), Shannon-Wiener 208 

diversity index index (J). A two-way analysis of variance (ANOVA) was 209 

used to test differences in the epifaunal indices 3 levels: E. 210 

brachycarpa, E. brachycarpa in mixed stands and A. taxiformis) and areas (random and nested within 211 

habitat with 2 levels: area 1 and area 212 

variances (Underwood 1997).  = 0.05) 213 

following significant effects in the ANOVAs (Underwood, 1996). The hierarchical structure of the 214 

taxonomic classifications of the epifaunal assemblages of E. brachycarpa, E. brachycarpa in mixed 215 

stands, and A. taxiformis was visualized - package 216 

(Foster et al., 2017). 217 

SIMPER analysis (Clarke, 1993) was performed to identify those taxa that contributed to the 218 

dissimilarity of the epifaunal assemblages between habitats ( i%).  was used to 219 

measure the consistency of the contribution of a particular taxon to the average dissimilarity in the 220 

comparison between habitats. A cut-off value of 70% was used to exclude low contributions. 221 

Differences in the epifaunal community structure (which takes into account species identity and 222 

relative abundance) and composition (presence/absence, which only takes into account species 223 

identity) among habitats and areas were assessed by Permutational Multivariate Analysis of Variance 224 

(PERMANOVA). The analyses were based on a Bray-Curtis distance matrix of square-root 225 

transformed epifaunal abundances (structure) and on a Jaccard distance matrix of presence/absence 226 

data (composition) using 9999 permutations. PERMANOVA was also performed separately for each 227 

component of the epifauna (molluscs, annelids and amphipods). Permutational analysis of 228 

multivariate dispersion (PERMDISP) was used to test differences in multivariate dispersion 229 
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 10 

(Anderson et al., 2008). A principal coordinate analysis (PCoA) plot was generated to visualize the 230 

variation of the epifaunal community structure (based on a Bray-Curtis distance matrix) and 231 

composition (based on a Jaccard distance matrix).  232 

Differences in each of the structural attributes (CV, IV, TV, DW) among habitats and areas were 233 

analyzed by two-way ANOVAs according to the above mentioned design. 234 

to check for the homogeneity of variances (Underwood, 1996). 235 

Linear regression (LM) analysis was used to test which algal structural attributes explained better 236 

the variation of total abundance (N), rarefied species richness (S), Shannon-237 

and Pielou's Evenness (J) of the whole epifaunal assemblages and its individual components 238 

(molluscs, annelids and amphipods). If a non-linear relationship between response and depended 239 

variables was detected, we examined the significance of applying a quadratic term in the model. In 240 

addition, a distance-based redundancy analysis (dbRDA, Legendre and Anderson, 1999) was used to 241 

investigate the relationship between structural attributes and the epifaunal multivariate structure. 242 

Since dbRDA is susceptible to multicollinearity (i.e. high correlation between environmental 243 

variables), draftsman plots were used to verify skewness or identify clear correlations between 244 

structural attributes. A log(x + 1) transformation was used to correct the right-skewness of thallus 245 

volume (TV) and biomass (DW). Moreover, due to the high correlation between canopy volume (CV) 246 

and interstitial volume (IV) we removed CV from the subsequent analyses. Then, the structural 247 

attributes were normalised using a z-score transformation due to their varying measurement scales. 248 

Finally, forward selection was used to identify the structural properties that mostly contributed to the 249 

heterogeneity in the multivariate structure of the epifaunal assemblages. 250 

Statistical analyses were performed using R open access statistical software 3.5.1 (R Core Team, 251 

Data availability and reproducible research  252 

 253 

Results 254 

Epifauna 255 
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 11 

Overall, we identified 5676 individuals of epifauna belonging to 199 taxa (74 molluscs, 50 256 

amphipods, and 75 annelids). Of these, 46 and 38 taxa were exclusively found on homogenous and 257 

mixed stands of the native E. brachycarpa respectively, while the invasive A. taxiformis hosted only 258 

12 unique taxa (Fig. 2, Table S1-S2). Syllidae (annelids) and Rissoidae (molluscs) were the most 259 

species rich families (35 spp. and 21 spp. respectively), while all the other families contained less 260 

than 10 species each (Fig. 2, Table S1). Among molluscs, the most abundant species were Eatonina 261 

cossurae (Calcara, 1841) on both E. brachycarpa (186 ind.) and A. taxiformis (12 ind.) and Setia 262 

ambigua (Brugnone, 1873) on E. brachycarpa from mixed stands (161 ind.). The most abundant 263 

species among amphipods were Ampithoe ramondi on E. brachycarpa (164 ind.), Apherusa 264 

alacris (Krapp-Schickel, 1969) on E. brachycarpa from mixed stands (253 ind.) and Caprella 265 

acanthifera (Leach, 1814) on A. taxiformis (33 ind.). Finally, annelids were mostly represented by 266 

Amphiglena mediterranea (Leydig, 1851) on E. brachycarpa (457 ind.) and Syllis prolifera (Krohn, 267 

1852) on both E. brachycarpa in mixed stands (171 ind.) and A. taxiformis (17 ind.) (Fig. 2, Table 268 

S1). 269 

 270 

 271 

 272 
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 274 

 275 

Fig. 2 Differences in the epifaunal assemblages among habitats. Heat trees show the abundances 276 

of taxa classified at the lowest taxonomic level possible on E. brachycarpa (a), E. brachycarpa in 277 

mixed stands (b) and A. taxiformis (c). Bar charts show the total abundance of amphipods, annelids, 278 

and molluscs for each habitat. 279 
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 280 

 281 

Total abundance (N) and rarefied species richness (S), differed significantly among habitats, 282 

with values that were higher in E. brachycarpa compared to E. brachycarpa in mixed stands and A. 283 

taxiformis (Fig. 3, Table S3). Shannon-Wiener diversity (H') varied significantly across habitats, with 284 

E. brachycarpa and E. brachycarpa in mixed stands exhibiting closer and higher values than A. 285 

taxiformis. 286 

Conversely, J) was higher in A. taxiformis compared to the other two 287 

habitats, which showed comparable values (Fig. 3, Table S3). 288 

 289 

Fig. 3 Comparison of the alpha diversity indices among habitats. Abundance (a), rarefied species 290 

richness (b), Shannon- epifaunal 291 
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assemblage associated with E. brachycarpa, E. brachycarpa in mixed stands, and A. taxiformis. Bar 292 

plots show mean +/- 1 standard error (n = 20). Significant codes: *** p<= 0.001, * p <= 0.05, ns 293 

p>0.05. See Table S3 for further details. 294 

 295 

PERMANOVA showed that the structure and composition of the epifaunal assemblages 296 

differed significantly among habitats (Table S4). PERMDISP analysis revealed a high dispersion of 297 

samples within habitats, especially for E. brachycarpa in mixed stands and A. taxiformis (Fig. 4). 298 

Notwithstanding this high dispersion, the epifaunal assemblages of the three habitats were clearly 299 

separated, as shown by the PCoA ordination plot (Fig. 4). The proportion of variance explained by 300 

the first two axes was 62.8% for structure and 45.6% for composition. The first axis accounted for 301 

the larger part of the variance (structure = 49.5% and composition = 36.1%) and highlighted a shift, 302 

in both structure and composition, from E. brachycarpa to A. taxiformis, with E. brachycarpa in 303 

mixed stands placed between the two homogeneous stands of native and invasive seaweeds (Fig. 4). 304 

The second axis explained lower variation (structure = 13.3% and composition = 9.5%) and separated 305 

E. brachycarpa and A. taxiformis from E. brachycarpa in mixed stands (Fig. 4).  306 

 307 
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Fig. 4 Structure (a) and composition (b) of the epifaunal assemblages associated with the three 309 

habitats. The Principal coordinate analysis plot (PCoA) based on a Bray-Curtis distance matrix of 310 

square-root transformed relative abundances (structure) or on a Jaccard distance matrix of 311 

presence/absence data (composition). The circles show the 90% confidence interval for each seaweed. 312 

 313 

The SIMPER analysis revealed that 28 taxa contributed 70% to the dissimilarity between E. 314 

brachycarpa and A. taxiformis; 37 taxa contributed 70% to the dissimilarity between E. brachycarpa 315 

and E. brachycarpa in mixed stands; and 30 taxa contributed 70% to the dissimilarity between E. 316 

brachycarpa in mixed stand and A. taxiformis (Fig. S1, Table S5). Most of the species contributing 317 

to the dissimilarities belonged to amphipods. The polychaete Amphiglena mediterranea (Leydig, 318 

1851) was the species mostly contributing to the differences observed between both E. brachycarpa 319 

and A. taxiformis and between E. brachycarpa and E. brachycarpa in mixed stands, contributing 320 

respectively to 8% and 6% of the observed differences. The amphipod Apherusa alacris Krapp-321 

Schickel, 1969 was the species most contributing to the differences (7%) between E. brachycarpa in 322 

mixed stands and A. taxiformis. In addition, the gastropod Obtusella macilenta (Monterosato, 1880) 323 

the difference between E. 324 

brachycarpa and A. taxiformis (Fig. S1, Table S5), while the amphipod Stenothoe monoculoides 325 

(Montagu, 1813) and the gastropod Eatonina cossurae (Calcara, 1841) were the species that 326 

contributed consistently to the differences between E. brachycarpa in mixed stands and E. 327 

brachycarpa, and between E. brachycarpa in mixed stands and A. taxiformis (Fig. S1, Table S5). The 328 

polychaete S. prolifera was among the first 5 species contributing to the differences between each 329 

couple of habitats (Fig. S1, Table S5). 330 

Multivariate analyses conducted separately for the three dominant epifaunal groups (molluscs, 331 

annelids, and amphipods) revealed patterns of variation comparable to those of the whole epifaunal 332 

assemblage (Table S6). Only, amphipods showed less variability among habitats (Table S6). 333 

 334 
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Seaweed structural attributes and relationships with the epifaunal assemblages. 335 

Canopy volume (CV) and interstitial volume (IV) differed significantly among habitats with 336 

higher values in A. taxiformis compared to E. brachycarpa in mixed stands and E. brachycarpa (Fig. 337 

5 a-b, Table S7). Biomass (DW) and thallus volume (TV) showed similar values between E. 338 

brachycarpa and E. brachycarpa in mixed stands and were significantly higher compared to those of 339 

A. taxiformis (Fig. 5 c-d, Table S7). 340 

 341 

 342 

Fig. 5 Differences in structural attributes among habitats. Canopy volume (CV), interstitial 343 

volume (IV), thallus volume (TV) and biomass (expressed as dry weight, DW) of the epifaunal 344 

assemblages associated with E. brachycarpa, E. brachycarpa in mixed stands and A. taxiformis. Bar 345 
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plots show mean  1 standard error (n = 20). Significant codes: *** p<= 0.001, ** p <= 0.01, * p <= 346 

0.05, ns p>0.05. See Table S7 for further details. 347 

 348 

The linear regression analysis revealed that biomass (DW) was the attribute that explained better the 349 

variation in abundance (R2
N

 = 0.51), rarefied species richness (R2
S

 = 0.58), Shannon-Wiener diversity 350 

(R2  = 0.54) ness index (R2
j
 = 0.2) of the epifaunal assemblages (Table S8). The 351 

variance explained by algal biomass increased if we considered a quadratic relationship between 352 

those variables (Fig. 6). 353 

pattern of variation (Fig. 6). Otherwise, canopy volume (CV) interstitial volume (IV) and thallus 354 

volume (TV) explained less variation (and it was significant ) of the 355 

epifaunal attributes (R-squared < 0.5, Table S8). The analysis conducted separately on the three 356 

dominant epifaunal groups (molluscs, annelids, and amphipods) revealed similar results however for 357 

amphipods and annelids the relationship between assemblage parameters and algal biomass was 358 

weaker (annelids: R2
N

 = 0.35, R2
S

 = 0.52, R2  = 0.49, R2
J
 = 0.03; amphipods: R2

N
 = 0.23, R2

S
 = 0.43, 359 

R2  = 0.31, R2
J
 = 0.01) although remaining the most important explanatory variable for both groups. 360 

Meanwhile, molluscs revealed patterns of variation similar to the whole assemblage (R2
N

 = 0.5, R2
S

 361 

= 0.53, R2  = 0.48, R2
J
 = 0.12) (Table S8). As for the other algal structural features, annelids showed 362 

a weaker and not significant relationship with the canopy and interstitial volumes, differing from 363 

amphipods and molluscs (Table S8). 364 
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 365 

Fig. 6 Relationship between seaweed structural attributes and epifaunal diversity. Results of the 366 

linear regression analysis (LM) between the algal biomass (expressed as dry weight, DW) and the 367 

abundance (a), rarefied species richness (b), Shannon-Wiener diversity (c) 368 

index (d) of the epifaunal assemblages.  369 
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Biomass (DW) was also the structural attribute selected for constrained db-RDA, explaining 371 

24.7% of the variation in the structure of the epifaunal assemblages (Table S9). The first two axes of 372 

the dbRDA plot explained 15.6% of the total variance of the multivariate structure of the epifaunal 373 

assemblages, with 12.4% for axis 1 and 3.2% for axis 2 (Fig. 7). 374 

 375 

 376 

 377 

 378 

Fig. 7 Relationship between structural attributes and the multivariate structure of the epifaunal 379 

assemblages associated to the three habitats. The distance-based redundancy (dbRDA) plot 380 

illustrates the structural attribute better explaining the multivariate structure of the three habitats. 381 

DW.log = seaweed biomass (log + 1). 382 
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Discussion 388 

The biodiversity and the socio-economic value of marine ecosystems are threatened by biological 389 

invasions around the world (Bax et al., 2003; Molnar et al., 2008). Understanding how invasive 390 

seaweeds modify the functioning of recipient ecosystems may allow us to better understand large 391 

scale effects on native rocky shore habitats. Here we investigated the effects of the invasive A. 392 

taxiformis on the native E. brachycarpa by comparing the epifaunal assemblage associated with three 393 

alternative states of the transition between native and invasive seaweeds, homogenous and mixed 394 

stands of the two seaweeds. Our results showed differences in abundance and diversity of the 395 

epifaunal assemblages between three alternative states of the transition from native E. brachycarpa 396 

to invasive A. taxiformis. In particular, A. taxiformis hosted almost 6 times less epifaunal individuals 397 

compared to E. brachycarpa in mixed stands, and 10 folds less individuals compared to homogenous 398 

stands of E. brachycarpa. Also, the number of epifaunal species was more than 4 folds lower in the 399 

invasive compared to the native habitat, while diversity reduced by half. These results confirm that 400 

generally invasive seaweeds exhibit a less diverse epifaunal component compared to native seaweeds 401 

(Guerra-García et al., 2012; Janiak and Whitlatch, 2012; Maggi et al., 2015; Navarro-Barranco et al., 402 

2018; Veiga et al., 2018).  403 

We found that variation in diversity and multivariate structure of the epifaunal assemblages was 404 

related to changes in algal structural features. In particular, biomass was the variable better explaining 405 

the variation in abundance, number of species, and the multivariate structure of the epifaunal 406 

assemblages. The role of macroalgal complexity in shaping the associated biota has been highlighted 407 

in several studies, with complex algae hosting a larger abundance and diversity of epifauna than 408 

simpler ones (Chemello and Milazzo, 2002; Pitacco et al., 2014; Veiga et al., 2014; Lolas et al., 2018; 409 

Veiga et al., 2018; Bitlis, 2019; Chiarore et al., 2019; Poursanidis et al., 2019; Mancuso et al., 2021b). 410 

In general, studies have highlighted that invasive seaweeds host lower (Guerra-García et al., 2012; 411 

Navarro-Barranco et al., 2018; Rubal et al., 2018; Veiga et al., 2018) or higher (Veiga et al., 2014) 412 

epifaunal abundance, species richness, and diversity, depending on whether their structural 413 
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complexity is respectively lower or higher compared to native seaweeds. Navarro-Barranco et al. 414 

(2018) showed that A. taxiformis had low fractal complexity and hosted an impoverished faunal 415 

assemblage compared to native seaweeds. Guerra-García et al., (2012) found that A. armata had low 416 

algal volume and showed lower abundance, species richness, and diversity of associated isopods 417 

fauna compared to the native Ellisolandia elongata (J.Ellis & Solander) K.R.Hind & G.W.Saunders. 418 

Moreover, lower dry weight and fractal dimension in the invasive S. muticum compared to native 419 

seaweeds have been shown to play a major role in shaping the associated faunal assemblages (Veiga 420 

et al., 2014, 2018). Likewise other studies (Janiak and Whitlatch, 2012; Veiga et al., 2014; Rubal et 421 

al., 2018), our results indicated that the quantity of habitat (biomass) was the best predictor variable 422 

explaining variation in terms of abundance, species richness, as well as multivariate structure of the 423 

associated epifauna. 424 

Interestingly, our results highlight that A. taxiformis affected each component (molluscs, annelids, 425 

and amphipods) of the epifaunal assemblages in the same way. However, in the available literature 426 

on the epifaunal assemblages of invasive seaweeds, we can find distinct responses among epifaunal 427 

components (Schmidt and Scheibling, 2006; Gestoso et al., 2010; Guerra-García et al., 2012; Bedini 428 

et al., 2014; Veiga et al., 2018; Navarro-Barranco et al., 2019). For example, species richness, 429 

Shannon diversity and total abundance of isopods were significantly lower in A. armata compared to 430 

native algae (Guerra-García et al., 2012). Bedini et al. (2014) found that the invasive Lophocladia 431 

lallemandii (Montagne) F. Schmitz hosted a higher abundance of amphipods, isopods, and 432 

polychaetes, while native habitats harbored a greater abundance of molluscs and decapods. Bivalves 433 

associated with the invasive S. muticum were more abundant compared to native seaweeds, which, in 434 

contrast, hosted more gastropods (Veiga et al., 2018), and Gestoso et al. (2010) found that isopods 435 

and amphipods were more abundant in S. muticum than in native seaweeds. Moreover, the invasive 436 

Codium fragile subsp. fragile (Suringar) Hariot supported higher densities of nematodes, bivalves, 437 

and specialist herbivores compared to fronds of the native kelp, which, in contrast, supported greater 438 

densities of gastropods and asteroids (Schmidt and Scheibling, 2006). Other authors revealed that 439 
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differences between invasive and native seaweeds in single components of epifaunal assemblages 440 

changed depending on the site and the identity of the algal species (Navarro-Barranco et al., 2019). 441 

The fact that in our study, the A. taxiformis habitat showed  lower abundance, species richness, and 442 

diversity values for all the epifaunal organisms, regardless of the groups investigated in this study 443 

(molluscs, amphipods and annelids), led us to hypothesize that a potential shift from the native (i.e. 444 

E. brachycarpa) to the invasive (i.e. A. taxiformis) habitat could cause large negative cascade effects 445 

on the benthic ecosystem.  446 

Although differences in the epifaunal assemblages among native and invasive seaweeds have 447 

been largely explored, our results also suggest that the presence of A. taxiformis affects the epifaunal 448 

assemblages associated with E. brachycarpa in mixed stands. This result could be explained by other 449 

attributes that differed between native and invasive seaweeds, such as the amount of epiphytes and/or 450 

the presence of chemical defenses, that have been related to the ability of seaweeds to shape their 451 

associated fauna (Hay et al., 1987; Viejo, 1999; Paul et al., 2006; Cacabelos et al., 2010; Máximo et 452 

al., 2018; Gache et al., 2019). Invasive seaweeds can release secondary metabolites (e.g. halogenated 453 

compounds) able to act as deterrents against epiphytes, and herbivores (Paul et al., 2006; Cacabelos 454 

et al., 2010; Vega Fernández et al., 2019). Secondary metabolites released by A. taxiformis can affect 455 

the survival of fish in the post-larval stages, eventually leading to alteration of the grazing pressure 456 

on the surrounding habitat (Máximo et al., 2018; Gache et al., 2019). Other studies suggest that 457 

invasive seaweeds can alter the trophic web by changing the composition of epiphytes which reduces 458 

suitable habitat for many epifaunal species (Viejo, 1999; Wikström and Kautsky, 2004). Several 459 

authors suggested that the amount of epiphytes could explain the higher species richness found in the 460 

invasive S. muticum compared to native seaweeds (Viejo, 1999; Cacabelos et al., 2010). In our study, 461 

A. taxiformis had no or fewer epiphytes compared to E. brachycarpa (R.C. personal observation). As 462 

epifauna is mostly represented by microalgae grazers, we can hypothesize that differences in the 463 

abundance of epiphytes between A. taxiformis and E. brachycarpa could contribute to the variation 464 

in epifaunal assemblages observed in this study. It is therefore arguable that further studies analyzing 465 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



 23 

the direct and indirect role of epiphyte abundance and secondary metabolites released by A. taxiformis 466 

in structuring its associated epifauna would allow us to better clarify the effects of this seaweed on 467 

the recipient habitats. 468 

Moreover, as suggested by other authors (Navarro-Barranco et al., 2019), landscape features 469 

could be another key aspect explaining the effect of A. taxiformis on E. brachycarpa associated 470 

assemblages in mixed stands. In fact, the presence of invasive seaweeds may contribute to the 471 

fragmentation of native habitats, reducing the patch size of native seaweeds, and at the same time 472 

increasing their isolation (Roberts and Poore, 2006; Lanham et al., 2015). It has been observed that 473 

the reduction in patch size of Cystoseira sensu lato habitats reduces the diversity of associated faunal 474 

assemblages (Mancuso et al., 2021b). Thus, we can hypothesize that the presence of A. taxiformis in 475 

mixed stands can act as a physical barrier to the dispersal of vagile fauna, reducing connectivity on a 476 

small scale and ultimately eroding the diversity of native habitats (Lanham et al., 2015). However, 477 

another possibility to consider is that some epifaunal groups may be able to disperse through the 478 

different seaweeds (Taylor, 1998) in mixed stands. In this case, the lower epifaunal abundance and 479 

diversity observed on E. brachycarpa from mixed stands could be because part of this diversity may 480 

have preferentially dispersed to the A. taxiformis portion of these mixed stands. Our study, however, 481 

cannot address the effects of epifauna movement among seaweeds on the observed results, and more 482 

studies are necessary to understand the possible role of mobile epifaunal assemblage movement 483 

patterns within mixed stands of E. brachycarpa. 484 

One inherent weakness of this study concerns the impossibility of separating the effects of A. 485 

taxiformis from natural spatial variability. This should be accounted for by using more interspersed 486 

sites for each condition (mono and mixed stands of native and invasive seaweeds). Unfortunately, we 487 

were not able to find more interspersed sites in the area of study. However, the three sites selected 488 

had the same average values of different environmental variables (surface temperature, salinity, 489 

nitrate and phosphate concentrations, dissolved oxygen, chlorophyll and photosynthetic active 490 

radiation, Table S10), indicating that spatial variability had little effect. Then, we think that the data 491 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



 24 

presented in this study is still valuable, albeit with its limitations, for understanding epifaunal 492 

community changes between plausible alternative states of the transition between E. brachycarpa 493 

and A. taxiformis. 494 

 495 

In summary, our study suggests that shifting from native to invasive habitats may pose a serious 496 

threat to biodiversity in coastal areas (Martin et al., 1992; Heck et al., 2003), potentially leading to 497 

bottom-up effects on rocky shore ecosystems. In addition, the low biomass supplied by the herein 498 

studied invasive species suggests that the shift from native canopy-forming algae to the invasive A. 499 

taxiformis habitat would also drastically reduce the biomass of primary producers in affected coastal 500 

areas. Predicting the ecological effects of invasive seaweeds is one of the main goals in the study of 501 

biological invasions. Previous research has highlighted the context-dependent effects of invasive 502 

seaweeds, with larger impact caused by invasive species exerting a different functional role compared 503 

to native habitat forming species (Ricciardi and Atkinson, 2004; Ricciardi et al., 2013; Navarro-504 

Barranco et al., 2019). Our results not only remark the negative effect of A. taxiformis on E. 505 

brachycarpa epifaunal assemblages, but also suggest that invasive species are able to affect native 506 

habitats in a transitional phase (mixed stands) of the habitat shift, facilitating fragmentation and 507 

isolation. Further studies aimed at understanding the effects of the habitat shift from native to invasive 508 

seaweeds should include multiple transitional phases (different percentage coverage), as well as the 509 

analysis of changes in the trophic structure of the associated epifaunal assemblages.  510 
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