
31 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Borghesi A., Molan M., Milano M., Bartolini A. (2022). Anomaly Detection and Anticipation in High
Performance Computing Systems. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 33(4),
739-750 [10.1109/TPDS.2021.3082802].

Published Version:

Anomaly Detection and Anticipation in High Performance Computing Systems

Published:
DOI: http://doi.org/10.1109/TPDS.2021.3082802

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/837121 since: 2021-11-04

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TPDS.2021.3082802
https://hdl.handle.net/11585/837121

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

A. Borghesi, M. Molan, M. Milano and A. Bartolini, "Anomaly Detection and
Anticipation in High Performance Computing Systems," in IEEE Transactions on
Parallel and Distributed Systems, vol. 33, no. 4, pp. 739-750, 1 April 2022.

The final published version is available online at:
http://dx.doi.org/10.1109/TPDS.2021.3082802

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1109%2FTPDS.2021.3082802

1

Anomaly Detection and Anticipation in High
Performance Computing Systems
Andrea Borghesi, Martin Molan, Michela Milano, Andrea Bartolini

Abstract—In their quest towards Exascale, High Per-
formance Computing (HPC) systems are rapidly be-
coming larger and more complex, together with the is-
sues concerning their maintenance. Luckily, many cur-
rent HPC systems are endowed with data monitoring
infrastructures that characterize the system state, and
whose data can be used to train Deep Learning (DL)
anomaly detection models, a very popular research
area. However, the lack of labels describing the state
of the system is a wide-spread issue, as annotating
data is a costly task, generally falling on human system
administrators and thus does not scale toward exascale.

In this work we investigate the possibility to extract
labels from a service monitoring tool (Nagios) currently
used by HPC system administrators to flag the nodes
which undergo maintenance operations. This allows to
automatically annotate data collected by a fine-grained
monitoring infrastructure; this labelled data is then
used to train and validate a DL model for anomaly
detection. We conduct the experimental evaluation on a
tier-0 production supercomputer hosted at CINECA,
Bologna, Italy. The results reveal that the DL model
can accurately detect the real failures, and, moreover,
it can predict the insurgency of anomalies, by system-
atically anticipating the actual labels (i.e. the moment
when system administrators realize when an anomalous
event happened); the average advance time computed
on historical traces is around 45 minutes. The proposed
technology can be easily scaled toward exascale systems
to easy their maintenance.

Index Terms—High Performance Computing,
Anomaly Detection, Deep Learning

I. Introduction

ON the path toward Exascale computing, several
challenges have been tackled. In 2008 US DARPA

estimated that a feasible power envelope for the Exascale
system would be 20MWatts, requiring 50GFlops/Watt of
energy-efficiency (>100x improvement in energy-efficiency
w.r.t. the 1st system in TOP500 in 2008) [1]. Today,
Fukagu, the most powerful supercomputer worldwide
(#1 system in the TOP500 list), comprises 159K nodes
and consumes 30MWatts of IT power for 442PFlops
with an energy-efficiency of 15GFlops/Watt [2]. Today’s
most energy-efficient supercomputer (#1 system in the
GREEN500 list) achieves 26GFlops/Watt thanks to its

Andrea Borghesi, Martin Molan, Michela Milano and Andrea
Bartolini are with the University of Bologna, DISI and DEI
Department, Italy.
E-mail: andrea.borghesi3@unibo.it, martin.molan2@unibo.it,
a.bartolini@unibo.it, michela.milano@unibo.it

Andrea Borghesi, Michela Milano and Andrea Bartolini are
also with the Alma Mater Research Center for Human-Centered
Artificial Intelligence, Bologna, Italy

heterogeneous design (NVIDIA DGX A100 GPUs and
AMD EPYC CPUs) [3]. It is expected that the first
generation of Exascale supercomputers will exceed 2008’s
estimated budget and will consume 30-40MWatts of power
consumption for the IT only [4]. This will cause higher
infrastructure and operational management complexities
[4]. Fugaku has built-in mechanisms based on jobs’ power
prediction to avoid full-swing heat-load changes, which the
chillers cannot follow [5].

Orthogonal to the energy-efficiency challenge, fault tol-
erance is of utmost importance [1]. Checkpoint methods
can be used to tolerate fail-stop faults, but the introduced
overhead increases with the node count and failure prob-
ability [1]. Fatter compute nodes can be adopted to limit
Exascale systems’ node count, or a lightweight checkpoint
solution is needed [1]. Authors of [6] report an increase of
jobs failure rate from 0.8% to 16.2% when doubling the
job’s size (from 10K to 20K nodes). If failure predictors
are available, the checkpoint cost can be decreased [7].

Anomaly prediction methods based on Deep and Ma-
chine Learning (DL/ML) approaches can be trained using
historical data sets. However, failure events are scarce
in supercomputers, like in many other industrial plants.
Approaches in the state-of-the-art bypass this method by
either deploying an artificial fault injection framework in
compute nodes [8]–[10] or using unsupervised or semi-
supervised methods trained on the normal node state [11],
[12]. None of these approaches have been validated with
real faults in an entire production supercomputer.

As the size of supercomputing systems approaches the
exascale, it is common to adopt Operational Data mea-
surement, collection and Analysis (ODA) frameworks [13]
to continuously monitor system information data (mostly
in the form of multivariate time series data), such as data
coming from physical sensors’ telemetry (temperature,
power), micro-architectural events (IPC, cache misses),
data coming from the computing resources and facility
[13]–[15]. These do not contain the records of node’s and
system failure events. However, the best practice (default
operation) of the HPC system or a data center relies on
the use of tools for event monitoring, software service and
node status reporting [16]. These tools automatically warn
system administrators about critical conditions, which can
then be verified by manually inspection; a widespread tool
used for this task is Nagios [16]. If the inspection confirms
the critical state, the compute node has to be ”drained”
from the production; this failure (downtime) condition is
recorded back into Nagios for post-mortem analysis.

Can we use Nagios messages as labels indicating that

2

a supercomputing node is in a normal or faulty state,
and use it to train DL models for fault prediction in a
supervised fashion, as it is commonly done in state-of-the-
art approaches on synthetic or simulated data? Secondly,
can we detect, or even better predict, these failures based
on operational and facility monitored metrics?

A. Contributions
To answer these research questions, in this manuscript

we extend Examon, a state-of-the-art ODA framework
[13], [15], deployed on the CINECA1 data center, to
integrate Nagios [16] monitored events. We are the first
in exploring the possibility to use Nagios as an annotation
tool (to provide normal and faulty state labels).

We demonstrate that the labels are indeed useful, but
not enough: (i) we first show how pure supervised meth-
ods [8], [10] mostly learn trivial correlations (i.e. idleness
equals to failure) and have no anticipation capability; (ii)
then we show that using only semi-supervised method [11],
[12] leads to suboptimal performance (high number of false
positives); (iii) finally, we propose a new approach which
combines a semi-supervised and a supervised model which
is both accurate (with an F-score around 0.86) and can
anticipate anomalies (around 1 hour before the anomaly
is registered by system administrator.

We believe this methodology has high potential to in-
crease the robustness and maintainability of future exas-
cale supercomputers.

II. Related Works
Anomaly detection is a topic of interest in many dif-

ferent industries. One of the first applications of anomaly
detection models were credit card fraud detection models
in financial industries [17]. In recent years anomaly detec-
tion (and associated predictive maintenance) have become
relevant in manufacturing industry [18], IT security [19]
and even in complex physics experiments [20]. On the
field of HPC preliminary explorations towards the creation
of model for fault detection have been made. In the
context of HPC system we consider anomalies in as periods
of sub-optimal operation or faults that result in failed
or erroneously completed jobs. Despite several possible
failure mitigation [21] and fault tolerance strategies [22],
anomalies in HPC systems still result in significant loss of
available compute time [23]. The negative impact of fail-
ures and anomalous conditions in HPC machines is already
significant and the problem will be only exacerbated by the
quest towards Exascale, with the increasing number and
heterogeneity of hardware (HW) components and software
(SW) complexity [24], [25]. Supercomputer anomalies are
rare events and as such they fall in the field of anomaly
detection. Anomaly detection can be framed as an extreme
case of unbalanced supervised learning problem [26], as the
vast majority of data generated by real supercomputers
is, by definition, normal. Due to the extreme unbalance

1The largest Italian computing center, residing in Bologna

classical supervised ML approaches might not give optimal
results [19].

Broadly speaking, approaches for anomaly detection can
be divided into two categories: 1) techniques that try
to modify the data and 2) techniques that address the
learning problem with a custom algorithm. Data manip-
ulation approaches aim to mitigate the unbalance of the
data sets either by undersampling the majority class and
oversampling the minority class [27], or artificially creating
new representatives of the minority class [28]. Custom
algorithms that differ from classical supervised learning
methods aim to learn the characteristics of the majority
class and then recognize the anomalies as deviations from
these learned characteristics [26]. In the HPC context, the
majority of researchers have focused on specific techniques
and data manipulation approaches has not been deeply
studied, yet. This is due to another big challenge in HPC
systems: having labeled data, that is having historical
data sets where each data point is classified as normal
or faulty state. Such data is a fundamental pre-requisite
for the supervised ML techniques. Annotating data has
a significant costs in terms of effort required to system
administrators and facility managers

To mitigate this issue, often researchers “inject” anoma-
lies in the supercomputers use as target and use case
(see for instance Netti et al. [29]). In this way they can
exact information about the state of the monitored system,
thus having labelled data to train ML models. These ML
models can then be directly trained on the collected data
or after having applied a data processing step to obtain
more synthetic but expressive features. Tuncer et al. [9],
[10] deal with the problem of diagnosing performance
variations in HPC systems. The authors train different ML
algorithms to classify the behaviour of the supercomputer
using the gathered data. In a similar fashion, Netti et
al. [8], [29] propose a model based on Random Forest
to classify different types of faults that can happen in
a HPC node. Both Tuncer and Netti work on historical
data sets collected from real supercomputers but they
consider synthetic anomalies artificially injected in the
HPC system.

In recent years, a different method to cope with label
scarcity was proposed, namely relying on the knowledge
that the vast majority of the data gathered on a su-
percomputer represent a normal operating condition. For
instance, Borghesi et al. [11], [12], [30] propose the usage
autoencoders to learn the characteristic behaviour of a su-
percomputer in a healthy state; they use a particular type
of DL neural network called autoencoder. The learning
task of the autoencoder is to reconstruct the initial input
sequence; the internal representation of the autoencoder is
constrained in such a way that the model cannot simply
learn an identity function (e.g., by projecting the input
data on a lower-dimension latent space). These trained
networks are then use to classify between normal and
anomalous points in incoming data streams. Anomaly
detection approaches can also use the information about
the failure proximity (similar HW architecture, physical or

3

temporal locality, etc.) to increase the accuracy of anomaly
detection, as discussed by Ghiasvand et al. [31].

The important difference between existing work and
the work in this paper is the use of data from real HPC
production. Existing work such as [8]–[11] uses anomaly
injection to artificially create faults that are then approx-
imated with a ML model. As such, these models were not
tested on production systems. An ML approach capable
of recognising the dynamics and characteristics of injected
faults might not be able to recognise the dynamic of
actual failures – the dynamics of failures might be more
complex and more difficult to model than those of injected
anomalies. Preliminary research works addressing anomaly
detection and fault prediction using real anomalies have
been proposed, but they tend to focus on the availability
of a single (HW or SW) component of the system and
not on the availability of the entire computing nodes.
Ostruckow et al. [32] analyze the (specific) failures of GPU
processors, Boixaderas et al. [23] aim at predicting the
memory (DRAM) failures, Di et al. [33] detect silent data
corruption, Groves et al. [34] predict sub-optimal opera-
tion due to memory contention. These approaches focus
on specific HW components, but in the age of Exascale,
with larger systems, more components and higher costs,
such partial detection and monitoring systems should be
combined and enhanced with supervised and unsupervised
holistic anomaly detection models [14], [24]. To the best
of our knowledge, the approach presented in this work
is the only one that combines the holistic approach to
system availability (overall system availability as opposed
to component availability) with training and validating
models on real production data (as opposed to generated
anomalies).

III. Examon
ExaMon is a holistic framework for HPC facility moni-

toring and maintenance [35], designed for very large scale
computing systems, such as supercomputers. It has been
developed for the Exascale, thus stressing the capability
to handle big data from many heterogeneous sources. At
the lowest level, there are collector components to read the
data from several sensors scattered across the system and
deliver them, in a standardized format, to the upper layers
of the stack. There are collectors with direct access to
HW resources and collectors that sample data from other
applications, such as batch schedulers and SW diagnostic
tools. ExaMon has been deployed on CINECA machines
since 2017 [15].

The infrastructure is built using the MQTT protocol2.
MQTT implements the publish-subscribe messaging pat-
tern and requires three different agents: (i) the publisher,
that sends data on a specific topic; (ii) the subscriber,
that needs specific data, so it subscribes to the appropri-
ate topic; (iii) the broker, which (a) receives data from
publishers, (b) makes topics available to subscribers, (c)
delivers data to subscribers. When a publisher agent sends

2http://docs.oasis-open.org/mqtt/mqtt/v3

some data with a certain topic as a protocol parameter,
it is created and made available by the broker. Any
subscriber to that topic will receive the associated data
when published by the broker. In ExaMon collector agents
have the role of publishers.

Publisher

In Band

Compute Host

Bridge

DB

Front End

DB

Back End

• Visualization

• Web Front End

• Analytics

• ML

• AI

• Stream Processing

• Pattern recognition

• Anomaly detection

Speed Layer

Batch Layer

Publisher

Out of Band

Management

Host

Sensor Collectors Transport Bridge Storage Applications

B

r

o

k

e

r

Fig. 1: ExaMon Architecture

The collected metrics are stored on a distributed and
scalable time series database (DB), KairosDB [36], built
on top of a NoSQL DB, Apache Cassandra [37] as
back-end. A specific MQTT subscriber (MQTT2Kairos)
is implemented to bridge the MQTT protocol and the
KairosDB data insertion mechanism. The bridge leverages
the MQTT topic structure to compose the KairosDB
insertion statement automatically. This gives a twofold
advantage: first, it lowers the computational overhead of
the bridge since it is reduced to a string parsing operation
per message; and secondly, it makes it easy to form
the DB query starting only from the knowledge of the
matching MQTT topic. The sampling rate of the metrics
measured by ExaMon can vary among the different met-
rics, depending on the underlying sensors. However, Ex-
aMon aggregates the data in 5-seconds windows; namely,
a data point with time-stamp t represents the average of
measurements sampled over the [t − 5s, t] window. Every
five seconds a MQTT packet is built and sent to the broker;
ExaMon low-level plugins are in charge with aggregating
sensors measurements with higher sampling rates.

At the lowest level ExaMon is based on sensor collectors
which retrieve the data from the sources and share it,
trough the transport layer, to the other components of the
framework. Each data source has its own specific sensor,
tailored on its peculiarities. ExaMon collects physical data
measured with HW sensors and program counters, e.g.
HW components as cores PMU, IPMI, GPU, I2C, PM-
BUS. The collected data cover a wide ranges of sources, for
instance, CPU load of all the cores in the supercomputing
nodes, CPU clock, instructions per second, memory ac-
cesses (bytes written and read), fan speed, the temperature
of the room hosting the system racks, power consumption
(at different levels), etc. There are a few hundreds of
metrics collected on each computing nodes, plus dozens
covering the racks and rooms. This large amount of data
allows to have a very fine-grained overview of the whole
system, which is required to correctly characterize the su-
percomputer status and to discern between normal states
and failures.

ExaMon collects data generated by the job dispatcher

http://docs. oasis-open. org/mqtt/mqtt/v3

4

as well, in particular Slurm [38]. The job dispatcher in
a supercomputer is the SW component that handles users
requests and decides when each job should start and which
resources to allocate; to gather information about job
requests we created a plugin which gathers the information
from Slurm and sends it to the data collection backbone
via MQTT. The collected data regards the job request
(job id, job name, job user, job partition/queue) and the
requested resources (number of requested nodes, requested
cores, requested GPUs and/or other HW accelerators,
requested memory, requested wall-time). Another group of
information pertains the job actual execution: submission
time, execution start time, end time, the set of nodes
actually used along with the cores.

A. Nagios
In addition to data coming from physical sensors, Exa-

Mon also collects information related to service monitoring
and node status using Nagios [16]; by using Nagios and its
alarm generators, system administrators are warned about
potentially critical conditions, which are then manually
verified – if the alarm was real, the involved computing
nodes have to be removed from production (“drained”).
When nodes are marked as not in production by system
administrators their different state is registered in Nagios
as well – technically, they are put in a “DOWN+DRAIN”
state. The data sampling frequency is 15 minutes, as
determined by Nagios monitoring functionalities. In most
HPC systems service-reporting tools are decoupled from
physical monitoring infrastructure, but thanks to Exa-
Mon we can merge them and (hopefully) reap the benefits.

Nagios is composed by a core part which monitors
and visualizes critical IT infrastructure components. It
also provides alerts and historical logs of variations in
the state of each monitored components. To monitor the
state of a given SW and HW component Nagios can
be extended with predefined and custom plugins, which
reads metrics related from target components and based
on specific rules defines its state as ”Normal”, ”Warning”
and ”Critical”. Only state transition events are recorded
in the logs. These values are periodically sent as MQTT
messages to ExaMonto be stored as additional metrics.
System administrators use Nagios to monitor the state of
CINECA HPC machines, using a modular customization
adapted to the large scale3. Nagios provides a central view
of the system status. Different dashboards provide access
to monitoring information and views provide users with
quick access to useful information; it collects the results of
active and/or passive checks on different hosts and related
services. Alerts can be sent to management staff, which are
then handled by automated scripts that mark the node
status depending on the severity of the alert.

The critical observation is that the inspection done by
system administrators through Nagios can be exploited

3Full details can be found here https://prace-ri.eu/wp-
content/uploads/Design Development and Improvement of
Nagios System Monitoring for Large Clusters.pdf

to distinguish between nodes in normal states and nodes
in critical conditions – “DOWN+DRAIN” state indicates
anomalous conditions while other states indicate normal
behaviour4. This information can be framed as labels
describing the status of the supercomputer, thus providing
(for free) the automated annotation operation which is
lacking in modern HPC systems. The goal of this paper is
to train a ML model with the annotated data gathered by
ExaMon, and to predict critical HPC node failures that
are recorded as “DOWN+DRAIN” events (in the rest of
the paper when we refer to system failures we mean with
“DOWN+DRAIN” events).

IV. Detecting Anomalies with Nagios
In this paper we want to investigate the possibility to use

Nagios-provided labels to train a DL model for anomaly
detection in a HPC system. It is important to observe that
using Nagios-provided labels is a promising direction but
comes with downsides. In particular, a HPC node is put
in “DOWN+DRAIN” state only when a system adminis-
trator notices the issue; then, the node is detached from
production. This procedure has a twofold implication: i)
there is an implicit delay between the insurgence of an
anomalous situation and the corresponding label, and ii)
labels indicating anomalies tend to be associated to nodes
in idle state, as during the maintenance performed by
system administrator to identify and fix the source of the
issue no new jobs are submitted on the node (excluding
diagnostic tools with lower impact on a computing node
compared to the typical HPC workload).

This situation complicates the creation of an automated
model for anomaly detection. We do not want a DL model
that simply “learns” the correspondence between failure
state and idleness. Concerning the evaluation of trained
models, we cannot simply consider standard classifica-
tion metrics such as the accuracy. Figure 2 graphically
details the issue; the time is on the x-axis while the y-
axis represent the anomaly state identified via Nagios (0
indicates normal state, 1 indicates failure). Let us focus
on the second failure in the figure. We can identify six
different phases: 1 corresponds to the supercomputing
node in normal state; in phase 2 the label is still set on
0 as the system administrator has not noticed the failure,
yet; in 3 the node is recognized as faulty and removed
from production – running jobs are still completing or
handling termination signals, hence the node is not idle
yet; 4 represents the maintenance period, when the node
is mostly in idle state; in 5 the administrator runs the
final check (after having solved the issue) and prepares the
node for re-insertion in production; finally, in phase 6 the
Nagios flag is set again to normal state and the node is
made available – however, for some time it can still be
in an idle state, as new jobs need to be submitted for
the node resources to be allocated. Ideally, an automated

4In this preliminary analysis we focus on binary classification (e.g.,
normal versus abnormal situations); in future works, the different
states recorded by Nagios can be distinguished with more sophisti-
cated, multi-class approaches.

https://prace-ri.eu/wp-content/uploads/Design_Development_and_Improvement_of_Nagios_System_Monitoring_for_Large_Clusters.pdf
https://prace-ri.eu/wp-content/uploads/Design_Development_and_Improvement_of_Nagios_System_Monitoring_for_Large_Clusters.pdf
https://prace-ri.eu/wp-content/uploads/Design_Development_and_Improvement_of_Nagios_System_Monitoring_for_Large_Clusters.pdf

5

method for anomaly detection should have high accuracy
in all phases except the second one, as in this phase a
faulty situation is already ongoing, albeit not detected yet
by system administrators – having a large number of false
positives here is actually a good outcome (it means that
the failure can be anticipated). Additionally, phase 3 ,
5 , and 6 might complicate the task for the ML model,

as they require the model not to simply learn that fault
equals to idleness.

Fig. 2: Nagios anomaly signal; the light blue line indicates
the presence of faults (value 1)

A. The Proposed Approach
Furthermore, approaches from the literature (e.g., [8],

[10], [12]) which rely on fault injection assume to know
the exact moment when the failure was injected. In this
works we show that in a real context it is impossible to
know exactly when a failure event starts, but we can know
the moment when someone has notified us the problem,
after having noticed it. The experimental results discussed
in Sec. V-B demonstrate that techniques designed with
artificial failures struggle when dealing with real faults – in
short, fully supervised methods fail to anticipate anomalies
(no false positives in phase 2) and mostly learn the idle-
failure correlation.

However, not using the information provided by Nagios
labels and adopting a semi-supervised approach (as our
previous works [12]) proved to lead to inaccurate detection
rates (with very high number of false positive, discussed
in Sec. V-C). Hence, the core of the approach proposed
in this paper is the union of two DL models, namely a 1)
semi-supervised autoencoder deep neural network (DNN)
and 2) a supervised neural network composed by an au-
toencoder (distinct from the semi-supervised one) and
a series of classification layers. The two DL approaches
(semi-supervised and supervised) are trained separately.
Their output is combined only at inference time, i.e., when
making a prediction on new data. Both models produce
an anomaly signal, classifying data points as representing
normal (anomaly signal equal to 0) or faulty states (signal
equal to 1) of the supercomputing nodes. The predictions
of the two models are combined to generate the final signal:
if any model raises the anomaly flag, then the data point
is classified as anomalous. The anomaly signals of the
two models are thus combined in a logic-OR fashion: if
both signals have value 0 then the new point is classified
as normal, in all other cases is classified as anomalous.
For the moment, we are training a different couple of
models (supervised and semi-supervised) for each node in
the supercomputer; in future works we will explore models

capable of handling multiple nodes (e.g., system- or rack-
wide models).

Fig. 3: Combined Approach Scheme

The overall scheme of the approach is displayed in Fig-
ure 3. The number of neurons of each layer is reported as
well; all layers belonging to the autoencoders have ReLU
activation function, the final classifier layer has a softmax
as activation function. The autoencoder networks used for
the semi-supervised approach and for the supervised one
have the same topology (number of layers, neurons, etc)
but are trained separately (using only normal data in the
semi-supervised case, both normal and anomalous in the
supervised one). For the sake of simplicity the figure does
not distinguish between the different types of data that are
fed to the semi-supervised and the supervised approaches,
nor does it show the convolution operation applied to the
input data for the semi-supervised autoencoder.

1) The Semi-supervised Approach: is composed of an
autoencoder DNN [39] trained using only normal data; in
this way the autoencoder learns the correct behaviour of a
node (the idea was originally proposed in the HPC context
by a previous work [11]). Then, the network can be used
for anomaly detection by observing its reconstruction error
computed on new data: if it is greater than a threshold, the
new sample is classified as anomalous5, normal otherwise.
The selection of the threshold is a non-trivial issue; in
previous works it was computed using a sub-set of data
and by exploring different values through grid search.
The reconstruction error is computed as the average error
over all the features (by construction, the autoencoder
has the same number of features both in input and in
output). In this work we extend the previous model in two
significant directions: i) pre-processing the data through a
convolutional step and ii) modifying the threshold compu-
tation. The convolution is used to “smooth” the raw data
and to more explicitly consider the temporal dynamics
involved in the computing nodes behaviour; we employed
a convolutional 1-dimensional layer with a filter of a size
corresponding to 2 hours. Concerning the threshold, we
did not adopt a fixed one but we employed Exponential
Moving Average (EMA), obtaining a variable threshold
which follows the error trend in previous time steps, giving
more weight to more recent observations. For a series of

5High error means that the autoencoder does not “recognize” the
data.

6

errors E EMA may be calculated as:

EMAt =
{
E1, if t = 1
αEt + (1− α)EMAt−1, if t > 1

(1)

, where Et is the reconstruction error at time t, EMAt

is the value of EMA at time t, and α ∈ [0, 1] is a
parameter that weighs the importance of more recent time
steps6. The simplest way to use an EMA threshold is
to consider anomalous the data point at time step ti if
the corresponding reconstruction error computed by the
autoencoder Ei is larger than the EMA error. However, a
preliminary analysis revealed that this simple method was
too sensitive and generated a very large number of false
positives; the anomaly signal was “triggered” far too often.
We then opted for a less sensitive threshold: a data point
is classified as anomalous only if the reconstruction error
is larger than the EMA threshold plus a δ value, in order
not to have a signal which overreacts to any non-significant
oscillation. In particular, we compute the δ as the average
reconstruction error over the previous 25 minutes. The
2-hours convolutional filter and the 25-minutes period
were obtained during a non-exhaustive, manual search,
conducted in a preliminary empirical evaluation. We will
definitely explore more systematic approach in the future
(e.g., Bayesian Optimization).

2) The Supervised Approach: consists of an undercom-
plete autoencoder network7 for feature extraction; this
autoencoder is pre-trained in an unsupervised manner
(minimizing the reconstruction error plus a regularization
term); in this case we feed the autoencoder with all
data points in the training set, including both normal
and anomalous points. On top of the autoencoder two
classification layers have been added; these latter layers are
trained using the labels (provided by Nagios) by minimiz-
ing the categorical cross-entropy. The training happens in
two phases: first, the unsupervised autoencoder is trained,
then its weights are fixed and only the encoder is used
to train the classifier layers in the supervised manner. At
inference time, the anomaly signal is generated by feeding
new data to the encoder, obtaining a compressed represen-
tation, and then the latent representation is passed to the
classifier, which provides a real number as output (i.e. the
probability of belonging either to normal or faulty class); if
the output is higher than a threshold the point is classified
as failure – in this paper we employ a threshold equal
to 0.28. This threshold and the other hyperparameters
describing both the supervised and the semi-supervised
models9 were manually fine-tuned during a preliminary
empirical evaluation.

6Higher α discounts older observations faster.
7“Undercomplete” means that the latent representation learned by

the network has a lower dimension compared to the input features
8Using higher threshold would lead to fewer false positives, but in

our case we do not want to minimize them.
9Convolution filter size, EMA α, number of layers, etc.

V. Experimental Evaluation

This section presents the results of the experimental
evaluation. We start by describing the data set used for
training and testing the DL models. Then, we describe
the preliminary results obtained using a fully supervised
approach, observing its limitations; afterwards, a semi-
supervised approach not using the labels is described,
showing promising qualities but significant drawbacks.
Finally, the results obtained by combining the semi-
supervised method with the supervised one are discussed
in Sec. V-D. A simplified version of the code used to
perform the experimental evaluation has been published10.

As noted earlier (Sec. IV) we know that the labels
provided by Nagios are delayed with respect to the actual
insurgence of the fault; for this reason we cannot measure
the quality of the approaches discussed in the section
(and following ones) merely looking at standard metrics
such as accuracy and F-score, nor the confusion matrix
is sufficient. Instead, we will discriminate between the
detection errors made just before and after the faults
indicated by the labels (we look two hours before and
two hours after the labelled anomaly); these are the false
positives happening in phases 2 and 6 depicted in Fig. 2.
Additionally, we are interested in understanding whether
the DL model can anticipate the anomaly labeled through
Nagios; we compute the anticipation observing the false
positives happening before the actual label. We assume
that a fault is anticipated if the approach generates three11

consecutive false positives (corresponding to 15 minutes
of uninterrupted anomaly signal); non-consecutive false
positives do not contribute to the anticipation – however,
they are clearly not discarded from the computation of the
overall evaluation metrics (F-score, etc.).

A. The Data Set
In order to test our approach we use historical data

collected from the tier-0 production Marconi supercom-
puter [40], hosted at CINECA, Bologna. Marconi has been
upgraded between 2016 and 2020 in three main phases; the
current system is composed by 3188 nodes, each equipped
with two 24-cores Intel Xeon 8160 (SkyLake) processors
and 196GB of RAM memory. The total peak performance
of the overall system is around 20PFlops, with 17PB avail-
able storage space. ExaMon has been deployed as well on
the recent upgrade Marconi100, a supercomputer based on
IBM Power 9 chips; Marconi100 ranked ninth in the June
2020 Top500 list [3], with an achieved peak performance of
21.6 petaflops (performance per node around 32 TFlops).
Marconi100 is composed by 980 computing nodes, each
one with two 16-cores IBM POWER9 and 4 nVidia Volta
100; the total RAM per node is 256GB. The storage space
for the whole system is 8 petabytes. ExaMon has been
deployed on Marconi since the first semester of 2019.

10https://github.com/MolanM/Anomaly-Detection-and-
Anticipation-in-HighPerformance-Computing-Systems

11Value empirically chosen.

https://github.com/MolanM/Anomaly-Detection-and-Anticipation-in-HighPerformance-Computing-Systems
https://github.com/MolanM/Anomaly-Detection-and-Anticipation-in-HighPerformance-Computing-Systems

7

TABLE I: Data set overview: number of normal and
anomalous data points (average over all nodes), total
number of data points (Tot.) and percentage of anomalous
samples w.r.t. the total number (% Anom.)

Month # Normal # Anomalous Tot. % Anom.

Jan. 2020 5678.60 22.50 5701.10 0.39
May 2020 6984.30 194.70 7179.00 2.71
Jan. & May 12658.25 216.20 12874.45 1.68

The data set combines sensor measurements coming
from a variety of HW sensors and program counters,
information from the job scheduler (SLURM), and reports
on the system availability and status updates collected by
Nagios. We do not use the raw data coming from ExaMon,
with its 5-seconds sampling rate, but we rather employ
aggregated metrics, namely the average value and the
standard deviation computed over 5-minutes interval. This
was done for a two-fold purpose: 1) aggregating data along
the time axis with the “mean” operator allows to implicitly
consider the temporal dynamics involved in the evolution
of the supercomputing nodes; 2) as Nagios provides status
updates every 15 minutes (see Sec. III-A), considering the
raw 5-seconds intervals would create a lot of noise and
would not provide useful information, given the significant
difference in the raw data and labeling frequencies.

For this analysis we selected a random subset of twenty
nodes from Marconi. The data is divided in two groups
belonging to two different months, January and May 2020;
each period is then split in 20 data sets, each one corre-
sponding to one of the selected nodes. As described earlier
we use Nagios data to annotate the data, meaning that
each time stamp was labelled using the information about
the status of the computing node. The label (target) can
assume two values: 0 describing normal operation and 1
describing anomalous states (“DOWN+DRAIN” event as
recorded by Nagios). The data set has been made public12.
Table I provides a brief overview of the number of normal
and anomalous data points in the data set (averaged over
all 20 nodes); as expected in a production HPC system,
the failure events are extremely rare, consisting in less than
2% of the total number of data points. For each node we
selected 124 metrics, a subset of the metrics collected on
Marconi nodes by EXAMON (we discarded metrics with
missing values). Hence, 122 is the size of the input layers
for the autoencoders described in Sec. IV-A; the input
are real numbers. Using one of Marconi nodes for training
and testing the composite model (the combination of semi-
supervised and supervised approaches), the training time
on one month of data is between 20 and 30 seconds (for
thirty training epochs), while the he inference time for a
single data sample is between 13-16ms.

B. Supervised Approach Results
We start by considering the results of the pure super-

vised approach. This is the kind of approach proposed
by the current state-of-the-art for fault classification in

12https://doi.org/10.5281/zenodo.4537849

supercomputers (e.g., see [10], [41]). However, the works in
the literature consider artificially injected faults and not
real production anomalies; they also focus on “reliable”
labels which reflect the actual underlying change in the
target systems. We are instead interested in anomalies in
a production HPC machine, and we want to investigate
whether Nagios-based annotation can be used to train au-
tomated anomaly detection models; we are not proposing
a new method for fault detection. Hence, we report the
results obtained applying the supervised NN described in
Sec. IV-A and another supervised method, namely Ran-
dom Forest (RF, [42]), which in previous experiment from
the literature proved to be the most accurate. For each
computing node we trained a different RF and supervised
NN; 70% of data from the node was used for training the
remaining part for testing.

The RFs were implemented using scikit-learn Python
module13, while the DNNs were implemented using Ten-
sorFlow14. Table II reports the result of the comparison
between the two supervised models. RF indicates the
Random Forest15; “AE + Classr.” indicates the DNN
composed by an autoencoder plus the classification layers.
The meanings of the columns are the following: TP, True
Positives; TN, True Negatives; FN, False Negatives; FP-
Pre, False Positives in the period preceding the Nagios-
annotated label (two hours earlier); FP-Post, False Posi-
tives in the two hours following the cessation of the failure
according to Nagios; FP-Rnd, False Positives randomly
picked over the whole test set; FP, total number of False
Positives (FP = FP-Pre+FP-Post+FP-Rnd); TNR, True
Negative Rate (TNR = TN/N , where N is the number of
real negative cases); TPR, True Positive Rate (also known
as recall, TPR = TP/P , where P is the number of real
positive cases); Prec., Precision (Prec. = TP/(TP+FP));
FNR, False Negative Rate (FNR = FN/P); F-score is the
harmonic mean of precision and recall – values close to one
indicate greater detection accuracy16. The table reports
the average results computed over the 20-nodes subset.

The results are very clear: both models were able to
correctly learn to distinguish between normal states and
anomalous ones, as highlighted by the very high values of
precision, recall, and F-score. The accuracy number are
on par with those reported by the state-of-the-art [10],
[41], a significant first result for real failures happening on
production supercomputing nodes. This is an important
and promising step towards the adoption of Nagios as
an annotation method. However, we must notice a par-
tial limitation: the alarm signal computed by supervised
models do not anticipate the labels and this suggests that
the strong accuracy results are partially due to the fact
that nodes in “DOWN+DRAIN” state have a significantly
different behaviour compared to those in normal operating
conditions (e.g., high level of idleness and very different

13scikit-learn, https://scikit-learn.org/stable/index.html
14https://www.tensorflow.org/
15We adopted the default parameters of the RF implementation

provided by scikit-learn
16The F-score is defined as F − score = 2 · precision·recall

precision+recall

https://doi.org/10.5281/zenodo.4537849
https://scikit-learn.org/stable/index.html
https://www.tensorflow.org/

8

TABLE II: Comparison of the experimental results obtained with the supervised methods for anomaly detection on
Marconi supercomputer. The results obtained on two months of data collected are reported; all values are average
computed over twenty different computing nodes. Jan. & May rows are obtained by summing the two periods.

Month Method TP TN FN FP-Pre FP-Post FP-Rnd FP TNR TPR Prec. FNR F-score

Jan. 2020 RF 20.40 5675.50 2.20 1.10 1.20 0.40 2.70 1.00 0.90 0.88 0.10 0.89
Jan. 2020 AE+Classr. 19.70 5669.60 2.80 1.50 4.70 2.90 9.10 1.00 0.88 0.68 0.12 0.77

May 2020 RF 191.60 6978.90 3.20 2.00 2.00 0.00 4.00 1.00 0.98 0.98 0.02 0.98
May 2020 AE+Classr. 186.40 6932.30 8.30 10.00 9.60 32.50 52.10 0.99 0.96 0.78 0.04 0.86

Jan. & May RF 212.00 12654.40 5.40 3.10 3.20 0.40 6.70 1.00 0.98 0.97 0.02 0.97
Jan. & May AE+Classr. 206.10 12601.90 11.10 11.50 14.30 35.40 61.20 1.00 0.95 0.77 0.05 0.85

workload). This was confirmed by looking at the features
which govern the RF classifier, as the most important
ones (for every node used in the experiment) were the
average core load in the previous 5 and 10 minutes. In
practice, an high accuracy does not entail concrete benefits
in terms of forecasting failures in the HPC nodes. This is
especially true for the RF model, while the slightly higher
number of false positives obtained with the DNN reveals
that this method is less focused on the idleness. For this
reason, in Sec. V-D we opted for the DNN, as part of the
composite approach. Another drawback of the supervised
models the lack of anticipatory capability, as they are very
good at detecting the difference between normal states and
failures, but cannot forecast the insurgence of anomalies.

As the data set is extremely imbalanced (see Tab. I)
classification models could struggle, though this was not
the case. Nevertheless, we performed a preliminary experi-
ment to address this issue, namely we employed a Python
library17 to pre-process the data via undersampling and
oversampling techniques. The empirical results were not
significant (e.g., very marginal differences in all the eval-
uation metrics), as the supervised methods were already
sufficiently accurate.

C. Semi-supervised Approach Results
As we saw in the previous section, supervised methods

have high accuracy but little utility in practice. We turn
now to a semi-supervised approach, as previous works
highlighted its potential [11], [12], [30]. In this case we
employ the autoencoder DNN described in Sec. IV-A; we
conduct the experiment on the same nodes used previously
and we create an autoencoder model for each node – now
only normal data is used for training the network, leaving
out part of the normal points and all the anomalous ones
for testing purposes. Table III reports the result obtained
with the semi-supervised approach, using the same format
which described the supervised methods. In the semi-
supervised case we show the results with two different
models: AE-Base corresponds to the work of Borghesi et
al. [11], [12] and consists of an autoencoder network plus a
fixed threshold18; AE-Conv. is the new model introduced
in Sec. IV-A, which extends the original autoencoder
with a convolution operation for smoothing purposes and

17https://github.com/scikit-learn-contrib/imbalanced-learn
18The fixed threshold is computed as the 95-th percentile of the

reconstruction errors computed in the training set; see [12] for a more
detailed explanation concerning this choice.

employs a variable threshold based on EMA for generating
the anomaly signal – for the results in Tab. III we set
α = 0.5.

We report the same evaluation metrics used for the
supervised methods for the sake of comparison, as we
expect the performance of the semi-supervised approaches
to be worse. Indeed, we can notice a steep decrease in
accuracy compared with the supervised approaches, espe-
cially for the autoencoder with fixed threshold, which has
a very low accuracy rate due to the high number of false
positives; moreover, these false positives are also evenly
spread along the whole test set. However, the situation
greatly improves when we consider the improved semi-
supervised model with convolution and EMA threshold.
In this case the F-score significantly raises, together with
the sharp decrease in the number of false positives (and the
precision significantly increases as well). In addition, while
the overall number of false positives diminishes, those
located before failures actually augments, suggesting that
this semi-supervised network might actually anticipate the
labels generated by Nagios. The main issue is that the not
all false positives before the failures are consecutive, and
thus are not used to signal anomalies (see Sec. IV-A). This
is the gap that we hope to cover by combining the semi-
supervised DNN with the supervised model composed by
the autoencoder plus classification layers.

An additional benefit of the autoencoder network is
the possibility to “interpret” the prediction of the model
in a natural way. In particular, one can look at the
different reconstruction errors obtained for each feature
taken as input and output of the autoencoder. The re-
construction error of an autoencoder with multivariate
input and output19 can be obtained in different ways. The
reconstruction error is the difference between the output
and the input; this difference is computed feature-wise and
then averaged. Using the aggregated reconstruction error
is useful for obtaining a unique and coherent anomaly
signal, but we can also observe the error generated in
reconstructing each feature. Features with higher recon-
struction errors have more anomalous behaviours, hence
the autoencoder struggle to reconstruct them. These fea-
tures can then be interpreted as the “root causes” of the
failure, or at least a very strong indicator of which compo-
nents of the systems are behaving in the most anomalous
way. This can be observed by looking at the heatmaps

19The input is composed by the vector with all the features
collected by the monitoring infrastructure

9

TABLE III: Comparison of the experimental results obtained with the semi-supervised methods; average results over
all nodes. AE-Base indicates the results with the autoencoder with fixed threshold; AE-Conv. the results with the
autoencoder plus convolution and EMA variable threshold.

Month Method TP TN FN FP-Pre FP-Post FP-Rnd FP TNR TPR Prec. FNR F-score

Jan. 2020 AE-Base 7.40 5489.00 15.10 4.89 12.52 182.15 199.56 0.96 0.33 0.04 0.67 0.06
Jan. 2020 AE-Conv. 19.70 5664.10 2.80 2.20 9.50 4.10 15.80 1.00 0.88 0.55 0.12 0.68

May 2020 AE-Base 47.90 6732.40 146.90 4.10 3.90 229.60 237.60 0.97 0.25 0.17 0.75 0.20
May 2020 AE-Conv. 186.40 6923.60 7.30 4.35 7.60 42.80 54.75 0.99 0.96 0.77 0.04 0.86

Jan. & May AE-Base 55.30 12221.40 162.00 8.99 16.42 411.75 437.16 0.97 0.25 0.11 0.75 0.16
Jan. & May AE-Conv. 206.10 12587.70 10.10 6.55 17.10 46.90 70.55 0.99 0.95 0.74 0.05 0.84

portraying the feature-wise reconstruction errors along
the temporal line, as shown in Figure 4 for two distinct
nodes of Marconi (dubbed “Node A” and “Node B” for
simplicity). The x-axis represents the time while the y-
axis shows the reconstruction errors for a subset of the
features of the nodes (we selected the most representative
ones). The time is divided in 5-minutes intervals, indicated
by the indexes from 0 to 48; we are thus representing an
overall period of 240 minutes (48 multiplied by 5). The
heatmaps contains 4-hours period containing fault events
on the nodes; the red markers on the top row indicate the
anomalous periods. The magnitude of the reconstruction
error is conveyed through the color intensity, with hues
close to white signifying low errors and hue close to intense
blue representing high reconstruction error.

Let us start with Node A; the failure happened on
January 16, 2020, from 9:05 to 11:00. We highlighted
interesting areas of the map with red ellipses. One thing
that can be quickly noted regards the reconstruction
error during the anomalous periods, which is relatively
higher for three specific features, “avg:mem cached” (the
amount of cached memory), “avg:DC Energy” (the en-
ergy consumed by the entire node), and “jobs” (the num-
ber of jobs completed in the last five minutes). “avg”
and “std” represent the average and standard deviation
computed over the aggregation interval – see Sec. V-A.
These features are enclosed by the three horizontally-
aligned ellipses. The fact that the autoencoder fails to
reconstruct these features during the anomalous period
is probably due to the non-normal workload happening
when the node is put in “DOWN+DRAIN” state (e.g., no
new jobs are submitted). More interestingly, we can see
that shortly before the anomaly (more precisely at time
index 15, 15 minutes before the insurgency of the failure,
time index 18) a significant spike of the reconstruction
error involves a large number of features, in a marked
contrast with the normal situation (the vertically-aligned
ellipse). This strongly suggests that the semi-supervised
autoencoder is aware that something strange is happening,
or at least starkly different from the norm, hence it raises
its anomaly signal, generating a false positive as the Nagios
label is still set to normal state.

In the case of Node B we see similar patterns but also
different ones; in this case the failure happened on May
27, 2020, from 15:20 to 16:00 (time steps [21, 25]). The
heatmap displays a relatively faint but noticeable higher
reconstruction error for many features before the anomaly

insurgence (time steps [18-20]), especially for features
involving metrics which describe the cooling components
(fan speed, air flux, etc). However, there is a very high er-
ror for a particular feature, “avg:SysBrd 12V” (describing
the system board voltage), which predates the rise of the
error on other features. In this heatmap we can observe as
well a markedly high reconstruction error around one hour
and half after the failure event (second vertical ellipse), in
particular for the feature “avg:bytes in”, which describes
the number of bytes per second transferred from the
network to the node. This generated an undesired false
positive happening after the labelled anomaly; with the
information currently stored by ExaMon and by system
logs, we do not know whether this was an actual mistake of
the semi-supervised model or an anomalous event of little
importance and thus which escaped the Nagios annotation
mechanism (that is, it did not cause significant disruption
to request the system administrators intervention), but
did not went undetected by the autoencoder – possibly,
requiring its re-calibration to decrease its sensitivity. We
plan to explore in more detail and validate this “expla-
nation” capability and root-cause identification in future
works, in strict collaboration with system administrators
and facility managers.

D. Combined Approach Results
In this section we explore the results of the approach

which combines two DL models, the semi-supervised DNN
and the supervised classifier built on top of the autoen-
coder. The idea is to merge the benefits of both worlds,
possibly obtaining a method capable on anticipating the
failures registered with Nagios. For instance, let us go back
to Node A in Fig. 4. The semi-supervised approach noticed
something “strange” 15 minutes before the actual anomaly
(generating a false positive); however, no anomaly signal
was generated as the false positive was not followed by two
consecutive ones. If the supervised method was capable of
producing false positives for the missing time periods, by
merging the two models we could anticipate the failure
as registered by Nagios by 15 minutes. As previously
mentioned (Sec. IV-A), we merge the supervised and semi-
supervised approaches by combining their anomaly signals
in a logic-OR fashion.

Table IV reports the average results over all nodes, in
a similar manner to the previous tables with aggregate
results, but with two differences. First, there are no dif-
ferent models to be compared but we rather consider the

10

(a) Node A

(b) Node B

Fig. 4: Heatmaps obtained with the semi-supervised approach. The x-axis represents the time; the reconstruction error
for a subset of the features is displayed along the y-axis (more intense blue indicates greater errors). Red markers on
the top row represents failures.

same technique (that is, the combination of the supervised
and semi-supervised models) with four different α values,
where α specifies how much weight is given to most recent
examples in the computation of the EMA dynamic thresh-
old (see Eq. 1) used for the semi-supervised approach. We
explore the α parameter as the EMA threshold is a novel
extension compared to the previous semi-supervised NN;
at this stage, we are not interested (yet) in exploring in
depth all the possible values for the hyperparameters of
the DL models20 but we want to show the potential of the
approach – future works will deal with the fine-tuning.
The second difference compared to previous tables is that
we do not show the True Negative Rate, as it is not so
informative, but we added instead a last column reporting
the anticipation period with respect to the insurgency
of the anomalies. As explained earlier, if there are at
least three consecutive false positives before a Nagios-
labeled failure, then we assume that the combined model is
predicting the anomalous state, detecting that something

20Number of layers, number of neurons, learning rate, etc.

in the computing node is not behaving properly before
the system administrators. We calculate the anticipation
period (reported in minutes in Tab. IV) by measuring
the difference between the time stamp when the failure
is labelled as such (via Nagios) and the time stamp of the
first false positive in the series of consecutive ones leading
to the anomaly.

The experimental results are really promising. Indeed,
it is possible to anticipate the Nagios-annotated labels by
a significant amount of time, roughly around 45 minutes
when we compute the average over both January and May.
The accuracy of the combined method is slightly inferior
(or almost equal) compared to the semi-supervised one
and definitely worse than the supervised approach. This
is not an issue, as this is primarily due to the higher
number of false positives detected before the label. This
is a feature of the model we were aiming at: as stated
before, we are not just interested in a classification method
but we want to demonstrate the benefits in having an
automated annotation tool and the capability to anticipate
anomalies – and for this reason a lower detection accuracy

11

TABLE IV: Comparison of the experimental results obtained by combining the supervised and the semi-supervised
approaches; average results over all nodes. The α value refers to the EMA computation (see Eq. 1). The anticipation
is measured in minutes.

Month α TP TN FN FP-Pre FP-Post FP-Rnd FP TPR Prec. FNR F-score Anticipation

Jan. 2020 0.3 19.70 5652.60 2.80 4.30 4.70 17.80 26.80 0.88 0.42 0.12 0.57 42 min
Jan. 2020 0.5 19.70 5664.10 2.80 2.70 4.70 7.10 14.50 0.88 0.58 0.12 0.69 33 min
Jan. 2020 0.7 19.70 5668.50 2.80 1.90 4.70 3.50 10.10 0.88 0.66 0.12 0.75 33 min
Jan. 2020 0.9 19.70 5669.50 2.80 1.50 4.70 2.90 9.10 0.88 0.68 0.12 0.77 33 min

May 2020 0.3 186.40 6901.00 8.30 10.60 9.70 63.10 83.40 0.96 0.69 0.04 0.80 58 min
May 2020 0.5 186.40 6923.60 8.30 10.20 9.60 40.80 60.60 0.96 0.75 0.04 0.84 57 min
May 2020 0.7 186.40 6930.10 8.30 10.20 9.60 34.40 54.20 0.96 0.77 0.04 0.86 57 min
May 2020 0.9 186.40 6932.20 8.30 10.00 9.60 32.50 52.10 0.96 0.78 0.04 0.86 57 min

Jan. & May 0.3 206.10 12553.60 11.10 14.90 14.40 80.90 110.20 0.95 0.65 0.05 0.77 50 min
Jan. & May 0.5 206.10 12587.70 11.10 12.90 14.30 47.90 75.10 0.95 0.73 0.05 0.83 45 min
Jan. & May 0.7 206.10 12598.60 11.10 12.10 14.30 37.90 64.30 0.95 0.76 0.05 0.85 45 min
Jan. & May 0.9 206.10 12601.70 11.10 11.50 14.30 35.40 61.20 0.95 0.77 0.05 0.85 45 min

is a reasonable price to pay.

VI. Conclusion
This work is an initial exploration towards using au-

tomatically annotated data and DL models for anomaly
detection and prediction in HPC systems. We rely on
three main elements: 1) a fine-grained holistic monitoring
infrastructure (ExaMon in our case); 2) a SW tool which
can produce labels distinguishing between normal and
anomalous states (we employed Nagios for this purpose);
3) a DL model merging the strengths of semi-supervised
and supervised approaches. To the best of our knowledge,
we are the first to demonstrate how Nagios-annotated data
can be used for this task, without requiring any change to
the typical workflow of system administrators. The key
result of the proposed approach is the possibility to an-
ticipate the insurgence of faults with significant advance,
on average between 40 and 50 minutes. This is a boon for
predictive maintenance applications targeting exascale as
corrective measures (e.g., proactive checkpoints, workload
balancing or health checking routines) can be undertaken
before reaching a critical state.

In future works we will continue to analyse the ever
increasing data sets which are currently being collected
by ExaMon on several supercomputers at CINECA, in
particular the current tier-0 HPC system, Marconi100.
Our objective is to replicate our findings on a different
system exploiting a larger amount of data. We will in-
vestigate in more detail the cause of the anomalies, with
the goal of better understanding their sources and possibly
classify them in different categories (this will also provide a
feedback on the preliminary root-cause analysis described
in this paper). In this direction, we also plan to store
and analyse historical log traces which can provide useful
insights regarding supercomputing node failures.

Acknowledgment
This research was partly supported by the EU

H2020-ICT-11-2018-2019 IoTwins project (g.a. 857191),
the H2020-JTI-EuroHPC-2019-1 Regale project (g.a.
956560) and Emilia-Romagna POR-FESR 2014-2020
project “SUPER: SuperComputing Unifier Platform –
Emilia-Romagna”. We also thanks CINECA for the col-
laboration and access to their machines and Francesco
Beneventi for maintaining ExaMon.

References

[1] S. Heldens, P. Hijma, B. V. Werkhoven, J. Maassen, A. S. Z.
Belloum, and R. V. Van Nieuwpoort, “The landscape of
exascale research: A data-driven literature analysis,” ACM
Comput. Surv., vol. 53, no. 2, Mar. 2020. [Online]. Available:
https://doi.org/10.1145/3372390

[2] J. Dongarra, “Report on the fujitsu fugaku system,” 2020.
[3] “Top500list,” 2020, https://www.top500.org/.
[4] L. A. Parnell, D. W. Demetriou, V. Kamath, and E. Y. Zhang,

“Trends in high performance computing: Exascale systems and
facilities beyond the first wave,” in 2019 18th IEEE Intersociety
Conference on Thermal and Thermomechanical Phenomena in
Electronic Systems (ITherm), 2019, pp. 167–176.

[5] F. Shoji, “BWorld Robot Control Software,” SC19 EEHPCWG
Annual Meeting, 2019.

[6] C. Di Martino, W. Kramer, Z. Kalbarczyk, and R. Iyer, “Mea-
suring and understanding extreme-scale application resilience:
A field study of 5,000,000 hpc application runs,” in 2015 45th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2015, pp. 25–36.

[7] M. S. Bouguerra, A. Gainaru, L. B. Gomez, F. Cappello, S. Mat-
suoka, and N. Maruyama, “Improving the computing efficiency
of hpc systems using a combination of proactive and preventive
checkpointing,” in 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing, 2013.

[8] A. Netti, Z. Kiziltan, O. Babaoglu, A. Ŝırbu, A. Bartolini,
and A. Borghesi, “A machine learning approach to online fault
classification in hpc systems,” Future Generation Computer
Systems, 2019.

[9] O. Tuncer, E. Ates, and et al., “Diagnosing performance vari-
ations in hpc applications using machine learning,” in Interna-
tional Supercomputing Conference. Springer, 2017, pp. 355–
373.

[10] O. Tuncer, E. Ates, and Y. e. a. et Zhang, “Online diagnosis of
performance variation in hpc systems using machine learning,”
IEEE Transactions on Parallel and Distributed Systems, 9 2018.

[11] A. Borghesi, A. Bartolini, and et al., “Anomaly detection using
autoencoders in hpc systems,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2019.

[12] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and
L. Benini, “A semisupervised autoencoder-based approach for
anomaly detection in high performance computing systems,”
Engineering Applications of Artificial Intelligence, vol. 85, pp.
634–644, 2019.

[13] M. Ott, W. Shin, and et al., “Global experiences with hpc
operational data measurement, collection and analysis,” in 2020
IEEE International Conference on Cluster Computing, 2020.

[14] A. Netti, M. Muller, and et al., “Dcdb wintermute: Enabling
online and holistic operational data analytics on hpc sys-
tems,” in Proc. of the 29th International Symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC
’20. New York, NY, USA: Association for Computing Machin-
ery, 2020, p. 101–112.

[15] A. Bartolini, F. Beneventi, and et al., “Paving the way toward
energy-aware and automated datacentre,” in Proceedings of the
48th International Conference on Parallel Processing: Work-
shops, 2019, pp. 1–8.

https://doi.org/10.1145/3372390

12

[16] W. Barth, Nagios: System and network monitoring. No Starch
Press, 2008.

[17] G. Moschini, R. Houssou, J. Bovay, and S. Robert-Nicoud,
“Anomaly and fraud detection in credit card transactions using
the arima model,” 2020.

[18] K. B. Lee, S. Cheon, and C. O. Kim, “A convolutional neural
network for fault classification and diagnosis in semiconductor
manufacturing processes,” IEEE Transactions on Semiconduc-
tor Manufacturing, vol. 30, no. 2, pp. 135–142, 2017.

[19] T. Salman, D. Bhamare, A. Erbad, R. Jain, and M. Samaka,
“Machine learning for anomaly detection and categorization in
multi-cloud environments,” 2018.

[20] M. Molan, “Pre-processing for Anomaly Detection on Linear
Accelerator. CERN openlab online summer intern project pre-
sentations,” Sep 2020.

[21] M. Gamell, K. Teranishi, and et al., “Modeling and simulating
multiple failure masking enabled by local recovery for stencil-
based applications at extreme scales,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 10, 2017.

[22] E. Meneses, X. Ni, and et al., “Using migratable objects to
enhance fault tolerance schemes in supercomputers,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 7,
pp. 2061–2074, 2015.

[23] I. Boixaderas, D. Zivanovic, and et al., “Cost-aware prediction
of uncorrected dram errors in the field,” in 2020 SC20: Interna-
tional Conference for HPC, Networking, Storage and Analysis
(SC). Los Alamitos, CA, USA: IEEE Comp. Soc., nov 2020.

[24] G. Iuhasz and D. Petcu, “Monitoring of exascale data pro-
cessing,” in 2019 IEEE International Conference on Advanced
Scientific Computing (ICASC), 2019, pp. 1–5.

[25] X. Yang, Z. Wang, J. Xue, and Y. Zhou, “The reliability wall for
exascale supercomputing,” IEEE Transactions on Computers,
vol. 61, no. 6, pp. 767–779, 2012.

[26] G. Pang, C. Shen, and et al., “Deep learning for anomaly
detection: A review,” 2020.

[27] G. Lemâıtre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn:
A python toolbox to tackle the curse of imbalanced datasets
in machine learning,” Journal of Machine Learning Research,
vol. 18, no. 17, pp. 1–5, 2017.

[28] S. Bhatia, A. Jain, and B. Hooi, “Exgan: Adversarial generation
of extreme samples,” 2020.

[29] A. Netti, Z. Kiziltan, and et al., “Finj: A fault injection tool for
hpc systems,” in European Conference on Parallel Processing.
Springer, 2018, pp. 800–812.

[30] A. Borghesi, A. Libri, and et al., “Online anomaly detection
in hpc systems,” in 2019 IEEE International Conference on
Artificial Intelligence Circuits and Systems. IEEE, 2019.

[31] S. Ghiasvand and F. M. Ciorba, “Anomaly detection in high
performance computers: A vicinity perspective,” in 2019 18th
International Symposium on Parallel and Distributed Comput-
ing (ISPDC). IEEE, 2019, pp. 112–120.

[32] G. Ostrouchov, D. Maxwell, and et al., “Gpu lifetimes on titan
supercomputer: Survival analysis and reliability,” in 2020 SC20:
International Conference for HPC, Networking, Storage and
Analysis (SC). Los Alamitos, CA, USA: IEEE Computer
Society, nov 2020, pp. 568–581.

[33] S. Di and F. Cappello, “Adaptive impact-driven detection of
silent data corruption for hpc applications,” IEEE Transactions
on Parallel and Distributed Systems, vol. 27, no. 10, 2016.

[34] T. L. Groves, R. E. Grant, and et al., “Unraveling network-
induced memory contention: Deeper insights with machine
learning,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 29, no. 8, pp. 1907–1922, 2018.

[35] F. Beneventi, A. Bartolini, C. Cavazzoni, and L. Benini, “Con-
tinuous learning of hpc infrastructure models using big data
analytics and in-memory processing tools,” in Proceedings of the
Conference on Design, Automation & Test in Europe. Euro-
pean Design and Automation Association, 2017, pp. 1038–1043.

[36] “Kairosdb a fast scalable time series database,” https://github.
com/kairosdb/kairosdb, accessed: 2020-08-02.

[37] Apache, “Apache cassandra,” https://http://cassandra.apache.
org/, accessed: 2019-01-04.

[38] M. A. Jette, A. B. Yoo, and M. Grondona, “Slurm: Simple
linux utility for resource management,” in In Lecture Notes in
Computer Science: Proceedings of Job Scheduling Strategies for
Parallel Processing (JSSPP) 2003. Springer-Verlag, 2002.

[39] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” California Univ
San Diego La Jolla Inst for Cognitive Science, Tech. Rep., 1985.

[40] CINECA, “Marconi,” https://www.hpc.cineca.it/hardware/marconi,
2016, accessed: 2020-11-13.

[41] A. Netti, Z. Kiziltan, O. Babaoglu, A. Ŝırbu, A. Bartolini,
and A. Borghesi, “Online fault classification in hpc systems
through machine learning,” in European Conference on Parallel
Processing. Springer, 2019, pp. 3–16.

[42] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1,
pp. 5–32, 2001.

Andrea Borghesi is an Assistant Profes-
sor at the Department of Computer Sci-
ence and Engineering (DISI) of the Univer-
sity of Bologna. His research focuses on op-
timization techniques and ML approaches for
complex systems, especially in the area of
HPC systems. He is also executive scien-
tific representative for the HPC at the Inter-
departments Center for AI at University of
Bologna (ALMA-AI)

Martin Molan Martin Molan is a PhD stu-
dent of data science and computation at Uni-
versity of Bologna. He has received BA in
mathematics at University of Ljubljana and
MA in ICT at JSI institute. As a student he
has collaborated with CERN openlab, UCL
center for AI, UNESCO International Re-
search Center On Artificial Intelligence, and
CINECA.

Michela Milano is full professor at DISI,
University of Bologna and the director of the
ALMA-AI institute. Her research activity con-
cerns AI with focus on decision support and
optimization systems covering both theoreti-
cal and practical aspects in application fields
as energy, computing, and sustainability. She
has edited two collections on hybrid optimiza-
tion and she is author of more than 170 papers
on peer reviewed international conferences and
journals.

Andrea Bartolini is Assistant Professor in
the Department of Electrical, Electronic and
Information Engineering Guglielmo Marconi
(DEI) at the University of Bologna. Before,
he was Post-Doctoral researcher in the Inte-
grated Systems Laboratory at ETH Zurich.
He has published more than 120 papers in
peer-reviewed international journals and con-
ferences and several book chapters with focus
on dynamic resource management - ranging
from embedded to large scale HPC systems.

https://github.com/kairosdb/kairosdb
https://github.com/kairosdb/kairosdb
https://http://cassandra.apache.org/
https://http://cassandra.apache.org/

	Copertina_postprint_IRIS_UNIBO
	TPDS_SI_Exascale_AnomalyAnticipation_REV
	Introduction
	Contributions

	Related Works
	Examon
	Nagios

	Detecting Anomalies with Nagios
	The Proposed Approach
	The Semi-supervised Approach
	The Supervised Approach

	Experimental Evaluation
	The Data Set
	Supervised Approach Results
	Semi-supervised Approach Results
	Combined Approach Results

	Conclusion
	References
	Biographies
	Andrea Borghesi
	Martin Molan
	Michela Milano
	Andrea Bartolini

