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Abstract. Recently, the Deep Learning (DL) research community has
focused on developing efficient and highly performing Neural Networks
(NN). Meanwhile, the eXplainable AI (XAI) research community has fo-
cused on making Machine Learning (ML) and Deep Learning methods
interpretable and transparent, seeking explainability. This work is a pre-
liminary study on the applicability of Neural Architecture Search (NAS)
(a sub-field of DL looking for automatic design of NN structures) in XAI.
We propose Shallow2Deep, an evolutionary NAS algorithm that exploits
local variability to restrain opacity of DL-systems through NN architec-
tures simplification. Shallow2Deep effectively reduces NN complexity –
therefore their opacity – while reaching state-of-the-art performances.
Unlike its competitors, Shallow2Deep promotes variability of localised
structures in NN, helping to reduce NN opacity. The proposed work anal-
yses the role of local variability in NN architectures design, presenting
experimental results that show how this feature is actually desirable.

Keywords: Neural Architecture Search · Evolutionary Algorithm · Opac-
ity · Interpretability

1 Introduction

Data-driven intelligent systems pervade modern society. The recent advance-
ments of Machine Learning (ML) and Deep Learning (DL) are boosting the
adoption of neural networks (NN) in several contexts, including, but not lim-
ited to, healthcare, finance, law, and domestic appliances. For this reason, the
exploitation of DL-enabled systems in industrial applications and every-day life
requires precision and efficiency. However, both features come at a price. In
fact, state-of-the-art neural architectures are characterised by an ever-increasing
structural complexity – in terms of layers, neurons, and their connections –,
which is expected to make neural networks even more precise and accurate.

The structural complexity of NN, however, brings about a number of draw-
backs. For instance, it makes training more eager for computational resources
and data. Furthermore, it represents a bottleneck in the engineering process of
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DL systems—which is commonly performed by data scientists, manually. Finally,
and more importantly, it contributes to the well-known opacity issues making
NN inner operation hard to understand for human beings—there including both
expert practitioners and users. For all these reasons, research efforts devoted
to the identification of small – i.e. structurally simpler – yet highly-performing
neural architectures are gaining momentum within the DL community [17,39].

Opacity of DL systems, in particular, is a critical aspect which should be
reduced and possibly avoided. As suggested by the eXplainable Artificial Intel-
ligence (XAI) initiative [11,1], there is an urgent need for making the operation
and outcomes of modern intelligent systems more human-interpretable. So far,
several means have been proposed into the XAI literature to serve these pur-
poses, following as many strategies. When it comes to DL, however, most existing
techniques focus on either (i) easing the inspection of NN – via visualisation fa-
cilities –, or (ii) enabling their replacement with transparent models of similar
performance—such as rules lists or decision trees. In other words, not enough
care seems to be given to the problem of making DL models more transparent.

Arguably, a possible way to decrease NN opacity is to reduce their structural
complexity, while preserving their predictive performance. Many works focusing
on NN explainability can produce rules lists or decision trees equivalent models
for small NN [8,40]: e.g., RefAnn [36] is a rule extraction procedure tailored on
neural networks having a single hidden layer. While such approaches can hardly
be applied to complex NN, we argue that an automated procedure capable of
reducing the internal structure of a NN may pave the way towards a wider
adoption of algorithms that would otherwise be inapplicable.

Generally speaking, complexity reduction may bring benefits at several levels,
including transparency and training time, other than the capability to extract
human-readable rules or trees out of NN. However, a limiting factor along this
line is that, currently, NN structures are handcrafted by human experts via
a trial-and-error procedure, targeting predictive performance rather than lower
structural complexity. Furthermore, experts’ experience and intuition play a piv-
otal role in the process, making it hard to automate and reproduce. This is where
Neural Architecture Search (NAS) [12,42] comes into play. The general goal of
NAS is to automate the identification of the best NN structure for a given task.
Several approaches are being explored, modelling the NAS as a search problem
in the space of all possible NN architectures. To the best of our knowledge,
however, no work so far focuses on controlling network structural complexity.

Accordingly, in this paper we propose Shallow2Deep, a novel NAS algorithm
aimed at keeping NN structural complexity under control. Our algorithm allows
data scientists to automatically and efficiently detect highly-predictive architec-
tures for convolutional NN targeting pattern matching tasks—such as image or
speech recognition. It enforces structural constraints over the searched NN archi-
tecture, limiting the NN structural complexity and therefore its opacity. In other
words, Shallow2Deep fits NN design by providing a means to control the depth
of a NN, possibly enabling, e.g., the applicability of rule-extraction algorithms
in complex tasks.



Shallow2Deep: Restraining NN Opacity through NAS 3

Our solution differs from other NAS approaches in a number of ways. First,
it promotes local variability in NN architectures—meaning that it supports and
encourages variability in the different layers composing a NN. Then, it favours
local specialisation of NN sub-structures—thus letting each layer of the NN
specialise on different tasks, depending on their depth. Finally, it promotes pro-
gressive complexity, avoiding overthinking—a well-acknowledged [19] tendency
of deep NN to learn too many concepts, becoming more complex than needed.
We present a full operational formalisation of the Shallow2Deep algorithm along
with a number of experiments showing its practical feasibility and versatility.

2 Background

2.1 Neural Architecture Search

Neural networks are biologically-inspired computational models, made of several
elementary units (neurons) interconnected into a directed-acyclic graph (DAG)
via weighted synapses. NN can be trained on data via backpropagation [16] and
exploited into both supervised and unsupervised learning tasks such as clas-
sification, regression, and anomaly detection. The training phase makes a NN
learn from data. Yet, only network synapses weights are modified in this phase,
whereas its overall graph structure (topology henceforth) is not allowed to vary.
It is rather assumed to be manually engineered by data scientists.

Convolutional Neural Networks (CNN) are particular sorts of NN whose
topology consists of a cascade of convolutional layers. In other words, CNN
can learn how to apply a number of convolution operations [30] to the data.
Convolutions let the network spot relevant features into the input data, at pos-
sibly different scales. Thus, CNN are primarily used to solve complex pattern-
recognition tasks, such as in computer vision or speech recognition. Yet, how
many convolutions a network may learn as well as their interconnections depend
on NN topology. Again, this implementation detail requires human intervention.

Traditionally, NN development workflows are deeply influenced by the choices
by human experts. Network architectures represent the most relevant aspect
requiring human contribution. However, as neither theorems nor methods ensure
optimal results, human choices may lead to sub-optimal or inefficient solutions.

To avoid inefficiencies introduced by human errors in NN design, neural ar-
chitecture search (NAS) has been proposed [26]. NAS automates network ar-
chitecture engineering: it aims at learning a network topology that can achieve
reasonably-good performances on specific tasks, by letting a search algorithm
look for the best network topology among the admissible ones.

To keep the computational complexity of NAS acceptable, several approaches
have been proposed in the literature. Virtually all of them try to (i) reduce the
search space size and (ii) control the whole search duration by leveraging on a
greedy or evolutionary search strategy.

A common means to restrict the search space is to assume the network topol-
ogy to be composed by a sequence of units called cells. Each cell contains a num-
ber of blocks, connected over a DAG structure. Blocks, in turn, are groups of
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neurons having a predefined internal organisation—commonly corresponding to
a particular mathematical operator. In CNN, for instance, blocks are commonly
constrained to represent convolutional layers, each one representing different
sorts of convolutional filters—e.g. 3×3, 5×5, etc. Directed connections among
any two cells A and B are modelled as directed connections among the output
block of A and the input block of B.

Within the scope of this paper, we denote by O the operation set, i.e. the
set of all possible sorts of blocks for any given NAS problem. We assume O is
always a finite-cardinality set. For instance, in the particular case of CNN, O
may contain different sorts of convolutional layers (e.g. O = {3×3, 5×5, 7×7}).

State-of-the-art NAS approaches mostly differ in which and how many blocks
and cells are exploited, how these can be connected with each others, or which
(meta-)heuristic the search of the optimal topology leverages upon. For instance,
a method is proposed in [22] where NN is built as a sequence of identical cells—
so that only the internal structure of one cell is optimised. In [32] a regularised
evolutionary meta-heuristic is presented introducing an age property to favour
younger genotypes. The approach aims at optimising two sorts of cells – “normal”
or “reduction” cells – which are concatenated in a predefined way to obtain
the final NN. Similarly, a continuous evolutionary approach is proposed in [45]
sampling the population of different generations from a super network N of
shared parameters to search for normal and reduction cells. In [7], a probabilistic
approach is applied to reduce the search memory requirements to obtain the best
structures for the normal and reduction cell.

Another common approach is to fix cells operations and look for the best cell
combination that can compose the NN. In [9] a multi-objective oriented algo-
rithm is presented exploiting both evolution and reinforcement learning to search
for the best composition of various predefined cells. In [38] a method is presented
that explicitly incorporates model complexity into the objective function while
searching for the best cell sequence. However, cells are selected from a predefined
pool, and they are not optimised any further. Conversely, a differentiable NAS
framework is proposed in [43], searching for the best cell placement in the NN
structure. Finally, in [5] a method is presented that can search NN architectures
avoiding proxies and limitations typical of other approaches—e.g., training on a
smaller dataset, learning with only few blocks, training for few epochs.

Reduction in NN complexity can also be achieved via network pruning tech-
niques [24]. However, here we focus on NAS techniques only, since network prun-
ing is a post-hoc technique not taking into account NN structure, as it is applied
after training—when the structure has already been fixed. For this reason, struc-
tural inefficiencies of NN can not be tackled using network pruning techniques.

To the best of our knowledge, our work represents the first attempt to pro-
duce a NAS strategy capable of identifying both a good cell structure and a
global architecture, avoiding constraints on architecture design. In other words,
our approach improves the NN performance over complexity ratio, allowing Shal-
low2Deep to produce smaller – yet reasonably performing – NN architectures.
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2.2 eXplainable AI vs. Neural Networks

Neural networks and computer vision are commonly exploited behind the scenes
of intelligent systems involved in several critical applications (e.g., intelligent
medicine, automotive, etc.). There, NN provide intelligent systems with high-
precision pattern recognition capabilities. However, as for most ML methods,
NN engineering only focuses on attaining high predictive performance, whereas
poor care is given when it comes to determine why NN provide a particular
outcome. To complicate this issue, advanced applications – such as computer
vision – may easily involve deep NN, having an intricate internal structure which
makes them hard to analyse and understand—even for experts. Such intricacy
is described into the literature as “opacity” [21]—a feature characterising most
ML algorithms up to some extent, which are also known as “black boxes” for
that very same reason [14].

Recently, the opacity issue characterising ML and, in particular, NN reached
the general public attention—also because of the GDPR regulations3. Accord-
ingly, safety- or privacy-critical intelligent applications leveraging on ML should
be designed accounting for properties such as interpretability, reliability, and
transparency [41]. In other words, human users must be able to understand the
criteria behind machine-aided or -driven decisions.

The XAI community [3] is currently intercepting those needs by proposing
methods aimed at tackling the opacity issues that characterise ML- and DL-
powered systems. Most methods proposed so far essentially focus on (i) inspec-
tion or visualisation [48,4] techniques, aimed at “debugging” the inner function-
ing of NN; (ii) heatmaps [2,35], or feature relevance analyses [28,18], aimed at
analysing a network behaviour w.r.t. its inputs; or (iii) symbolic knowledge (e.g.,
rules, or trees) extraction algorithms [49,6], aimed at distilling human-intelligible
information out of the intricate structure of sub-symbolic predictors. In other
words, following a nomenclature introduced in [10], current methods either at-
tempt to make NN more easily interpretable or a-posteriori explainable.

NN opacity is deeply entangled with their structural complexity. The more
NN architectures are intricate the less NN are interpretable. By keeping NN
structural complexity under control, data scientists may limit their opacity. In
turn, limiting NN opacity, plays a fundamental role in XAI as it may make NN
both a-priori interpretable and a-posteriori explainable. Accordingly, to the best
of our knowledge, our work represents the first attempt to control NN opacity
– i.e. structural complexity – while automating the search for a well-performing
architecture.

3 Shallow2Deep

In this section we present Shallow2Deep, a novel exhaustive NAS algorithm: we
first present its architecture design along with the corresponding search space
(3.1), then we discuss its overall working principle, its fundamental hypotheses,
and the details of its composing modules.

3 https://eur-lex.europa.eu/eli/reg/2016/679/oj

https://eur-lex.europa.eu/eli/reg/2016/679/oj
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Normal Cell Normal Cell Normal Cell Normal Cell Normal Cell
Input Output

1-cell Approach

Normal Cell Reduction Cell Normal Cell Normal Cell
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Input Output

Our Approach

Cell 4

Fig. 1: Shallow2Deep avoids architecture design limitations, common in other NAS
algorihtms. Here C = 5.

3.1 Architecture Design

Most popular NAS approaches blindly build a NN architecture by repeating
the same elementary structure (cell) several times—assuming that the internal
structure of a cell has been manually optimised. This sounds like a reasonable ap-
proach, considering the history of NN development and validation. Handcrafted
successful networks (e.g., VGG [37], ResNet [15], Mobilenet [17], etc.) are com-
posed by repetitions of a certain peculiar element (e.g., convolutions, skip con-
nections, inverted mobile bottleneck, etc.). Furthermore, repetitions lead to a
reduction of the search space size, when an effective combination of the elemen-
tary cells must be automatically computed.

However, although understandable from a computational perspective, such
an approach is not reasonable in terms of predictive capability. Relying on the
same elementary structure at different depth levels of the network architecture
may hinder the predictive performance of the resulting NN as a whole. In fact,
assuming a particular elementary structure is good enough to let a network’s
shallow4layers perform valuable feature extraction, it is unlikely that the same
structure is equally good to provide that network’s deep layers with more so-
phisticated pattern matching capabilities. The different layers of a well-trained
NN are expected to perform totally-different feature-mining tasks. This is why
we argue that the best elementary structure for shallow and deep layers of NN
are not architecturally equal. Shallow2Deep builds on this, providing a means to
look for a good cell structure specification for both shallow and deep layers.

More precisely, Shallow2Deep constructs NN classifiers with a fixed number
C of different cells. Cells can differ in terms of the topology they assume and
the operations they apply. We define the difference between cells w.r.t. topology
and operations as structure variability. Shallow2Deep promotes local structure
variability in NN architectures, avoiding design limitations.

Figure 1 highlights the main difference among state-of-the-art NAS mecha-
nisms and our approach: Shallow2Deep lets each cell vary independently from

4 By “shallow” (resp. “deep”) layers of a NN we mean the inner layers close to the
input (resp. output) neurons.
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Fig. 2: Blocks in Shallow2Deep cells can get input from previous cell (green), the
cell before that (blue) or any other block in the cell (yellow). Cell output is obtained
concatenating outputs of all blocks belonging to the cell (black). Here C = 3 and
B = 4.

each other. However, similarly to other authors, we assume cells to be ordered
from shallow side to the deep side. Accordingly, the 1st cell is the closest one to
the inputs, while the last one is the closest to the outputs.

In particular, Shallow2Deep lets each cell contain B blocks—being B a pos-
itive and finite integer. Each block represents a particular sort of NN layer.
Following a convention introduced in [46], we denote by O the finite set of all
possible sorts of blocks—which in turn depend on the particular task the target
NN aims to solve. For instance, if the considered NN targets image recognition
tasks, we let O contain simple convolutions, other than the identity block—
e.g. some n×n convolutional layers (for n = 1, 3, 5, . . .), plus the identity layer
f(x) = x.

Each block of the ith cell can accept as input the output of i−1th and i−2th

cells and of any other block in the same ith cell. However, loops and cycles among
blocks connections are not allowed. In other words, the blocks topology must be
a DAG. This is necessary to preserve the feed-forward architecture of the NN.
Furthermore, each block can provide output to any amount of other blocks.

The whole output of a cell is attained by concatenating the outputs of all
blocks belonging to that cell, as in [22]. Figure 2 provides an example of an
admissible topology that can be created by blocks and cells following the afore-
mentioned rules.

3.2 Search Algorithm

Virtually all NAS algorithms proposed into the literature so far deal with re-
duced search spaces attained via strict architectural constraints. Conversely, our
approach avoids the excessive simplification of the architectural design by al-
lowing the internal structure of each cell to vary. A greedy search algorithm is
then employed to automate the selection of the actual cells structures, in an
iterative way. It relies on the successive search of locally-optimal cell structures
proceeding from the shallower cells to the deeper ones.

As exemplified in fig. 3, Shallow2Deep consists of the iterative repetition of a
local search algorithm aimed at selecting the (locally) best internal structure of
the ith cell. The search algorithm is repeated for all i = 1, . . . , C, in such a way
that the internal structure of the ith cell is only optimised after that (i−1)th one
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Fig. 3: Shallow2Deep iteratively searches for the best structure of cells going from shal-
low to deep ones. Shallow bests are searched using simple superstructures to increase
the feature expressiveness and reduce training time. Local bests are kept fixed while
deeper best are searched, reducing the complexity.

has already been optimised. In particular, here rely on an evolutionary algorithm
to tackle local search. During local search, a population of NN is considered
based on the structures that need to be analysed. The NN under examination
are trained on a subset of the training set in order to find well behaving local
structures—i.e. cell. To keep the whole process time-efficient, while optimising
the ith cell, all the jth cells (j ∈ {1, . . . , i−1}) are left unaffected by the training
process. Moreover, to maximize the knowledge extracted at the ith cell during its
discovery process, all kth cells (k ∈ {i+ 1, . . . , C}) are built as bare as possible.
Following literature, we consider bare cells to be composed of a single block
applying a 3×3 convolution operation [13,37]. In other words, Shallow2Deep
greedly proceeds from the shallowest cell to the deepest one.

While further details concerning our design choices are provided in section 4,
some insights can be provided by the way a well-trained NN operates. The shal-
low layers of a NN aim to mine low level features. Complex features are extracted
by deeper layers, reliably building on top of low level information. Therefore,
Shallow2Deep searches for structures of deeper cells iteratively, building on the
knowledge acquired at previous search steps.

Cell search The Shallow2Deep algorithm relies on a local search of the best
performing structure for each cell of the NN. The task can be accomplished
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through a variety of different search algorithms, from reinforcement learning to
evolutionary algorithms [50,45]. In Shallow2Deep we exploit evolutionary (a.k.a.
genetic) heuristic algorithms.

Evolutionary algorithms are a family of population-based metaheuristic op-
timization algorithms inspired by biological evolution. They commonly rely on
a set of predefined stochastic mechanisms – namely, generation, mutation, selec-
tion, mating, fitness, etc – which let the algorithm randomly explore a vast search
space in a smart way. Technically, these algorithms attempt to solve an optimi-
sation problem by generating population of random solutions for the problem at
hand, and by simulating evolution for a predefined amount of iterations—a.k.a.
generations. Solutions are more or less likely, to survive among generations de-
pending on their fitness—i.e. a measure of the quality of a particular solution
w.r.t. the problem at hand. To prevent the search to step into local optima,
evolutionary algorithms may exploit a number of strategies to introduce more
randomness in the precess, such as mutations—meaning that solutions may ran-
domly mutate while stepping through generations.

We choose to rely on evolutionary algorithms because of their (i) flexibil-
ity, (ii) support to space pruning [25] – a feature that we plan to support in
the future –, other than (iii) the many successful works on NAS leveraging on
evolutionary approaches as well (cf. [23,22,46]). In particular, our evolutionary
algorithm is inspired to regularised evolution proposed in [32]. However, we avoid
regularisation through aging and introduce a randomised approach to explore
untouched areas of the search space.

As any other evolutionary approach, our algorithm mimics biological evolu-
tion by letting a population of N randomly-generated NN step through a number
ν of generations. More in details, the number of generations (i.e., ν) represents
the maximum amount of iterations that the evolutionary algorithm should per-
form before returning the final solution. While transitioning between generations,
NN may probabilistically mutate, other than being allowed to survive depending
on their fitness. Accordingly, while the mutation mechanism lets the algorithm
randomly explore different internal structures for the ith cell, the fitness measure
lets the algorithm assess how good a particular internal structure of the ith cell
actually is. The Shallow2Deep algorithm can then go on with its iteration and
focus on the (i+ 1)th cell. Once reached the νth generation, the best fitting NN
is used to determine the final interal structure to be chosen for the ith cell.

Accordingly, in the remainder of this section, we delve into the details of how
mutation and fitness actually work in the particular case of Shallow2Deep.

Algorithm stub. We denote by Pn the nth generation of the population. Simi-
larly, we denote by P0 the initial population, which is randomly generated. The
population size is kept fixed to throughout the local search procedure, as it is
commonly done for evolutionary algorithms. In other words, for all i ∈ {1, . . . , ν},
the population Pn is such that |Pn| = N and all the architectures of all networks
in Pn conform to the constraints described in section 3.1.

Then, our evolutionary algorithm refines the population through 3 steps
which are repeated at every generation. These steps are:
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train — where all the NN in Pn are trained on (a subset of) the data set;
selection — where the NN which are not among the top-m fittest ones are

removed from Pn;
incubation — where Pn is enriched with new NN – attained via mutation –

aimed at replacing the ones cutted off by the selection step.

Shallow2Deep assumes the available data to be partitioned into 3 parts, namely
the training, validation, and test sets. While the train step only leverages on
the training set, the selection step evaluates the fitness measure of each network
against the validation set. The test can then be used to assess the performance
of the final network architecture output by Shallow2Deep.

Concerning the incubation step, it is aimed at helping Shallow2Deep both
from a performance-maximisation and search-space-exploration-speed perspec-
tive. More precisely, it aims at generating new NN following two criteria:

• c networks are attained by mutating as many individuals in Pn through the
application of mutation transformation;

• r = N −m− c networks are randomly generated from the search space.

Best behaving structures mutation helps performance maximisation, enhancing
the focus on those evolutionary paths that have proven to be strong in recent
history of the population. Partially randomising incubation helps search space
exploration as it allows the evolution to look for points in the space farther apart
from previously beaten evolutionary paths.

Once all the three steps have been completed for generation n, and a new
population has been attained, Pn+1 and the evolutionary search can proceed
with generation n + 1. The process is repeated ν times, after which the best
performing local structure is considered as found.

Fitness measure. Fitness is measured on the validation set using the most ade-
quate performance measure for the task at hand. Accordingly, in case the to-be-
defined network targets classification tasks, accuracy or F1-score measures may
be used. Conversely, in the case of regression tasks, MSE, MAE, or R2 measures
may be exploited instead.

In the particular case of image recognition tasks, classification accuracy
is an adequate choice. More complex performance metrics may consider also
FLOPS [39] and latency [38]. However, these are left for future works.

Mutation. The mutation transformation is applied to some NN – referred as the
parent – in order to attain new architectures—called children. It only focuses
on the internal structure of the ith cell of the parent network, possibly affecting
some of its blocks. In particular, we rely on two possible mutations that can be
applied to the blocks of a cell (graphically depicted in fig. 4):

input mutation — a block B of the ith cell is selected at random, it is detached
from its previous input, and the output of either another block B′ in the same
cell or of the jth cell as whole, with j ∈ {i − 1, i − 2}, is used as the new
input of B—provided that the new connection does not introduce a loop or
a cycle;
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Fig. 4: Mutation operations available in randomized evolution. When input operation
is applied, previous input block is linked with cell output if it has remained pendent,
avoiding block removal.

operation mutation — a block B of type o ∈ O is randomly selected from
the ith, and its type is changed to some other o′ ∈ O such that o ̸= o′.

Greedy assemble Shallow2Deep requires several NN to be actually trained
behind the scenes of its operation. This is true, in particular, for the evolutionary
algorithm described above. In fact, while mostly focusing on one cell at a time,
the algorithm must still train at least N · ν networks – only differing for the
content of the ith cell –, C times.

To keep the computational effort feasible, a number of strategies are in place.
For istance, while performing the ith evolutionary search, Shallow2Deep leaves
all cells of index j s.t. 1 ≤ j < i unaffected, and does not re-train them anymore,
as they have already been explored and trained in previous iterations. Dually,
the algorithm always assumes all cells of index j s.t. i < j ≤ C to only contain a
single block. In this way, the whole NN shallowness is preserved. In the particular
case of image recognition tasks, that block may for instance consist of a 3×3
convolutional layer. Accordingly, during the ith evolutionary search, only cells
whose index is at least equal to i are actually trained over data, and all cells
whose index is greather than i have a very minimal structure.

In other words, once the ith local search is completed, the m best performing
structures for the ith cell are fixed, and never retrained anymore. As part of the
subsequent iterations of Shallow2Deep, the network architecture is deepened to
produce deeper and more complex NN.

4 Discussion

Global NN architectures are ideally composed by different local structures whose
role depends on their position in the NN. Following this idea, unlike most com-
mon NAS frameworks, Shallow2Deep framework does not rely on the replication
of the same cell. Rather, Shallow2Deep exploits a progressive search of the best
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cells at each possible depth level, from the shallowest to the deepest ones. We
here discuss the rationale behind Shallow2Deep progressive search.

It is well understood how the complexity of the features extracted by some
NN is proportional to the depth of the layer which recognises them [47,29]. In
fact, while layers that are closer to the input are appointed to extract basic fea-
tures – such as edges, corners, borders, etc., in image-recognition tasks –, deeper
layers aim at recognising more complex features—such as combination of shapes,
combination of textures, etc. Accordingly, shallow networks are better suited to
tackle simple tasks [13] where only simple features are involved. Conversely, the
more complex a to-be-recognised feature is, the deeper a layer capable to recog-
nise it must be. This happens because the recognition of a complex feature in
a NN relies on the composition of more basic features extracted by shallow lay-
ers. Consequently, the lower is a feature complexity, the shallower can be the
NN able to learn it. We call this phenomenon depth-complexity proportionality
assumption.

There exists a tight link between features complexity and network depth
that allows us to propose reasonable shortcuts for exhaustive architecture search
methods. Shallow2Deep is designed on the assumption that simple features learnt
by shallow networks perform reliably for deeper networks as well. Indeed, deeper
NN achieve more flexible recognition capabilities than shallower ones [27,31].
Moreover, deeper NN may attain higher generalisation capabilities [34], being
capable of adapting to the features that shallow NN have learnt to recognise.

Accordingly, we argue that NN built from the sequential repetition of the
same local structure cannot achieve the astounding results that characterise
state-of-the-art NN. Conversely, we believe it is possible to search for reliable
shallow architectures and expand them in successive iterations, as done by Shal-
low2Deep. The more simple concepts are reliably learnt by shallow networks, the
easier it will be to learn complex notions from their combinations. We call this
phenomenon knowledge greediness assumption.

The progressive global assemble of Shallow2Deep exploits both knowledge
greediness and depth-complexity proportionality assumptions to boost the over-
all time complexity and performance.

In particular, depth-complexity proportionality justifies the deepening of the
NN architecture in successive iterations, which in turns supports the trick ex-
ploited by Shallow2Deep to speed up the local search phase. Indeed, population
training in the evolutionary local search is the most expensive and time consum-
ing process. Training shallower networks requires less time to complete, as the
parameters to optimize are much less.

Conversely, knowledge greediness justifies Shallow2Deep’s strategy of itera-
tively expanding the depth of the NN architecture under consideration. While
this certainly raises NN training time, it also lets deeper architectures rely on
previously trained cells. In particular, to boost the overall search, Shallow2Deep
fixes the parameters of shallower cells, avoiding their re-training. This idea traces
back to the well-established idea of re-using pre-trained feature extractors in ob-
ject detection mechanisms [33,20]. Indeed, once a network is deepened and its
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deeper cell structure is determined, the predictive performance of the overall
network does not degrade, even if shallow layers are kept fixed.

5 Experiments

In this section we first present Shallow2Deep implementation and the best NN
architecture obtained with it (see Section 5.1). In Section 5.2 we then compare
obtained architecture with state-of-the-art models that leverage on the same
operation set O. We also analyse if Shallow2Deep local structures could be reused
through repetition in a NNmodel to obtain better performance/complexity ratio.
We make publicly available our implementation of Shallow2Deep.5

5.1 Shallow2Deep Architecture

In order to demonstrate the validity of our approach we run Shallow2Deep on
MNIST fashion [44]. We define O to be the set of available operations that can
be selected for each block of a cell. Similar to [46], in Shallow2Deep O contains
simple convolutions and identity (1×1 conv, 3×3 conv, 5×5 conv, identity). Con-
sider now Shallow2Deep search space S—i.e. the space that contains obtainable
cells through local search. The search space cardinality – i.e. the number of ob-
tainable cells – is |S| = (B + 1)! · |O|B . Let now N be the search space for the
overall NN—i.e. the set of obtainable NN architectures. Remembering that Shal-
low2Deep does not rely on cell repetition, the amount of NN architectures avail-

able during the overall architecture search is |N| = |S|C =
(
(B + 1)! · |O|B

)C
.

For our experiments we set B = 3 and C = 4, obtaining |S| = 1.54 · 103 and
|N| = 5.57 · 1012. The amount of possible NN architectures is huge, but it does
not reflect the computational complexity. Indeed, thanks to its increasing depth
approach, Shallow2Deep is capable of searching a space of size |S|C , while having
complexity that is only proportional to C · |S|

For each cell we search for the best structure using the randomised evolution
algorithm proposed in Section 3.2. We fix the number of generations of the
evolutionary algorithm to be ν = 5 for each cell and the population size to be
|P | = 50. During incubation we fixed the number of surviving best models to be
m = 10, the number of models obtained through mutations to be c = 20 and the
number of random models added to each generation to be r = 20. Each model
is trained for 10 epochs using learning rate learning rate = 0.01.

To show the effectiveness of Shallow2Deep search, we study the behaviour of
the NN population against the number of generations of the overall algorithm.
In Shallow2Deep, the user can select the number of cells C that compose the
NN and ν, the number of generations that the local search takes. Shallow2Deep
iteratively searches each of the C cells for ν generations. Therefore, the overall
search of the NN architecture takes C · ν generations to complete. We study the
average performance – i.e. classification accuracy – of the population of NN for

5 https://github.com/AndAgio/Shallow2Deep

https://github.com/AndAgio/Shallow2Deep
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Fig. 5: Performance – i.e. classification accuracy – of NN architectures considered by
Shallow2Deep for each generation. We consider both the average performance and the
accuracy of the best model in each generation.

each of the C · ν generations. We also study the accuracy of the best NN in the
population for each of Shallow2Deep C · ν generations.

Figure 5 shows the behaviour of average and best NN performance against
Shallow2Deep generations. The classification accuracy increases with the num-
ber of generations considered, showing the success of Shallow2Deep search. Ac-
curacy increments are limited since even 1st generation NN reach reasonable
performances. This is due to the mild complexity of the classification task over
the MNIST fashion dataset. Biggest increments in the NN accuracy are found
in generations where the cell index i is increased—i.e. local search shifts to the
next cell. This behaviour is expected as the increasing complexity – i.e. depth –
of the NN extends its reasoning capabilities. It is also interesting to notice that
this behaviour is more evident for smaller cell index i, while it becomes more
attenuated for values of i close to C. In our experiments, performance reaches
stability for i = C—i.e. there exists a negligible difference between accuracy of
NN with i = C − 1 and i = C. Stabilisation of accuracy can be considered a
signal that the NN is reaching a complexity limit. Surpassing this limit would
increase concepts complexity while not bringing any gain in performance, intro-
ducing possible overthinking issues [19]. Therefore, Shallow2Deep represents a
tool to automatically identify the NN complexity sweetspot over a certain task.

Figure 6 shows the architecture of the NN obtained running Shallow2Deep
on the MNIST fashion dataset.
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Fig. 6: NN architecture discovered by Shallow2Deep algorithm.
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From its architecture, we point out that Shallow2Deep NN identifies sequen-
tial operations – i.e. blocks connected in a sequential manner inside a cell –
at shallower stages of the NN—i.e. cells 1 and 2. Going deeper in the NN ar-
chitecture – i.e. cells 3 and 4 –, Shallow2Deep building procedure identifies cells
composed of parallel branches of convolutional operations. If confirmed in future
investigations, this concept might give some insights on the learning process of
NN. It is possible that sequential operations at shallow sections of NN help the
model to learn simple concepts at the basis of their reasoning — i.e. edges, cor-
ners, simple shapes, etc. Parallel operations approach may, instead, be useful for
the NN learning process when complex concepts need to be extracted—i.e. com-
bination of shapes, combination of textures, etc. Therefore, deeper investigation
of this result may be interesting.

5.2 Shallow2Deep vs. State-of-the-art

We now compare the performances obtained by Shallow2Deep NN against state-
of-the-art models that apply the same basic operations – i.e. convolutions and
identity – like VGG [37] and ResNet [15]. In order to make the comparison
fair, we retrain the Shallow2Deep NN, VGG, and ResNet on the MNIST fash-
ion dataset from scratch. Training parameters are the same for every model
considered—i.e. 60 epochs and learning rate = 0.01. Moreover, to study the
effects of cell structure variability in NN architectures, we consider NN models
built from the repetition of single cells found by Shallow2Deep local search. In
other words, we select Shallow2Deep cell i – i.e. the cell discovered during ith

local search step – and we build the NN model composed of 4 cells having the
same structure of cell i. We name these NN architectures Shallow2Deepi.

Table 1 shows the performance over the test set T– i.e., the average accuracy
and its standard deviation over 20 training runs –, the footprint – i.e. number of
weights of the NN (expressed in millions, denoted by M) – of Shallow2Deep and
state-of-the-art NN. Shallow2Deep NN with its variants reach state-of-the-art
performances over the MNIST fashion classification dataset. NN obtained using
Shallow2Deep are the most efficient if we consider the accuracy/footprint trade-
off—i.e. division between reached accuracy and number of parameters. More in
details, Shallow2Deep NN reaches accuracy comparable with VGG (only 0.4%
less), while requiring a third of the parameters. Performances obtained by the
ResNet NN over the dataset under examination are possibly due to overthinking
issues. ResNet model complexity – i.e. model footprint – is higher than necessary
for the selected task, which brings it to learn too many or too complex concepts,
decreasing overall performances.

We also analyse the effects of cell structure variability in NN architectures.
Base Shallow2Deep NN version intrinsically express high level of cell structure
variability, while its variants – e.g. Shallow2Deepi – do not. It is possible to notice
that Shallow2Deep NN outperforms 3 of its Shallow2Deepi variants out of 4 in
terms of absolute performances. Moreover, Shallow2Deep NN outperforms all of
its Shallow2Deepi variants when the accuracy/footprint trade-off is considered.
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Model name Accuracy ± std (%) Parameters (M)

Shallow2Deep 93.26± 0.18 0.251
Shallow2Deep1 92.87± 0.17 0.165
Shallow2Deep2 93.31± 0.14 0.491
Shallow2Deep3 92.73± 0.14 0.377
Shallow2Deep4 92.28± 0.10 0.118

VGG 93.66± 0.18 0.746
ResNet 92.77± 0.09 1.626

Table 1: Comparison between Shallow2Deep and state-of-the-art models. We consider
also models built through repetition of single Shallow2Deep cells—e.g. Shallow2Deep1
is the NN built from repetition of Shallow2Deep cell 1 in a sequential manner.

Therefore, we can safely state that cell structure variability allows NN models
to reach higher performances while being complexity-constrained.

6 Conclusion

In this work we propose Shallow2Deep, a novel NAS approach that limits NN
complexity and promotes local variability in their architectures. Shallow2Deep
relies on successive searches of local optima and NN expansions – i.e. depth
increment – to produce well performing NN models.

We show that Shallow2Deep can effectively achieve NN complexity reduction,
while reaching performances comparable to the state-of-the-art. Complexity re-
duction is tightly linked with NN opacity. Along this line, we also discuss why
Shallow2Deep enables the application of explainability techniques to unprece-
dented scenarios, by providing a means to control NN structural design.

To the best of our knowledge, the proposed work represents the first approach
to design an automatic tool to produce efficient NN architectures, while identify-
ing complexity limits of NN models and helping designers to avoid overthinking
issues or unnecessary opacity increments. In particular, this work represents a
first approach to the analysis of structure variability influence on NN model
performances, as Shallow2Deep promotes local variability. Along this path, our
experimental analysis demonstrates how variability over local structures that
compose NN is a desirable feature to obtain small and well performing models.
This idea is in contrast with previously-proposed NN design approaches that
neglect local structure variability, opening new possibilities for future research.
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