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Abstract  

Introduction: Several novel beta-lactams (BLs) and/or beta lactams/beta-lactamase inhibitors (BL/BLIs) 

have been recently developed for the management of multidrug-resistant bacterial infections. Data 

concerning dose optimization in critically ill patients with altered renal function are scanty. 

Areas covered: This article provides a critical reappraisal of pharmacokinetic and clinical issues emerged 

with novel BLs and/or BL/BLIs in renal critically ill patients. Clinical and pharmacokinetic studies published 

in English until December 2020 were searched on PubMed-MEDLINE database. 

Expert opinion: Several issues emerged with the use of novel BLs and/or BL/BLIs in critically ill renal 

patients.  Suboptimal clinical response rate with ceftazidime-avibactam and ceftolozane-tazobactam was 

reported in phase II-III trials in patients with moderate kidney injury; data on patients undergoing renal 

replacement therapy are limited to some case reports; dose adjustment in augmented renal clearance is 

provided only for cefiderocol. Implementation of altered dosing strategies (prolonged infusion and/or higher 

dosage) coupled with adaptive real-time therapeutic drug monitoring could represent the most effective 

approach in warranting optimal pharmacokinetic/pharmacodynamic targets with novel BLs and/or BL/BLIs 

in challenging scenarios, thus minimizing the risk of clinical failure and/or of resistance selection. 

 

Keywords: acute kidney injury; antimicrobial resistance; augmented renal clearance; cefiderocol; 

ceftazidime-avibactam; ceftolozane-tazobactam; continuous renal replacement therapy; imipenem-

relebactam; meropenem-vaborbactam; PK/PD optimization 
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Highlights 

 Altered renal function ranging from augmented renal clearance (ARC) to transient or persistent acute 

kidney injury (AKI) eventually requiring continuous renal replacement therapy (CRRT), may affect 

elimination of novel BLs and/or BL/BLIs in renal critically ill patients. 

 Suboptimal clinical response rate in patients with moderate AKI was reported in phase II-III clinical 

trials with ceftazidime-avibactam and ceftolozane-tazobactam, and data concerning dose 

optimization of novel beta-lactams in renal critically ill patients are scanty. 

 Renal dose adjustment of novel BLs and/or BL/BLIs should be deferred in patients with transient 

AKI until 48 hours after starting therapy. 

 Altered dosing strategies of novel BLs and/or BL/BLIs (prolonged infusion and/or higher dosage) 

should be implemented in patients with ARC or undergoing high intensity CRRT. 

 Adaptive real-time therapeutic drug monitoring focused at achieving the aggressive PK/PD target of 

100% fT> 4-8 x MIC may be helpful in maximizing effectiveness of novel BLs and/or BL/BLIs in 

challenging scenarios and in preventing resistance emergence. 
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1. Introduction 

Sepsis is the most common cause of death in critically ill patients [1-2]. The emergence of 

multidrug-resistant (MDR) pathogens, poorly responsive to existing antimicrobials, coupled with the 

unpredictable pharmacokinetic alterations arising from complex pathophysiological mechanisms, makes the 

treatment of septic patients increasingly challenging [3-4]. Optimization of antibiotic use plays a key role in 

this setting, considering that early and appropriate antimicrobial treatment showed to reduce mortality [5-6]. 

Appropriate antimicrobial dosing is required to maximize microbial killing, minimize the development of 

multidrug antimicrobial resistance, and avoid concentration-related adverse drug reactions [7]. 

Changes in antimicrobial volume of distribution (VD) and clearance (CL) are observed often in 

critically ill patients, leading to significant variation in both plasma and tissue antibiotic concentrations, 

depending on the degree of drug hydro/lipophilicity physicochemical features and renal elimination (Figure 

1) [7-10]. Notably, wide fluctuations in renal function, ranging from augmented renal clearance (ARC) to 

severe acute kidney injury (AKI) eventually requiring continuous or intermittent renal replacement therapy 

(RRT), may affect antibiotic exposure in septic patients [11].  

Beta-lactams (BLs) are extremely susceptible to wide variations in drug exposure in critically ill 

patients due to their physicochemical/pharmacokinetic (PK) features (namely hydrophilicity, low VD, and 

predominant renal CL) [7]. These peculiar properties make BLs prone to significant extracorporeal removal 

performed by the different modalities of RRT [12]. This may often cause subtherapeutic concentrations with 

risk increase in that could lead to negative clinical outcome [13]. Beta-lactams BLs exhibit time-dependent 

pharmacodynamics (PD), and efficacy is related to the percentage of the dosing interval that the unbound 

concentration is maintained above the minimum inhibitory concentration (MIC) of the targeted pathogen 

(%fT> MIC). The minimum fT> MIC value required for bactericidal activity ranges between 40 and 70%, but 

emerging clinical data suggest that more aggressive PK/PD target (up to 100%fT> 4-5 x MIC) may lead to better 

outcome in critically ill patients [13-15]. Noteworthy, no specific dosing regimens of beta-lactams BLs are 

usually implemented for the critically ill patients, despite that this patient population may often exhibit 

pathophysiological conditions significantly altering drug PK. Consistently, the use of conventional dosing 
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regimens may lead to failure in achieving even the most conservative PK/PD target in both RRT and non-

RRT settings [16-17]. 

In the last five years, several novel beta-lactams (BLs) and/or beta-lactams/beta-lactamase inhibitors 

(BL/BLIs) have been approved (namely ceftazidime-avibactam, ceftolozane-tazobactam, meropenem-

vaborbactam, imipenem-relebactam, and cefiderocol), and others are under development in phase I-III 

clinical trials (aztreonam-avibactam, cefepime-enmetazobactam, cefepime-taniborbactam, cefepime-

tazobactam, sulbactam-durlobactam, ceftazidime-zidebactam, meropenem-nacubactam) [18-21]. These 

agents show promising activity against different MDR pathogens, including carbapenemase-producing 

Enterobacteriaceae (CPE) and extensively drug-resistant (XDR) Pseudomonas aeruginosa, Acinetobacter 

baumannii, or Stenotrophomonas maltophilia (Table 1) [18-21]. Notably, all novel BL and/or BL/BLIs share 

the typical PK features of bets-lactams BLs, namely hydrophilicity, low plasma protein binding, limited VD, 

and predominant renal clearance (Table 1). Consistently, dose adjustments are required in presence of 

altered renal function [18, 21]. Specific PK and PD features of novel BLs and BL/BLIs in patients showed 

alteration in renal function are showed in Table 2 [22-36]. 

Dosing optimization of novel BL and/or BL/BLIs in renal critically ill patients represents an unmet 

clinical need considering the paucity of available data [21]. This concerns especially the settings of extreme 

renal variation, like ARC or RRT, and/or of rapidly changing situations, like transient AKI. The aim of this 

review is to highlight PK/PD target attainment and clinical issues emerged with novel BL and/or BL/BLIs 

providing a critical reappraisal focused at dosing optimization in renal critically ill patients exhibiting 

challenging variations in renal function, including requirement for RRT and occurrence of ARC. 

 

2. Search strategy 

A literature search was conducted on PubMed-MEDLINE (until December 2020) to retrieve PK 

studies (including population PK studies), clinical trials, and real-world experiences concerning the use and 

dosing adjustments of novel BL and/or BL/BLIs in special renal patients populations (namely patients 

affected by AKI, requiring RRT, or exhibiting ARC). The following terms were search in combination: 
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“ceftazidime-avibactam, ceftolozane-tazobactam, meropenem-vaborbactam, imipenem-relebactam, 

cefiderocol, aztreonam-avibactam, cefepime-enmetazobactam, cefepime-taniborbactam, cefepime-

tazobactam, sulbactam-durlobactam, ceftazidime-zidebactam, meropenem-nacubactam, acute kidney injury, 

renal replacement therapy, continuous renal replacement therapy, prolonged intermittent renal replacement 

therapy, continuous venovenous hemofiltration, continuous venovenous haemodialysis, continuous 

venovenous hemodiafiltration, augmented renal clearance, pharmacokinetic, 

pharmacokinetic/pharmacodynamic, prolonged infusion, continuous infusion, extended infusion, therapeutic 

drug monitoring”.   Only articles published in English in the last five years were included. 

 

3. Pharmacokinetic features of novel BL and/or BL/BLIs in patients affected by renal function 

fluctuations: from pivotal trials to real-world evidence 

Novel BL and/or BL/BLIs exhibit time-dependent antimicrobial effect, and efficacy is closely 

associated with the %fT> MIC of the targeted or suspected pathogen [7]. Both approved [22-24, 26, 37-38] and 

developing novel BL and/or BL/BLIs [39-41] showed a linear relationship between estimated glomerular 

filtration rate and total plasma CL, with drug CL reduction proportional to decreasing renal function. 

Consistently, dose adjustments are usually required in renal patients. 

Alternative dosing strategies, namely multiple daily dosing coupled with prolonged infusion 

(extended- or continuous- infusion), may represent the best approach to maximize the time-dependent 

antimicrobial activity of beta-lactams, especially among renal critically ill patients [7, 42-43]. In this regard 

it is worth noting that, according to the available data retrieved from pivotal trials and/or from the summary 

of product characteristics (Table 3), clinicians may face several concerns when adjusting the dosage of novel 

BL and/or BL/BLIs in renal patients. These issues may be summarized into four main areas: a) use of 

prolonged infusion; b) maintenance of more refracted daily dosing in renal dysfunction; c) use in renal 

critically ill patients; d) PK/PD targets for efficacy and/or for resistance prevention.  

a) Use of prolonged infusion. Prolonged infusion was shown to improve the effectiveness of beta-

lactams BLs on patient outcome in terms of mortality, clinical cure rate, and length of intensive care unit 
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(ICU) or hospital stay [44-47]. Among the novel BL and/or BL/BLIs, only meropenem-vaborbactam and 

cefiderocol (extended infusion in 3 hours), and ceftazidime-avibactam (extended infusion in 2 hours) were 

developed taking care of this rationale, with the intent of maximizing the achievement of optimal PK/PD 

target. Conversely, both ceftolozane-tazobactam (infusion in 1 hour) and imipenem-relebactam (infusion in 

30 minutes) were developed according to a conventional dosing scheme of intermittent infusion. Notably, no 

recommendation for the need of a specific starting loading dose by intermittent infusion (over 30 min to 1 h) 

was provided for those novel BL and/or BL/BLIs administered by extended infusion. This could cause some 

delay in achieving therapeutically effective concentrations in critically ill patients, especially when specific 

pathophysiological conditions may increase the VD of hydrophilic agents [48], although data for novel BLs 

are lacking.  

Notably, the stability in aqueous solution of the different BLs represents a critical issue for the 

implementation of prolonged infusion, potentially responsible for early antibiotic degradation and 

consequent lack of efficacy. While for ceftazidime and ceftolozane a continuous infusion for 24 hours may 

be performed, stability of meropenem was limited to a maximum of 8 hours according to ambient 

temperature, thus requiring reconstitution at most after 6-8 hours [49-51]. Imipenem showed 10% 

degradation after only 3.5 hours, thus being suitable only for extended infusion [52]. 

b) Maintenance of more refracted daily dosing in renal dysfunction. Dosing adjustments in 

patients with AKI should be carried out according to the antibiotic pharmacodynamics in order to guarantee 

the maximal achievement of the targets. The most appropriate strategy for preserving the maximal PK/PD 

target attainment of fT>MIC for novel BL and/or BL/BLIs should be to decrease the amount of each single 

dose while maintaining unmodified the dosing interval [8-9]. This criterion for AKI patients was extensively 

applied with both cefiderocol and imipenem-relebactam in almost all classes of renal dysfunction (up to a 

CLCr of 15-29 mL/min), and with ceftolozane-tazobactam in all classes of renal dysfunction (up to CLCr < 

15 mL/min) including end-stage renal disease (ESRD) with intermittent haemodialysis (IHD) (Table 2). 

Conversely, this strategy was less rigorously implemented with meropenem/vaborbactam (up to a CLCr of 

20-39 mL/min), and with ceftazidime-avibactam (up to a CLCr of 31-50 mL/min) (Table 3). 
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c) Use in renal critically ill patients. Critically ill patients are a special population that could benefit 

from the use of novel BL and/or BL/BLIs more intensely and strongly than others, given the high prevalence 

of MDR infections occurring in the ICU settings [11, 53].  This patient population is often characterized by 

extreme variations in renal function (i.e., IHD, ARC and/or by the requirement of continuous renal 

replacement therapy [CRRT]), and data on appropriate dosage adjustments under these circumstances are 

strongly needed. Whereas all of the novel BL and/or BL/BLIs have defined dosing schedules for patients 

undergoing IHD, those for patients undergoing CRRT are completely lacking. Only for cefiderocol dosage 

for patients requiring CRRT were proposed, although these were predicted on the basis of the reported 

CLCRRT of cefepime, according to the similar PK features shared with cefiderocol in terms of molecular 

weights and protein binding [54]. In regard to ARC patients, a specific intensified dosing schedule was 

developed only for cefiderocol (2 g every 6 h over 3h when CLCr ≥ 120 mL/min). A warning about the risk 

of inadequate exposure when CLCr is ≥ 150 mL/min is reported in the label of imipenem-relebactam, 

whereas no specific recommendation was provided for the remaining novel BL and/or BL/BLIs. 

d) PK/PD targets for efficacy and/or for resistance prevention. According to preclinical models, 

the percentage of fT> MIC required for ensuring bactericidal efficacy with beta-lactams BLs may range from 

30 40 to 70% [55]. Consistently, the PK/PD targets investigated during phase II and phase III pivotal clinical 

trials of the novel BL and/or BL/BLIs were of this magnitude. Data coming from real-world clinical 

experience suggests that more aggressive PK/PD targets up to 100%fT> 4-5 x MIC may improve clinical 

outcome in critically ill patients and may also be helpful in preventing bacterial regrowth and emergence of 

resistant pathogens [13-16, 56-57]. Unfortunately, these more aggressive PK/PD targets were not tested with 

the novel BL and/or BL/BLIs up to date. Addressing this issue in the near future may help in preserving for 

longer the clinical effectiveness of these new agents in the therapeutic armamentarium.   

Overall, based on the aforementioned issues, a sort of Dr. Jekyll-Mr. Hyde conundrum rises between 

data retrieved in pivotal trials and real-life needs in daily clinical practice for renal critically ill patients 

treated with the novel BL and/or BL/BLIs. Expert opinions could be helpful for dose optimization in some 

clinical scenarios. 

3.1 Acute kidney injury (ARC AKI) 



9 
 

Beta-lactam BL dose optimization in patients with sepsis-related AKI represents a great challenge. 

The labelled dosages for renal patients are usually based on the findings of phase I trials performed in 

subjects with stable chronic kidney impairment. Unfortunately, it is unlikely that these dosages may fit in 

patients with sepsis-related AKI [58]. Patients with severe acute infections may show dynamic changes in 

renal function, as the initial AKI associated with severe infections is often transient. A prompt recovery of 

renal function frequently occurs within the first 48 hours thanks to resuscitation therapy and other supportive 

treatment. Additionally, significant alterations of VD may occur in AKI patients, and this may affect the 

exposure profile of hydrophilic antibiotics, like beta-lactams BLs (Figure 2) [59-60]. Consistently, starting 

treatment with a dosage of beta-lactam BL adjusted for renal dysfunction could cause underexposure during 

the first 48 hours in patients with transient AKI. This may lead to treatment failure and poor clinical 

outcome, considering that this timeframe is life-threatening especially in critically ill patients with septic 

shock [58, 60].  

Crass et al. [58] retrospectively investigated the incidence of AKI among patients admitted in 

hospital because of different types of bacterial infections (complicated urinary tract infections, complicated 

intraabdominal infections, bacterial pneumonia, and skin and soft tissue infections). Among 18,650 

admissions, the overall rate of AKI at admission was 17.5% (3,256/18,650). Notably, AKI was transient in 

57.2% of patients (1,862/3,256), who recovered to almost normal renal function within the first 48 hours. 

Additionally, approximately 50% of patients with moderate renal impairment on admission had an 

improvement of renal function up to CLCr > 50 mL/min within 48 hours.  The conclusion was that starting 

treatment with reduced doses of beta-lactams BLs in patients with transient AKI may increase the risk of 

underexposure and clinical failure. Deferred renal dose reduction of wide therapeutic index beta-lactam BL 

antibiotics could improve outcomes of infectious diseases in patients with AKI on admission. 

This concern emerged in several phase III trials investigating novel BL and/or BL/BLIs, since 

suboptimal clinical response rate was reported in patients with moderate AKI receiving adjusted dosing 

regimens based on phase I studies (Table 4) [58-59, 61-66].  

An imbalance in response rate for ceftazidime-avibactam was observed in the phase III trials 

RECLAIM 1 and 2 among patients with moderate renal impairment [62]. Patients with moderate AKI (CLCr 
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31-50 mL/min) receiving 1.25 g q12h of ceftazidime-avibactam (a proportional dose reduction of 66% 

compared to normal renal function) showed a significant lower response rate (45.2% vs. 74.3%; p = 0.016) 

compared to those randomized to meropenem 1g q12h (proportional dose reduction of 33%). Furthermore, 

subjects with moderate renal impairment treated with 1g q12h meropenem showed a trend toward lower 

response rate compared to patients with normal kidney function receiving 1g q8h (74.3% vs. 86.1%; p = 

0.06). This highlights once more the relevance that dosage adjustments based on decrease in the amount of 

each single dose rather than on extension of the dosing interval may have in preserving optimal PK/PD target 

of time-dependent antibiotics (fT>MIC) in presence of renal impairment (i.e., 500 mg q6h is better than 1 g 

q12h) [8-9]. Notably, 67.2% of patients with moderate AKI at baseline who were randomized to ceftazidime-

avibactam, subsequently improved renal function (CLCr> 50 mL/min) within 48-72 hours. These findings 

led to increase the recommended dose of ceftazidime-avibactam in moderate renal impairment from 1.25 g 

q12h up to 1.25 g q8h in the final product label [59, 61]. 

An imbalance in the response rate was noted also in the phase III ASPECT trials with ceftolozane-

tazobactam among patients with renal impairment. Interestingly, the imbalance was against ceftolozane-

tazobactam in the ASPECT-cIAI trial [63], and in favour in the subsequent ASPECT-NP trial [64]. 

Specifically, in the ASPECT-cIAI study [63], patients with moderate AKI (CLCr 30-50 mL/min) receiving 

750 mg q8h ceftolozane-tazobactam (a proportional dose reduction of 50% compared to normal renal 

function) showed a trend toward lower clinical cure rate (47.8% vs. 69.2%; p = 0.21) compared to those 

randomized to meropenem 1g q12h (proportional dose reduction of 33%). Furthermore, also in this trial 

patients with moderate renal impairment treated with meropenem at 1g q12h showed a lower response rate 

compared to patients with normal kidney function receiving 1g q8h (69.2% vs. 87.9%; p = 0.047). On the 

other hand, in the ASPECT-NP study [64], an imbalance in 28-day all-cause mortality rate was reported 

among patients with severe renal impairment (CLCr 15-30 mL/min). Hospital- or ventilator-acquired 

pneumonia (HAP/VAP) patients with severe AKI receiving 750 mg q8h ceftolozane-tazobactam (a 

proportional dose reduction of 75% compared to normal renal function) showed a trend toward lower 

mortality rate (35.3% vs. 61.9%; p = 0.10) compared to those randomized to meropenem 500mg q12h 

(proportional dose reduction of 66%). This difference, although not reaching statistical significance due to 

the small size of the analysed sub-groups, stresses once more that decreasing the amount of each single dose 
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and maintaining the refraction of administrations is the best approach for ensuring optimal achievement of 

the PK/PD target and favourable clinical outcome with beta-lactams in renal patients [8-9]. Notably, 

mortality rate was more than doubled in both groups compared to patients with normal renal function. 

Similar results were retrieved with cefiderocol in the APEKS-NP trial [65] and with meropenem-

vaborbactam in the TANGO II trial [66]. In the APEKS-NP study [65], a trend toward lower mortality rate 

was reported in patients with moderate renal impairment treated with cefiderocol 1.5g q8h (infusion in 3-

hours) compared to those receiving meropenem 2g q12h (7.0% vs. 19.0%; p = 0.26), although not significant 

according to low sample size. In the TANGO II study [66], a higher clinical cure rate was found in subjects 

with moderate AKI receiving meropenem-vaborbactam 1g/1g q8h (infusion in 3-hours) compared to patients 

randomized to best available therapy (28.6% vs. 0.0%; p = 0.49), including carbapenems at dosage 

recommended in the summary of product characteristics (i.e., administration q12h). However, it is important 

to underline that AKI itself represents a risk factor for increased mortality in critically ill patients affected by 

HAP/VAP.  

A recent systematic review assessed the overall quality of evidence of achieving adequate drug 

exposure in renal patients when administering renally cleared antibiotics (including the beta-lactams BLs) at 

the adjusted doses recommended for renal function [67]. The conclusion drawn by the authors are consistent 

with the aforementioned findings as it was highlighted that there is no good evidence that these reduced 

dosages may ensure in renal patients exposure comparable to those achievable with the full dosages in 

patients with normal renal function [67]. 

Overall, these findings support the idea that in patients with sepsis-related AKI dose reduction of 

novel BL – BL/BLIs may often be inappropriate and unnecessary at the beginning of treatment, since AKI is 

transient in the majority of cases and may resolve within the first 48 hours. Deferral of renal dosage 

adjustment should be applied only after 48 hours to patients with persistent AKI. This approach may be 

effective and at the same time safe, considering the wide therapeutic index and the low toxicity of these 

antibiotics [58-59].  Refraction of daily dosing should be pursued as much as possible even in patients with 

persistent AKI. Adjustments based on reduction of the amount of each single dose rather than on extension 

of the dosing interval would better preserve optimal achievement of the PK/PD target. Prolonged infusion 
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may play a fundamental role in improving outcome in AKI patients as well, as reported in the clinical trials 

of cefiderocol and meropenem-vaborbactam.  

 

3.2 Renal replacement therapy (RRT) 

CRRT and/or prolonged intermittent RRT (PIRRT) are common practices in critically ill patients 

with sepsis-related severe AKI, as approximately 70% of patients may undergo RRT [68]. Appropriate 

dosing of novel BL and/or BL/BLIs may be highly challenging in septic shock patients undergoing CRRT 

because the extracorporeal circuit may significantly alter drug exposure. Physicochemical and PK features of 

beta-lactams BLs (namely low molecular weight, hydrophilicity, limited VD, and low protein binding) make 

these drugs prone to CRRT removal [12]. Variations in RRT conditions and settings, namely modality of 

solute removal, type of filter composition, pre- vs. post-dilution mode, blood flow rate and effluent flow rate 

may per se affect antimicrobial PK, including novel BLs and/or BL/BLIs [69-70]. Residual renal function 

and/or progressive recovery of renal function may furtherly increase the elimination of renally cleared 

antimicrobials in patients receiving RRT [69, 71]. 

Unfortunately, for most of the novel BL – BL/BLIs dosing recommendations during RRT are 

currently lacking, and this might affect efficacy [21, 72]. Noteworthy, some real-world studies with both 

ceftazidime-avibactam and ceftolozane-tazobactam found CRRT as an independent predictor of clinical 

failure and development of resistance [73-74]. Higher emergence of resistance to ceftazidime-avibactam was 

reported by Shields et al. in patients requiring CRRT (OR 26.67; 95% CI 2.24-317.1) [73]. This could be 

theoretically related to antibiotic underexposure and failure in achieving an optimal PK/PD target. 

Available PK data of novel BL and/or BL/BLIs during CRRT (Table 5) are currently limited to a 

population PK study carried out with ceftolozane-tazobactam among 6 patients undergoing CVVHDF 

continuous venovenous hemodiafiltration [27], and to single case reports concerning ceftolozane-tazobactam 

[75-79], ceftazidime-avibactam [28, 80] and meropenem-vaborbactam [29]. Those during PIRRT concerns 

only one case with ceftolozane-tazobactam [81]. Notably, the population PK study of ceftolozane-

tazobactam performed by Sime et al. [27] showed that optimal cumulative fraction of response of the PD 
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target of 100% fT>MIC could be achieved only by implementing altered dosing strategies based on higher 

dosage (3 g q8h) or on continuous infusion (4.5 g or 9 g) after a loading dose of 1.5-3 g. 

It is worth noting that the use of higher CRRT intensity (usually with a prescribed dose ≥ 

35mL/kg/h) is growing in daily clinical practice [82-83]. This may raise additional concerns about which 

could be the best dosing schedule, especially in presence of deep-seated infections and/or of borderline non-

susceptible isolates.  

A direct association between effluent flow rate and antimicrobial CL was demonstrated both for 

some of the old BLs beta-lactams, like piperacillin-tazobactam and meropenem [84], and of the novel ones, 

like ceftolozane-tazobactam [72] and meropenem-vaborbactam [85-86]. Ceftazidime-avibactam, imipenem-

relebactam, and cefiderocol exhibit physicochemical and PK properties quite similar to those of the 

aforementioned agents. Consistently, it may be expected that also for these agents altered dosing strategies, 

based on higher dose and/or on prolonged infusion, could be needed for optimizing drug exposure during 

higher CRRT intensity.  

3.3 Augmented renal clearance (ARC) 

Augmented renal clearance (ARC) is a pathophysiological condition defined as the occurrence of a 

measured CLCr ≥ 130 mL/min/1.73 m
2
 in males and ≥ 120 in females coupled with a normal serum 

creatinine value (0.6-1.4 mg/dL) [87-88]. Prevalence of ARC was shown to vary greatly among different 

patient populations having normal serum creatinine values. It was of 16.4% among febrile neutropenic 

patients, 39.5-56% among those with sepsis, 65% among burn patients, 85% among trauma patients, up to 

100% among those with subarachnoid haemorrhage [87-88].  

This phenomenon is quite worryingly when using beta-lactams BLs since, by enhancing drug CL, 

ARC may cause underexposure leading to poor clinical outcome [88]. Additionally, the potential 

development of antibiotic resistance related to drug underexposure cannot be overlooked. Studies 

investigating the impact of ARC on beta-lactam elimination reported consistent findings concerning drug 

underexposure, but evidence in terms of therapeutic failure and poor outcomes is conflicting and debated 

[89-93].  
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Altered dosing strategies based on more refracted dosing regimens coupled with prolonged infusion 

may represent a valuable approach for achieving optimal PK/PD target with beta-lactams BLs in ARC 

patients [88]. Among novel BL and/or BL/BLIs, cefiderocol is the only agent having these criteria applied 

during drug development. A more refracted dosage of 2g q6h (instead of q8h in patients with normal renal 

function) administered by extended infusion over 3 hours is currently recommended in the product fact sheet 

for ARC patients. This approach was based on Monte Carlo simulations carried out during phase III clinical 

trials showing that this enhanced dosage might allow a > 90% probability of target attainment of the PK/PD 

target of 100% fT>MIC in ARC patients with cUTIs, bloodstream infections, or HAP/VAP [22]. 

Unfortunately, none of the other novel BL and/or BL/BLIs applied such a strategy during drug 

development for identifying a specific dosing recommendation in ARC patients. Some useful data came from 

real-world after commercial licensing. A recent population PK study carried out with ceftolozane-tazobactam 

showed that among ARC patients having a CLCr of 140-180 mL/min a higher dosage of 9 g by continuous 

infusion (after a 3 g loading dose) is needed for ensuring a probability of target attainment ≥ 85% against 

Pseudomonas aeruginosa with an MIC up to the clinical breakpoint of 4 mg/L [94]. Additionally, prolonged 

infusion of ceftolozane-tazobactam (3 g every 8 h 4-hour infusion) was associated with improved probability 

of target attainment compared to intermittent infusion for resistant Pseudomonas aeruginosa (showing MIC 

ranging from 4 to 32 mg/L) in patients with a CLCr of 121-180 mL/min [95-96]. Nicolau et al. recently 

evaluated 11 critically ill patients showing ARC (median CLCr 214 mL/min) and receiving a single dose of 3 

g ceftolozane-tazobactam in intermittent infusion [97]. A mean estimated ceftolozane fT>MIC at 4 μg/mL 

and tazobactam fT>threshold = 1 μg/mL respectively of 86.4% and 54.9% was found. 

In regard to ceftazidime-avibactam, a subgroup analysis of patient populations included in the 

REPROVE trial showed that in ARC patients the standard dosage of 2.5g q8h over 2h ensured > 95% 

probability of target attainment of a more conservative target of 50% fT>MIC [31, 61]. It should be mentioned 

that a 35% decrease in drug exposure was observed compared to patients with normal renal (mean AUC) 

[31, 61]. Real-time experience is currently limited to a PK/PD analysis of ceftazidime-avibactam in two 

ARC critically ill patients in whom treatment with the standard dose of 2.5g q8h over 2h allowed to achieve 

the conservative target of 50% fT>MIC against pathogens with an MIC up to 16 mg/L [98].  
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4. PK/PD optimization of novel beta-lactams in renal critically ill patients: preventing resistance 

emergence and role of therapeutic drug monitoring (TDM) 

The achievement of an adequate PK/PD target of novel BL and/or BL/BLIs in critically ill patients 

represents a debated issue. Only conservative thresholds (40-70% fT>MIC) were considered during pivotal 

phase II and III clinical trials. However, several experiences in critically ill patients reported better clinical 

outcome with the achievement of higher PK/PD target [13-15]. In the DALI study [16], Roberts et al. found 

in critical septic patients a higher rate of positive clinical outcome with beta-lactams BLs when achieving a 

more aggressive PK/PD target of 100% fT>MIC compared to 50% fT>MIC (OR 1.56 vs. 1.02; p < 0.03). 

However, positive clinical outcome was defined as the completion of treatment course without change or 

addition of antibiotic therapy, while mortality or clinical cure rate were not investigated. Furthermore, only 

in 34.2% of cases a pathogen MIC was available. 

Notably, antibiotic exposure showed a close relationship not only with clinical outcome, but also 

with the suppression of resistance emergence [57]. Global dissemination of antimicrobial resistance 

represents a worryingly health concern [99], and implementation of strategies aimed at minimizing the 

development of resistance to novel agents represents a compelling need.  

Antibiotic dose optimization is a valid approach to overcome the emergence of resistance [57, 100]. 

A recent systematic review [39] of preclinical and clinical evidences using found that resistance emergence 

to beta-lactams may be prevented when trough levels are at least 4-fold higher than the MIC (Cmin/MIC > 4). 

Consistently, antibiotic dosing regimens required to suppress the emergence of resistance should be focused 

at achieving PK/PD target of 100% fT>4-8 x MIC [100].  

Unfortunately, the remarkable prevalence of borderline non-susceptible isolates with high MIC in 

critical care setting [53], the inaccuracy in MIC determination with automated test [101], and the 

concomitant existence of PK alterations (i.e., ARC, higher CRRT intensity) may render the achievement of 

aggressive PK/PD target unpredictable in renal critically ill patients, even when the best altered dosing 

strategies (namely higher dose and prolonged infusion) have been implemented [100, 102].  
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Adaptative daily therapeutic drug monitoring (TDM) may represent a helpful tool in addressing these 

issues. Routine TDM of beta-lactams BLs is recommended in critically ill patients nowadays [14]. Adaptive 

TDM strategy was associated with an increased attainment of PK/PD target for beta-lactams BLs in different 

types of renal populations, including patients undergoing CRRT or having ARC [103-106]. The impact of 

adaptive TDM of beta-lactams BLs on clinical outcome remains to be established [107-108].  

In regard to novel BL and/or BL/BLIs, real-world experiences of TDM approach are scanty. In a 

retrospective analysis of seven patients affected by deep-seated MDR Pseudomonas aeruginosa infections, a 

loading dose of 3 g of ceftolozane-tazobactam followed by a maintenance dose of 6g by continuous infusion 

warranted optimal 100% fT>4xMIC against all of the clinical isolates with an MIC ranging between 0.19 and 

1.5 mg/L [109]. 

Some authors suggested that TDM-guided dosing of novel BL and/or BL/BLIs may be a safe and 

effective tool for achieving aggressive PK/PD target early (ideally within the first 24 hours), especially in 

patients with altered renal function, thus minimizing the risks of both poor clinical outcome and development 

of resistance [43]. Additionally, although BLs commonly exhibit a wide therapeutic index, high exposure 

could be associated with the occurrence of neurotoxicity or nephrotoxicity (mainly with meropenem, 

piperacillin, or cefepime) [14]. In this setting, TDM-guided dosing of novel BL and/or BL/BLIs may be also 

useful for minimizing the occurrence of toxicity. Although no specific toxicity thresholds have been 

established for both traditional and novel BLs, the avoidance of BL plasma concentrations above 8-10 times 

the MIC was suggested [14, 100]. 

Despite the importance of an adaptive daily TDM approach in critically ill patients is remarkable, 

many barriers to extensive use of TDM for BLs still exist [110-111]. A timely turnaround time of BL 

analytical assays represents a critical issue in ICU setting, where physiopathological conditions of patients 

could change rapidly and results of BL concentrations should be available in real-time. Furthermore, the 

development of accurate and sensitive assays characterized by rigorous validation should be pursued, 

particularly for novel BLs, to ensure accurate and consistent results. Additionally, while many laboratories 

prefer to develop their “home-made” methods, a robust and validate method shared among a large number of 

laboratories may be desirable [110-111]. Finally, for agents exhibiting a remarkable protein binding, 
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measurement of unbound concentrations should be performed. Currently, TDM is mostly available for 

traditional BLs (e.g., piperacillin, meropenem), although the implementation of real-time TDM also for 

novel BLs and/or BL/BLIs is strongly expected.  

5. Conclusion 

Unnecessary dose reduction in patients with sepsis-related transient AKI, lack of dedicated dosing 

regimens for patients undergoing RRT or showing ARC, and dose selection based on conservative but not on 

more aggressive PK/PD targets could render the use of novel BL and/or BL/BLIs suboptimal in critically ill 

renal patients. Implementation of altered dosing strategies based on multiple daily dosing and prolonged 

infusion coupled with real-time TDM-guided PK/PD optimization proved high efficacy in maximizing 

exposure with traditional beta-lactams BLs. Accordingly, we believe that a similar approach should be 

pursued for the novel BL and/or BL/BLIs as well, especially in challenging scenarios. 

6. Expert opinion  

In the last decade, several novel BL and/or BL/BLIs have been developed to overcome the 

widespread increase in antimicrobial resistance. The prevalence of infections caused by pathogens multi-

drug resistant to traditional antibiotics, namely CPE, XDR Pseudomonas aeruginosa and Acinetobacter 

baumannii is worryingly high in the ICU setting. Consistently, the use of these agents is expected to 

progressively increase among critically ill patients in the next years. Dose optimization of novel BL and/or 

BL/BLIs is of paramount importance among critically ill patients, and should be focused not only at 

maximizing clinical efficacy, but also at preventing the emergence of bacterial resistance against these last-

resort agents.  

The high PK variability and the paucity of specific data make dose optimization of these novel 

agents extremely challenging in critically ill patients. Likewise traditional beta-lactams BLs, novel BL and/or 

BL/BLIs are extremely affected by the pathophysiological alterations commonly observed in critically ill 

patients. In regard to critically ill renal patients, three different challenging clinical scenarios have to be 

faced by the ICU physicians: AKI, RRT and ARC (Figure 3).  
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In AKI, renal dose adjustment of novel BL and/or BL/BLIs should be deferred until 48 hours from 

starting therapy. At that time, dose reduction should be applied only if AKI persisted. Extended or 

continuous infusion may be helpful in maximizing the achievement of the PK/PD target.  

In CRRT, it is fundamental distinguishing between the type of replacement therapy (CVVH vs. 

CVVHDF), and to take care of flow intensity and of the pre- or post-dilution mode. Additionally, residual 

renal function might further increase drug removal. No dose reduction of novel BL and/or BL/BLIs (showing 

a Sieving coefficient > 0.8) should be performed in patients requiring high intensity CRRT (ultrafiltration 

flow rate > 2.5-3 L/h). Prolonged infusion coupled with higher doses could be necessary for patients showing 

residual significant diuresis or isolates with borderline non-susceptible MIC. 

In regard to ARC, measurement of CLCr should be performed on a regular basis in patient 

populations at high-risk for ARC (e.g., febrile neutropenia, sepsis, burns, polytrauma, subarachnoid 

haemorrhage) showing normal serum creatinine values. Timely implementation of higher dosage and/or 

prolonged infusion is strongly suggested for the novel BL and/or BL/BLIs, as already scheduled for 

cefiderocol.  

In all of the aforementioned scenarios, we believe that implementation of adaptive real-time TDM of 

the novel BL and/or BL/BLIs focused at attaining the very aggressive PK/PD target of 100% fT> 4-8 x MIC 

would be the most powerful strategy in maximizing the effectiveness of and in preventing the development 

of resistance against these last-resort agents. 

 Although some stakeholders could still be reluctant to this project due to costs and conflicting 

evidence concerning impact on clinical outcome, it should not be overlooked that the concept of personalized 

medicine is gaining more and more relevance in daily clinical practice. Nowadays, real -time TDM- based 

optimization of antimicrobial therapy in critically ill patients should be considered a fundamental piece of the 

antimicrobial stewardship program. In this regard, a multidisciplinary taskforce involving the intensive care 

physician, the infectious disease consultant, the clinical microbiologist and the clinical pharmacologist or 

clinical pharmacist should work side by side with the intent of reducing as much as possible the sepsis-

related mortality rate. 
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Table 1 – Pharmacokinetic properties and spectrum of activity of novel beta-lactams (BL) and/or beta-lactams/beta-lactamase inhibitors (BL/BLIs). Green box: established in 

vitro/in vivo activity; red box: no proved or limited in vitro/in vivo activity. 

BL or BL/BLI Approval Pharmacokinetic properties Spectrum of activity (beta-lactamase classes and non-fermentative Gram-negative pathogens) 

  VD (L) t1/2 (h) % protein 

bound 

Renal CL AUCELF/plasma Class A (KPC) Class B 

(IMP/VIM/NDM) 

Class C 

(AmpC) 

Class D 

(OXA) 

PA 

MDR/XDR  

AB 

MDR/XDR 

SM 

Cefiderocol FDA/EMA 18 2-3 40-60 90-98% 0.10-0.24        

Ceftazidime-Avibactam FDA/EMA 17.0/22.2 2.7 7-10 72-87% 0.26-0.35        

Ceftolozane-Tazobactam FDA/EMA 13.5/18.2 3.1 16-30 62-84% 0.50-0.62        

Imipenem-Relebactam FDA/EMA 24.3/19.0 1.2 20-22 52-92% 0.54-0.55        

Meropenem-Vaborbactam FDA/EMA 20.2/18.6 2.3 2-33 74% 0.63-0.79        

Aztreonam-Avibactam Ongoing phase III 20/26 1.8-2.3 10-56 70-87% NA        

Cefepime-Enmetazobactam Ongoing phase III NA NA NA NA 0.53-0.61        

Cefepime-Taniborbactam Ongoing phase III NA NA NA NA NA        

Cefepime-Tazobactam Only India 

Ongoing phase III 

24 2.7 NA 90% NA        

Sulbactam-Durlobactam Ongoing phase III 17/21 1.5-2.8 90 >50% NA        

Ceftazidime-Zidebactam Completed phase I 15/18 1.8 15-20 >80% 0.31-0.55        

Meropenem-Nacubactam Completed phase I 17/22 1.8-2.4 2 82-87% NA        

AB: Acinetobacter baumannii; AUC: area under concentration-time curve; CL: clearance; ELF: epithelial lining fluid; KPC: Klebsiella pneumoniae carbapenemase; MDR: multi-drug resistant; NA: not available; 

NDM: New-Delhi metallo-b-lactamase; OXA: oxacillinase; PA: Pseudomonas aeruginosa; SM: Stenotrophomonas maltophilia; t1/2: half-life; VD: volume of distribution; VIM: Verona integron-encoded metallo-b-

lactamase; XDR: extensively drug-resistant. 
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Table 2 – Pharmacokinetic properties in special renal populations and PD thresholds of novel beta-lactams (BL) and/or beta-lactams/beta-lactamase inhibitors 

(BL/BLIs). 

BL or BL/BLI Pharmacokinetic properties – IHD 

[22-26] 

Pharmacokinetic properties – CRRT 

[27-29] 

Pharmacokinetic properties – ARC 

[ 30-32] 

PD thresholds 

[33-36] 

 VD (L) t1/2  

(h) 

AUC 

(mg*h/L) 

CL 

(L/h) 

VD  

(L) 

t1/2  

(h) 

AUC 

(mg*h/L) 

CL 

(L/h) 

VD  

(L) 

t1/2  

(h) 

AUC 

(mg*h/L) 

CL 

(L/h) 

 

Cefiderocol 26.6±33.5 9.5±32.8 318.1±20.3 3.1±20.3 NA NA NA NA NA NA 1278 

(1037-1560) 

NA 75% fT>MIC 

Ceftazidime-Avibactam 

Ceftazidime 

Avibactam 

 

NA 

24.3±39.0 

 

NA 

22.8±55.2 

 

NA 

130.6±55.4 

 

NA 

0.8±82.4 

 

27.2 

30.8 

 

6.1 

6.8 

 

347.9 

85.7 

 

2.9 

2.9 

 

NA 

NA 

 

NA 

NA 

 

542±108.1 

96±115.9 

 

NA 

NA 

 

50% fT>MIC 

50% fT>CT of 1 mg/L 

Ceftolozane-Tazobactam 

Ceftolozane 

 

Tazobactam 

 

54.6  

(38.8-79.9) 

27.4 

(15.4-56.7) 

 

43.2  

(32.8-56.9) 

5.0 

(1.9-8.5) 

 

574 

(287-1024) 

40.3 

(23.3-58.6) 

 

0.9 

(0.5-1.7) 

6.2 

(4.3-10.7) 

 

73.4±39.0 

 

77.2±32.3 

 

14.5 

 

8.8 

 

284.1 

 

82.0 

 

3.5±0.6 

 

6.1±0.8 

 

30.8±10.8 

 

54.8±20.1 

 

2.5±0.9 

 

1.5±0.4 

 

236±118 

 

35.5±18.5 

 

10.4±4.5 

 

35.3±16.5 

 

30% fT>MIC 

 

20% fT>CT of 1 mg/L 

Imipenem-Relebactam 

Imipenem 

 

Relebactam 

 

63.3 

(47.3-84.6) 

55.7 

(44.5-69.7) 

 

3.2±47.8 

 

10.5±100.6 

 

71.2 

(54.2-93.6) 

78.0 

(50.3-121) 

 

11.7 

(8.9-15.2) 

4.6 

(3.0-7.1) 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

40% fT>MIC 

 

fAUC/MIC=7.5 

Meropenem-Vaborbactam 

Meropenem 

Vaborbactam 

 

30.0±7.2 

59.1±16.8 

 

9.3±1.9 

55.2±33.6 

 

280.0±58.7 

533±124 

 

3.7±0.8 

1.2±0.8 

 

49.81 

86 

 

6.4 

16.8 

 

182.42 

290.65 

 

5.48 

3.44 

 

NA 

NA 

 

NA 

NA 

 

NA 

NA 

 

NA 

NA 

 

45% fT>MIC 

fAUC/MIC≥18-24 

AUC: area under concentration-time curve; CL: clearance; CT: critical threshold concentration; MIC: minimum inhibitory concentration; NA: not available; t1/2: half-life; VD: volume of distribution 
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Table 3 – Dosing adjustments of novel BL and/or BL/BLIs in renal patients retrieved from summary of product characteristics and pivotal trials. 

BL and/or BL/BLIs PK/PD target adopted 

in pivotal trials  

Dosing adjustments in patients with 

various classes of renal function 

(CLCr in mL/min) 

Preservation of more 

refracted dosing 

regimens in renal 

impairment 

Scheduled 

prolonged infusion 

Scheduled dose 

adjustment for 

IHD 

Scheduled dose 

adjustment for CRRT 

Scheduled dose 

adjustment for 

ARC 

Cefiderocol 75% fT>MIC CLCr ≥ 120: 2 g every 6 h 

CLCr 60-120: 2 g every 8 h 

CLCr 30-59: 1.5 g every 8 h 

CLCr 15-29: 1 g every 8 h 

CLCr< 15/IHD: 0.75 g every 12 h 

 

Maintained frequency of 

administration every 8 h 

except for severe AKI/IHD 

 

Extended infusion 

in 3 h 

  

1 g every 12 h  

(CVVH) 

1.5 g every 12 h 

(CVVHD/CVVDHF)** 

 

2 g every 6 h 

Ceftazidime-Avibactam 50% fT>MIC CLCr> 50: 2.5 g every 8 h 

CLCr 31-50: 1.25 g every 8 h 

CLCr 16-30: 0.9375 g every 12 h 

CLCr 6-15: 0.9375g every 24 h 

CLCr ≤ 5/IHD: 0.9375 g every 48 h 

  

Extended infusion 

in 2 h 

   

Ceftolozane-Tazobactam 30% fT>MIC CLCr> 50: 3.0*/1.5 g every 8 h  

CLCr 30-50: 1.5*/0.75g every 8 h 

CLCr 15-29: 0.75*/0.375 g every 8 h 

CLCr< 15/IHD: LD 1.5*/0.75g  MD 

0.30*/0.15 g every 8 h 

 

Maintained frequency of 

administration every 8 h 

 

Intermittent infusion 

in 1 h 

   

Imipenem-Relebactam 40% fT>MIC CLCr 90-150: 1.25 g every 6 h 

CLCr 60-89: 1 g every 6 h 

CLCr 30-59: 750 mg every 6 h 

CLCr 15-29: 500 mg every 6 h 

IHD: 500 mg every 6 h 

CLCr< 15 and not IHD: should not be 

administered 

 

Maintained frequency of 

administration every 6 h 

 

Intermittent infusion 

in 0.5 h 

   

Scheduled dose 

may be inadequate 

for CLCr≥ 150 

(consider higher 

dosage) 

Meropenem-Vaborbactam 45% fT>MIC CLCr≥ 40: 4 g every 8 h 

CLCr 20-39: 2 g every 8 h 

CLCr 10-19: 2 g every 12 h 

CLCr< 10: 1 g every 12 h 

 

Maintained frequency of 

administration every 8 h 

except for severe AKI/IHD 

 

Extended infusion 

in 3 h 

   

* The doubled dose is indicated for nosocomial pneumonia including ventilator-associated pneumonia 

** Dosing schedule are predicted on the basis of the reported CLCRRT of cefepime, according to the similar PK features shared with cefiderocol in terms of molecular weights and protein binding 

ARC: augmented renal clearance; CVVH: continuous venovenous haemofiltration; CVVHD: continuous venovenous haemodialysis; CVVHDF: continuous venovenous haemodiafiltration; CRRT: 
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continuous renal replacement therapy; IHD: intermittent haemodialysis LD: loading dose; MD: maintenance dose; PK/PD: pharmacokinetic/pharmacodynamic.  
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Table 4 – Pivotal clinical trials of novel BL and/or BL/BLIs showing imbalance in different outcomes between study arms in subgroup analysis investigating degree of 

acute kidney injury. In bold significant differences between intervention and comparator group. 
Novel beta-lactam / Study Study arms Outcome All renal function categories 

(No. outcome / No. subjects) 

Normal renal function  

(CLCr > 50 mL/min) 

(No. outcome / No. subjects) 

Impaired renal function*  

(CLCr < 50 mL/min) 

(No. outcome / No. subjects) 

   Intervention Comparator Intervention Comparator Intervention Comparator 

Ceftazidime-Avibactam 

RECLAIM 1-2 (cIAI) [62] 
CAZ-AVI  
2.5 g q8h (CLCr>50 mL/min) 

1.25 g q12h (CLCr 31-50 mL/min) 

 
Meropenem  

1 g q8h (CLCr>50 mL/min) 

1 g q12h (CLCr 31-50 mL/min) 

 
Clinical cure: mMITT 

Clinical cure: MITT 

Clinical cure: CE 

 
337/413 (81.6%) 

429/520 (82.5%) 

376/410 (91.7%) 

 
349/410 (85.1%) 

444/523 (84.9%) 

385/416 (92.5%) 

 
322/379(85.0%) 

407/476 (85.5%) 

356/383 (93.0%) 

 
321/373 (86.1%) 

410/478 (85.8%) 

362/390 (92.8%) 

 

14/31 (45.2%) 

20/41 (48.8%) 

18/25 (72.0%) 

 

26/35 (74.3%) 

32/43 (74.4%) 

22/25 (88.0%) 

Ceftolozane-Tazobactam 

ASPECT-cIAI [63] 

CEFT-TZB  

1.5 g q8h (CLCr>50 mL/min) 

750 mg q8h (CLCr 31-50 mL/min) 
 

Meropenem  

1 g q8h (CLCr>50 mL/min) 
1 g q12h (CLCr 31-50 mL/min) 

 

Clinical cure: MITT 

Clinical cure: CE 

 

323/389 (83.0%) 

259/275 (94.2%) 

 

364/417 (87.3%) 

304/321 (94.7%) 

 

312/366 (85.2%) 

251/264 (95.1%) 

 

355/404 (87.9%) 

299/314 (95.2%) 

 

11/23 (47.8%) 

8/11 (72.7%) 

 

9/13 (69.2%) 

5/7 (71.4%) 

Ceftolozane-Tazobactam 

ASPECT-NP [64] 

CEFT-TZB 

3 g q8h (CLCr>50 mL/min) 

1.5 g q8h (CLCr 30-50 mL/min) 
750 mg q8h (CLCr 15-29 mL/min) 

 

Meropenem  

1 g q8h (CLCr>50 mL/min) 

1 g q12h (CLCr 26-50 mL/min) 
500 mg q12h (CLCr 15-25 mL/min) 

28-day mortality: ITT 

Clinical cure: ITT 

87/362 (24.0%) 

197/362 (54.4%) 

92/364 (25.3%) 

194/364 (53.3%) 

40/227 (17.6%) 

132/227 (58.1%) 

45/236 (19.1%) 

138/236 (58.5%) 

6/17 (35.3%) 

7/17 (41.2%) 

 

13/21 (61.9%) 

10/21 (47.6%) 

Cefiderocol 

APEKS-NP [65] 

Cefiderocol 

2 g q8h (CLCr>50 mL/min) 

1.5 g q8h (CLCr 31-50 mL/min) 
 

Meropenem  

2 g q8h (CLCr>50 mL/min) 
2 g q12h (CLCr 31-50 mL/min) 

14-day mortality: MITT 18/145 (12.4%) 17/146 (11.6%) 4/33 (12.0%) 3/35 (9.0%) 2/27 (7.0%) 6/31 (19.0%) 

Meropenem-Vaborbactam 

TANGO II [66] 

Meropenem-Vaborbactam 

2 g/2 g q8h (CLCr≥ 50 mL/min) 

1 g/1 g q8h (CLCr 30-49 mL/min) 

1 g/1 g q12h (CLCr 20-29 mL/min) 

 
BAT (mono/combination therapy 

with polymyxins, carbapenems, 

aminoglycosides, tigecycline; or 
CAZ-AVI alone) 

Dose reduction according to SPC 

Clinical cure: MITT 21/32 (65.6%) 5/15 (33.3%) 17/24 (70.8%) 4/9 (44.4%) 2/7 (28.6%) 0/4 (0.0%) 

* Moderate impairment (CLCr 31-50 mL/min) for RECLAIM 1-2, ASPECT-cIAI, APEKS-NP; Severe impairment (CLCr≤ 30 mL/min) for ASPECT-NP; CLCr≤ 50 mL/min for TANGO II 

BAT: best available therapy; CAZ-AVI: ceftazidime-avibactam; CEFT-TZB: ceftolozane-tazobactam; CE: clinically evaluable; cIAI: complicated intra-abdominal infection; MITT: modified intention-to-treat; 
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mMITT: microbiologically modified intention-to-treat; NP: nosocomial pneumonia; SPC: summary of product characteristics 
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Table 5 – Pharmacokinetic features of novel BL and/or BL/BLIs in patients requiring continuous or prolonged intermittent renal replacement therapy 

Beta-lactam/ study reference Study design No. of 

patients 

Dose Pathogen RRT type RRT settings Sieving coefficient CLCRRT/  

Total CL ratio 

Achieved PK/PD 

target 

Continuous renal replacement therapy (CRRT) 

Ceftolozane-Tazobactam 

Sime et al. [27] 

PK population 

study 

6 1.5 g q8h 

(1-h infusion) 

Bacteraemia: 4 patients 

Pneumonia: 3 patients 

Pseudomonas 

aeruginosa: 2 patients 

Serratia marcescens: 2 

patients 

Stenotrophomonas 

maltophilia: 2 patients 

CVVHDF Qd: 1250 ± 273.9 mL/h* 

Quf: 1277.8 ± 743.2 mL/h* 

Qb: 150±44.7 mL/h* 

ST100: 3 patients 

ST150: 3 patients 

0.94 ± 0.24 (ceftolozane) 

 

1.08 ± 0.30 (tazobactam) 

81.7% (ceftolozane) 

 

47.7% (tazobactam) 

1.5 g q8h, 3 g q8h,  

3 g LD + 9 g CI, 

1.5 g LD + 4.5 g CI 

were suggested to 

achieve optimal CFR 

for 100% fT>MIC 

Ceftolozane-Tazobactam 

Kuti et al. [75] 

Case report 1 3g q8h 
(1-h infusion) 

Pseudomonas 

aeruginosa VAP 

CVVHDF Qd: 1000 mL/h 
Quf: 200 mL/h 

Qb: 150 mL/h 

AN-69 high-flux M100 

NC NC 100% fT>MIC for MIC 

up to 32 mg/L and 

100% fT>4xMIC for MIC 

up to 8 mg/L 

Ceftolozane-Tazobactam 

Bremmer et al. [76] 

Case report 1 3g q8h 
(1-h infusion) 

Pseudomonas 

aeruginosa bacteraemic 

osteomyelitis 

CVVHDF Qd: 1000 mL/h 
Quf: 750 mL/h 

Qb: 200 mL/h 

AN-69 high-flux M100 

NC 82.8% (ceftolozane) 

 

36.3% (tazobactam) 

100% fT>MIC for MIC 

up to 32 mg/L and 

100% fT>4xMIC for MIC 

up to 16 mg/L 

Ceftolozane-Tazobactam 

Olivier et al. [77] 

Case report 1 1.5g q8h 
(EI 4h) 

Pseudomonas 

aeruginosa 

osteomyelitis 

CVVH Quf: 2000 mL/h 

Qb: 250 mL/h 

AN-69 high-flux M150 

NC NC 100% fT>MIC for MIC 

up to 32 mg/L and 

100% fT>4xMIC for MIC 

up to 4 mg/L 

Ceftolozane-Tazobactam 

Aguilar et al. [78] 

Case report 1 3g q8h 

(1-h infusion) 

Pseudomonas 

aeruginosa VAP 

CVVHD Qd: 2000 mL/h 

Quf: 1000 mL/h 

Qb: 100 mL/h 

Polysulphone membrane 

NC NC 100% fT>MIC for MIC 

up to 16 mg/L and 

100% fT>4xMIC for MIC 

up to 4 mg/L 

Ceftolozane-Tazobactam 

Carbonell et al. [79] 

Case report 1 3g q8h 

(3-h infusion) 

Pseudomonas 

aeruginosa catheter-

related bacteraemia 

CVVHDF Qd: 1600 mL/h 

Quf: 500 mL/h 

Qb: 180 mL/h 

AN-69 high-flux M150 

NC NC 100% fT>MIC for MIC 

up to 32 mg/L and 

100% fT>4xMIC for MIC 

up to 8 mg/L 

Ceftazidime-Avibactam 

Wenzler et al. [28] 

Case report 1 1.25 g q8h  

(2-h infusion) 

Pseudomonas 

aeruginosa bacteraemia 

(MIC 6 mg/L) 

CVVH Quf: 2000 mL/h 

Qb: 200 mL/h 

1.6 m2 Polyethersulfone 

membrane filter 

0.96 (ceftazidime) 

 

0.93 (avibactam) 

57.1% (ceftazidime) 

 

54.3% (avibactam) 

100% fT>4 x mic 

Ceftazidime-Avibactam 

Soukup et al. [80] 

Case report 1 2.5 g q8h 

(2-h infusion) 

Pseudomonas 

aeruginosa pneumonia 

(MIC 8 mg/L) 

CVVHDF Qd: 1500 mL/h 

Quf: 1000 mL/h 

Qb: 250 mL/h 

NC NC 100% fT>4 x mic 
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M100 filter 

 

Meropenem-Vaborbactam 

Kufel et al. [29] 

Case report 1 1 g/1 g q8h 

(3-h infusion) 

Carbapenem- resistant 

Klebsiella pneumoniae  

joint infection 

(MIC 0.094/8 mg/L) 

CVVHD Qd: 3000 mL/h 

Qb: 250 mL/h 

1.6 m2 Polyethersulfone 

membrane filter 

NC NC 100% fT>MIC 

Prolonged intermittent renal replacement therapy (PIRRT) 

Ceftolozane-Tazobactam 

Rawlins et al. [81] 

Case report 1 LD 750 mg 

MD 150 mg q8h 

(non-PIRRT days) 

+ 2 doses of 750 mg 

during PIRRT 

Pseudomonas 

aeruginosa 

osteomyelitis 

(MIC 4 mg/L) 

PIRRT Qd: 200 mL/h 

Quf: 250 mL/h 

Qb: 200 mL/h 

1.4 m2 membrane filter 

7.5 hours duration  

NC 96.6% (ceftolozane) 

 

91.2% (tazobactam) 

100% fT>MIC 

* data expressed as mean ± standard deviation 

CFR: cumulative fraction response; CI: continuous infusion; CVVH: continuous venovenous haemofiltration; CVVHD: continuous venovenous haemodialysis; CVVHDF: continuous venovenous haemodiafiltration; EI: 

extended infusion; LD: loading dose; NC: not calculated; PIRRT: prolonged intermittent renal replacement therapy; Qb: blood flow rate; Quf: ultrafiltrate rate; Qd: dialysate rate; VAP: ventilator-associated pneumonia 
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Figure legends 

Figure 1 – Relationship between volume of distribution, renal clearance, and supposed plasma exposure to 

beta-lactam antimicrobial according to scheduled dosing. Red box: antibiotic concentrations could be too 

high, and dose reduction could be suggested. Green box: adequate antibiotic concentrations, with no need for 

dose adjustment. Yellow box: antibiotic concentrations could be low, and higher dose could be required. 

Orange box: antibiotic concentrations could be very low and altered dosing strategies are strongly advised. 

NSTI: necrotizing soft tissue infection; IHD: intermittent haemodialysis; AKI: acute kidney injury; CRRT: 

continuous renal replacement therapy; ARC: augmented renal clearance. 

Figure 2 – Relationship between severity of sepsis-related acute kidney injury and antimicrobial exposure in 

the first 72 hours after initiation of therapy. In most cases, the prompt resolution of renal impairment leads to 

inadequate antibiotic exposure if renal dose adjustment is performed. If a large increase of VD exists, low 

antibiotic concentrations could be achieved at an earlier stage. AKI: acute kidney injury; VD: volume of 

distribution. 

Figure 3 – A proposal of algorithm for the management of critically ill patients requiring novel beta-lactams 

in challenging scenarios concerning variations in renal function. * In case of persistent AKI, renal dose 

adjustment without variations of the intervals would be recommend. AKI: acute kidney injury; ARC: 

augmented renal clearance; CRRT: continuous renal replacement therapy; MIC: minimum inhibitory 

concentration; PD: pharmacodynamic; PK: pharmacokinetic; TDM: therapeutic drug monitoring. 
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Fig.1 
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Fig.2 
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Fig.3 

 

 


