
01 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Sandro Bimonte, E.G. (2022). Data Variety, Come As You Are in Multi-model Data Warehouses.
INFORMATION SYSTEMS, 104, 1-15 [10.1016/j.is.2021.101734].

Published Version:

Data Variety, Come As You Are in Multi-model Data Warehouses

Published:
DOI: http://doi.org/10.1016/j.is.2021.101734

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/839363 since: 2021-12-03

This is the submitted version (pre peer-review, preprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.is.2021.101734
https://hdl.handle.net/11585/839363

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the submitted version of:

Bimonte, S., Gallinucci, E., Marcel, P., & Rizzi, S. (2022). Data variety, come as you
are in multi-model data warehouses. Information Systems, 104

The final published version is available online at:
https://dx.doi.org/10.1016/j.is.2021.101734

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

Data Variety, Come As You Are
in Multi-model Data Warehouses

Sandro Bimontea, Enrico Gallinuccib, Patrick Marcelc, Stefano Rizzib,∗

aINRAE - TSCF, University of Clermont Auvergne, Aubiere, France
bDISI, University of Bologna, Italy

cLIFAT Laboratory, University of Tours, France

Abstract

Multi-model DBMSs (MMDBMSs) have been recently introduced to store and
seamlessly query heterogeneous data (structured, semi-structured, graph-based,
etc.) in their native form, aimed at effectively preserving their variety. Unfor-
tunately, when it comes to analyzing these data, traditional data warehouses
(DWs) and OLAP systems fall short because they rely on relational DBMSs
for storage and querying, thus constraining data variety into the rigidity of a
structured, fixed schema. In this paper, we investigate the performances of an
MMDBMS when used to store multidimensional data for OLAP analyses. A
multi-model DW would store each of its elements according to its native model;
among the benefits we envision for this solution, that of bridging the architec-
tural gap between data lakes and DWs, that of reducing the cost for ETL, and
that of ensuring better flexibility, extensibility, and evolvability thanks to the
combined use of structured and schemaless data. To support our investigation
we define a multidimensional schema for the UniBench benchmark dataset and
an ad-hoc OLAP workload for it. Then we propose and compare three logical
solutions implemented on the PostgreSQL multi-model DBMS: one that extends
a star schema with JSON, XML, graph-based, and key-value data; one based on
a classical (fully relational) star schema; and one where all data are kept in their
native form (no relational data are introduced). As expected, the full-relational
implementation generally performs better than the multi-model one, but this is
balanced by the benefits of MMDBMSs in dealing with variety. Finally, we give
our perspective view of the research on this topic.

Keywords: OLAP, Multi-Model Databases, Data Variety, Data Warehouse

∗Corresponding author
Email addresses: sandro.bimonte@inrae.fr (Sandro Bimonte),

enrico.gallinucci@unibo.it (Enrico Gallinucci), patrick.marcel@univ-tours.fr (Patrick
Marcel), stefano.rizzi@unibo.it (Stefano Rizzi)

Preprint submitted to Elsevier December 17, 2020

1. Introduction

Big Data are notoriously characterized by the 5 V’s: volume, velocity, vari-
ety, veracity, and value. To handle velocity and volume, some distributed file
system-based storage (such as Hadoop) has been created on the one hand, new
Database Management Systems (DBMSs) supporting NoSQL databases have
been introduced on the other. Specifically, NoSQL databases are distinguished
into four main categories [1]: key-value, extensible record, graph-based, and
document-based. Although NoSQL DBMSs have successfully proved to sup-
port the volume and velocity features, variety is still a challenge to some extent
[2]. Indeed, several practical applications (e.g., in the field of agroecology and
health) ask for collecting and analyzing data of different types: structured (e.g.,
relational tables), semi-structured (e.g., XML and JSON), and unstructured
(text, images, etc.). Using the right DBMS for the right data model is essential
to grant good storage and analysis performance.

Traditionally, each DBMS has been conceived for handling a specific type
of data; for example, relational DBMSs for structured data, document-based
DBMSs for semi-structured data, etc. Therefore, when an application requires
different types of data, two solutions are actually possible: (i) integrate all data
into a single DBMS, or (ii) use two or more DBMSs together. The former
solution presents serious drawbacks: first of all, some types of data cannot
be stored and analyzed (e.g., the pure relational model does not support the
storage of XML, arrays, etc. [3]). Besides, even when data can be converted and
stored in the target DBMS, querying performances may be unsatisfactory. The
latter approach (known as polyglot persistence [4]) presents important challenges
as well, namely, technically managing more DBMSs, a steep learning curve for
developers, inadequate performance optimization, complex logic in applications,
data inconsistency, etc. [5].

Multi-model databases (MMDBMSs) have recently been proposed to over-
come these issues. An MMDBMS is a DBMS that natively supports differ-
ent data models under a single query language to grant performance, scala-
bility, and fault tolerance [2]. Remarkably, using a single platform for multi-
model data promises to deliver several benefits to users besides that of pro-
viding a unified query interface; namely, it will reduce maintenance and data
integration issues, speed up development, and eliminate migration problems
[5, 2]. Examples of MMDBMSs are PostgreSQL, ArangoDB, Cosmos DB, and
CouchBase. PostgreSQL (www.postgresql.org/) is a relational DBMS that
natively supports the row-oriented, column-oriented, key-value, and document-
oriented data models, offering XML, hstore, JSON/JSONB data types for stor-
age. ArangoDB (www.arangodb.com/) supports the graph-based, key-value,
and document-oriented data models.

Handling variety while granting at the same time volume and velocity is even
more complex in Data Warehouses (DWs) and OLAP systems. Indeed, ware-
housed data come as a result of the integration of huge volumes of heterogeneous
data, and OLAP requires very good performances for data-intensive analytical
queries [6]. Traditional DW architectures rely on a single, relational DBMS for

2

storage and querying1. To offer better support to volume while maintaining
velocity, some recent works propose the usage of NoSQL DBMSs; for example,
[7] relies on a document-based DBMS, and [8] on a column-based DBMS. How-
ever, all NoSQL proposals for DWs are based on a single data model, and all
data must be transformed to fit that model. Indeed, although these approaches
offer interesting results in terms of volume and velocity, they have been mainly
conceived and tested for structured data, without taking variety into account.

To facilitate OLAP querying, DWs are normally based on the multidimen-
sional model, which introduces the concepts of facts, dimensions, and measures
to analyze data, so source data must be forcibly transformed to fit a multidi-
mensional logical schema following a so-called schema-on-write approach. Since
this is not always painless because of the schemaless nature of some source data,
some recent papers (e.g., [9, 10]) propose to directly rewrite OLAP queries over
schemaless data sources (specifically, over document stores) that are not or-
ganized according to the multidimensional model, following a schema-on-read
approach (i.e., the multidimensional schema is not devised at design time and
forced in a DW, but decided by every single user at querying time). However,
even these approaches rely on a single-model DBMS.

An interesting direction towards a solution for effectively handling the 3 V’s
in DW and OLAP systems is represented by MMDBMSs. A multi-model data
warehouse (MMDW) can store data according to the multidimensional model
and, at the same time, let each of its elements be natively represented through
the most appropriate model. Among the benefits we envision for MMDWs,
that of bridging the architectural gap between data lakes and DWs, that of
reducing the cost for ETL, and that of ensuring better flexibility, extensibility,
and evolvability thanks to the use of schemaless models.

In this paper, we conduct an investigation of the effectiveness and efficiency
of MMDWs to store multidimensional data. Since no benchmark dataset for
DWs supports variety, for our experiments we give a multidimensional form to
the data provided by UniBench [11], a benchmark for MMDBMSs that well
represents variety, and define an OLAP workload on it. For the implementa-
tion we use PostgreSQL2, which gives native multi-model support for all data
models present in UniBench —except graph-based, for which we use the Agens-
Graph extension (bitnine.net/agensgraph/). In this scenario, we describe
and compare three different solutions. The first one relies on a logical schema
that extends the star schema [6] by introducing semi-structured (JSON, XML,
graph-based, and key-value) data in the multidimensional elements. This solu-
tion goes in the direction of coupling the pros of schema-on-write approaches
(mainly, better performances and simpler query formulation with no need for
query rewriting) with those of schema-on-read approaches (higher flexibility in

1More precisely, this is true for so-called ROLAP architectures. In MOLAP architectures,
data are stored in multidimensional arrays. Finally, in HOLAP architectures, a MOLAP and
a ROLAP systems are coupled.

2Other MMDBMSs, such as ArangoDB, could not be used since they do not offer support
for all the models involved.

3

ad-hoc querying, simpler ETL, and lower effort for evolution). The other two
solutions consist, respectively, of a full-relational implementation based on a
classical star schema, and on a non-relational implementation where no mul-
tidimensional elements are introduced at the logical level (essentially, a data
lake-like approach). This paper extends our previous contribution [12] in sev-
eral ways:

1. by also including the graph-based data of UniBench,

2. by adopting better optimized schemata,

3. by comparing three different solutions rather than two,

4. by quantitatively evaluating the efficiency and effectiveness of MMDWs
from five points of view: querying, storage, ETL, flexibility & extensibility,
and evolvability, using ad hoc metrics defined in the literature.

The paper outline is as follows. After discussing the related literature in
Section 2, in Section 3 we present the UniBench case study. Sections 4 and
5 introduce our logical schema for MMDWs and the related OLAP workload,
respectively. Section 6 describes the two alternative logical schemata to be used
for comparisons. Section 7 discusses the results of the experiments we made,
while Section 8 presents our vision of future MMDW research and draws the
conclusions.

2. Related work

Some recent work concerns warehousing and OLAP using NoSQL DBMSs of
different kinds. In [13], three different logical models are proposed, using 1 or N
document collections to store data in document-based DBMSs and highlighting
the utility of nested document and array types [14]. The same authors also
investigate how to handle complex hierarchies and summarizability issues with
document-based DWs [15]. The introduction of spatial data in document-based
DWs has been discussed in [16], which proposes a new spatial multidimen-
sional model to avoid redundancy of spatial data and improve performances. A
logical model for column-based DWs has been proposed by [8] and [17] to ad-
dress volume scalability. In [18], transformation rules for DW implementation
in graph-based DBMSs have been proposed for better handling social network
data. To the best of our knowledge, only [19] presents a benchmark for compar-
ing NoSQL DW proposals; specifically, this benchmark is applied to MongoDB
and Hbase. Some works also study the usage of XML DBMSs for warehousing
XML data [20]. Although XML DWs represent a first effort towards native
storage of semi-structured data, their querying performances do not scale well
with size, and compression techniques must be adopted [21].

Among all these proposals, it is hard to champion one logical and physical
implementation for NoSQL and XML DWs, since no approach clearly outper-
forms the other on the 3 V’s. Moreover, these single-model proposals do not

4

address other issues related to warehousing big data, such as reducing the cost
of ETL, evolution, and improving flexibility.

Recently, some approaches to execute OLAP queries directly against NoSQL
data sources were proposed. In [9], a schema-on-read approach to automati-
cally extract facts and hierarchies from document data stores and trigger OLAP
queries is proposed. A similar approach is presented in [10]; there, schema va-
riety is explicitly taken into account by choosing not to design a single crisp
schema where source fields are either included or absent, but rather to enable
an OLAP experience on some sort of “soft” schema where each source field is
present to some extent. In the same direction, [22] proposes a MapReduce-
based algorithm to compute OLAP cubes on column stores, while [23] aims at
delivering the OLAP experience over a graph-based database.

The approaches mentioned above rely on a single-model database. Con-
versely, [24] proposes a pay-as-you-go approach which enables OLAP queries
against a polystore supporting relational, document, and column data models
by hiding heterogeneity behind a dataspace layer. Data integration is carried
out on-the-fly using a set of mappings. Even this approach can be classified as
schema-on-read; the focus is on query rewriting against heterogeneous databases
and not on the performances of the approach.

A survey of the existing multi-model DBMSs and their features is presented
in [2]. Multi-model DBMSs support different models using specific storage
strategies. For example, PostgreSQL stores data using relational tables, text,
or binary format, while ArangoDB uses a document storage technique. In order
to enable queries on different data models, these DBMSs provide new query
languages, namely, extended-SQL and AQL for PostgreSQL and ArangoDB, re-
spectively. Importantly, depending on the storage strategy, each DBMS imple-
ments a particular set of physical structures (indexes and partitions). Research
on MMDBMSs is currently moving towards query optimization, evolution, and
design as described in [2].

3. Case study: UniBench

UniBench is a benchmark for multi-model databases proposed in [11]. It
includes a retail dataset composed of relational, XML, JSON, key-value, and
graph data as shown in Figure 1, which makes it a good representative for
variety. The UniBench dataset is sketched in Figure 3 and briefly commented
below:

• Customer data are stored in graph-based form: :InfoCust is a class, [:knows]
is a relationship between couples of nodes of class :InfoCust modeling the
friendship relationships between customers.

• Product data are stored in XML form within the InfoPrdt document. Each
product has a single vendor.

5

Ranking and
feedback

Social
networks

Customers

Vendors

Orders

RegUsers

Products

Invoices

Key-Value

Graph

Relational XML

JSON

Figure 1: Overview of the UniBench data

Date

Order

TotalPrice

Month
Year

Asin (Product)

Vendor
ProductId
Price

ImgURL

CdF

Customer

Gender
BrowserUsed

CreationDate
Birthdate

FirstName
LastName

Title

Rating
IdOrder

LocationIP

Country
Industry

knows

Figure 2: Multidimensional schema for UniBench (the DFM notation [25] is used)

• Order data are stored in JSON form within the InfoOrder collection. An
order is made on a date for a total price by a customer; it has several lines,
each referring to a product.

• Feedbacks are stored in key-value form within the Feedback collection. A
feedback is given by a customer on a product, and is quantified by a rating.

UniBench is not a multidimensional database. Since our goal is to handle
variety with specific reference to DWs, we had to derive a multidimensional
schema from UniBench. To this end we adopted a classical data-driven approach
based on functional dependencies; since these dependencies are not explicitly
represented in schemaless sources, we had to infer them from the data. The
resulting schema represents the Order fact; as shown in Figure 2 using the DFM
notation, Order has one measure, TotalPrice, and four dimensions:

• An IdOrder (degenerate) dimension.

• A Time dimension with levels Day, Month, and Year (note that Month here
is not month-in-year, so it belongs to a separate branch of the hierarchy).

6

:InfoCust	
	

idCust 	 : 	 bigint	
firstName 	 : 	 string	
lastName 	 : 	 string	
gender 	 : 	 string	
birthdate 	 : 	 date	
crea5onDate 	 : 	 date	
browserUsed 	 : 	 string	
loca5onIP 	 : 	 string	

InfoOrder	
	
{	 "$schema":	 "h?p://json-‐schema.org/draE-‐03/schema#",	
	 	 	 "id":	 "#",	
	 	 	 "type":	 "object",	
	 	 	 "proper5es":	 	
	 	 	 { 	 "totalPrice":	 	

	 { 	 "type":	 "number"	 },	
	 "date":	
	 { 	 "type":	 "string"	 },	
	 "idCust":	
	 { 	 "type":	 "number"	 },	
	 "idOrder":	
	 { 	 "type":	 "string"	 },	
	 "orderLine":	 	
	 { 	 "type":	 "array",	
	 	 "items":	 	
	 	 { 	 "id":	 "0",	
	 	 	 "type":	 "object",	
	 	 	 "proper5es":	 	
	 	 	 { 	 "asin": 	 {	 "type":	 "string"	 }}}}}}	

Feedback	
	
key 	 : 	 idCust,	 asin	
value 	 : 	 ra5ng	

[:knows]	

InfoPrdt	
	
<xs:element	 name="infoproduct">	
	 <xs:complexType>	
	 	 <xs:sequence>	
	 	 	 <xs:element	 type="xs:string"	 name="asin"/>	
	 	 	 <xs:element	 type="xs:string"	 name="5tle"/>	
	 	 	 <xs:element	 type="xs:float"	 name="price"/>	
	 	 	 <xs:element	 type="xs:anyURI"	 name="imgurl"/>	
	 	 	 <xs:element	 type="xs:string"	 name="produc5d"/>	
	 	 	 <xs:element	 name="vendor">	
	 	 	 	 <xs:complexType>	
	 	 	 	 	 <xs:sequence>	
	 	 	 	 	 	 <xs:element	 type="xs:string"	 name="name"/>	
	 	 	 	 	 	 <xs:element	 type="xs:string"	 name="country"/>	
	 	 	 	 	 	 <xs:element	 type="xs:float"	 name="cdf"/>	
	 	 	 	 	 	 <xs:element	 type="xs:string"	 name="industry"/>	
	 	 	 	 	 </xs:sequence>	
	 	 	 	 </xs:complexType>	
	 	 	 </xs:element>	
	 	 </xs:sequence>	
	 </xs:complexType>	

	 	 </xs:element>	

Figure 3: The UniBench dataset; dashed lines represent implicit inter-attribute relationships,
dotted lines graph arcs

• An Asin (Product) dimension with some descriptive attributes (e.g., Title)
and a Vendor hierarchy3. The cloud symbol in the schema denotes that
a product can have some additional attributes not specified at design
time; this feature will be used later in the paper to discuss extensibility
issues. Since an order is associated with many products, a many-to-many
relationship is set between the fact and the product dimension (non-strict
hierarchy, represented in the DFM with a double arc).

• A Costumer dimension with levels Gender and UsedBrowser, plus some de-
scriptive attributes, e.g., LastName. To model the graph of inter-customer
acquaintances, a many-to-many recursive association (knows) is set on
Customer.

Attribute Rating is cross-dimensional, i.e., its value is jointly determined by
Product and Customer (a customer can rate several products).

UniBench comes with a workload consisting of 10 read-only queries and
2 read-write transactions (ignored in what follows). Each query is described
from two perspectives: a business perspective, illustrating common business
cases (e.g., mining common purchase patterns in a community and analyz-
ing the communitys influence on the individuals purchase behaviors), and a
technical perspective, pointing out common technical challenges for the multi-
model query processing. These challenges relate to different components of the

3Asin stands for Amazon Standard Identification Number.

7

MMDBMS (e.g., query optimizer and storage system) and address typical multi-
model processing problems (especially, choosing the right join type and order
and performing complex aggregations). Complexity-wise, the workload spans
from conjunctive to analysis queries.

4. A multi-model star schema for UniBench

In this section, we present a Multi-Model, MultiDimensional (in short, M3D)
logical schema for the Order fact introduced above. Essentially, we use a classical
star schema with fact and dimension tables, extended with semi-structured data
in JSON, XML, key-value, and graph-based form. Starting from a star schema
has several clear advantages: (i) the star schema is supported by all OLAP
servers and already in use in a huge number of enterprise DWs; (ii) the best
practices for designing a star schema from a conceptual schema are well under-
stood and commonly adopted by practitioners; (iii) fact-dimension relationships
are ruled by foreign keys so their consistency can be natively checked by the
DBMS; (iv) performance optimization of star schema has been long studied and
practiced at both the logical (e.g., via view materialization) and the physical
(e.g., via indexing) level.

Clearly, several possible alternatives arise for modeling the Order fact with
an extended star schema. Defining a set of best practices for designing an M3D
schema that achieves the best trade-off between the advantages listed in Section
1 is out of the scope of this paper; so, we opted for designing the schema based
on a simple guideline: preserve as much as possible the source data variety, i.e.,
minimize the transformations to be applied to UniBench source data. We also
had to keep in mind that PostgreSQL’s support to non-relational models is only
given in terms of column data types (e.g., a JSON column) in relational tables
—except for graph data, which are modeled by AgensGraph and do not need
to be hosted within a relational table. In the light of this, the approach we
followed to create the M3D schema starting from the multidimensional schema
in Figure 2 and from the UniBench source data can be sketched as shown below.
Note that the approach adopted is workload-agnostic, as the schema it creates
is not specifically optimized for any set of user queries.

1. Locate the fact. Search in the source data for a piece of data f representing
the fact. The Order fact is represented by the InfoOrder JSON collection.

2. Find dimensions. Check in f for references di to dimensions appearing
in the multidimensional schema. Each document in InfoOrder refers to one
customer (through field idCust), one order (idOrder), one date (date), and
to an array of products (asin). All of these are shown as dimensions in the
multidimensional schema.

3. Find measures. Check in f for references to measures appearing in the
multidimensional schema. Each document in InfoOrder is characterized by a
(numerical) price (totalPrice), which is shown as a measure in the multidi-
mensional schema.

8

4. Create fact table. Initialize the fact table FT by adding a reference to f
(in our example, Fact Order is initialized with attribute InfoOrder).

5. Create dimensions. For each dimension di found:

a. Search in the source data for a piece of data pi referring field di.

• If not found (e.g., idOrder), add di to FT as a foreign key. In case
the multidimensional schema requires attributes that can be derived
from di, create a relational dimension table DTi to store them (e.g.,
for field date, create table Dim Date with attributes Date, Month, and
Year) and add its primary key to FT as a foreign key instead of di.

• If found:

– If pi is graph-based, add di to FT (e.g., for idCust).

– Otherwise, create a relational dimension table DTi with key di
and a reference to pi (e.g., for asin); then add di to FT as a
foreign key.

An exception to this basic flow is given by the product dimension, where the
multidimensional schema shows a non-strict hierarchy (one order refers to sev-
eral products). In this case the key Asin of the Dim Product dimension table
is not included in the Fact Order fact table, as the many-to-many relationship
between orders and products is already implicitly established by the InfoOrder
collection.

Figure 4 shows the resulting M3D schema, which can be described as follows:

• The fact table, Fact Order, has one tuple for each order (identified by an
order identifier, a customer identifier, and a date identifier); it references
the order date via a foreign key, and it relates to customers by including
IdCust. Each tuple includes a JSON document that stores the totalPrice
measure and an array of orderlines, each specifying a product.

• The temporal dimension table, Dim Date, enables useful aggregations by
storing, besides dates, months, and years.

• The product dimension table, Dim Product, for each product stores an
XML document with the product name (title), price, image, identifier,
and with the details of its vendor. Each product also has a Feedback
attribute that stores all its ratings in key-value form, with the customer
code as a key.

• As shown in Figure 2, each order refers to several products. To model this
non-strict hierarchy, rather than opting for the classical relational solution
(a many-to-many bridge table [25]), we established a connection between
the InfoOrder document stored in the fact table and the Dim Product di-
mension table via the asin attribute.

• Customers’ data are stored in graph-based form to represent the customers
each customer knows. The connection with the fact table is made through
idCust.

9

Dim_Date	

<PK>	 IdDate 	 : 	 Int	
Date 	 : 	 Date	
Month 	 : 	 Int	
Year 	 : 	 Int	

Fact_Order	

<PK> 	 IdOrder 	 : 	 String	
<PK> 	 IdCust 	 : 	 BigInt	
<PK,FK>	 IdDate 	 : 	 Int	

InfoOrder 	 : 	 JSON	 	

Dim_Product	

<PK>	 Asin 	 : 	 String	
Feedback	 : 	 Hstore	
	 InfoPrdt 	 : 	 XML	

:InfoCust	
	

idCust 	 : 	 bigint	
firstName 	 : 	 string	
lastName 	 : 	 string	
gender 	 : 	 string	
birthdate 	 : 	 date	
creaKonDate 	 : 	 date	
browserUsed 	 : 	 string	
locaKonIP 	 : 	 string	

InfoOrder	
	
{	 "$schema":	 "hQp://json-‐schema.org/draW-‐03/schema#",	
	 	 	 "id":	 "#",	
	 	 	 "type":	 "object",	
	 	 	 "properKes":	 	
	 	 	 { 	 "totalPrice":	 	

	 { 	 "type":	 "number"	 },	
	 "orderLine":	 	
	 { 	 "type":	 "array",	
	 	 "items":	 	
	 	 { 	 "id":	 "0",	
	 	 	 "type":	 "object",	
	 	 	 "properKes":	 	
	 	 	 { 	 "asin": 	 {	 "type":	 "string"	 }}}}}}	

Feedback	
	
key 	 : 	 idCust	
value 	 : 	 raKng	

[:knows]	
InfoPrdt	

	
<xs:element	 name="infoproduct">	
	 <xs:complexType>	
	 	 <xs:sequence>	
	 	 	 <xs:element	 type="xs:string"	 name="Ktle"/>	
	 	 	 <xs:element	 type="xs:float"	 name="price"/>	
	 	 	 <xs:element	 type="xs:anyURI"	 name="imgurl"/>	
	 	 	 <xs:element	 type="xs:string"	 name="producKd"/>	
	 	 	 <xs:element	 name="vendor">	
	 	 	 	 <xs:complexType>	
	 	 	 	 	 <xs:sequence>	
	 	 	 	 	 	 <xs:element	 type="xs:string"	 name="name"/>	
	 	 	 	 	 	 <xs:element	 type="xs:string"	 name="country"/>	
	 	 	 	 	 	 <xs:element	 type="xs:float"	 name="cdf"/>	
	 	 	 	 	 	 <xs:element	 type="xs:string"	 name="industry"/>	
	 	 	 	 	 </xs:sequence>	
	 	 	 	 </xs:complexType>	
	 	 	 </xs:element>	
	 	 </xs:sequence>	
	 </xs:complexType>	

	 	 </xs:element>	

Figure 4: Multi-model star schema in PostgreSQL (solid lines represent foreign key relation-
ships, dashed lines implicit inter-attribute relationships, dotted lines arcs in a graph)

An example of instances of the fact table and the product dimension table are
shown in Figure 5.

The cloud symbols in Figure 2 denote that the product and customer di-
mensions can include some additional attributes not specified at design time
(hence, not included in the JSON/XML schema). For instance, some InfoPrdt
documents will have an EU attribute storing the category of product according
to the EU classification (see Figure 6), while some InfoCust documents will have
a Boolean gold attribute specifying whether a customer is a top one or not.

5. An OLAP workload for UniBench

The workload we introduce to test our M3D schema comprises two sets of
OLAP queries, which we will call WL1 and WL2, respectively. As expected of
an interactive OLAP workload, the queries feature several joins and vary in the
combinations of group-by sets and selection predicates to produce results of low
cardinality (e.g., coarse group-by set with low selectivity).

WL1 includes 12 simple OLAP queries meant to put the M3D schema to the
test on its most peculiar features, such as inter-model joins and graph naviga-

10

Figure 5: Sample instances of Fact Order (top) and Dim Product (bottom)

Ranking and
feedback

Social
networks

Customers

Vendors

Orders

RegUsers

Products

Invoices

Key-Value

Graph

Relational XML

JSON

<"tle>5	 LED	 BicyleRear	 Tail</"tle>	
<price>8.26</price>	
<imgurl>h>p://ecx.images-‐amazon.com/SY300.jpg</imgurl>	
<produc"d>428a784b-‐8f24-‐42ba-‐8e98-‐fca8f0cdd7b2</produc"d>	
<EU>Electronics</EU>	

Figure 6: An InfoPrdt document including an extra-schema attribute, EU

tion. The queries, listed in Table 1, can be grouped depending on the model
being tested:

• Query Q1-01 involves only the relational model: it accesses the fact table
but it does not require any JSON data to be accessed.

• Queries Q1-02 and Q1-03 focus on JSON data. The former accesses the
whole fact table and requires to unnest every InfoOrder array; the latter
applies a selection predicate on asin, which is nested within InfoOrder.

• Queries Q1-04 and Q1-05 focus on XML data. The former accesses the
whole InfoPrdt collection, while the latter applies a selection predicate on
an XML attribute.

• Queries Q1-06 to Q1-08 focus on the key-value model. Q1-06 requires to

11

Table 1: The WL1 workload on the Order fact (G stands for graph-based, KV for key-value,
R for relational)

Query Description
Models
joined

Models
in GB

Models
in sel.

Perc.
orders

Result
card.

Q1-01 Number of orders by month R R - 100% 12

Q1-02
Number of orders by
product

JSON, R JSON - 100% 1814

Q1-03
Number of orders for a
given product

JSON, R JSON JSON 0.1% 1

Q1-04 Number of orders by vendor
R, JSON,
XML

XML - 100% 59

Q1-05
Number of orders by vendor
for a given vendor country

R, JSON,
XML

XML XML 49% 6

Q1-06
Number of orders by
customer rating

JSON, KV,
R

KV - 100% 5

Q1-07
Number of orders by
customer rating for a given
vendor country

JSON, KV,
R, XML

KV XML 39% 5

Q1-08

Number of orders by
customer rating for a given
vendor country and
customer

JSON, KV,
R, XML

KV G, XML 0.01% 5

Q1-09

Number of orders by
browser for the customers
known by female customers
(1 hop)

G, R G G 92% 5

Q1-10

Number of orders by
browser for the customers
known by the one with a
given IP (2 hops)

G, R G G 5% 5

Q1-11
Number of orders by EU
category for a given vendor
country

JSON, R,
XML

XML - 35% 10

Q1-12
Number of orders by EU
category and gold status for
a given vendor country

G, JSON,
R, XML

G, XML - 17% 44

access the whole Feedback data, while Q1-07 and Q1-08 apply selection
predicates with increasing selectivity. Since rating is a cross-dimensional
attribute, Q1-07 applies a filter on one dimension, while Q1-08 filters on
both dimensions.

• Queries Q1-09 and Q1-10 focus on the graph-based model. In this case, we
test different navigation patterns: Q1-09 implies a wide navigation of the
graph (i.e., several graph nodes are involved, and only one hop is made),
while Q1-10 implies a deep navigation of the graph (i.e., few graph nodes
are involved, and two hops are made).

• Queries Q1-11 and Q1-12 focus on the schemaless property of non-
relational models. In particular, these queries apply selection predicates
with increasing selectivity on missing attributes.

WL2 includes 10 more complex queries, meant to test M3D in a realistic
scenario. For these queries, listed in Table 2, we were inspired by the workload of
the classical SSB benchmark [26], itself loosely based on the TPC-H benchmark.
The SSB workload is meant to functionally cover the different types of star
schema queries while varying fact table selectivity. SSB queries are organized
in 4 flights, where each flight is a list of 3 to 4 queries. Query flight 1 has
restrictions on only 1 dimension, flight 2 has restrictions on 2 dimensions, flight
3 on 3, and flight 4 represents a what-if sequence of the OLAP type. We
adopt the same approach, by adapting a selection from the UniBench workload
essentially respecting the technical perspective of UniBench (cf. Section 3),

12

Table 2: The WL2 workload on the Order fact

Query Description
Models
joined

Models
in GB

Models
in sel.

Perc.
orders

Result
card.

Q2-01

Total price by vendor and
rating for the customers
known by a given customer,
for a given month

G, JSON,
KV, R,
XML

KV,
XML

G, R
0.0005%

11

Q2-02

Number of orders by
industry and rating for the
customers known by a given
customer, for a given month

G, KV, R,
XML

KV,
XML

G, R
0.0002%

3

Q2-03
Total price by customer for
a given product and period

G, JSON, R G R, XML 0.02% 424

Q2-04

Number of orders by
customer for a given
product and period, for bad
ratings

G, KV, R G
KV, R,
XML

0.001% 31

Q2-05
Total price for 2 given
customers and their friends
(3-hops)

G, JSON, R — G 77% 1

Q2-06

Total price by rating for 2
given customers and their
friends (3-hop), for a given
product and for high ratings

G, JSON,
KV, R

KV
G, KV,
XML

76% 2

Q2-07

Total price by customer and
product for 2 given
customers plus the
customers in the shortest
path

G, JSON, R G G 0.002% 3

Q2-08

Total price by product,
rating, and connected
customers for a given year,
vendor, genre, having total
price greater than some
value

G, JSON,
KV, R,
XML

G, KV,
XML

G, XML,
R 0.0001%

2

Q2-09
Total price by industry for
a given country, order by
total price

JSON, R,
XML

XML XML 37% 1

Q2-10
Total price by country for
the top 3 customers, order
by country

G, JSON,
R, XML

XML G 0.003% 24

while at the same time coupling some queries to simulate short OLAP sessions,
namely:

• from Q2-01 to Q2-02, roll-up and projection, with high selectivity;

• from Q2-03 to Q2-04, slice-and-dice and projection, with medium selec-
tivity;

• from Q2-05 to Q2-06, drill-down and slice-and-dice, with low selectivity.

For instance, queries Q2-05 and Q2-06 of WL2 adapt query Q5 of the Unibench
workload [11]: Given a customer and a product category, find persons who are
this customer’s friends within 3-hops friendship in the knows graph and they
have bought products in the given category. Finally, return feedback with 5-rating
review of those bought products. The resulting queries in WL2 are aggregated
cube queries over different combinations of joined models (from 3 to 5), varying
in number (from 1 to 3) and complexity (from atomic to selecting nodes in a
shortest path) of selections.

In both Tables 1 and 2, each query is characterized by the models joined
together (i.e., those used by the pieces of data that must be accessed to answer
the query), those in the group-by clause (i.e., those used by the pieces of data

13

Dim_Date	

<PK>	 IdDate 	 : 	 Int	
Date 	 : 	 Date	
Month 	 : 	 Int	
Year 	 : 	 Int	

Fact_Order	

<PK> 	 IdOrder 	 : 	 String	
<PK,FK>	 IdCust 	 : 	 BigInt	
<PK,FK>	 IdDate 	 : 	 Int	
<PK> 	 IdGroup 	 : 	 Int	

TotalPrice	 : 	 Double	

Dim_Customer	

<PK>	 IdCust 	 : 	 BigInt	
FirstName 	 : 	 String	
	 LastName 	 : 	 String	
	 Gender 	 : 	 String	
	 Birthdate 	 : 	 Date	
	 CreaGonDate 	 : 	 Date	
	 BrowserUsed 	 : 	 String	
	 LocaGonIp 	 : 	 String	

Dim_Product	

<PK>	 Asin 	 : 	 String	
Title 	 : 	 String	
	 Price 	 : 	 Double	
	 ImgUrl 	 : 	 String	
ProductId 	 : 	 String	
VendorName 	 : 	 String	
VendorCountry 	 : 	 String	

	 	 	 	 	 	 	 	 	 	 VendorCdF 	 : 	 String	 	
	 VendorIndustry 	 : 	 String	

Bridge_Ord_Prod	

<PK>	 	 IdGroup 	 : 	 Int	
<PK,FK> 	 Asin 	 : 	 String	

Bridge_Feedback	

<PK,FK> 	 IdCust 	 : 	 BigInt	
<PK,FK> 	 Asin 	 : 	 String	

	 	 RaGng 	 : 	 Int	

Bridge_Knows	

<PK,FK>	 IdCustFrom 	 : 	 BigInt	
<PK,FK>	 IdCustTo 	 : 	 BigInt	

	 	 CreaGonDate	 : 	 Date	

Figure 7: Full-relational star schema in PostgreSQL

storing the levels in the group-by set), and those in the selection clause (i.e.,
those used by the pieces of data storing the levels mentioned in the selection
predicate); the percentage of orders accessed to answer the query (before ag-
gregation) and the cardinality of the result (after aggregation) are shown as
well. Note that the cardinality of the result is expressed with reference to the
UniBench dataset generated with the highest scaling factor available (30), which
includes 2,368,510 orders. Finally, in the query descriptions, “by” introduces a
group-by and “for” a selection.

6. Two alternative schemata for UniBench

In this section, we describe two alternative implementations of the Order
fact: a full-relational one (from now on, FR) and a non-relational one (NR),
which in Section 7 we will compare to the M3D schema.

6.1. Full-relational schema

The FR schema is meant to conform to the classical design guidelines for
star schemata implemented in relational DBMSs. For this schema, we used three
bridge tables as shown in Figure 7. The first one, Bridge Ord Prod, stores the
many-to-many relationship between an order and its products. The second one,
Bridge Feedback, is necessary to store the Rating cross-dimensional attribute.
The third one, Bridge Knows, stores the graph of inter-customer relationships.
All the product and customer data are stored in the corresponding dimension
tables.

As explained in Section 4, attributes EU and gold were not known at design
time. One possibility to deal with this would be to adopt the EAV model, where

14

separate tables are used to store entity-attribute-value triples, thus encouraging
flexibility and extensibility. The EAV model is often used in the healthcare
domain to store and manage highly-sparse patient data in a compact way [27].
However, here we chose not to adopt the EAV model for three reasons: (i) it
would lead to a significant deviation from a classical star schema; (ii) it would
add significant burden to the formulation of OLAP queries; (iii) it is known to
cause performance issues in presence of large volumes of data —which indeed
is normally the case in DWs. Thus, EU and gold could not be included in the
FR schema. Clearly, unless some (costly) evolution of the schema is carried out,
these attributes cannot be loaded and they cannot be used for querying.

6.2. Non-relational schema

The NR schema is meant to reproduce an architecture where raw data are
stored in a data lake. A data lake [28] ingests heterogeneously-structured raw
data from various sources and stores them in their native format, enabling their
processing according to changing requirements [29]. Differently from DWs, data
lakes support the storage of any kind of data with low-cost design, provide
increasing analysis capabilities, and offer an improvement in data ingestion;
however, analysis tasks are more complex and time-consuming since data are
directly queried in an OLAP fashion without putting them in multidimensional
form. As previously mentioned, this approach is commonly called schema-on-
read to distinguish it from schema-on-write approaches, in which raw data are
put into multidimensional form and stored in a DW —as done with the FR
schema [9].

Since the idea here is to keep all source data in their native form, the NR
schema is the one already shown in Figure 3. We recall that PostgreSQL sup-
ports non-relational models only in terms of column data types in relational
tables —except for graph data, which are modeled by AgensGraph. Thus:

• Customer data are stored in graph-based form using AgensGraph.

• Product data are stored in XML form within a relational table named
table InfoPrdt, consisting of an InfoPrdt column of XML data type.

• Order data are stored in JSON form within a relational table named ta-
ble InfoOrder, consisting of an InfoOrder column of JSON data type.

• Feedbacks are stored in key-value form within a relational table named
table Feedback, consisting of a Feedback column of hstore data type.

7. Experimental evaluation

In this section, we evaluate the efficiency and effectiveness of the M3D schema
from different points of view, by comparing it with the two alternative solutions
described in Section 6: a classical relational one (FR) and a non-relational one
(NR).

15

We have implemented all three solutions in PostgreSQL 10.4, which gives
support to JSON, XML, and key-value storage; for the M3D and NR schemata
we used AgensGraph 2.2, i.e., an open-source extension of PostgreSQL that in-
cludes support to graph storage. AgensGraph relies on relational structures to
store nodes and edges: several tables are created, one for each class; dynamic
node properties are supported by modeling each node as a JSON object, and
B-tree indexes are automatically computed to support efficient querying; ul-
timately, Cypher queries are mapped to SQL queries on such structures [30].
Although being different from a pure graph implementation, we remark that —
at the time of writing — there is no other multi-model system that supports all
the data models considered.

For all three implementations, B+trees have been used to index (i) pri-
mary and foreign keys in relational tables, and (ii) identifiers and attributes
referencing them in JSON/XML/graph-based data. Also, a GIN index has
been used in M3D and NR to index the asin attribute within InfoOrder, since
many attribute values may exist within the same order. A GIN index is an
inverted index appropriate for data that contain multiple components, such as
arrays; it contains a separate entry for each component value, and it can effi-
ciently handle queries that search for specific component values. Data used to
feed dimensions and facts have been extracted from the UniBench benchmark
[11] with the highest scaling factor available (i.e., 30). Specifically, we have
2,225 dates (|Dim Date|), 165,586 customers (|Dim Customer|), 9,691 products
(|Dim Product|), and 2,368,510 orders (|Fact Order|).

All tests have been run on a Core i7 with 8 CPUs @3.6GHz server with 32
GB RAM running Ubuntu. PostgreSQL’s memory parameters have been set as
follows:

• shared buffers (i.e., the number of shared memory buffers used by the
server) is set to its default, 128MB; this avoids the entire database being
stored in memory;

• effective cache size (i.e., the estimate that the query planner makes of how
much memory is available for disk caching by the operating system and
within the database itself) is set to 4GB;

• work mem (i.e., the amount of memory actually used by PostgreSQL for
each user query) is set to 80MB; this setting enables 100 concurrent con-
nections to the MMDW.

The three solutions and the workload queries are all publicly available at
https://github.com/big-unibo/m3d.

7.1. Querying

All the OLAP queries proposed in Section 5 have been successfully for-
mulated and executed over the M3D schema, which confirms the feasibility of
using PostgreSQL as a platform for storing and querying MMDWs. In partic-
ular, PostgreSQL extends standard SQL with new operators and functions to

16

select	 sum((o.InfoOrder-‐>>'totalPrice')::float)	 as	 totalPrice,	 f.vendorName,	 f.ra<ng	
from 	 Fact_Order	 as	 o,	 	
	 	 Dim_Date	 as	 d,	
	 	 (MATCH	 (:InfoCust	 {idCust:	 132991})-‐[:KNOWS]-‐>(k:InfoCust)	 RETURN	 k.IdCust)	 as	 k,	
	 	 jsonb_array_elements(o.InfoOrder-‐>'orderLine')	 as	 op,	
	 	 (select	 skeys(p.Feedback)	 as	 IdCust,	 Asin,	 svals(p.Feedback)	 as	 ra<ng,	
	 	 	 	 	 	 	 	 (xpath('//InfoPrdt/vendor/name/text()',p.InfoPrdt))[1]::varchar	 as	 vendorName	
	 	 	 	 from	 Dim_Product	 p)	 as	 f	

where 	 op-‐>>'asin'	 =	 f.Asin	 	
and 	 	 o.IdDate	 =	 d.IdDate	 	
and 	 	 o.IdCust	 =	 k.IdCust::varchar::bigint	 	
and 	 	 f.IdCust::bigint	 =	 o.IdCust	 	
and 	 	 d.Month	 =	 10	
group	 by	 f.vendorName,	 f.ra<ng;	

select	 sum(TotalPrice)	 as	 totalPrice,	 p.VendorName,	 f.Ra<ng 	 	 	
from 	 Fact_Order	 as	 o,	 Dim_Date	 as	 d,	 Dim_Product	 as	 p,	 Bridge_Knows	 as	 k,	 	
	 	 Bridge_Feedback	 as	 f,	 Bridge_Ord_Prod	 as	 op	

where 	 op.Asin	 =	 p.Asin	 	
and 	 	 op.IdGroup	 =	 o.IdGroup	 	
and 	 	 o.IdDate	 =	 d.IdDate	 	
and 	 	 o.IdCust	 =	 f.IdCust	 	
and 	 	 f.Asin	 =	 p.Asin	 	
and 	 	 k.IdCustTo	 =	 o.IdCust	
and 	 	 d.Month=10	 	
and 	 	 k.IdCustFrom	 =	 132991	 	
group	 by	 p.VendorName,	 f.Ra<ng;	

select 	 sum((o.InfoOrder-‐>>'totalPrice')::float)	 as	 totalPrice,	 	
	 	 	 (xpath('//InfoPrdt/vendor/name/text()',p.InfoPrdt))[1]::varchar	 as	 vendorName,	
	 	 	 f.value	

from 	 table_InfoOrder	 as	 o,	
	 	 table_Feedback	 as	 f,	 	
	 	 table_InfoPrdt	 as	 p,	
	 	 (MATCH	 (:InfoCust	 {idCust:	 132991})-‐[:KNOWS]-‐>(k:InfoCust)	 RETURN	 k.IdCust)	 as	 k,	
	 	 jsonb_array_elements(o.InfoOrder-‐>'orderLine')	 as	 op	

where 	 op-‐>>'asin'	 =	 (xpath('//InfoPrdt/asin/text()',p.InfoPrdt))[1]::varchar	
and 	 	 concat(op-‐>>'asin',',',o.InfoOrder-‐>>'idCust')	 =	 f.key	
and 	 	 o.InfoOrder-‐>>'idCust'	 =	 k.IdCust::varchar	
and 	 	 to_char(to_date((o.InfoOrder-‐>>'date')::text,'YYYY-‐MM-‐DD'),'MM')::int	 =	 10	
group	 by	 (xpath('//InfoPrdt/vendor/name/text()',p.	 InfoPrdt))[1]::varchar,	 f.value;	

(a)

select	 sum((o.InfoOrder-‐>>'totalPrice')::float)	 as	 totalPrice,	 f.vendorName,	 f.ra<ng	
from 	 Fact_Order	 as	 o,	 	
	 	 Dim_Date	 as	 d,	
	 	 (MATCH	 (:InfoCust	 {idCust:	 132991})-‐[:KNOWS]-‐>(k:InfoCust)	 RETURN	 k.IdCust)	 as	 k,	
	 	 jsonb_array_elements(o.InfoOrder-‐>'orderLine')	 as	 op,	
	 	 (select	 skeys(p.Feedback)	 as	 IdCust,	 Asin,	 svals(p.Feedback)	 as	 ra<ng,	
	 	 	 	 	 	 	 	 (xpath('//InfoPrdt/vendor/name/text()',p.InfoPrdt))[1]::varchar	 as	 vendorName	
	 	 	 	 from	 Dim_Product	 p)	 as	 f	

where 	 op-‐>>'asin'	 =	 f.Asin	 	
and 	 	 o.IdDate	 =	 d.IdDate	 	
and 	 	 o.IdCust	 =	 k.IdCust::varchar::bigint	 	
and 	 	 f.IdCust::bigint	 =	 o.IdCust	 	
and 	 	 d.Month	 =	 10	
group	 by	 f.vendorName,	 f.ra<ng;	

select	 sum(TotalPrice)	 as	 totalPrice,	 p.VendorName,	 f.Ra<ng 	 	 	
from 	 Fact_Order	 as	 o,	 Dim_Date	 as	 d,	 Dim_Product	 as	 p,	 Bridge_Knows	 as	 k,	 	
	 	 Bridge_Feedback	 as	 f,	 Bridge_Ord_Prod	 as	 op	

where 	 op.Asin	 =	 p.Asin	 	
and 	 	 op.IdGroup	 =	 o.IdGroup	 	
and 	 	 o.IdDate	 =	 d.IdDate	 	
and 	 	 o.IdCust	 =	 f.IdCust	 	
and 	 	 f.Asin	 =	 p.Asin	 	
and 	 	 k.IdCustTo	 =	 o.IdCust	
and 	 	 d.Month=10	 	
and 	 	 k.IdCustFrom	 =	 132991	 	
group	 by	 p.VendorName,	 f.Ra<ng;	

select 	 sum((o.InfoOrder-‐>>'totalPrice')::float)	 as	 totalPrice,	 	
	 	 	 (xpath('//InfoPrdt/vendor/name/text()',p.InfoPrdt))[1]::varchar	 as	 vendorName,	
	 	 	 f.value	

from 	 table_InfoOrder	 as	 o,	
	 	 table_Feedback	 as	 f,	 	
	 	 table_InfoPrdt	 as	 p,	
	 	 (MATCH	 (:InfoCust	 {idCust:	 132991})-‐[:KNOWS]-‐>(k:InfoCust)	 RETURN	 k.IdCust)	 as	 k,	
	 	 jsonb_array_elements(o.InfoOrder-‐>'orderLine')	 as	 op	

where 	 op-‐>>'asin'	 =	 (xpath('//InfoPrdt/asin/text()',p.InfoPrdt))[1]::varchar	
and 	 	 concat(op-‐>>'asin',',',o.InfoOrder-‐>>'idCust')	 =	 f.key	
and 	 	 o.InfoOrder-‐>>'idCust'	 =	 k.IdCust::varchar	
and 	 	 to_char(to_date((o.InfoOrder-‐>>'date')::text,'YYYY-‐MM-‐DD'),'MM')::int	 =	 10	
group	 by	 (xpath('//InfoPrdt/vendor/name/text()',p.	 InfoPrdt))[1]::varchar,	 f.value;	

(b)

select	 sum((o.InfoOrder-‐>>'totalPrice')::float)	 as	 totalPrice,	 f.vendorName,	 f.ra<ng	
from 	 Fact_Order	 as	 o,	 	
	 	 Dim_Date	 as	 d,	
	 	 (MATCH	 (:InfoCust	 {idCust:	 132991})-‐[:KNOWS]-‐>(k:InfoCust)	 RETURN	 k.IdCust)	 as	 k,	
	 	 jsonb_array_elements(o.InfoOrder-‐>'orderLine')	 as	 op,	
	 	 (select	 skeys(p.Feedback)	 as	 IdCust,	 Asin,	 svals(p.Feedback)	 as	 ra<ng,	
	 	 	 	 	 	 	 	 (xpath('//InfoPrdt/vendor/name/text()',p.InfoPrdt))[1]::varchar	 as	 vendorName	
	 	 	 	 from	 Dim_Product	 p)	 as	 f	

where 	 op-‐>>'asin'	 =	 f.Asin	 	
and 	 	 o.IdDate	 =	 d.IdDate	 	
and 	 	 o.IdCust	 =	 k.IdCust::varchar::bigint	 	
and 	 	 f.IdCust::bigint	 =	 o.IdCust	 	
and 	 	 d.Month	 =	 10	
group	 by	 f.vendorName,	 f.ra<ng;	

select	 sum(TotalPrice)	 as	 totalPrice,	 p.VendorName,	 f.Ra<ng 	 	 	
from 	 Fact_Order	 as	 o,	 Dim_Date	 as	 d,	 Dim_Product	 as	 p,	 Bridge_Knows	 as	 k,	 	
	 	 Bridge_Feedback	 as	 f,	 Bridge_Ord_Prod	 as	 op	

where 	 op.Asin	 =	 p.Asin	 	
and 	 	 op.IdGroup	 =	 o.IdGroup	 	
and 	 	 o.IdDate	 =	 d.IdDate	 	
and 	 	 o.IdCust	 =	 f.IdCust	 	
and 	 	 f.Asin	 =	 p.Asin	 	
and 	 	 k.IdCustTo	 =	 o.IdCust	
and 	 	 d.Month=10	 	
and 	 	 k.IdCustFrom	 =	 132991	 	
group	 by	 p.VendorName,	 f.Ra<ng;	

select 	 sum((o.InfoOrder-‐>>'totalPrice')::float)	 as	 totalPrice,	 	
	 	 	 (xpath('//InfoPrdt/vendor/name/text()',p.InfoPrdt))[1]::varchar	 as	 vendorName,	
	 	 	 f.value	

from 	 table_InfoOrder	 as	 o,	
	 	 table_Feedback	 as	 f,	 	
	 	 table_InfoPrdt	 as	 p,	
	 	 (MATCH	 (:InfoCust	 {idCust:	 132991})-‐[:KNOWS]-‐>(k:InfoCust)	 RETURN	 k.IdCust)	 as	 k,	
	 	 jsonb_array_elements(o.InfoOrder-‐>'orderLine')	 as	 op	

where 	 op-‐>>'asin'	 =	 (xpath('//InfoPrdt/asin/text()',p.InfoPrdt))[1]::varchar	
and 	 	 concat(op-‐>>'asin',',',o.InfoOrder-‐>>'idCust')	 =	 f.key	
and 	 	 o.InfoOrder-‐>>'idCust'	 =	 k.IdCust::varchar	
and 	 	 to_char(to_date((o.InfoOrder-‐>>'date')::text,'YYYY-‐MM-‐DD'),'MM')::int	 =	 10	
group	 by	 (xpath('//InfoPrdt/vendor/name/text()',p.	 InfoPrdt))[1]::varchar,	 f.value;	

(c)

Figure 8: SQL formulation of query Q2-01 in PostgreSQL over the M3D (a), FR (b), and NR
(c) schemata

query the contents of hstore columns (i.e., the data type that supports key-value
data) and JSON/XML data (e.g., the @> operator and the xpath() function to
apply selection predicates to JSON and XML data, respectively). Additionally,
AgensGraph supports cross-queries between the PostgreSQL instance and the
graph extension by including Cypher queries [31] as inner queries within an SQL
query. Conversely, Q1-11 and Q1-12 could not be executed on the FR schema
because they use attributes (gold and EU) which were not known at design time
so they are not part of that schema.

Figure 8 shows the SQL formulation of query Q2-01 over the M3D, FR, and
NR schemata. A qualitative comparison between Figures 8.a and 8.b suggests
that the formulation over the M3D schema is more complex; however, we wish
to emphasize that there is no real difficulty in formulating queries on an MMDW
in comparison to a traditional star schema, except that some knowledge of the

17

select	 sum((o.InfoOrder-‐>>'totalPrice')::float)	 as	 totalPrice,	 o.IdCust	
from 	 Fact_Order	 as	 o,	 	
	 	 (MATCH	 p=allShortestPaths((a:InfoCust	 {idCust:	 132991})-‐[:KNOWS*]-‐>(b:InfoCust	 {idCust:	 140644}))	
	 	 	 	 UNWIND	 nodes(p)	 AS	 k	 RETURN	 k.idCust)	 as	 c	

where	 o.IdCust	 =	 c.idCust::varchar::bigint	
group	 by	 o.IdCust;	

with 	 recursive	 t(IdCustFrom,	 IdCustTo,	 dist)	 as	 (select	 IdCustFrom,	 IdCustTo,	 1	 	
	 	 from	 Bridge_Knows	

	 union	
	 select	 t.IdCustFrom,	 g.IdCustTo,	 dist+1	 	
	 from	 Bridge_Knows	 g,	 t	
	 where	 t.IdCustTo	 =	 g.IdCustFrom),	 	

	 minpath(IdCustFrom,	 IdCustTo,	 dist)	 as	 (select	 IdCustFrom,	 IdCustTo,	 min(dist)	 as	 dist	 	
	 	 from	 t	 	
	 	 group	 by	 IdCustFrom,	 IdCustTo)	

select	 sum(TotalPrice)	 as	 totalPrice,	 o.IdCust	
from	 Fact_Order	 o	
where	 o.IdCust	 in	 (select	 disEnct	 m1.IdCustTo	
	 	 from	 minpath	 m1,	 minpath	 m2,	 minpath	 m3	 	
	 	 where 	 m1.IdCustFrom	 =	 132991	 and	 m1.IdCustTo	 =	 m2.IdCustFrom	 	
	 	 and 	 m2.IdCustTo	 =	 140644	 and	 m3.IdCustFrom=	 132991	 	
	 	 and 	 m3.IdCustTo=	 140644	 and	 m3.dist=m1.dist+m2.dist)	
group	 by	 o.IdCust;	

select	 sum((o.InfoOrder-‐>>'totalPrice')::float)	 as	 totalPrice,	 o.InfoOrder-‐>>'idcust’	
from 	 table_InfoOrder	 o,	 	

	 (MATCH	 p=allShortestPaths((a:InfoCust	 {idCust:	 132991})-‐[:KNOWS*]-‐>(b:InfoCuts	 {idCust:	 140644}))	
	 	 	 UNWIND	 nodes(p)	 AS	 k	 RETURN	 k.idCust)	 as	 c	

where	 o.InfoOrder-‐>>'idCust'	 =	 c.idCust::varchar	
group	 by	 o.InfoOrder-‐>>'idCust’;	

(a)

select	 sum((o.InfoOrder-‐>>'totalPrice')::float)	 as	 totalPrice,	 o.IdCust	
from 	 Fact_Order	 as	 o,	 	
	 	 (MATCH	 p=allShortestPaths((a:InfoCust	 {idCust:	 132991})-‐[:KNOWS*]-‐>(b:InfoCust	 {idCust:	 140644}))	
	 	 	 	 UNWIND	 nodes(p)	 AS	 c	 RETURN	 c.idCust)	 as	 c	

where	 o.IdCust	 =	 c.idCust::varchar::bigint	
group	 by	 o.IdCust;	

with 	 recursive	 t(IdCustFrom,	 IdCustTo,	 dist)	 as	 (select	 IdCustFrom,	 IdCustTo,	 1	 	
	 	 from	 Bridge_Knows	

	 union	
	 select	 t.IdCustFrom,	 g.IdCustTo,	 dist+1	 	
	 from	 Bridge_Knows	 g,	 t	
	 where	 t.IdCustTo	 =	 g.IdCustFrom),	 	

	 minpath(IdCustFrom,	 IdCustTo,	 dist)	 as	 (select	 IdCustFrom,	 IdCustTo,	 min(dist)	 as	 dist	 	
	 	 from	 t	 	
	 	 group	 by	 IdCustFrom,	 IdCustTo)	

select	 sum(TotalPrice)	 as	 totalPrice,	 o.IdCust	
from	 Fact_Order	 o	
where	 o.IdCust	 in	 (select	 disEnct	 m1.IdCustTo	
	 	 from	 minpath	 m1,	 minpath	 m2,	 minpath	 m3	 	
	 	 where 	 m1.IdCustFrom	 =	 132991	 and	 m1.IdCustTo	 =	 m2.IdCustFrom	 	
	 	 and 	 m2.IdCustTo	 =	 140644	 and	 m3.IdCustFrom=	 132991	 	
	 	 and 	 m3.IdCustTo=	 140644	 and	 m3.dist=m1.dist+m2.dist)	
group	 by	 o.IdCust;	

select	 sum((o.InfoOrder-‐>>'totalPrice')::float)	 as	 totalPrice,	 o.InfoOrder-‐>>'idcust’	
from 	 table_InfoOrder	 o,	 	

	 (MATCH	 p=allShortestPaths((a:InfoCust	 {idCust:	 132991})-‐[:KNOWS*]-‐>(b:InfoCuts	 {idCust:	 140644}))	
	 	 	 UNWIND	 nodes(p)	 AS	 c	 RETURN	 c.idCust)	 as	 c	

where	 o.InfoOrder-‐>>'idCust'	 =	 c.idCust::varchar	
group	 by	 o.InfoOrder-‐>>'idCust’;	

(b)

select	 sum((o.InfoOrder-‐>>'totalPrice')::float)	 as	 totalPrice,	 o.IdCust	
from 	 Fact_Order	 as	 o,	 	
	 	 (MATCH	 p=allShortestPaths((a:InfoCust	 {idCust:	 132991})-‐[:KNOWS*]-‐>(b:InfoCust	 {idCust:	 140644}))	
	 	 	 	 UNWIND	 nodes(p)	 AS	 k	 RETURN	 k.idCust)	 as	 c	

where	 o.IdCust	 =	 c.idCust::varchar::bigint	
group	 by	 o.IdCust;	

with 	 recursive	 t(IdCustFrom,	 IdCustTo,	 dist)	 as	 (select	 IdCustFrom,	 IdCustTo,	 1	 	
	 	 from	 Bridge_Knows	

	 union	
	 select	 t.IdCustFrom,	 g.IdCustTo,	 dist+1	 	
	 from	 Bridge_Knows	 g,	 t	
	 where	 t.IdCustTo	 =	 g.IdCustFrom),	 	

	 minpath(IdCustFrom,	 IdCustTo,	 dist)	 as	 (select	 IdCustFrom,	 IdCustTo,	 min(dist)	 as	 dist	 	
	 	 from	 t	 	
	 	 group	 by	 IdCustFrom,	 IdCustTo)	

select	 sum(TotalPrice)	 as	 totalPrice,	 o.IdCust	
from	 Fact_Order	 o	
where	 o.IdCust	 in	 (select	 disEnct	 m1.IdCustTo	
	 	 from	 minpath	 m1,	 minpath	 m2,	 minpath	 m3	 	
	 	 where 	 m1.IdCustFrom	 =	 132991	 and	 m1.IdCustTo	 =	 m2.IdCustFrom	 	
	 	 and 	 m2.IdCustTo	 =	 140644	 and	 m3.IdCustFrom=	 132991	 	
	 	 and 	 m3.IdCustTo=	 140644	 and	 m3.dist=m1.dist+m2.dist)	
group	 by	 o.IdCust;	

select	 sum((o.InfoOrder-‐>>'totalPrice')::float)	 as	 totalPrice,	 o.InfoOrder-‐>>'idcust’	
from 	 table_InfoOrder	 o,	 	

	 (MATCH	 p=allShortestPaths((a:InfoCust	 {idCust:	 132991})-‐[:KNOWS*]-‐>(b:InfoCuts	 {idCust:	 140644}))	
	 	 	 UNWIND	 nodes(p)	 AS	 k	 RETURN	 k.idCust)	 as	 c	

where	 o.InfoOrder-‐>>'idCust'	 =	 c.idCust::varchar	
group	 by	 o.InfoOrder-‐>>'idCust’;	

(c)

Figure 9: SQL formulation of query Q2-07 in PostgreSQL over the M3D (a), FR (b), and NR
(c) schemata

DBMS-specific operators to manipulate key-value, JSON, and XML types is
required.

Figure 9 shows another comparative example of query formulation, the one
related to Q2-07. This query requires to find the shortest path between two
customers on the knows graph; thus, differently from Q2-01, its formulation is
much simpler in M3D and NR than in FR because the complexity of computing
shortest paths is hidden inside a predefined function in the Cypher language.

In an attempt to precisely and systematically quantify the complexity of the
three different formulations of WL1 and WL2, we computed for each formulation
various indicators proposed by Jain & al. [32] to understand the cognitive load
on the user during SQL query authoring (see Table 3). The first indicator
(Length) measures the character length (sum, mean, and standard deviation)
of the query as a string, a proxy for the effort it takes to craft the query. The
second indicator (Operator#) measures the number of physical operators in the
query execution plan (unique and in total), to estimate the number of steps
of computation. Finally, the last indicator (Top-10 operators) shows the most
commonly used physical operators, allowing to assess the workload complexity
by providing the minimum requirement of SQL features for the workload to run.

Regarding query length, results are as expected. Queries over FR are the

18

0

50

100

150

200

250

300

 Q
1-

01

 Q
1-

02

 Q
1-

03

 Q
1-

04

 Q
1-

05

 Q
1-

06

 Q
1-

07

 Q
1-

08

 Q
1-

09

 Q
1-

10

 Q
1-

11

 Q
1-

12

 Q
2-

01

 Q
2-

02

 Q
2-

03

 Q
2-

04

 Q
2-

05

 Q
2-

06

 Q
2-

07

 Q
2-

08

 Q
2-

09

 Q
2-

10

FR

NR

M D3

Figure 10: Query performance (in seconds)

shortest ones, while queries over NR are the longest ones and queries over M3D
are in between, closer to NR. As explained above, this illustrates that more
SQL constructs are needed for unstructured schemata. We note that for longer,
more complex OLAP queries (those in WL2) the difference between FR and
the two others tends to be reduced, the difference between M3D and NR being
quite steady. This indicates that expressing complex queries over M3D may
only be moderately difficult (and in some case, e.g., query Q2-07, even simpler)
compared to FR. Checking the query plans and the physical operators allows
for a finer characterization. Unsurprisingly, the simplest model (FR) needs less
distinct operations. Overall, roughly the same set of most frequent operators
is used for each schema, which is expected because (i) the workload consists
of the same queries, phrased differently, and (ii) PostgreSQL often translates
non-relational data to relational form for processing them. However, notable
observations can be seen:

• Sort is more often used on M3D, and even more on NR, than it is on FR.

• Joins are more frequent on M3D than on FR and NR. Without limiting to
top-10 operators, joins are less frequent on FR (61 in total) than on NR
(67) and M3D (68).

• Some forms of scan (parallel sequential scan, function scan) are more
frequent on M3D and NR than they are in FR. Without limiting to top-10
operators, scans are less frequent on M3D (122 in total) than on FR (138)
and NR (146).

• No particular difference is seen for aggregate operators.

This tends to indicate that the higher formulation effort imposed by M3D and
NR is closely related to the effort the system has to do to process the queries.

19

Table 3: Complexity of queries for workloads WL1 and WL2

WL Indicators NR M3D FR

WL1
Length (sum) 4505 4308 2573
Length (avg) 375.41 359.0 285.88
Length (stdev) 135.77 127.43 86.7

WL2
Length (sum) 6320 6145 5378
Length (avg) 632.0 614.5 597.55
Length (stdev) 183.05 179.35 258.55

WL1
and
WL2

Operator# 324 324 277
Unique

operator#
31 31 27

Top-10
operators

Sort/43 Nested Loop/37 Nested Loop/32
Seq Scan/33 Sort/31 Seq Scan/30

Nested Loop/33 Seq Scan/28 Sort/27
Hash/24 Hash/26 Hash/27

Hash Join/24 Hash Join/26 Hash Join/27
Par. Seq Scan/20 Function Scan/19 Index Scan/25
Function Scan/19 Index Scan/19 Bmap Idx Scan/17

Gather/15 Par. Seq Scan/17 GroupAggr./15
GroupAggr./13 GroupAggr./16 Bmap Heap Scan/14

Bmap Idx Scan/13 Gather/14 Par. Seq Scan/11

Finally, Table 4 and Figure 10 show the query execution times in seconds for
the three implementations, obtained by running a PL/pgSQL4 procedure that
runs each query of the workload in random order; the reported execution times
are the average times of ten workload runs5. Not surprisingly, the full-relational
implementation outperforms the multi-model implementation over most queries.
This can partly be explained by recalling that PostgreSQL was originally born
as a relational DBMS, so semi-structured and complex data querying is not fully
optimized yet. Additionally, the fact table in M3D is quite larger than the one
in the FR schema, which results in slower star joins (even using the JSONB
type instead of JSON, the improvement is very small).

In WL1, the goal is to put the M3D schema to the test on its most peculiar
features. We can summarize our findings as follows:

• Queries on M3D are generally faster than those on NR, showing that the
simple ETL necessary to produce the M3D schema enables a significant
improvement of querying performance.

• The complexity of JSON documents comes in handy when the query is
restricted to attributes within the document itself. For instance, Q1-03
does not require M3D and NR to join the product dimension (whereas
FR needs to access Bridge Ord Prod), which translates in better execution
times than in FR. On the other hand, the same feature becomes an in-
convenience when a join is required and the orderline array needs to be

4PL/pgSQL is the procedural language in PostgreSQL.
5Please note that PostgreSQL does not provide any functionality to clear the cache; we

amend by running the queries multiple times in random order.

20

Table 4: Query performance (in seconds)

Query M3D FR NR

Q1-01 0.5 2.0 3.5
Q1-02 22.5 22.3 23.2
Q1-03 0.3 0.6 0.3
Q1-04 144.9 18.3 255.8
Q1-05 8.5 2.7 13.1
Q1-06 22.0 19.7 70.4
Q1-07 5.3 6.4 15.9
Q1-08 1.3 0.8 15.7
Q1-09 126.0 34.1 90.7
Q1-10 3.7 0.4 10.3
Q1-11 8.5 - 13.0
Q1-12 18.8 - 29.7
Q2-01 6.1 0.7 5.0
Q2-02 5.6 0.5 4.7
Q2-03 1.5 1.2 1.0
Q2-04 0.2 0.2 1.0
Q2-05 8.9 2.3 13.6
Q2-06 3.9 1.9 9.8
Q2-07 0.8 OOM 8.1
Q2-08 182.1 14.8 34.9
Q2-09 8.6 1.9 12.7
Q2-10 0.9 1.1 6.4

unnested.

• PostgreSQL lacks specific optimization structures adapted to XML data;
thus, scanning XML data is quite expensive, as Q1-04 and Q1-05 clearly
show.

• The performance of the key-value storage is directly proportional to the
selectivity on the Feedback data; indeed, queries from Q1-06 to Q1-08
show that the higher the selectivity, the faster the query. The same trend
is not visible in NR due to PostgreSQL’s inability to properly use the
index when filtering on the key.

• Similarly, the difference between Q1-09 and Q1-10 shows that the graph
implementation is more suitable for long and narrow graph navigations
(i.e., those requiring a higher number of hops on few nodes) rather than
short and wide navigations (i.e., those requiring a single hop on many
nodes). The difference between M3D and NR is due to the latter needing to
join graph data with JSON data, which adds an extra layer of complexity.

WL2 is a collection of realistic OLAP queries adapted from a selection from
the UniBench workload. Due to the higher selectivity of these queries, exe-
cution times are generally lower than those from WL1 —even though this is
balanced by a higher complexity in terms of expressiveness. The main remarks
on this workload concern queries Q2-07 and Q2-08. Q2-07 requires to com-
pute the shortest path between two given customers; whereas this operation is
straightforward in the graph used by M3D and NR, it requires the definition of
a recursive table on FR. Aside from the query formulation complexity (shown
in Section 7.1), this results in an out-of-memory error (OOM) that prevents

21

Table 5: Storage size (in MB)

Table M3D FR NR

Order 2312 1524 2959.4
Product 242 2.5 200
Customer 69 18 69
Date 0.2 0.2 —
Feedback — 1515.5 1146.9
Knows 4116.5 915 4116.5

Total 7602.1 3975.2 8491.8

its execution on FR. Conversely, the performance of M3D in answering Q2-08
is significantly worse than FR and NR due to a bad execution plan chosen by
PostgreSQL’s optimizer. Indeed, the mixture of relational and non-relational
attributes is not always easily handled by the optimizer and may lead to non-
optimal execution plans; we have found the same issue in other queries (e.g.,
Q2-01 and Q2-02), although with a far less significant impact. Overall, exclud-
ing Q2-07 and Q2-08, M3D obtains an average execution time of 4.9 seconds
per query, i.e., worse than FR (1.2 seconds) but better than NR (6.8 seconds).

7.2. Storage

Table 5 shows the storage size of every implementation. Unsurprisingly, the
relational implementation FR is overall more sober than the multi-model one
M3D (about one half), while NR takes about 10% more space than M3D. More
specifically:

• Indeed, the relational model stores data in a much cheaper way than
JSON, XML, and graphs, which also have to store tag names. This is
made clear for instance by comparing the space taken by the product
attributes within the Dim Product dimension table in FR (2.5 MB) and
within the InfoPrdt XML documents in NR (200 MB).

• The Order row refers to orders and their relationships with products; thus,
for FR, it also includes the Bridge Ord Prod bridge table (which takes only
835 MB out of 1524). The significant overhead for M3D and NR derives
from storing the measures and the ordered products in JSON form within
the InfoOrder collection.

• In NR, dates are directly stored with orders.

• In the Customer row, the values for M3D and NR only include the space
for storing the graph nodes. The arcs are considered in row Knows, which
clearly shows the overhead for graph-based storage over the Bridge Knows
bridge table.

• As to feedbacks, for M3D the space taken by the hstore attribute is taken
into account in the Product row. The value for FR is the size of the

22

Bridge Feedback bridge table, while the one for NR is the size of the Feed-
back key-value store. Note that the hstore attribute in M3D takes less
space because it does not include the asin string in the key field.

7.3. ETL

Empirical evidence shows that the design and maintenance of ETL proce-
dures make up for up to 60% of the resources spent in a DW project [33]. Note
that in this section we will consider static ETL (which is performed when a
DW is loaded for the first time), not incremental ETL (periodically performed
to extract, transform, and load the data inserted/updated in the sources since
the last run of the ETL). Besides, ETL procedures are written in terms of SQL
statements to enable a better characterization of complexity and be independent
of the specific features of ETL tools.

The full-relational implementation required all the UniBench data to be
translated into relational form according to the star schema in Figure 7. While
the queries to feed data to dimension and fact tables of the M3D schema mostly
correspond to simple INSERT queries, the corresponding queries for FR are
more complex. For instance, feeding the Bridge Ord Prod table requires a SQL
query that (i) joins InfoPrdt from NR with both Fact Order and Dim date from
FR to obtain the IdGroup associated to each order, and (ii) uses the extended
operators for JSON manipulation to unnest the orderline array within InfoPrdt
and to obtain the Asin of each product. This means that transformations may
require a significant time and can be error-prone, so they may be unsuitable in
specific settings such as those of real-time DWs.

To characterize the complexity of ETL formulation, we have used the same
indicators (plus the number of queries and execution time) employed for the
workload complexity (see Section 7.1) over the SQL statements used during
ETL. The results are shown in Table 6. As expected, transforming source data
to lead them in the FR schema requires queries that are more numerous, longer,
with more operators, and also more diverse. Consequently, the execution times
for ETL queries in FR are also significantly higher than those in M3D. Note
that no ETL is needed to feed the NR schema since all data are kept in their
native form.

We close this section with some remarks about incremental ETL. Practical
experience shows that incremental ETL is always more complex in terms of
queries: in the simplest case, source data are timestamped, so only the data
modified since the last run of the ETL must be extracted; otherwise, either
application-based or log-based extraction must be implemented. In the worst-
case incremental extraction is impossible or inconvenient, so all data must be
extracted at each ETL run, then they are compared with the current content of
the DW to determine which is the “delta” to be loaded. As to execution time,
the performance of incremental ETL is normally better than the one of static
ETL, because only part of the data is extracted and loaded; however, when
incremental extraction is not implemented as mentioned above, performances
get significantly worst because not only all data are to be extracted, but they
even have to be compared to compute the delta. Considering that the adoption

23

Table 6: Complexity of ETL

Indicators M3D FR

Query# 12,0 24,0

Length (sum) 1610 4510
Length (avg) 134.16 187.82
Length (stdev) 138.19 177.02

Operator# 13 25
Unique

operator#
7 12

Top-10
operators

Seq Scan/5 Seq Scan/11
Sort/2 Sort/2

Subquery Scan/2 Hash Join/2
Hash Left Join/1 Hash/2

Hash/1 Nested Loop/1
GroupAggregate/1 WindowAgg/1
HashAggregate/1 Function Scan/1

Index Scan/1
Merge Join/1

Subquery Scan/1

Time (minutes) 65 224

of one technique or the other only depends on the characteristics of the source
data and applications, not on those of the target schema, we can reasonably
expect that the M3D vs. FR arguments raised for static ETL will also hold in
the incremental case.

7.4. Flexibility & extensibility

We start this section by observing that, differently from the FR one, the M3D
and NR schemata preserve the data variety existing in the data sources. This is
particularly relevant for instance in self-service business intelligence scenarios,
where data scientist will write ad-hoc queries to satisfy situational analysis needs
[34]. Besides, mixing different models in an MMDW enables the achievement of
higher flexibility in the modeling solutions taken, for instance when dealing with
many-to-many relationships. An example is the Knows relationships between
customers, that can be modeled by the arcs in a graph or through a bridge table.
The experimental evaluation in Section 7.1 has shown the pros and cons of these
solutions, as different queries perform differently on the two implementations.
Ultimately, an MMDW allows choosing the implementation that better suits
the workload in a specific scenario.

Within a schemaless setting, a further issue arising is that of the occasional
presence, in some documents, of attributes not considered at design time (in our
working example, EU and gold). Clearly, these attributes can be queried in the
M3D and NR schemata —while they cannot in the FR schema. Remarkably, this
allows adopting querying approaches capable of coping with variable schemata
and structural forms within a collection of documents (i.e., missing or additional
fields, different names or types for a field, and different structures for instances).
An example is approximate OLAP [10], where the user can include a concept in
a query even if it is present in a subset of documents only; to make her aware

24

of the impact of variety, the query results are associated with some indicators
describing their quality and reliability. The main indicators introduced to this
end are level support and query density. The first one measures, for level l,
the percentage of documents for which l is not missing (i.e., it has a value).
The second one is defined for an aggregate query q as the percentage of groups
returned by q that are complete in all their group-by levels. This is different
from evaluating the mere support of levels, because the presence of more or
less null values may vary depending on the selection predicates in the query.
For instance, in our dataset, the support of both EU and gold is about 50%;
the densities for queries Q1-11 and Q1-12, which use these attributes, are 69%
and 35%, respectively. Concerning Q1-11, this indicates that the percentage of
missing EU values for the chosen country is significantly lower than the overall
support.

In summary, the advantages of MMDWs in terms of flexibility and extensi-
bility can be referred to (i) querying, by preserving the variety of data sources
and smoothly coping with the presence of variable source schemata, and (ii)
modeling, by supporting alternative solutions so as to adapt the schema to the
workload.

7.5. Evolvability

Software maintenance makes up for at least 50% of all the resources spent
in a project [35]. In particular, an evolution in the schema of a DW is typi-
cally triggered either by a change in the schema of the data sources (which, for
NoSQL sources, can be very frequent [36]) or by some new analysis requirement
expressed by users. In turn, each schema evolution affects not only the database
itself but also the surrounding applications (queries, views, reports, and ETL
activities).

The multi-model implementation is partially schemaless, so it transparently
supports evolution to some extent. The situation with the full-relational imple-
mentation is quite different. Indeed, even adding a couple of simple levels (as
EU and gold in our case study) requires, at the very least, changing the rela-
tional schema of one or more tables, editing the ETL procedures, and migrating
the data from the old schema to the new one. A more complex evolution, e.g.,
one involving a new many-to-many relationship, would have even more impact
because it would require creating new tables. In case end-users ask for a full
versioning of the schemata, the effort would be greater still. An M3D schema
represents a good trade-off here because most evolutions can be handled seam-
lessly with no impact on tables and ETL; clearly, a more invasive evolution
(such as adding a new dimension or measure) would still require a change to
the relational part of the schema and to the ETL.

To give a quantitative assessment of how the three solutions compared will
react to evolution issues, we use the graph-theoretic metric proposed in [33],
namely, out-degree, which has been empirically validated and shown to be the
most reliable one. This metric operates on a graph-based representation (evolu-
tion graph) of schemata and queries. The evolution graph of a relational schema
R is a directed graph that includes (i) a relation node R; (ii) one attribute node

25

insert	 into	 Dim_Date	 (Date,	 Month,	 Year)	
select 	 to_date(d,'YYYY-‐MM-‐DD'),	 	

	 to_char(to_date(d,'YYYY-‐MM-‐DD'),'MM')::int,	
	 to_char(to_date(d,'YYYY-‐MM-‐DD'),'YYYY')::int	

from	 (select	 dis1nct	 infoOrder-‐>>'date'::varchar	 d	
	 from	 table_infoOrder	
	 order	 by	 d);	

Q'	

table_infoOrder	

Dim_Date	

Date	 Month	 Year	 IdDate	

PK	

totalPrice	 date	 idCust	 idOrder	 orderLine	

items	

asin	
to_date	

to_char	

disFnct	 d	

order	 by	

Q

Date	 Month	 Year	

to_date	 to_date	

to_char	

InfoOrder	
{ 	 "totalPrice",	

	 "date",	
	 "idCust",	
	 "idOrder",	
	 "orderLine":	 	
	 { 	 "items":	 	
	 	 { 	 "asin"	 	 	 }}}	

Dim_Date	
<PK>	 IdDate 	 : 	 Int	

Date 	 : 	 Date	
Month	 : 	 Int	
Year 	 : 	 Int	

insert	 into	 Dim_Date	 (Date,	 Month,	 Year)	
select 	 to_date(d,'YYYY-‐MM-‐DD'),	 	

	 to_char(to_date(d,'YYYY-‐MM-‐DD'),'MM')::int,	
	 to_char(to_date(d,'YYYY-‐MM-‐DD'),'YYYY')::int	

from	 Q';	

select	 dis1nct	 	
	 infoOrder-‐>>'date'::varchar	 d	

from	 table_infoOrder	
order	 by	 d;	

Figure 11: SQL formulation of an ETL query in PostgreSQL and corresponding evolution
graph; the parts of the graph modeling each part of the query and the two schemata involved
are highlighted in different colors

for each attribute of R; (iii) one PK node for the primary key of R; and (iv) a set
of schema relationships directed from the relation node towards the other nodes.
Similarly, the evolution graph of a query Q is a directed graph that includes (i)
a query node Q; (ii) a set of attribute nodes corresponding to the schema of the
query; (iii) a set of schema relationships directed from the query node towards
the attribute nodes; and (iv) a from relationship from the query node to each
relation schema used by Q. WHERE and HAVING clauses are modeled via a
tree of logical operands to represent the selection formulae. Aggregate queries
add a GB node connected to the attributes in the GROUP BY clause, plus
one node per aggregate function. An example is proposed in Figure 11, which
shows the ETL query that loads Dim Date in the FR and M3D schemata and
the corresponding evolution graph. The out-degree of a node is the number of
its outgoing arcs; the lower the total out-degree, the better the maintainability
of the solution (the total out-degree of the evolution graph in Figure 11 is 34).
Remarkably, this metric was specifically conceived and empirically validated for
DWs, aimed at predicting the vulnerability of a DW to future evolutions so as
to facilitate the comparison of alternative design solutions from the evolution
point of view.

The results are summarized in Figure 12, which shows the evolution effort,
estimated using the out-degree metric, for our three solutions, distinguishing
between the effort for schema, the one for ETL, and the one for end-user queries

26

Figure 12: Evolution effort for schema, ETL, and end-user queries

(with reference to the WL2 workload, which is the one simulating end-user
interaction). Unsurprisingly, the total evolution effort for the NR schema (which
requires no ETL) is the lowest one, since the higher effort for evolving workload
queries is largely compensated by the lower complexity of the schema and by
the absence of ETL. The effort for the M3D schema is lower than the one for
the FR schema for two reasons: (i) in terms of schema, FR is less maintainable
due to the larger number of primary and foreign keys defined; (ii) in terms of
ETL, a relevant contribution to the complexity of FR is due to the presence of
the three bridge tables (which are not used in M3D).

8. Conclusion and research perspective

Handling big data variety, volume, and velocity is an important challenge
for decision-making information systems. On the one hand, data lakes have
been proposed to ensure flexible storage of raw data, but at the price of making
analyses more complex. On the other hand, classical DW architectures provide
an efficient framework for analyzing transformed and integrated data, but they
fall short in natively handling data variety. Motivated by the emerging trend of
MMDBMSs, in this work we have investigated the feasibility of a multi-model
approach to DW based on an extension of the well-known star schema with
schemaless data as dimensions and facts. The experiments we conducted in this
work show that all queries of our multi-model OLAP workload can run over
the proposed multi-model star schema in acceptable time compared to a full-
relational implementation, and that the transformation and evolution overhead
compared to a data lake implementation is reasonable.

Though devising complete guidelines and best practices for multi-model de-
sign is out of the scope of this paper, based on the results of our experimental
evaluation we can observe that:

• The relational model is still more efficient, so it can be used, during log-
ical design, for the data sources that can be smoothly transformed into
relational form (i.e., those whose transformation does not entail a loss of

27

information content and can be accommodated within the time frame of
ETL).

• Conversely, the data sources that hardly fit into the fixed structure of a
relational schema, e.g., because their schema is not completely known in
advance, should be left in their native form. This will cut the ETL effort
on the one hand, will encourage flexibility and extensibility on the other.

• As to evolvability, schemaless data (i.e., graphs, JSON/XML documents,
and key-value data) turned out to be better maintainable than relational
tables. In fact, the evolution effort measured through the out-degree met-
ric is substantially the same with the different schemaless models.

• The adoption of non-relational models is more suited for workloads that
exploit some of the specific peculiarities of the different models, which
ultimately may provide better performance than the relational implemen-
tation. For instance:

– a key-value store is more suited for queries with high selectivity, and
it is a performing solution in presence of cross-dimensional attributes;

– a graph is a performing solution in presence of recursive hierarchies,
and it achieves better performances when the query involves a long
traversal of a limited number of nodes;

– the best use case for nested models like JSON is when the query
involves attributes contained within each document (i.e., it relieves
from the burden of joining different tables); this is true, in particular,
when a hierarchy includes a multiple arc.

• The verbosity of JSON and XML entails bigger tables which require more
time to be scanned; thus, it should be compensated by properly indexing
the attributes most used in the queries.

These observations are summarized in Table 7, which gives suggestions about
the model(s) to be used for storing hierarchies depending on the specific multidi-
mensional construct they include on the one hand, on the design goal (improve
querying performance, resuce storage space, cut the ETL effort, encourage flex-
ibility and extensibility, encourage evolvability) to be pursued on the other. In
particular, consistently with what said above, when the design goal is to cut the
ETL effort, preserving the native models is the best choice. When it comes to
flexibility, extensibility, and evolvability, all schemaless models (i.e., G, JSON,
KV, and XML) are substantially equivalent.

Overall, the advantages of MMDWs over relational DWs can be summarized
as follows:

1. An MMDW will natively and efficiently support OLAP querying over large
volumes of multi-model and multidimensional data, thus ensuring support
to both volume, velocity, and variety.

28

Table 7: Best model(s) for different design goals and multidimensional constructs

Design goal Standard hierarchy Cross-dim. attribute Non-strict hierarchy Recursive hier.

Querying R R, KV R, JSON G
Storage R KV R R
ETL native mod. native mod. native mod. native mod.
Flex. & extens. schemaless mod. schemaless mod. schemaless mod. schemaless mod.
Evolvability schemaless mod. schemaless mod. schemaless mod. schemaless mod.

2. Storing data in their native model means reducing the data transforma-
tions required; hence, the effort for writing (time-consuming and error-
prone) ETL procedures will be reduced in MMDWs, and the freshness of
data in the DWs will be increased.

3. MMDWs will bridge the architectural gap between data lakes and DWs.
We believe MMDWs will offer an effective architectural trade-off by en-
abling both OLAP multidimensional analyses and ad-hoc analytics on the
same repository.

4. Schema evolution is a crucial issue in traditional DW architectures, since
modifying relational schemata to accommodate new user requirements is
a complex and expensive task. MMDWs can store schemaless data, so
they will ensure more effective support to schema evolution [37].

5. Again thanks to their support of schemaless data, higher flexibility and
extensibility will be granted, which will enhance analysis capabilities thus
generating added value for users [38].

6. More specifically, key-value stores on the one hand, and the array con-
structs supported by document-based databases on the other, provide an
alternative solution to model many-to-many relationships appearing in
some multidimensional schemata.

Our experiments are encouraging enough to set a mid-term perspective of the
research on MMDWs. The open research issues we envision can be summarized
as follows:

• Multidimensional design from multi-model databases. The existing data-
driven approaches to multidimensional design are based on detecting func-
tional dependencies in single-model data sources, namely, relational, XML,
linked-open data, JSON [39]. Using a multi-model data source for design
requires integrating different techniques into a synergic methodology.

• Conceptual models. Existing conceptual models for DWs are mostly aimed
at designing multidimensional schemata with a fixed structure. To take
full advantage of the flexibility ensured by MMDWs, new models capable
of coping with schemaless data (as naively done with the cloud symbol in
Figure 2) are needed.

29

• Best practices for logical design. In presence of variety, several alternatives
emerge for the logical representation of dimensions and facts [40]. Indeed,
some combinations of models may be better than others when coupled
with star schemata. A specific set of guidelines for the logical design of
MMDWs is thus needed to find the best trade-off between performances,
fidelity to source schemata, extensibility, and evolvability; this should also
include the issues related to view materialization.

• OLAP benchmark. Effectively benchmarking MMDBMSs [2] and non rela-
tional DBMSs [19] is still a challenge. Providing a benchmark for MMDWs
is a further challenge since it requires defining a dataset representative of
DW volume and multi-model variety, as well as a full range of representa-
tive OLAP queries over this dataset.

• Indexing. PostgreSQL offers different types of indexes over multi-model
databases, e.g., B-trees, hash, GiST (for geo data), GIN (for document and
hstore data), etc. Ad hoc indexing strategies will have to be devised, in
presence of variety, to cope with the specific features of multidimensional
data and OLAP queries.

• OLAP tools. Last but not least, more sophisticated OLAP tools are re-
quired to let users benefit from the additional flexibility introduced by
MMDWs while ensuring good performances. Specifically, there is a need
for devising techniques to automatically generate efficient SQL queries
over MMDWs from the (MDX-like or graphical) language used by the
front-end.

Acknowledgement

This work was partially supported by the French National Research Agency
as part of the “Investissements d’Avenir” through the IDEX-ISITE initiative
CAP 20-25 (ANR-16-IDEX-0001), and the project VGI4bio (ANR-17-CE04-
0012).

References

[1] P. Atzeni, F. Bugiotti, L. Rossi, Uniform access to NoSQL systems, Inf.
Syst. 43 (2014) 117–133.

[2] J. Lu, I. Holubová, Multi-model databases: A new journey to handle the
variety of data, ACM Comput. Surv. 52 (3) (2019) 55:1–55:38.

[3] T. Shimura, M. Yoshikawa, S. Uemura, Storage and retrieval of XML doc-
uments using object-relational databases, in: Proc. DEXA, Florence, Italy,
1999, pp. 206–217.

30

[4] V. Gadepally, P. Chen, J. Duggan, A. J. Elmore, B. Haynes, J. Kepner,
S. Madden, T. Mattson, M. Stonebraker, The BigDAWG polystore system
and architecture, in: Proc. HPEC, Waltham, MA, USA, 2016, pp. 1–6.

[5] T. Tsunakawa, Road to a multi-model database – making PostgreSQL the
most popular and versatile database, presented at PGConf.ASIA, Tokyo,
Japan (2017).
URL https://www.pgconf.asia/EN/2017/day-1/#B2

[6] R. Kimball, M. Ross, The data warehouse toolkit: the complete guide to
dimensional modeling, 2nd Edition, Wiley, 2002.

[7] M. Chevalier, M. E. Malki, A. Kopliku, O. Teste, R. Tournier, Implemen-
tation of multidimensional databases with document-oriented NoSQL, in:
Proc. DaWaK, Valencia, Spain, 2015, pp. 379–390.

[8] M. Boussahoua, O. Boussaid, F. Bentayeb, Logical schema for data ware-
house on column-oriented NoSQL databases, in: Proc. DEXA, Lyon,
France, 2017, pp. 247–256.

[9] M. L. Chouder, S. Rizzi, R. Chalal, EXODuS: Exploratory OLAP over
document stores, Inf. Syst. 79 (2019) 44–57.

[10] E. Gallinucci, M. Golfarelli, S. Rizzi, Approximate OLAP of document-
oriented databases: A variety-aware approach, Inf. Syst. 85 (2019) 114–130.

[11] C. Zhang, J. Lu, P. Xu, Y. Chen, UniBench: A benchmark for multi-model
database management systems, in: Proc. TPCTC, Rio de Janeiro, Brazil,
2018, pp. 7–23.

[12] S. Bimonte, Y. Hifdi, M. Maliari, P. Marcel, S. Rizzi, To each his own:
Accommodating data variety by a multimodel star schema, in: Proc.
DOLAP@EDBT/ICDT, Copenhagen, Denmark, 2020, pp. 66–73.

[13] M. Chevalier, M. E. Malki, A. Kopliku, O. Teste, R. Tournier, Document-
oriented models for data warehouses - NoSQL document-oriented for data
warehouses, in: Proc. ICEIS, Rome, Italy, 2016, pp. 142–149.

[14] M. Chevalier, M. E. Malki, A. Kopliku, O. Teste, R. Tournier, Document-
oriented data warehouses: Models and extended cuboids, extended cuboids
in oriented document, in: Proc. RCIS, Grenoble, France, 2016, pp. 1–11.

[15] M. Chevalier, M. E. Malki, A. Kopliku, O. Teste, R. Tournier, Document-
oriented data warehouses: Complex hierarchies and summarizability, in:
Proc. UNet, Casablanca, Morocco, 2016, pp. 671–683.

[16] I. Ferrahi, S. Bimonte, M. Kang, K. Boukhalfa, Design and implementation
of falling star - a non-redundant spatio-multidimensional logical model for
document stores, in: Proc. ICEIS, Porto, Portugal, 2017, pp. 343–350.

31

[17] M. Chevalier, M. E. Malki, A. Kopliku, O. Teste, R. Tournier, Implemen-
tation of multidimensional databases in column-oriented NoSQL systems,
in: Proc. ADBIS, Poitiers, France, 2015, pp. 79–91.

[18] A. Sellami, A. Nabli, F. Gargouri, Transformation of data warehouse
schema to NoSQL graph data base, in: Proc. ISDA, Vellore, India, 2018,
pp. 410–420.

[19] M. E. Malki, A. Kopliku, E. Sabir, O. Teste, Benchmarking big data OLAP
NoSQL databases, in: Proc. UNet, Hammamet, Tunisia, 2018, pp. 82–94.

[20] Z. Ouaret, R. Chalal, O. Boussaid, An overview of XML warehouse design
approaches and techniques, IJICoT 2 (2/3) (2013) 140–170.

[21] D. Boukraâ, M. A. Bouchoukh, O. Boussäıd, Efficient compression and
storage of XML OLAP cubes, IJDWM 11 (3) (2015) 1–25.

[22] K. Dehdouh, Building OLAP cubes from columnar NoSQL data ware-
houses, in: Proc. MEDI, Almeŕıa, Spain, 2016, pp. 166–179.

[23] A. Castelltort, A. Laurent, NoSQL graph-based OLAP analysis, in: Proc.
KDIR, Rome, Italy, 2014, pp. 217–224.

[24] H. B. Hamadou, E. Gallinucci, M. Golfarelli, Answering GPSJ queries in a
polystore: a dataspace-based approach, in: Proc. ER, Salvador de Bahia,
Brazil, 2019, pp. 189–203.

[25] M. Golfarelli, S. Rizzi, Data Warehouse Design: Modern Principles and
Methodologies, McGraw-Hill, Inc., New York, NY, USA, 2009.

[26] P. E. O’Neil, E. J. O’Neil, X. Chen, S. Revilak, The star schema benchmark
and augmented fact table indexing, in: Proc. TPCTC, Lyon, France, 2009,
pp. 237–252.

[27] D. Löper, M. Klettke, I. Bruder, A. Heuer, Enabling flexible integration
of healthcare information using the entity-attribute-value storage model,
Health Inf. Sci. Syst. 1 (1) (2013) 9.

[28] J. Couto, O. T. Borges, D. D. Ruiz, S. Marczak, R. Prikladnicki, A mapping
study about data lakes: An improved definition and possible architectures,
in: Proc. SEKE, Lisbon, Portugal, 2019, pp. 453–578.

[29] F. Ravat, Y. Zhao, Data lakes: Trends and perspectives, in: Proc. DEXA,
Linz, Austria, 2019, pp. 304–313.

[30] B. G. Inc., Architecture of agensgraph, https://bitnine.net/

blog-agens-solution/architecture-of-agensgraph/, [Online; ac-
cessed 20-Nov-2020] (2017).

32

[31] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault,
S. Plantikow, M. Rydberg, P. Selmer, A. Taylor, Cypher: An evolving query
language for property graphs, in: G. Das, C. M. Jermaine, P. A. Bernstein
(Eds.), Proc. SIGMOD, Houston, TX, USA, 2018, pp. 1433–1445.

[32] S. Jain, D. Moritz, D. Halperin, B. Howe, E. Lazowska, SQLShare: Results
from a multi-year SQL-as-a-Service experiment, in: Proc. SIGMOD, San
Francisco, CA, USA, 2016, pp. 281–293.

[33] G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou, Metrics for the
prediction of evolution impact in ETL ecosystems: A case study, J. Data
Semantics 1 (2) (2012) 75–97.

[34] A. Abelló, J. Darmont, L. Etcheverry, M. Golfarelli, J. Mazón, F. Nau-
mann, T. B. Pedersen, S. Rizzi, J. Trujillo, P. Vassiliadis, G. Vossen, Fu-
sion cubes: Towards self-service business intelligence, IJDWM 9 (2) (2013)
66–88.

[35] G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou, Design metrics
for data warehouse evolution, in: Proc. ER, Barcelona, Spain, 2008, pp.
440–454.

[36] S. Scherzinger, S. Sidortschuck, An empirical study on the design and evo-
lution of NoSQL database schemas, in: Proc. ER, Vienna, Austria, 2020,
pp. 441–455.

[37] S. Scherzinger, M. Klettke, U. Störl, Managing schema evolution in NoSQL
data stores, in: Proc. DBPL, Riva del Garda, Italy, 2013, pp. 1–10.

[38] N. Berkani, L. Bellatreche, S. Khouri, C. Ordonez, Value-driven approach
for designing extended data warehouses, in: Proc. DOLAP@EDBT/ICDT,
Lisbon, Portugal, 2019, pp. 1–5.

[39] O. Romero, A. Abelló, A survey of multidimensional modeling methodolo-
gies, IJDWM 5 (2) (2009) 1–23.

[40] I. Ferrahi, S. Bimonte, K. Boukhalfa, A model & DBMS independent
benchmark for data warehouses, in: Proc. EDA, Lyon, France, 2017, pp.
101–110.

33

