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The SINC way:

A fast and accurate approach to Fourier pricing

Fabio Baschetti∗ Giacomo Bormetti† Silvia Romagnoli‡

Pietro Rossi§

Abstract

The goal of this paper is to investigate the method outlined by one of us (PR) in

Cherubini et al. (2009) to compute option prices. We name it the SINC approach.

While the COS method by Fang and Osterlee (2009) leverages the Fourier-cosine ex-

pansion of truncated densities, the SINC approach builds on the Shannon Sampling

Theorem revisited for functions with bounded support. We provide several results

which were missing in the early derivation: i) a rigorous proof of the convergence of

the SINC formula to the correct option price when the support grows and the number

of Fourier frequencies increases; ii) ready to implement formulas for put, Cash-or-

Nothing, and Asset-or-Nothing options; iii) a systematic comparison with the COS

formula for several log-price models; iv) a numerical challenge against alternative

Fast Fourier specifications, such as Carr and Madan (1999) and Lewis (2000); v) an

extensive pricing exercise under the rough Heston model of Jaisson and Rosenbaum

(2015); vi) formulas to evaluate numerically the moments of a truncated density.

The advantages of the SINC approach are numerous. When compared to benchmark

methodologies, SINC provides the most accurate and fast pricing computation. The

method naturally lends itself to price all options in a smile concurrently by means of
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Fast Fourier techniques, boosting fast calibration. Pricing requires to resort only to

odd moments in the Fourier space.

Keywords: option pricing; rough Heston model; Fourier expansion; COS method;

Fast Fourier methods

JEL Codes: G12, G13, C6 – Mathematical Methods and Programming < C –

Mathematical and Quantitative Methods

1 Introduction

The search of numerically efficient approaches to price options is the subject of intensive

research. This fact comes with no surprise, since the ubiquitous presence and crucial

role played by contingent claims in modern finance. It can be affirmed that, when the

characteristic function (CF for short) of the log-price process is known in analytic or semi-

analytic form, the current widely accepted solution to the pricing problem is the COS

method by Fang and Oosterlee (2009). COS – a short-name for Fourier-cosine expansion –

builds on the idea that it is computationally convenient to transform the expectation of the

payoff with respect to the risk-neutral probability density function (PDF for short) into a

linear combination of products of Fourier-cosine coefficients of the payoff and the density.

To achieve this goal, the price to pay is the approximation of true PDF by a truncated

version with bounded support, but the trick eventually reveals to be the crucial step to

obtain an excellent pricing formula.

Our paper leverages the same idea of truncating the PDF, due to one of us (PR) and

outlined in Cherubini et al. (2009), but from a different perspective. It exploits a well-

known result which applies to periodic functions with limited bandwidth, i.e. the Shannon

Sampling Theorem. The formal symmetry between the forward and backward Fourier

transform readily provides the intuition that Shannon’s result can be adapted to functions

with limited support in the direct space. As an interesting outcome of the application

2



of the Sampling Theorem, one can express Plain Vanilla put and call prices, and digital

option constituents, as a Fourier-sinc expansion. Given that the sinc function is the Fourier

transform of the rectangular function, it is not surprising that it may play a crucial role

in representing expectations with respect to truncated densities. The convolution between

the sinc function – which conveys the information related to the bounded support – and

the Fourier transform of the Heaviside step function – which characterizes the point of

discontinuity of the digital options – lends itself to analytic simplification by means of

the Modified Hilbert transform. As a result, the option price can be represented as a

series expansion which only requires the CF computation of the log-price process for odd

moments. We refer to this method as SINC approach. As an important contribution, in this

paper we prove in a rigorous way that the numerical error induced by the PDF truncation

and by approximating a double infinite Fourier series by a finite sum can be made arbitrary

small.

It is worth mentioning that both COS and SINC need to know the CF in order to

be applied, hence this compulsory request singles out the range of applications we can

deal with. The literature on stochastic models where it is natural to work in the Fourier

space is huge and ever growing (see Cherubini et al. (2009) for an overview of the topic).

The successful application of Fourier analysis to price options was pioneered by Chen and

Scott (1992); Heston (1993); Bates (1996); Bakshi and Chen (1997); Scott (1997). The

publication of Duffie et al. (2000) definitely celebrated the role of the transform analysis in

dynamic asset pricing models when the state vector follows an affine jump-diffusion. The

papers by Carr and Madan (1999) and Lewis (2000, 2001) contributed in a significant way

to this stream of research in quantitative finance. In the former, the authors introduced

a simple analytical expression for the Fourier transform of the option value, which allows

to exploit the considerable computational power of the Fast Fourier Transform (FFT)

in the inversion stage. The introduction of FFT techniques boosted the way to real-

time calibration, pricing, and hedging. In the latter contributions, Lewis (2000, 2001)

detailed a representation of the option price in terms of the CF which is rooted on a

clever extension of the Fourier transform in the complex domain. His approach is naturally
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prone to the application of FFT, too. It is often preferred to the Carr and Madan (1999)

approach, which requires the introduction of an auxiliary damping parameter. SINC is

naturally suited for the computation by means of FFT. Then, not only SINC is based on

a parsimonious representation of the option payoff, which requires to sample the CF at

optimal points, but it expresses the payoff as a transform where the log-moneyness is the

conjugate variable in the direct space. As a consequence, all option prices in a smile can

be computed concurrently with O(N log2N) complexity, where N is the number of sample

points in Fourier space, enhancing the computational advantage of SINC with respect to

COS.

The stream of research inspired by the general framework introduced in Duffie et al.

(2000) is vast. It ranges from models to equity and exchange rate option pricing, to interest

rate derivative pricing, credit risk, and systemic risk modeling. Following (Fang and Oost-

erlee, 2009), first we test the performances of SINC on commonly used stochastic models

for the equity log-price process, i.e. the Geometric Brownian motion (GBM), the Heston

model (Heston, 1993), and the CGMY model by (Carr et al., 2002). Then, we focus on

a restricted but stimulating and flourishing field, the modeling of financial volatility for

pricing purposes 1. The main reason of the interest in volatility modeling is that, recently,

the celebrated Heston model has been revisited in several respects. Jaisson et al. (2015)

showed that the Hawkes-based (Hawkes, 1971a,b) market microstructure model of Bacry

et al. (2013) under nearly-unstable conditions converges in law to the Heston model. Jais-

son et al. (2016) also proved that the microstructure model with an hyperbolic kernel

by (Hardiman et al., 2013; Bacry et al., 2016) converges to an integrated fractional dif-

fusion. The limiting process is very irregular, with a derivative behaving as a fractional

Brownian motion with Hurst exponent smaller than 0.5 and close to zero. For this reason,

it is dubbed rough Heston (rHeston for short). Gatheral et al. (2018) demonstrated for a

wide range of assets that the historical volatility is rougher than a Brownian motion, and

that the empirical moment of order q of the log-volatility increments are consistent with
1Monte Carlo methods represent an alternative approach to pricing under rough volatility. We do

not consider it here, because it is quite aside from our main message. We refer the interested reader

to (Bennedsen et al., 2017; McCrickerd and Pakkanen, 2018; Bayer et al., 2020) for recent developments.
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a scaling with Hurst exponent of order 0.1. Similar findings are reported in Bennedsen

et al. (2016) under the historical measure, while Livieri et al. (2018) investigated the rough

behavior of the implied volatility. Finally, contrary to classical volatility models, the rough

ones (and so also the rHeston model) are able to reproduce the explosive behavior of the

implied at-the-money (ATM) skew observed empirically when the option maturity goes to

zero (Bayer et al., 2016; Fukasawa, 2011). Remarkably, El Euch and Rosenbaum (2019)

derived a semiclosed formula for the CF of rHeston model. The formula is not fully explicit

but given in terms of the solution of a fractional Riccati equation; the equation admits a

unique continuous solution, whose closed form expression is unknown. To avoid the com-

putational burden arising from the numerical solution of the fractional Riccati equation, in

this paper we resort to the Padè approximant of the solution already discussed in Gatheral

and Radoicic (2019). As shown by the authors, the rational approximation provides a very

accurate description of the solution, especially for low values of the Hurst exponent H. In

empirical investigations, both under the pricing and the historical measures, H is found to

be of order 0.05-0.1, thus motivating the use of the rational approximation. An alternative

approach is provided by the Adams scheme (Diethelm et al., 2004), possibly combined with

a power series expansion and Richardson-Romberg extrapolation (Callegaro et al., 2020).

As a second main contribution of our paper, we challenge SINC against COS and FFT-

SINC against Carr and Madan (1999) and Lewis (2000, 2001) approaches computed via

FFT. Through extensive pricing under the forward variance specification, we assess the

superiority in pricing accuracy of SINC with respect to competitors. The comparison is

performed keeping the same number NF of points sampled in the Fourier space equal for all

methodologies. We believe this is the fairest way to claim the relative performance of the

different algorithms, since the number of times the CF needs to be computed in rHeston

represents the most time consuming step in pricing. Under this specification, when SINC

is challenged against COS, the superiority of the former is apparent. When the full power

of FFT is exploited, the numerical complexity reduction of SINC vs COS is sizable and

dramatic, making SINC our preferred approach. As a matter of fact when dealing with the
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rHeston model, the main computational burden comes from the solution of the fractional

Riccati equation needed to get the CF. This part greatly outweights the cost of pricing

even a highly populated smile and the burden of using FT is twice as big as that of FFT

in our exercise. Very much different is the case where the CF is known analitically; in that

case the advantage of having a natural FFT formulation would be very large.

Last, but not least, as a side result of SINC approach, we detail in the Appendix a

novel analytical methodology to approximate the moments of a random variable starting

from the CF.

The remainder of the paper is organized as follows. In Section 2 we discuss the SINC

formula and in Section 3 we characterize the numerical error. Sections 4 and 5 present

the numerical results from the pricing exercise by means of the SINC and FFT-SINC

specifications, respectively. Section 6 draws the most relevant conclusions. The Appendix

provides technical details.

2 SINC at a glance

The SINC approach to price options is rooted on the following definition of a Fourier pair

g(x) = F̄ [ĝ(κ)] =

∫
R

e−i2πxκĝ(κ)dκ,

ĝ(κ) = F [g(x)] =

∫
R

e+i2πxκg(x)dx,

where F̄ and F stand for the forward Fourier operator and the inverse Fourier operator,

respectively and g(.) is integrable. Under the assumption of null interest rate and dividend

yield, i.e. r = 0 and q = 0, it exploits the following decomposition of a Plain Vanilla (PV

hereafter) put into Cash or Nothing (CoN hereafter) plus Asset or Nothing (AoN) options,

i.e.

E[(K − ST )
+] = KE[1{sT<k}]− S0E[esT1{sT<k}], sT = log

(
ST

S0

)
, k = log

(
K

S0

)
(1)
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with ST and K denoting the underlying spot at time T and the exercise price, respectively 2.

We note as θ(x) the Heaviside step function and recognize that contour integration yields

θ(x) = F̄ [δ−(κ)] =

∫
e−i2πκxδ−(κ)dκ,

where δ−(κ) = i
2π

1
κ+iε

. In the Appendix (Section A), we recall the derivation of the previ-

ous result and clarify the role played by ε.

Therefore, if we write each of the expectations on the rhs of Equation (1) in terms of the

PDF of the log-return sT , f(sT ), and the payoff of the option, we have that

E[1{sT<k}] =

∫
f(sT )θ(k − sT )dsT = F̄

[
F [f(k)]F [θ(k)]

]
= F̄ [f̂(κ)δ−(κ)]

=
i

2π

∫
e−i2πkκf̂(κ)

1

κ+ iε
dκ , (2)

and

E[esT1{sT<k}] =

∫
esT f(sT )θ(k − sT )dsT =

i

2π

∫
e−i2πkκf̂

(
κ− i

2π

)
1

κ+ iε
dκ (3)

by simple means of the convolution theorem and the definition of a Fourier transform (FT

for short).

Observe that a change of measure is implicit in the expectation defining the AoN put,

which requires that E[esT ] = 1.

For any given η > 0, we can find Xl and Xh for which∣∣∣∣1− ∫ Xh

Xl

f(sT )dsT

∣∣∣∣ < η,

and the Shannon Sampling Theorem (Shannon, 1949) guarantees that the Fourier transform

of the truncated function f(sT )1Xl≤sT≤Xh
can be fully recovered given a discrete (countable)

2The general formula for non zero interest rate and dividend yield is readily recovered by setting

sT = log(ST /S0)−(r−q)T and k = log(K/S0)−(r−q)T and reads Put(t = 0, S0) = e−qTS0E[(ek−esT )+] .
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set of points. Indeed, in the Appendix (Section B), we show that

e−i2πkκf1{Xl≤sT≤Xh}

∧
(κ) =

∞∑
n=−∞

e−i2πkκnf1{Xl≤sT≤Xh}

∧
(κn)sinc[2πXc(κn − κ)], (4)

where κn = n/(2Xc), Xc = (Xh −Xl)/2, and the sinc function is defined in the usual way

as sin(x)/x (continuous at zero).

In other terms, the idea is that one can truncate the integration range in such a way that

the contribution from the tails of the PDF is arbitrarily small, and getting rid of it provides

an upper bound for the approximation error induced on the option price. As we are working

with Fourier transforms, it is convenient to think of the length of the truncation range 2Xc

as the periodicity of the bounded density. Then, we suggest that Xl and Xh are selected

according to the following constraints∫ Xl

−∞
f(sT )dsT < 10−10,

∫ Xh

−∞
f(sT )dsT > 1− 10−10. (5)

We will not allow for asymmetric intervals in our numerical sections and impose Xh =

−Xl = Xc, for the sake of simplicity. Operationally, we compute the previous inequalities

by means of Equation (9) and by choosing some safely large candidates for Xl and Xh, then

define Xc = 4max(|Xl|, |Xh|) and iterate until the difference between the new candidate

value for Xc and the old one is less than 30%.

The need for truncating the density of the asset log-price is nothing new in the context

of Fourier methods and it exactly motivates COS formulas by Fang and Oosterlee (2009).

They in fact come up with one handy rule for determining the bounds of the PDF which

reads as follows

[Xl, Xh] =

[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
. (6)

Here cn tags the n-th cumulant of sT and L is an arbitrary constant that mostly depends on

the particular model one is considering. If this has the merit of being particularly simple,

it still suffers from two problems: (i) it does not provide any clue as to the magnitude of

the error associated with the truncation, and (ii) it requires knowledge of quantities which
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are not always given in closed form (just think about the rHeston model, for example).

The second limitation may be overcome by numerical evaluation of the moments of the

distribution – we provide original formulas for doing so in the Appendix (Section E)– but

the former is a very strong reason for preferring the cutting strategy we have described in

the previous paragraph.

We will provide an explicit formula for the numerical evaluation of the cumulative dis-

tribution function (CDF) in (5) by the end of this section, and address to the numerical

experiments for an assessment of its performance. It eventually turns out that the SINC

is an excellent way to compute distribution functions, which fact makes our procedure for

the bounds of the PDF particularly cheap. This may clearly be extended to the COS,

but the evaluation of the CDF would be much more costly. In this regard, one may also

observe that the periodicity of the PDF in the COS method is actually 4Xc but the support

coincides with the SINC.

Now, we are in the position to recover both CoN and AoN put prices. Nevertheless, we

only keep track of the CoN put for making things concise.3 As we have seen, bounding the

PDF allows for an application of the Sampling Theorem: we plug Shannon’s representation

(4) into the CoN Equation (2), straightforwardly write

E[1{sT<k}] ≃ E[1{sT<k}1{Xl≤sT≤Xh}]

=
i

2π

∞∑
n=−∞

e−i2πkκnf1{Xl≤sT≤Xh}

∧
(κn)

∫
sinc[2πXc(κn − κ)]

κ+ iε
dκ (7)

and finally recognize the inner integral in the sinc as a Modified Hilbert transform H−.

Definition 1. The Modified Hilbert transform H− of a given function g is the result of a

convolution of the distribution δ−(x) with the function itself. This formally translates as:

H−[g(y)] =

∫
g(y − x)δ−(x)dx =

i

2π

∫
g(y − x)

x+ iε
dx.

3The derivation of the AoN put price is perfectly equivalent to the CoN one. We decide to skip it

because going through each steps would not add anything new.
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In particular, the Appendix (Section C) proves that∫
sinc[2πXc(κn − κ)]

κ+ iε
dκ =

2π

i
H−[sinc(2πXcκn)] =

1

2Xcκn

(1− ei2πXcκn), (8)

which is sufficient to specialize the CoN put as

E[1{sT<k}] ≃
i

2π

∞∑
n=−∞

e−i2πkκnf1{Xl≤sT≤Xh}

∧
(κn)

[
− iπ1n=0 +

1− (−1)n

n
1n̸=0

]
.

An additional approximation is introduced when truncating this last infinite sum to a finite

(possibly low) number of terms and the price of the CoN option is written accordingly as

E[1{sT<k}] ≃
i

2π

N/2∑
n=−N/2

e−i2πkκnf1{Xl≤sT≤Xh}

∧
(κn)

[
− iπ1n=0 +

1− (−1)n

n
1n̸=0

]
.

Then the final formula follows replacing f1{Xl≤sT≤Xh}

∧
(κn) with f̂(κn) and recognizing that

only the odd moments in the Fourier space are relevant for the computation

E[1{sT<k}] ≃
1

2
+

2

π

N/4∑
n=1

1

2n− 1

[
sin(2πkκ2n−1)ℜ

[
f̂(κ2n−1)

]
− cos(2πkκ2n−1)ℑ

[
f̂(κ2n−1)

]]
.

(9)

Here ℜ and ℑ denote the real and imaginary parts, respectively. We show the validity of

this final formula in the Appendix (Section D), and claim that the AoN option is priced in

a very similar way, except that the CF needs to be evaluated for a complex argument, i.e.

E[esT1{sT<k}] ≃
i

2π

N/2∑
n=−N/2

e−i2πkκn f̂(κn −
i

2π
)

[
− iπ1n=0 +

1− (−1)n

n
1n̸=0

]

=
1

2
+

2

π

N/4∑
n=1

1

2n− 1

[
sin(2πkκ2n−1)ℜ

[
f̂(κ2n−1 −

i

2π
)
]

− cos(2πkκ2n−1)ℑ
[
f̂(κ2n−1 −

i

2π
)
]]
. (10)

Remark 1. Out of the N + 1 terms that we included in the expansions, only N/4 survive.

They correspond to the positive odd frequencies.

While our cutting procedure provides us with explicit bounds on the PDF truncation error,

we clearly need to control the impact of early termination of the infinite Fourier series and
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the usage of the CF for the complete density in place of the reduced one. We consequently

decompose the overall error as the sum of the three components described in Section 3 and

study their behavior in the Appendix (Section F): each of them is bounded and the error

shrunk under suitable choice of N and Xc, thus ensuring convergence of the SINC formulas

to the true option price.

The puzzle is finally complete when we combine digital options to compute PV put prices:

Theorem 1. Let f̂ denote the CF of the asset log-return sT = log(ST/S0) and take k =

log(K/S0) the log-moneyness of the option. Then Equations (1), (9) and (10) justify the

following writing of a PV put price

E[(K − ST )
+] ≃ 1

2
(K − S0)

+
2

π

N/4∑
n=1

1

2n− 1

[
sin(2πkκ2n−1)ℜ

[
Kf̂(κ2n−1)− S0f̂(κ2n−1 −

i

2π
)
]

− cos(2πkκ2n−1)ℑ
[
Kf̂(κ2n−1)− S0f̂(κ2n−1 −

i

2π
)
]]

(11)

where κn = n
Xh−Xl

and the interval [Xl, Xh] is chosen so as to make the contribution from

the tails of the PDF negligible.

To ease the interpretation of the results in the numerical sections and the comparison

among different benchmark methodologies, we introduce the notation NF to refer to the

number of times the CF needs to be evaluated to compute the option price. For instance,

to price a CoN put, it is sufficient to sample the CF NF = N/4 times at points κ2n−1 (N/4

times at shifted points κ2n−1− i/(2π) for the AoN put) and to weight them with a suitable

imaginary phase and the inverse of the integer odd numbers. The price of the PV put is

readily recovered from AoN and CoN, thus by means of NF = N/2 valuations of the CF.

In the next sections, we are going to support the computational effectiveness of the SINC

formulas, by challenging them against the COS ones and showing how the SINC approach

can be readily adapted to the FFT framework.
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2.1 The FFT form of SINC

One merit of SINC is that it is readily adapted to the stiff structure of the FFT algorithm.

The computational speed of the Fast Fourier Transform is crucial for any concrete appli-

cation within the calibration process and the extension comes with almost no effort in our

setting.

We work under the assumption to price a discrete grid of strikes km = m2Xc

N
,−N/2 ≤ m <

N/2 and to fit the remaining points, when needed, by linear interpolation from bucket to

bucket.

Digital put prices at the aforementioned vector of strikes are now calculated as follows

E[easT1{sT<km}] ≃
i

2π

N/2∑
n=−N/2

e−i2πkmκn f̂

(
κn − a

i

2π

)[
− iπ1n=0 +

1− (−1)n

n
1n̸=0

]

=
i

2π

N−1∑
n=0

e−i 2π
N

mnqn (12)

where

qn =



π
i

n = 0

f̂(κn − a i
2π
)1−(−1)n

n
n ∈ [1, N

2
)

0 n = N
2

f̂(κn−N − a i
2π
)1−(−1)n−N

n−N
n ∈ (N

2
, N − 1]

(13)

and a takes value 0 or 1 for CoN and AoN options, respectively. Equation (12), taken

together with the definition of qn in (13), expresses the SINC formulas in a form which can

be readily computed by means of FFT. The formula for the PV put follows as before.

Remark 2. In spite of the fact that the index n runs from 0 to N − 1, a closer inspection

reveals that the computation of qn only requires the evaluation of the CF at N/4 different

frequencies. Indeed, all qn for even n are identically zero.

The described procedure generates prices for CoN and AoN digitals indexed by the strikes

n(2Xc/N). To recover the price for different strikes (not belonging to the grid) we perform
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a linear interpolation. The interpolation error can be reduced by increasing the number of

terms in the expansion or resorting to the fractional FFT (frFFT) framework.

3 Error Analysis

As already mentioned, and similarly to the COS method of Fang and Oosterlee (2009),

there are three sources of error affecting the SINC formula: the approximation of the true

PDF with a truncated density, the replacement of a double infinite sum with a finite sum,

and the substitution of the Fourier coefficients for the truncated density with the Fourier

transform of the true PDF valued at discrete points. To characterize in a quantitative way

the three error components, we proceed as follows.

The error associated to our approach can be written as 4

ϵ =

∫
f(sT )θ(k − sT ) dsT − 1

2
− i

2πXc

+N/4∑
n=−N/4

e−i2πkκ2n−1
f̂(κ2n−1)

κ2n−1

=

∫
f(sT )θ(k − sT ) dsT −

∫ Xc

−Xc

f(sT )θ(k − sT ) dsT

+

∫ Xc

−Xc

f(sT )θ(k − sT ) dsT − 1

2
− i

2πXc

+N/4∑
n=−N/4

e−i2πkκ2n−1
f̂(κ2n−1)

κ2n−1

.

Exploiting the fact that∫ Xc

−Xc

f(sT )θ(k − sT ) dsT =
1

2
+

i

2πXc

+∞∑
−∞

e−i2πkκ2n−1
f1{−Xc≤sT≤Xc}

∧
(κ2n−1)

κ2n−1

,

we can write

ϵ =

∫
f(sT )θ(k − sT ) dsT −

∫ Xc

−Xc

f(sT )θ(k − sT ) dsT

+
i

2πXc

+∞∑
−∞

e−i2πkκ2n−1
f1{−Xc≤sT≤Xc}

∧
(κ2n−1)

κ2n−1

− i

2πXc

+N/4∑
n=−N/4

e−i2πkκ2n−1
f̂(κ2n−1)

κ2n−1

=

∫
f(sT )θ(k − sT ) dsT −

∫ Xc

−Xc

f(sT )θ(k − sT ) dsT

4As done before for the pricing formula, we detail the case of CoN put options. Similar results for the

AoN puts can be readily derived.
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+
i

2πXc

∑
|n|>N/4

e−i2πkκ2n−1
f1{−Xc≤sT≤Xc}

∧
(κ2n−1)

κ2n−1

+
i

2πXc

+N/4∑
−N/4

e−i2πkκ2n−1
f1{−Xc≤sT≤Xc}

∧
(κ2n−1)− f̂(κ2n−1)

κ2n−1

. (14)

The PDF truncation error reads

ϵ1
.
=

∫
f(sT )θ(k − sT ) dsT −

∫ Xc

−Xc

f(sT )θ(k − sT ) dsT ,

where we introduce the same notation, ϵ1, used in Fang and Oosterlee (2009). The second

and last components of the error in Equation (14), that we refer to with ϵ2 and ϵ3 to con-

form with the notation in Fang and Oosterlee (2009), are the error contributions due to the

truncation of a double infinite Fourier series and the replacement of the Fourier coefficients

of the truncated PDF with the Fourier transform of the true PDF, respectively.

Such a decomposition of the overall error is the starting point to prove that the SINC

price converges to the true option price: technical reasons and assumptions essential for

the proof are given in the Appendix (Section F), where we bound the magnitude for each

of the components in Equation (14) and conclude that the error can be made arbitrarily

small by increasing the number of Fourier modes N and the truncation range [−Xc, Xc].

4 SINC at work

In this section, we perform numerical tests to assess the accuracy of the SINC approach.

We price PV puts and their digital components separately and span over various matu-

rities and moneynesses for both standard models (GBM, Heston, and CGMY) and the

rHeston model of El Euch and Rosenbaum (2018). The idea is to compare SINC and

COS methods along the directions of precision and convergence speed. The COS is the

most used method within the class of FT-based techniques. This is due to the acknowl-

edged performance both in speed and accuracy. It is therefore natural to use it as reference.
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The results we will produce show that the SINC is often better than COS when computing

call and put option prices. Always orders of magnitude better when dealing with digital

options. Furthermore, SINC enjoys the non negligible advantage to be tailor made for

the FFT, while the COS, as we know, does not have a straightforward transition. The

consequences of this will be more extensively discussed in the following section, where we

also compare the SINC with standard FFT methods.

While option prices in the Black-Scholes model have a closed-form solution to be used as

a benchmark we need to produce one benchmark for the other models. We decided to use

the average between high precision (NF = 220) SINC and COS prices and to chop them if

the two happen to have more than 10 decimal digits in common.

4.1 Geometric Brownian Motion (GBM)

We begin with the simple example of a GBM for the price process. Selected parameters

are the same as in Fang and Oosterlee (2009)

S0 = 1 r = 0.1 q = 0 T = 0.1 σ = 0.25

and nine different strikes are considered, K = 0.80 : 0.10 : 1.40. This will be common

throughout the section.

Table 1 reports relative errors with respect to the Black-Scholes price for both SINC and

COS at different values of NF . PV (lhs) and CoN (rhs) put options are considered, here.

Then, two facts are immediately apparent from the table:

Fact 1: SINC and COS experience different convergence rates, in general, and the type of

considered option (either PV or a digital one) is going to change the patterns;

Fact 2: once the PDF truncation error is controlled and made sufficiently small, relatively

low NF is needed for the sum ϵ2+ ϵ3 to become negligible. This makes the SINC candidate

to be a very good approximation of the true option price.
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Table 1: Relative errors over PV and CoN put options for SINC and COS at different values of NF in the

Black-Scholes model. Stars (⋆) mean that the price fully conforms with the benchmark (up to the number

of digits of the benchmark itself), straight lines denote relative errors that are larger than 100%. [T = 0.1,

Xc = 2.0105]

PV put CoN put

NF NF

K 20 40 60 80 100 120 benchmark 20 40 60 80 100 120 benchmark

SINC 0.60 5e-03 5e-04 5e-04 5e-04 1.974722e-13 3e-06 3e-06 3e-06 3e-06 3e-06 1.726736e-11

COS 2e-04 4e-01 1e-04

SINC 0.70 4e-01 1e-07 1e-08 2e-09 2e-09 2.301833e-08 2e-02 4e-11 1e-11 1e-11 1e-11 1e-11 1.473992e-06

COS 1e-02 2e-05 4e-09 2e-02 1e-05 3e-10

SINC 0.80 3e-04 9e-11 2e-12 2e-12 2e-12 3.2130086e-05 2e-05 2e-15 6e-14 6e-14 6e-14 6e-14 0.0014334833

COS 2e-01 2e-03 1e-05 1e-08 3e-12 8e-01 9e-03 2e-05 9e-09 2e-13

SINC 0.90 2e-01 5e-06 2e-13 5e-14 1e-14 1e-14 0.0023972816 6e-07 3e-15 6e-16 6e-16 6e-16 6e-16 0.0693682968

COS 5e-01 2e-02 1e-04 3e-07 2e-10 4e-14 4e-01 2e-02 2e-04 6e-07 2e-10 7e-14

SINC 1.00 1e-02 7e-07 7e-14 ⋆ ⋆ ⋆ 0.0266495182 5e-08 ⋆ ⋆ ⋆ ⋆ ⋆ 0.4607202900

COS 1e-01 2e-03 2e-05 4e-08 2e-11 4e-15 2e-02 1e-03 2e-05 6e-08 5e-11 1e-14

SINC 1.10 4e-03 2e-07 4e-15 1e-15 ⋆ ⋆ 0.0949509784 3e-08 1e-16 ⋆ ⋆ ⋆ ⋆ 0.9456809861

COS 6e-03 7e-04 2e-06 1e-08 6e-12 ⋆ 5e-02 1e-04 2e-05 3e-08 3e-11 6e-15

SINC 1.20 2e-03 2e-08 2e-14 3e-15 ⋆ ⋆ 0.1885055786 5e-08 2e-16 ⋆ ⋆ ⋆ ⋆ 1.1723357082

COS 2e-02 4e-04 2e-06 2e-09 7e-13 1e-15 1e-02 3e-04 1e-05 5e-08 4e-11 5e-15

SINC 1.30 4e-05 9e-08 3e-15 4e-16 1e-15 1e-15 0.2870818751 4e-08 ⋆ 2e-16 2e-16 2e-16 2e-16 1.2862729107

COS 4e-04 2e-04 2e-06 4e-09 3e-13 1e-15 3e-02 8e-04 1e-06 4e-08 4e-11 4e-15

SINC 1.40 1e-03 6e-09 9e-15 6e-16 ⋆ ⋆ 0.3860701385 3e-08 2e-16 ⋆ ⋆ ⋆ ⋆ 1.3860485750

COS 6e-03 6e-06 1e-06 2e-09 1e-12 ⋆ 6e-04 1e-03 8e-06 3e-08 3e-11 3e-16

With particular respect to Fact 1, indeed, it is clear that the SINC approach outperforms

the COS when the stock price process follows a GBM. The convergence is much faster when

dealing with PV put options on the left of Table 1 and the difference is even larger (far

larger) when it comes to cash-or-nothing options on the right of the same table.

However, these figures are model-specific and cannot suffice to build up a complete idea

about the convergence of the two methods. We therefore test them against other models

in the following subsections and try to understand if we can extract something systematic

about their convergence properties. In doing so, we take care that the models we select

cover a large range of scenarios: from pure-diffusion models to infinite activity and rough

volatility models.
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4.2 The Heston model

Our second case of study is the celebrated Heston model. We report the dynamics of the

price and volatility here to fix the notation:

dSt = St

√
VtdBS

t

dVt = −λ(Vt − V̄ ) + η
√
VtdBV

t , ⟨dBS, dBV ⟩t = ρ.

As with Fang and Oosterlee (2009), again, we use parameters

S0 = 1 r = 0 q = 0 T = {0.1, 1} λ = 1.5768 η = 0.5751

V̄ = 0.0398 V0 = 0.0157 ρ = −0.5711.

Table 2 repeats the same analysis as before in the context of the Heston model (we only

replace CoN with AoN options to show that the numbers are somehow invariant between

the two). Expiration is in 0.1 years, again, and we still observe improved convergence for

the SINC as opposed to the COS when dealing with put options. Once more, the difference

is strikingly evident with digital options, where about four times as many evaluations of

the CF are needed for the COS to replicate the same accuracy as the SINC.

We also consider the case T = 1 in Table 3 and observe that our considerations are basically

unchanged regardless of the maturity of the option.

4.3 CGMY

As for infinite activity models we take CGMY as an example (recall that the Variance

Gamma may be recovered as a special case). Given that parameter Y is reported to play

a special role in Fang and Oosterlee (2009), we place ourselves in the exact same settings

as they did, and select the following parameters for the model

S0 = 1 r = 0.1 q = 0 T = {0.01, 1} C = 1 G = 5 M = 5 Y = {0.50, 1.50, 1.98}.

We add the very short maturity T = 0.01 to shed light on the case of short-dated out-of-

the-money options.
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Table 2: Relative errors over PV and AoN put options for SINC and COS at different values of NF in

the Heston model. Stars (⋆) mean that the price fully conforms with the benchmark (up to the number of

digits of the benchmark itself), straight lines denote relative errors that are larger than 100%. [T = 0.1,

Xc = 2.0499]

PV put AoN put

NF NF

K 64 128 192 256 384 512 benchmark 64 128 192 256 384 512 benchmark

SINC 0.60 7e-01 ⋆ ⋆ 0.0000000011 4e-02 ⋆ ⋆ ⋆ ⋆ 0.0000000397

COS 2e-01 ⋆ 2e-02

SINC 0.70 2e-02 2e-03 ⋆ ⋆ 0.0000002363 4e-01 3e-04 ⋆ ⋆ ⋆ ⋆ 0.0000077645

COS 1e-01 2e-03 ⋆ 2e-01 9e-04 2e-04

SINC 0.80 8e-02 3e-03 6e-05 ⋆ ⋆ 0.0000198699 1e-02 6e-06 ⋆ ⋆ ⋆ ⋆ 0.0006241401

COS 3e-01 2e-02 1e-03 7e-06 ⋆ 7e-02 3e-02 1e-02 3e-04 4e-06

SINC 0.90 2e-01 3e-03 8e-05 2e-06 ⋆ ⋆ 0.0008057899 8e-04 6e-07 ⋆ ⋆ ⋆ ⋆ 0.0235660667

COS 2e-01 9e-03 7e-04 7e-05 9e-07 ⋆ 3e-01 4e-02 5e-03 7e-04 2e-05 5e-07

SINC 1.00 2e-03 7e-05 4e-06 9e-08 ⋆ ⋆ 0.0163700005 1e-04 1e-08 3e-10 ⋆ ⋆ ⋆ 0.4171058741

COS 2e-02 1e-03 1e-04 1e-06 2e-07 4e-09 7e-02 5e-03 5e-04 1e-04 3e-06 8e-09

SINC 1.10 8e-04 5e-06 6e-07 2e-08 ⋆ ⋆ 0.1000685530 9e-06 2e-08 ⋆ ⋆ ⋆ ⋆ 0.9951985550

COS 2e-04 9e-05 1e-05 2e-06 3e-08 ⋆ 2e-02 2e-03 2e-04 9e-06 5e-07 2e-08

SINC 1.20 8e-04 2e-05 4e-07 9e-09 ⋆ ⋆ 0.2000001223 2e-05 1e-08 ⋆ ⋆ ⋆ ⋆ 0.9999906356

COS 1e-03 1e-05 5e-06 2e-07 3e-09 ⋆ 1e-03 1e-03 2e-05 2e-05 5e-07 1e-08

SINC 1.30 1e-04 1e-05 3e-08 7e-09 ⋆ ⋆ 0.3000000002 1e-05 7e-09 1e-10 ⋆ ⋆ ⋆ 0.9999999797

COS 5e-04 3e-05 1e-06 8e-08 4e-09 ⋆ 8e-03 4e-05 8e-05 2e-05 9e-08 9e-09

SINC 1.40 4e-04 4e-06 6e-08 5e-09 ⋆ ⋆ 0.4000000000 3e-06 6e-09 ⋆ ⋆ ⋆ ⋆ 0.9999999999

COS 1e-04 1e-05 1e-06 2e-07 2e-09 ⋆ 8e-03 6e-04 6e-05 4e-06 1e-07 7e-09

Let us start with the case Y = 1.5. We point the reader to Tables 4 and 5 so that he/she can

realize that convergence of the methods follows similar patterns as we have commented for

the GBM and the Heston model, with the usual distinction between PV and digital options.

Then, approaching the limit case Y = 2 does not introduce any issue (this was known with

the COS method and SINC is no different). Tables 6 and 7 confirm this fact.

More involved is the case Y = 0.5. Long maturities cause no deviations from the story we

have told so far: look at Table 8 to see this. As expected, pricing short maturity options

gets more complicated. When we look at PV put options on the lhs of Table 9 we see

that the situation hints for an advantage of the COS. Only in this case we find the SINC

approach to exhibit poorer performance with respect to its competitor. Nevertheless, two

things are worth noticing: (i) SINC gets back its superiority (although less marked) when

considering digital options (see rhs of Table 9) and (ii) convergence is very slow for the COS
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Table 3: Relative errors over PV and AoN put options for SINC and COS at different values of NF in

the Heston model. Stars (⋆) mean that the price fully conforms with the benchmark (up to the number

of digits of the benchmark itself), straight lines denote relative errors that are larger than 100%. [T = 1,

Xc = 12.1802]

PV put AoN put

NF NF

K 128 192 256 384 512 768 benchmark 128 192 256 384 512 768 benchmark

SINC 0.60 1e-01 1e-02 1e-03 4e-06 2e-07 ⋆ 0.0020880117 6e-04 3e-06 7e-08 ⋆ ⋆ ⋆ 0.0104586356

COS 8e-02 2e-02 1e-03 2e-05 1e-05 3e-07 4e-01 4e-02 3e-02 3e-03 4e-04 3e-06

SINC 0.70 2e-02 4e-03 7e-04 3e-06 2e-07 ⋆ 0.0053328699 4e-04 4e-07 9e-08 ⋆ ⋆ ⋆ 0.0275972090

COS 1e-02 5e-03 2e-03 2e-04 8e-06 2e-07 2e-01 6e-02 1e-02 6e-04 2e-04 2e-07

SINC 0.80 3e-02 8e-04 3e-04 2e-06 2e-08 ⋆ 0.0123663875 2e-04 2e-06 7e-09 ⋆ ⋆ ⋆ 0.0674328518

COS 3e-02 5e-04 1e-03 1e-04 1e-06 9e-08 1e-01 4e-02 1e-02 2e-04 2e-04 2e-06

SINC 0.90 9e-03 9e-04 9e-05 1e-06 1e-08 ⋆ 0.0270953177 2e-05 7e-09 5e-09 ⋆ ⋆ ⋆ 0.1601233888

COS 3e-02 5e-04 1e-03 1e-04 9e-06 1e-07 2e-02 3e-02 1e-03 1e-04 4e-06 2e-07

SINC 1.00 3e-03 6e-04 5e-07 5e-07 2e-08 ⋆ 0.0578515543 6e-05 1e-06 2e-08 ⋆ ⋆ ⋆ 0.3750835043

COS 9e-03 1e-03 8e-04 6e-05 3e-06 ⋆ 6e-02 2e-02 3e-03 4e-04 6e-05 1e-06

SINC 1.10 2e-03 9e-05 2e-06 3e-07 8e-09 ⋆ 0.1178713500 5e-05 7e-07 6e-09 ⋆ ⋆ ⋆ 0.7236745029

COS 8e-03 1e-03 2e-04 5e-06 6e-07 3e-08 4e-02 1e-02 4e-03 4e-04 5e-05 6e-07

SINC 1.20 1e-03 1e-04 1e-05 1e-07 2e-10 ⋆ 0.2048282813 3e-05 5e-07 7e-09 ⋆ ⋆ ⋆ 0.9222278418

COS 6e-03 1e-03 6e-05 2e-05 3e-07 9e-09 8e-03 5e-03 3e-03 1e-05 3e-05 5e-07

SINC 1.30 1e-03 1e-04 2e-05 2e-07 4e-09 ⋆ 0.3014759365 2e-05 2e-07 2e-09 ⋆ ⋆ ⋆ 0.9771415014

COS 2e-03 8e-04 8e-05 7e-06 7e-07 1e-08 2e-02 2e-03 2e-03 2e-04 2e-05 3e-07

SINC 1.40 9e-04 9e-05 2e-06 1e-07 3e-09 ⋆ 0.4005141485 5e-06 2e-07 4e-09 ⋆ ⋆ ⋆ 0.9922869299

COS 2e-03 5e-07 1e-04 1e-06 7e-07 3e-09 9e-03 6e-03 1e-03 2e-04 4e-06 3e-07

as well as a result of enormously peaked density for the asset log-price. We plot the PDF

for a CGMY process with C = 1, G = 5,M = 5, Y = 0.5 and maturity T = 1, T = 0.01

in Figure (1). Plotting the PDF is both very simple and computationally convenient when

using the SINC approach. The duality of the PDF and the CF is the theoretical backbone

behind our procedure and the FT/FFT/frFFT provide the numerical tools for Fourier in-

version.

We have the following obvious fact:

Fact 3: the number of evaluations of the CF that guarantees convergence to the benchmark

increases with peaked density functions.

4.4 The rough Heston model

A more fashionable example is finally given by the rHeston model. We recall it in the

following for readers’ convenience.
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Table 4: Relative errors over PV and CoN put options for SINC and COS at different values of NF with

the CGMY process. Stars (⋆) mean that the price fully conforms with the benchmark (up to the number

of digits of the benchmark itself), straight lines denote relative errors that are larger than 100%. [Y = 1.5,

T = 1, Xc = 33.0891]

PV put CoN put

NF NF

K 16 32 48 64 96 128 benchmark 16 32 48 64 96 128 benchmark

SINC 0.60 4e-02 5e-05 1e-09 ⋆ ⋆ ⋆ 0.1703012777 2e-05 ⋆ ⋆ ⋆ ⋆ ⋆ 0.3030356173

COS 1e-01 1e-02 6e-04 1e-05 9e-10 ⋆ 4e-02 6e-03 4e-04 2e-05 2e-09 ⋆

SINC 0.70 5e-02 9e-08 6e-10 ⋆ ⋆ ⋆ 0.2230381363 2e-05 ⋆ ⋆ ⋆ ⋆ ⋆ 0.3838662218

COS 1e-01 8e-03 3e-04 4e-06 6e-11 ⋆ 6e-02 9e-03 7e-04 2e-05 2e-09 ⋆

SINC 0.80 5e-02 3e-05 2e-09 ⋆ ⋆ ⋆ 0.2797474350 2e-05 ⋆ ⋆ ⋆ ⋆ ⋆ 0.4678295710

COS 7e-02 4e-03 7e-05 2e-06 5e-10 ⋆ 7e-02 1e-02 8e-04 2e-05 2e-09 ⋆

SINC 0.90 5e-02 4e-05 2e-09 ⋆ ⋆ ⋆ 0.3398136494 2e-05 ⋆ ⋆ ⋆ ⋆ ⋆ 0.5541526890

COS 4e-02 1e-03 1e-04 7e-06 8e-10 ⋆ 9e-02 1e-02 8e-04 2e-05 6e-10 ⋆

SINC 1.00 4e-02 4e-05 2e-09 ⋆ ⋆ ⋆ 0.4027464727 2e-05 ⋆ ⋆ ⋆ ⋆ ⋆ 0.6422747911

COS 2e-02 1e-03 2e-04 1e-05 8e-10 ⋆ 9e-02 1e-02 8e-04 2e-05 3e-10 ⋆

SINC 1.10 4e-02 4e-05 2e-09 ⋆ ⋆ ⋆ 0.4681498500 1e-05 ⋆ ⋆ ⋆ ⋆ ⋆ 0.7317810268

COS 6e-03 3e-03 3e-04 1e-05 6e-10 ⋆ 1e-01 1e-02 7e-04 1e-05 1e-09 ⋆

SINC 1.20 4e-02 3e-05 1e-09 ⋆ ⋆ ⋆ 0.5356998308 6e-06 ⋆ ⋆ ⋆ ⋆ ⋆ 0.8223594103

COS 7e-03 4e-03 4e-04 1e-05 3e-10 ⋆ 1e-01 1e-02 6e-04 6e-06 2e-09 ⋆

SINC 1.30 3e-02 2e-05 1e-09 ⋆ ⋆ ⋆ 0.6051284646 8e-07 ⋆ ⋆ ⋆ ⋆ ⋆ 0.9137720089

COS 2e-02 5e-03 4e-04 1e-05 3e-11 ⋆ 1e-01 1e-02 5e-04 1e-06 2e-09 ⋆

SINC 1.40 3e-02 1e-05 1e-09 ⋆ ⋆ ⋆ 0.6762118959 4e-06 ⋆ ⋆ ⋆ ⋆ ⋆ 1.0058351838

COS 3e-02 6e-03 4e-04 1e-05 2e-10 ⋆ 1e-01 1e-02 4e-04 4e-06 2e-09 ⋆

Figure 1: PDF of the asset log-price under CGMY process for T = 1 (lhs) and T = 0.01 (rhs). Parameters:

C = 1, G = 5,M = 5, Y = 0.5.
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The (generalized) rough Heston model from El Euch and Rosenbaum (2018) is described

by the following equations:

dSt = St

√
Vt{ρdBt +

√
1− ρ2dB⊥

t },
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Table 5: Relative errors over PV and CoN put options for SINC and COS at different values of NF with

the CGMY process. Stars (⋆) mean that the price fully conforms with the benchmark (up to the number

of digits of the benchmark itself), straight lines denote relative errors that are larger than 100%. [Y = 1.5,

T = 0.01, Xc = 11.4582]

PV put CoN put

NF NF

K 16 32 64 128 256 512 benchmark 16 32 64 128 256 512 benchmark

SINC 0.60 1e-01 ⋆ ⋆ 0.0000620913 5e-03 1e-08 ⋆ ⋆ 0.0006501357

COS 1e-02 ⋆ 6e-03 1e-08

SINC 0.70 5e-02 1e-07 ⋆ 0.0003572838 8e-01 4e-03 ⋆ ⋆ ⋆ 0.0044404620

COS 6e-01 3e-03 ⋆ 8e-01 4e-03 ⋆

SINC 0.80 8e-01 1e-03 ⋆ ⋆ 0.0021896005 8e-01 2e-01 1e-03 ⋆ ⋆ ⋆ 0.0320163483

COS 6e-02 2e-04 ⋆ 8e-01 2e-01 1e-03 ⋆

SINC 0.90 8e-01 3e-02 2e-03 ⋆ ⋆ 0.0124149741 4e-01 5e-02 2e-04 7e-10 ⋆ ⋆ 0.1764020073

COS 3e-01 2e-02 1e-04 ⋆ 9e-01 4e-01 5e-02 2e-04 7e-10

SINC 1.00 6e-01 3e-01 5e-02 5e-04 1e-09 ⋆ 0.0475882889 2e-02 3e-03 4e-05 3e-11 ⋆ ⋆ 0.5239991369

COS 8e-01 2e-01 1e-02 4e-05 ⋆ 4e-02 3e-02 2e-02 3e-03 4e-05 3e-11

SINC 1.10 3e-01 1e-01 1e-03 2e-04 ⋆ ⋆ 0.1156677674 1e-01 1e-02 6e-05 1e-10 ⋆ ⋆ 0.8929163078

COS 8e-01 2e-01 2e-02 3e-03 1e-05 ⋆ 3e-01 2e-01 1e-01 1e-02 6e-05 1e-10

SINC 1.20 2e-01 1e-02 1e-02 1e-04 ⋆ ⋆ 0.2043804386 5e-02 7e-03 5e-05 1e-10 ⋆ ⋆ 1.1281710458

COS 3e-01 2e-02 3e-02 2e-03 7e-06 ⋆ 3e-01 2e-01 5e-02 7e-03 5e-05 1e-10

SINC 1.30 1e-01 3e-02 2e-03 8e-05 ⋆ ⋆ 0.3008048296 6e-03 5e-03 4e-05 3e-11 ⋆ ⋆ 1.2743502846

COS 9e-02 4e-02 3e-02 1e-03 6e-06 ⋆ 3e-01 2e-01 6e-03 5e-03 4e-05 3e-11

SINC 1.40 6e-02 5e-02 7e-03 5e-05 2e-11 ⋆ 0.3995376021 4e-02 4e-03 2e-05 1e-10 ⋆ ⋆ 1.3889715861

COS 2e-03 6e-02 1e-02 1e-03 5e-06 ⋆ 3e-01 9e-02 4e-02 4e-03 2e-05 1e-10

Vt = V0 +
λ

Γ(H + 1
2
)

∫ t

0

θ0(s)− Vs

(t− s)
1
2
−H

ds+
ν

Γ(H + 1
2
)

∫ t

0

√
Vs

(t− s)
1
2
−H

dBs,

where V0, λ, and ν are positive real numbers, ρ ∈ [−1, 1]. The deterministic function

θ0(t) is positive and satisfies few constraints specified in El Euch and Rosenbaum (2018).

The coefficient H ∈ (0, 1/2] is shown to govern the smoothness of the volatility, whose

trajectories enjoy Hölder continuity H − ϵ for any ϵ > 0. It is therefore clear that the

choice H < 1/2 allows for a rough behavior of the volatility process and the case H = 1/2

amounts to the classical Heston model with time-dependent mean reversion level.

El Euch and Rosenbaum (2018) proved also that the product λθ0(·) is directly inferred

from the time-0 forward variance curve ξ0(t) = E[Vt|F0] = E[Vt], leading to the following

specification of the model for λ → 0:

dSt = St

√
Vt{ρdBt +

√
1− ρ2dB⊥

t },

Vt = ξ0(t) +
ν

Γ(H + 1
2
)

∫ t

0

√
Vs

(t− s)
1
2
−H

dBs.
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Table 6: Relative errors over PV and CoN put options for SINC and COS at different values of NF with

the CGMY process. Stars (⋆) mean that the price fully conforms with the benchmark (up to the number of

digits of the benchmark itself), straight lines denote relative errors that are larger than 100%. [Y = 1.98,

T = 1, Xc = 248.9047]

PV put CoN put

NF NF

K 16 32 48 64 96 128 benchmark 16 32 48 64 96 128 benchmark

SINC 0.60 1e-02 1e-05 6e-10 ⋆ ⋆ ⋆ 0.5429017201 5e-06 ⋆ ⋆ ⋆ ⋆ ⋆ 0.5429020811

COS 2e-02 3e-03 1e-04 2e-06 2e-10 ⋆ 1e-02 4e-03 9e-05 5e-06 3e-10 ⋆

SINC 0.70 1e-02 1e-05 4e-10 ⋆ ⋆ ⋆ 0.6333854028 5e-06 ⋆ ⋆ ⋆ ⋆ ⋆ 0.6333857942

COS 2e-02 3e-03 1e-04 3e-06 ⋆ ⋆ 1e-02 4e-03 8e-05 5e-06 2e-10 ⋆

SINC 0.80 1e-02 1e-05 5e-10 ⋆ ⋆ ⋆ 0.7238690896 5e-06 ⋆ ⋆ ⋆ ⋆ ⋆ 0.7238695094

COS 2e-02 3e-03 1e-04 3e-06 1e-10 ⋆ 1e-02 4e-03 7e-05 5e-06 2e-10 ⋆

SINC 0.90 1e-02 1e-05 4e-10 ⋆ ⋆ ⋆ 0.8143527799 5e-06 ⋆ ⋆ ⋆ ⋆ ⋆ 0.8143532263

COS 1e-02 3e-03 1e-04 3e-06 1e-10 ⋆ 1e-02 4e-03 7e-05 5e-06 2e-10 ⋆

SINC 1.00 9e-03 1e-05 4e-10 ⋆ ⋆ ⋆ 0.9048364731 5e-06 ⋆ ⋆ ⋆ ⋆ ⋆ 0.9048369446

COS 1e-02 4e-03 1e-04 3e-06 ⋆ ⋆ 1e-02 4e-03 6e-05 5e-06 2e-10 ⋆

SINC 1.10 9e-03 1e-05 4e-10 ⋆ ⋆ ⋆ 0.9953201687 5e-06 ⋆ ⋆ ⋆ ⋆ ⋆ 0.9953206642

COS 1e-02 4e-03 1e-04 3e-06 1e-10 ⋆ 1e-02 4e-03 5e-05 5e-06 2e-10 ⋆

SINC 1.20 8e-03 1e-05 3e-10 ⋆ ⋆ ⋆ 1.0858038665 5e-06 ⋆ ⋆ ⋆ ⋆ ⋆ 1.0858043849

COS 1e-02 4e-03 1e-04 3e-06 1e-10 ⋆ 9e-03 4e-03 5e-05 5e-06 2e-10 ⋆

SINC 1.30 8e-03 9e-06 4e-10 ⋆ ⋆ ⋆ 1.1762875661 5e-06 ⋆ ⋆ ⋆ ⋆ ⋆ 1.1762881065

COS 1e-02 4e-03 1e-04 3e-06 2e-10 ⋆ 9e-03 4e-03 4e-05 5e-06 2e-10 ⋆

SINC 1.40 8e-03 9e-06 3e-10 ⋆ ⋆ ⋆ 1.2667712674 5e-06 ⋆ ⋆ ⋆ ⋆ ⋆ 1.2667718289

COS 1e-02 4e-03 1e-04 3e-06 2e-10 ⋆ 9e-03 4e-03 4e-05 5e-06 2e-10 ⋆

This is extremely convenient for calibration purposes thanks to the reduced dimensionality

of the problem. We will consequently work under this last specification throughout the rest

of the paper, thus placing ourselves in the same setting of El Euch et al. (2019). Indeed

our final point with the rHeston model will be to show that the SINC approach is a very

efficient solution for calibration. This will be the content of the following section.

The forward variance curve is a state variable in the model and it also enters the CF of the

asset log-price (see El Euch and Rosenbaum (2018) for further details):

φ(a, t) = E
[
exp

{
ia log

(
St

S0

)}]
= exp

(∫ t

0

Dαh(a, t− s)ξ0(s)ds
)
,

where α = H+ 1
2
, h(a, t) is the unique continuous solution of the fractional Riccati equation

Dαh(a, t) = −1

2
a(a+ i) + iaρνh(a, t) +

ν2

2
h2(a, t), I1−αh(a, 0) = 0, (17)

and Dα, I1−α denote the Riemann-Liouville fractional derivative and fractional integral of
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Table 7: Relative errors over PV and CoN put options for SINC and COS at different values of NF with

the CGMY process. Stars (⋆) mean that the price fully conforms with the benchmark (up to the number of

digits of the benchmark itself), straight lines denote relative errors that are larger than 100%. [Y = 1.98,

T = 0.01, Xc = 24.9357]

PV put CoN put

NF NF

K 16 32 48 64 96 128 benchmark 16 32 48 64 96 128 benchmark

SINC 0.60 4e-02 5e-05 ⋆ ⋆ ⋆ ⋆ 0.1359287091 2e-06 ⋆ ⋆ ⋆ ⋆ ⋆ 0.2916287066

COS 2e-01 2e-02 6e-04 1e-05 ⋆ ⋆ 9e-03 1e-03 9e-05 2e-06 3e-10 ⋆

SINC 0.70 5e-02 2e-06 9e-10 ⋆ ⋆ ⋆ 0.1877507817 7e-06 ⋆ ⋆ ⋆ ⋆ ⋆ 0.3840967883

COS 2e-01 1e-02 4e-04 7e-06 6e-10 ⋆ 3e-02 4e-03 3e-04 7e-06 7e-11 ⋆

SINC 0.80 5e-02 3e-05 ⋆ ⋆ ⋆ ⋆ 0.2453606494 1e-05 ⋆ ⋆ ⋆ ⋆ ⋆ 0.4816538267

COS 1e-01 8e-03 2e-04 2e-06 ⋆ ⋆ 5e-02 8e-03 5e-04 1e-05 2e-10 ⋆

SINC 0.90 4e-02 4e-05 ⋆ ⋆ ⋆ ⋆ 0.3079042304 1e-05 ⋆ ⋆ ⋆ ⋆ ⋆ 0.5828557330

COS 8e-02 4e-03 5e-05 1e-06 ⋆ ⋆ 7e-02 1e-02 6e-04 1e-05 2e-10 ⋆

SINC 1.00 4e-02 3e-05 ⋆ ⋆ ⋆ ⋆ 0.3746672106 1e-05 ⋆ ⋆ ⋆ ⋆ ⋆ 0.6866524319

COS 5e-02 1e-03 8e-05 3e-06 ⋆ ⋆ 8e-02 1e-02 5e-04 1e-05 3e-11 ⋆

SINC 1.10 3e-02 3e-05 9e-11 ⋆ ⋆ ⋆ 0.4450537289 6e-06 ⋆ ⋆ ⋆ ⋆ ⋆ 0.7922765311

COS 3e-02 8e-04 2e-04 5e-06 1e-10 ⋆ 9e-02 1e-02 5e-04 7e-06 2e-10 ⋆

SINC 1.20 3e-02 2e-05 ⋆ ⋆ ⋆ ⋆ 0.5185661093 3e-06 ⋆ ⋆ ⋆ ⋆ ⋆ 0.8991643649

COS 1e-02 2e-03 2e-04 5e-06 5e-11 ⋆ 1e-01 1e-02 4e-04 3e-06 3e-10 ⋆

SINC 1.30 2e-02 9e-06 2e-10 ⋆ ⋆ ⋆ 0.5947873571 2e-07 ⋆ ⋆ ⋆ ⋆ ⋆ 1.0069001160

COS 1e-04 4e-03 3e-04 5e-06 ⋆ ⋆ 1e-01 1e-02 3e-04 1e-07 3e-10 ⋆

SINC 1.40 2e-02 1e-06 2e-10 ⋆ ⋆ ⋆ 0.6733666332 3e-06 ⋆ ⋆ ⋆ ⋆ ⋆ 1.1151760866

COS 1e-02 5e-03 3e-04 4e-06 ⋆ ⋆ 1e-01 1e-02 2e-04 3e-06 3e-10 ⋆

order α and 1− α, respectively 5.

Now, Equation (17) is a rough version of the Riccati ODE which emerges in the classical

Heston model with zero mean reversion. Here, the standard derivative is replaced by a frac-

tional one. However, such a small change has relevant implications. The rHeston Riccati

equation has no explicit solution and needs to be solved using numerical methods which

are not really plain. We are not discussing the general issue of an efficient computation of

the CF, which topic has been largely debated in the last few years (from a standard appli-
5The Riemann-Liouville fractional derivative of a function f is defined as

Dαf(t) =
1

Γ(1− α)

d
dt

∫ t

0

(t− s)−αf(s)ds α ∈ [0, 1),

provided that it exists. Similarly the fractional integral, provided that it exists, is given by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds α ∈ (0, 1].
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Table 8: Relative errors over PV and CoN put options for SINC and COS at different values of NF with

the CGMY process. Stars (⋆) mean that the price fully conforms with the benchmark (up to the number

of digits of the benchmark itself), straight lines denote relative errors that are larger than 100%. [Y = 0.5,

T = 1, Xc = 18.3512]

PV put CoN put

NF NF

K 16 32 64 128 256 512 benchmark 16 32 64 128 256 512 benchmark

SINC 0.60 5e-01 7e-01 2e-02 3e-05 ⋆ ⋆ 0.0083082000 5e-02 8e-04 8e-07 ⋆ ⋆ ⋆ 0.0453996882

COS 1e-01 1e-01 2e-03 2e-06 ⋆ 8e-01 5e-02 8e-04 8e-07 ⋆

SINC 0.70 2e-01 3e-03 9e-06 ⋆ ⋆ 0.0189241836 4e-02 2e-03 2e-06 ⋆ ⋆ ⋆ 0.0984380619

COS 3e-01 4e-02 2e-04 8e-07 ⋆ 5e-01 4e-02 2e-03 2e-06 ⋆

SINC 0.80 8e-01 6e-03 4e-03 6e-06 ⋆ ⋆ 0.0371703257 5e-02 1e-04 1e-06 2e-11 ⋆ ⋆ 0.1819799859

COS 4e-01 5e-03 6e-04 6e-07 ⋆ 6e-01 3e-01 5e-02 1e-04 1e-06 2e-11

SINC 0.90 5e-01 6e-02 1e-04 5e-06 ⋆ ⋆ 0.0648967583 3e-02 1e-03 3e-07 6e-11 ⋆ ⋆ 0.2956669642

COS 3e-01 2e-02 4e-05 5e-07 ⋆ 2e-01 1e-01 3e-02 1e-03 3e-07 6e-11

SINC 1.00 4e-01 6e-02 2e-03 3e-06 ⋆ ⋆ 0.1029669064 4e-03 2e-04 8e-07 3e-10 ⋆ ⋆ 0.4323807669

COS 9e-01 2e-01 2e-02 3e-04 3e-07 ⋆ 3e-02 2e-02 4e-03 2e-04 8e-07 3e-10

SINC 1.10 3e-01 5e-02 1e-03 4e-07 ⋆ ⋆ 0.1511107358 1e-02 5e-04 1e-06 ⋆ ⋆ ⋆ 0.5813874463

COS 6e-01 1e-01 1e-02 1e-04 6e-08 ⋆ 9e-02 5e-02 1e-02 5e-04 1e-06 ⋆

SINC 1.20 2e-01 3e-02 9e-05 2e-06 ⋆ ⋆ 0.2082023058 2e-02 5e-04 8e-07 3e-11 ⋆ ⋆ 0.7328465863

COS 4e-01 9e-02 4e-03 8e-05 1e-07 ⋆ 2e-01 8e-02 2e-02 5e-04 8e-07 3e-11

SINC 1.30 2e-01 2e-02 5e-04 5e-07 ⋆ ⋆ 0.2727258052 2e-02 5e-05 5e-07 ⋆ ⋆ ⋆ 0.8803504028

COS 3e-01 4e-02 2e-03 1e-04 1e-07 ⋆ 2e-01 1e-01 2e-02 5e-05 5e-07 ⋆

SINC 1.40 1e-01 4e-03 6e-04 1e-06 4e-11 ⋆ 0.3431572893 1e-02 3e-04 8e-07 3e-11 ⋆ ⋆ 1.0208938948

COS 2e-01 1e-02 4e-03 7e-05 4e-08 ⋆ 2e-01 1e-01 1e-02 3e-04 8e-07 3e-11

cation of the Adams scheme of Diethelm et al. (2004) to more problem-specific techniques

like the rational approximation of Gatheral and Radoicic (2019) and the hybrid method of

Callegaro et al. (2020)). We simply claim that, given any approximation to the CF, the

SINC is a very effective method to perform pricing and calibration. We will therefore stick

with the rational approximation to the CF of Gatheral and Radoicic (2019) to compute

the CF, and discuss our results within that setting. The interested reader is referred to the

original paper for a complete discussion about the approximation; in particular, Equations

(4.1) and (4.12)-(4.17) in Gatheral and Radoicic (2019) will do most of the job.

We use the following parameters for the experiments that follow

S0 = 1 r = 0 q = 0 T = {0.01, 1} H = 0.05 ν = 0.4 ρ = −0.65,

and assume the forward variance curve is flat at ξ0(·) = 0.0256.

Let us start with the typical example where expiration is in 1 year, i.e. T = 1. As we
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Table 9: Relative errors over PV and CoN put options for SINC and COS at different values of NF with

the CGMY process. Stars (⋆) mean that the price fully conforms with the benchmark (up to the number

of digits of the benchmark itself), straight lines denote relative errors that are larger than 100%. [Y = 0.5,

T = 0.01, Xc = 12.0723]

PV put CoN put

NF NF

K 256 512 1024 2048 4096 8192 benchmark 256 512 1024 2048 4096 8192 benchmark

SINC 0.60 8e-01 5e-01 0.0000223408 8e-01 2e-01 8e-02 3e-03 0.0001785593

COS 6e-01 1e-01 2e-02 3e-03 8e-01 2e-01

SINC 0.70 3e-01 7e-01 2e-01 0.0000799072 8e-02 2e-01 4e-02 5e-03 0.0006873067

COS 9e-02 4e-02 1e-02 3e-04 8e-02 2e-01

SINC 0.80 6e-01 7e-01 2e-01 1e-02 0.0002674771 3e-01 8e-01 3e-01 7e-02 4e-03 4e-03 0.0025728961

COS 6e-01 2e-01 8e-03 2e-03 6e-04 3e-01 8e-01 3e-01 7e-02

SINC 0.90 2e-01 6e-01 2e-01 6e-02 7e-03 0.0009262546 2e-01 5e-01 2e-01 4e-02 5e-03 2e-03 0.0110260134

COS 2e-01 2e-01 1e-01 5e-03 1e-03 3e-04 2e-01 5e-01 2e-01 4e-02

SINC 1.00 1e-01 8e-02 4e-02 2e-02 6e-03 2e-03 0.0060510208 1e-01 9e-02 8e-02 6e-02 3e-02 1e-02 0.4459496554

COS 5e-01 2e-01 6e-02 2e-02 5e-03 1e-01 1e-01 1e-01 9e-02 8e-02 6e-02

SINC 1.10 4e-02 2e-02 6e-03 2e-03 5e-04 2e-05 0.1004887993 2e-02 6e-03 2e-03 5e-04 2e-05 3e-05 1.0832677912

COS 1e-02 1e-03 9e-05 3e-05 2e-05 5e-06 8e-02 4e-02 2e-02 6e-03 2e-03 5e-04

SINC 1.20 2e-02 5e-03 6e-04 1e-03 3e-04 2e-05 0.1995452121 5e-03 6e-04 1e-03 3e-04 2e-05 2e-05 1.1929282653

COS 4e-03 1e-03 3e-04 7e-05 5e-06 1e-06 4e-02 2e-02 5e-03 6e-04 1e-03 3e-04

SINC 1.30 2e-03 6e-03 2e-03 7e-05 3e-04 6e-05 0.2991115246 6e-03 2e-03 7e-05 3e-04 6e-05 1e-05 1.2958046554

COS 3e-03 9e-04 5e-05 2e-05 7e-06 2e-07 2e-02 2e-03 6e-03 2e-03 7e-05 3e-04

SINC 1.40 1e-02 3e-03 1e-04 6e-04 2e-04 4e-05 0.3988490890 3e-03 1e-04 6e-04 2e-04 4e-05 4e-06 1.3969698655

COS 3e-03 2e-04 8e-05 2e-05 4e-07 2e-07 3e-03 1e-02 3e-03 1e-04 6e-04 2e-04

always did throughout this section, we report convergence results for PV and digital put

options (AoN in this case) in Table 10. We have often observed a gap in the performances

of the SINC and the COS method when dealing with PV options and we have learnt that

the gap gets larger when moving to their digital components. This time it is not different.

Therefore, it would be the case that we try to understand where such a behavior comes

from and we refer to the following Figure (2) in doing so 6.

The idea behind these charts is that we take our benchmarks as a reference, compute

prices with the two methods by increasing NF of one unit per time and stop when we have

reached satisfactory accuracy (say 8 digits) on both CoN and AoN puts. Not surprisingly,

then, the SINC is shown to meet the target for much lower NF , and the oscillations on

the digital options last longer on the rhs than the lhs of the figure. Also, digital options

are less stable than PV puts, for both the methods, but the composition of CoN and AoN
6We only focus on options which are struck at K = 0.80 but stress that the pattern does not depend

on the moneyness (as one can guess from Table 10).
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Table 10: Relative errors over PV and AoN put options for SINC and COS at different values of NF in the

rough Heston model. Stars (⋆) mean that the price fully conforms with the benchmark (up to the number

of digits of the benchmark itself), straight lines denote relative errors that are larger than 100%. [T = 1,

Xc = 18.9469]

PV put dig put

NF NF

K 256 512 768 1024 1536 2048 benchmark 256 512 768 1024 1536 2048 benchmark

SINC 0.60 2e-02 6e-03 2e-05 2e-06 ⋆ ⋆ 0.003190745 4e-03 2e-06 ⋆ ⋆ ⋆ ⋆ 0.0105749538

COS 8e-02 6e-03 3e-04 3e-05 1e-06 ⋆ 2e-01 2e-02 1e-02 2e-03 2e-05 9e-07

SINC 0.70 4e-02 3e-03 6e-05 3e-07 ⋆ ⋆ 0.006322036 2e-03 2e-07 ⋆ ⋆ ⋆ ⋆ 0.0226378550

COS 6e-02 4e-03 1e-05 6e-05 3e-07 ⋆ 9e-02 3e-02 1e-02 1e-03 4e-05 3e-08

SINC 0.80 1e-02 1e-03 3e-05 2e-07 ⋆ ⋆ 0.011948775 2e-03 5e-07 ⋆ ⋆ ⋆ ⋆ 0.0477997904

COS 5e-02 4e-03 4e-04 1e-05 9e-07 ⋆ 1e-01 3e-03 5e-03 1e-03 2e-05 4e-07

SINC 0.90 3e-02 1e-03 2e-05 4e-07 ⋆ ⋆ 0.022432028 1e-03 5e-07 ⋆ ⋆ ⋆ ⋆ 0.1081020775

COS 4e-02 2e-03 3e-04 3e-05 6e-07 ⋆ 2e-01 3e-02 6e-03 1e-03 2e-05 4e-07

SINC 1.00 2e-03 4e-04 8e-06 1e-07 ⋆ ⋆ 0.045518977 7e-04 3e-07 ⋆ ⋆ ⋆ ⋆ 0.3222614106

COS 2e-02 2e-03 4e-04 3e-05 9e-07 ⋆ 1e-01 2e-02 2e-04 6e-04 7e-06 3e-07

SINC 1.10 3e-03 7e-05 5e-06 9e-08 ⋆ ⋆ 0.108597244 3e-04 1e-08 ⋆ ⋆ ⋆ ⋆ 0.8378414609

COS 1e-03 1e-03 1e-04 6e-06 3e-07 2e-10 6e-02 3e-03 1e-03 3e-04 6e-06 4e-09

SINC 1.20 3e-03 8e-05 1e-06 3e-10 ⋆ ⋆ 0.202190574 3e-05 4e-08 ⋆ ⋆ ⋆ ⋆ 0.9673515242

COS 5e-03 5e-04 7e-05 9e-06 2e-07 ⋆ 3e-02 4e-03 5e-04 5e-05 4e-07 4e-08

SINC 1.30 3e-03 8e-05 2e-06 3e-08 ⋆ ⋆ 0.300785493 8e-05 3e-08 ⋆ ⋆ ⋆ ⋆ 0.9898679762

COS 4e-03 2e-04 3e-05 3e-06 5e-08 ⋆ 1e-02 4e-03 4e-04 1e-04 2e-06 4e-08

SINC 1.40 2e-03 7e-05 2e-06 3e-08 ⋆ ⋆ 0.400341035 7e-05 2e-08 ⋆ ⋆ ⋆ ⋆ 0.9960163357

COS 1e-03 8e-05 1e-05 2e-06 3e-08 ⋆ 2e-02 3e-03 6e-04 9e-05 2e-06 3e-08

Figure 2: Convergence of the SINC (lhs) and the COS (rhs) method. Red (dashed), blue (dot-dashed),

and black (bold) lines are the CoN, AoN, and put options, respectively. Light blue horizontal lines denote

the benchmarks. T = 1 and K = 0.80.
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options introduces cancellations that are beneficial to the COS much more than they are to

the SINC. This, in fact, explains PV put prices within the COS to finally catch up the SINC.
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Moreover, we also consider the challenging case where T = 0.01. If this seems too short,

it is still something one may encounter during the calibration process, and it goes in the

direction of pricing the weekly options. We consequently produce Table 11 and accompany

it by Figure (3) (where we study the case K = 0.80 in more details).

Table 11: Relative errors over PV and AoN put options for SINC and COS at different values of NF in

the rough Heston model. Stars (⋆) mean that the price fully conforms with the benchmark (up to the

number of digits of the benchmark itself), straight lines denote relative errors that are larger than 100%.

[T = 0.01, Xc = 2.7074]

PV put AoN put

NF NF

K 256 512 768 1024 1536 2048 benchmark 256 512 768 1024 1536 2048 benchmark

SINC 0.60 6e-01 ⋆ 0.0000000002 1e-02 ⋆ ⋆ ⋆ 0.0000000046

COS ⋆

SINC 0.70 ⋆ ⋆ 0.0000000086 3e-01 1e-04 ⋆ ⋆ ⋆ 0.0000002286

COS 1e-01 ⋆ 2e-01

SINC 0.80 8e-01 4e-03 ⋆ ⋆ 0.0000005625 8e-04 7e-06 ⋆ ⋆ ⋆ 0.0000188150

COS 5e-01 5e-02 2e-03 ⋆ 9e-02 7e-04

SINC 0.90 7e-01 2e-01 2e-03 6e-04 ⋆ ⋆ 0.0000422546 5e-02 1e-04 2e-07 ⋆ ⋆ ⋆ 0.0016079673

COS 4e-01 1e-01 1e-02 8e-04 1e-04 ⋆ 2e-01 1e-01 4e-02 7e-04 1e-04

SINC 1.00 4e-03 2e-03 1e-05 5e-06 ⋆ ⋆ 0.0050767335 1e-03 4e-06 7e-09 ⋆ ⋆ ⋆ 0.3546252030

COS 4e-02 3e-03 1e-03 2e-04 6e-06 3e-07 2e-01 4e-02 2e-03 1e-03 1e-04 4e-06

SINC 1.10 6e-05 1e-04 5e-07 3e-07 1e-09 ⋆ 0.1000001857 1e-04 3e-07 5e-10 ⋆ ⋆ ⋆ 0.9999913370

COS 5e-04 7e-05 8e-06 4e-07 7e-08 1e-09 8e-03 8e-05 3e-04 1e-04 1e-06 3e-07

SINC 1.20 6e-04 9e-06 3e-06 1e-07 ⋆ ⋆ 0.2000000119 1e-05 1e-07 1e-10 ⋆ ⋆ ⋆ 0.9999996919

COS 2e-04 2e-05 4e-07 5e-07 7e-09 2e-10 2e-03 8e-04 2e-04 1e-05 3e-06 2e-07

SINC 1.30 4e-04 9e-06 2e-06 9e-08 ⋆ ⋆ 0.3000000020 8e-06 1e-07 1e-10 ⋆ ⋆ ⋆ 0.9999999577

COS 4e-05 7e-06 1e-06 3e-07 5e-09 4e-10 4e-03 5e-04 4e-05 1e-05 2e-06 1e-07

SINC 1.40 3e-04 8e-06 2e-06 7e-08 ⋆ ⋆ 0.4000000005 8e-06 7e-08 6e-11 ⋆ ⋆ ⋆ 0.9999999902

COS 6e-05 4e-06 3e-07 2e-07 4e-09 3e-10 2e-03 4e-04 2e-04 1e-05 2e-06 1e-07

One difference with respect to the case T = 1 that one can immediately spot is that digital

options (and PV, as a consequence) tend to oscillate more with very short maturities. For

example, when NF = 256 neither SINC nor COS provide meaningful values when the op-

tion is out-of-the-money. Again, this is a consequence of Fact 3 that we have listed. Figure

(4) reports the PDFs for visual aid.

While this concludes our analysis for the convergence of the SINC approach, one last

comment is in order about Fact 2. We have seen that convenient selection of the bounds

for the integration range guarantees (more or less) fast convergence to the "true" option
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Figure 3: Convergence of the SINC (lhs) and the COS (rhs) method. Red (dashed), blue (dot-dashed),

and black (bold) lines are the CoN, AoN, and put options, respectively. Light blue horizontal lines denote

the benchmarks. T = 0.01 and K = 0.80.
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Figure 4: PDF of the asset log-price under the rHeston model for T = 1 (lhs) and T = 0.01 (rhs).

Parameters: H = 0.05, ν = 0.40, ρ = −0.65.
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price, and this is a strong empirical indication as not to worry about the contribution of

error terms ϵ2 and ϵ3 (whose numerical characterization would critically depend on the

particular model at hand). This very conforting practical regularity that we observe for

all the models we have considered is sometimes violated by the rHeston model: when the

expiration is long enough it is in fact true that the agreement between high precision SINC

and COS candidates is only ensured to reach 8/9 decimal digits. One way to fix this issue

is to multiply the computed Xc by some factor, which fact suffices to impute the cause of
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such a little lack of accuracy to ϵ3 (recall that the magnitude of ϵ2 only depends on N).

Then, by the definition of ϵ3 we know that it associates with the replacement of the CF of

the truncated density with the CF of the complete one, thus suggesting some little issue

with the numerical approximation of the solution to the fractional Riccati equation which

should be investigated more carefully.

5 Accuracy and Efficiency of FFT-SINC

If our earlier comparison with the COS method depicts the SINC as a very accurate solu-

tion for Fourier pricing and (often times) it shows improved convergence with respect to the

cosine expansion, one may be obviously interested in testing the FFT version of subsection

2.1 against standard techniques of the same type. Availability of an FFT method is crucial

for large scale problems such as calibration – where several strikes have to be computed

simultaneously for any given maturity – and this is the main reason why Carr-Madan tradi-

tional technique or (a naive discretization of) Lewis formula are often preferred to the COS,

for such practical purposes: at the end of the day, some lack of accuracy due to interpola-

tion error may be an acceptable price to pay for the N log(N) computational complexity

of the FFT algorithm. We therefore challenge FFT-SINC againts such methodologies in

the attempt to show that it requires much lower NF to reach satisfactory accuracy on the

implied volatilities. In case this is achieved, then we may well regard FFT-SINC as a

benchmark method in terms of efficiency as well.

Before we proceed in this direction we slightly elaborate on Lewis formula so as to clarify

what we mean by a naive discretization. The reader will recognize Equation (18) as the

price of a PV call option under Lewis (2000):

C(S,K, T ) = S −
√
SK

π

∫ +∞

0

ℜ
[
e−iukϕT

(
u− i

2

)]
du

u2 + 1
4

. (18)

We are assuming zero interest rate and dividend yield here and denote ϕT (·) the CF of the

asset log-price. So, once a proper bound umax has been defined for the integral above, and
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according to the strike grid

Kv = ekv , kv = −b+ γv v = 0, . . . , N − 1 b =
Nγ

2
γ =

2π

Nη
η =

umax

N − 1

one can discretize Equation (18) as

C(S,Kv, T ) ≈ S −
√
SKv

π

N−1∑
j=0

′ℜ
[
eiujbe−i 2π

N
jvϕT

(
uj −

i

2

)]
η

u2
j +

1
4

, uj = ηj (19)

where
∑ ′ indicates that the first term in the sum is multiplied by 1

2
. Simpson weights may

be used as well (this is the suggestion from Carr and Madan (1999), for example), but we

do not see any improvement when this is done.

This very much resembles the approach by Carr and Madan (1999) in many respects and

both are easily generalized to the frFFT if needed. The paper by Chourdakis (2005) pro-

vides the details for the implementation.

For the purposes of comparison, we now get back to the rough Heston model and price the

same volatility surfaces as in El Euch et al. (2019). We maintain the forward variance form

that we have reported in the previous section and make the forward variance curve flat

for simplicity7. We use suitable parameters in pricing, invert for the implied volatility and

report the lowest NF that we need to make the average absolute error on the volatilities of

the order 10−6, over each smile. Then, the idea is that this will establish a hierarchy of the

different methods.

As this will not appear in our study, benchmark prices are computed via high-precision

COS; implied volatilities are calculated on those benchmarks and absolute differences ref-

erenced to them.

7In a concrete situation the standard strategy is to estimate the forward variance curve as a difference on

the variance swap curve. The fair value of a variance swap is computed using the methodologies explained

in Fukasawa (2012) and an iteration procedure is subsequently performed to match model and market

at-the-money volatilities through shifting and scaling.
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We have already noticed that the SINC approach requires a suitable truncation range for

the PDF of the asset log-price to be calculated: we do so by the cutting procedure that we

have explained and repeat the same exercise for every maturity in the volatility surface.

This has a precise meaning within the SINC but it still may be (indirectly) linked to the

choice of the upper limit of integration umax with Carr-Madan method and Lewis formula.

We focus on the latter, here.

The periodicity of the sum (19) approximating the Lewis integral may in fact be linked to

the choice of Xc for the SINC and exploited to choose the step size in the discretization

grid η. However, since Lewis formula does not leverage the bounded support of the PDF as

the SINC does, one should allow for an extra degree of freedom and accept the following

definition

η =
1

2Xcβ

where β is to be optimally chosen so as to minimize the average distance over the surface

between Lewis price and the benchmark. We stress that the choice for β depends on NF

and is to be repeated each time this is changed.

The exact same procedure holds true for Carr-Madan method but in general the optimal

β’s will be different. Moreover, it is important to stress that the dumping parameter is also

to be chosen for Carr-Madan. As a precise rule to fix it does not exist, we proceed by test-

ing several values. The best performance we experience corresponds to the case αCM = 0.4.

The relation between NF and umax (and αCM) is not clearly understood in Lewis and Carr-

Madan method, and no theoretical or heuristic argument is available to properly select the

upper limit of integration, making it difficult to blindly trust those approaches. In this

regard, having a straightforward interpretation for Xc in the SINC and a direct link with

the option price approximation error should also be very much appreciated.

Coming to our numerical experiments, we have two volatility surfaces to be priced. The
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first one is for the S&P500 as of August 14, 2013 and it consists of 19 expirations from

a couple of days to about 2.5 years, for a total 1291 strike-expiration pairs. Calibrated

parameters in El Euch et al. (2019) are given as:

H = 0.1216 ν = 0.2910 ρ = −0.6714.

With these numbers we compute put option prices for the entire surface based on all of

FFT methods above. We also advocate the frFFT versions for a complete overview of the

results, that we quote in Table 12. We report the lowest NF to reach the required accuracy

per smile described in the previous paragraph.

The computed Xc vector for the SINC is available on GitHub8, and the β’s that connect

them to the upper limit of integration umax in Lewis (2000) and Carr and Madan (1999)

methods are also reported in Table 12.

Table 12: NF values and β’s for average absolute errors on the implied volatilities to be at most 10−6 over

each smile. SINC, Lewis and Carr-Madan methods are investigated in both the FFT and frFFT versions.

Fractional parameter ϵ is chosen ϵ = 0.15 for SINC, ϵ = 0.02 for the others. [S&P500 index as of August

14, 2013 – assumption: forward variance curve flat at 0.0320]

FFT frFFT

SINC Lewis Carr-Madan SINC Lewis Carr-Madan

NF 8192 65536 ♦ • 512 4096 16384

β 1.600 4.000 2.200 5.500

One immediately observes that FFT-SINC meets the target with relatively small NF , and

it is actually true that more precise volatilities can be easily calculated by just increas-

ing it. On the other hand, Lewis formula and Carr-Madan method experience difficulties

which are unknown to the SINC. Specifically, a naive discretization of Lewis integral fails

to guarantee the desired accuracy on the volatilities for very short maturities (as the black

diamond indicates) and Carr-Madan method does not go further than an average error of
8https://github.com/fabioBaschetti/SINC-method. This also contains the surfaces that we use and all

the codes one needs to reproduce our results.
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the order 10−5, even at high NF (this is seen in a bullet point in the table). Such issues are

eventually solved resorting to the fractional FFT. Lewis formula now requires NF = 4096

evaluations of the CF for each smile and Carr-Madan method also reaches the target. In

any case the SINC still proves to be largely superior, with NF = 512 evaluations only. The

fractional parameter (ϵ) restricting the domain of the conjugate variable is made to be as

small as one can, compatibly with the strike grid from the surface. The precise meaning of

ϵ is more directly understood in Section G of the Appendix.

Similar patterns are found when we move to May 19, 2017. This second surface counts

3352 strike-expiration pairs, which are distributed over 35 maturities to cover basically the

same period as before. We now use the parameters from Section 4.4

H = 0.0500 ν = 0.4000 ρ = −0.6500

and also conserve a flat forward variance curve (at ξ0(t) = 0.0256). While Table 13 shows

larger values of NF for all methods, thereby spotting a more complicated volatility surface,

the relations between SINC and its competitors are unchanged. This corroborates our

claims about the superior performance of the SINC.

Table 13: NF values and β’s for average absolute errors on the implied volatilities to be at most 10−6 over

each smile. SINC, Lewis and Carr-Madan methods are investigated in both the FFT and frFFT versions.

Fractional parameter ϵ is chosen ϵ = 0.15 for SINC, ϵ = 0.02 for the others. [S&P500 index as of May 19,

2017 – assumption: forward variance curve flat at 0.0256]

FFT frFFT

SINC Lewis Carr-Madan SINC Lewis Carr-Madan

NF 16384 65536 ♦ • 2048 8192 16384

β 1.000 2.500 1.170 3.168
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6 Conclusions

The paper investigates the SINC approach when pricing PV options. SINC is shown to

be superior to well-known benchmark methodologies. At variance with COS, it allows for

an immediate extension to the FFT form. This is essential in any calibration exercise.

Prompted by our results, we claim that SINC is a promising approach, regarding both the

precision it achieves and its numerical efficiency. The numbers we produce in Sections 4 and

5 leave little space for different interpretations, they cover enough models to support the

claim that the method is flexible enough to deal with jump-diffusion as well as rough Heston

models, with the obvious alert (as it is for all Fourier-based techniques) that it can only be

applied when the CF of the asset log-price is known either in analytic or semi-analytic form.

The idea behind SINC is that one first writes put options as a linear combination of digital

Asset-or-Nothing and Cash-or-Nothing options. The expectation defining their values is a

convolution between the density of the asset log-return and the payoff function. Then, the

convolution theorem for Fourier transforms guarantees that each price can be expressed as

the integral over a shifted CF. By approximating the CF of the true density with the CF

of a truncated PDF, one can fully exploit the potential of the Shannon Sampling Theorem.

It allows to represent the CF at any point by means of a discrete set of frequencies and

express it as a Fourier-sinc expansion. The option price expressed in this form is the Modifed

Hilber trasform of the sinc function that can be computed in close form yielding simple

and compact formulas for digital and PV put option prices. Moreover, these formulas lend

themselves to fast computation by means of FFT. The paper provides a rigorous proof of the

convergence of the SINC formula to the correct option price when the support grows and the

number of Fourier frequencies increases. It also investigates several technical prescriptions,

such as the computation of truncation bounds by means of a cutting procedure based on

the CDF. Conversely, if one wants to follow Fang and Oosterlee (2009) and their cumulants-

based rule, we also provide a novel technique to compute them from the CF. The paper also

addresses the issue of the sensitivity of the option prices to the number NF of frequencies

sampled in the Fourier-space. Through an extensive pricing exercise, it assesses the superior
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performance of the SINC approach with respect to the competitor COS methodology. As

far as the FFT specification is concerned, the paper challenges SINC against the FFT

specification of the Lewis formula and the Carr-Madan approach. In both cases, SINC

proves to be accurate and robust to option’s specification.
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Appendix

A Inverse Fourier Transform of the θ Function

Let us look at the distribution δ− and let us recall the definition

δ−(κ) :=
i

2π

1

κ+ iε
.

In this appendix we want to show the following result:

θ(x) =

∫
dκ e−i2πκxδ−(κ). (20)

The term iε in the denominator of Equation (20) is nothing but the prescription to follow

whenever the integration path runs over a singular point. The integral (20) can be computed

remaining on the real axis but moving the singularity on the negative imaginary axis as

illustrated in Figure (5).

Figure 5: Possible integration path when integrand is exp(i2πκx)/(κ+ iε) .

Re(κ)

Im(κ)

oε

When x < 0 we can close the integration contour on the upper half plane as in Figure (6)

and since there is no pole inside the integration path the result is zero. On the other hand,

when x > 0 we can close the contour in the lower half plane as in Figure (7). Since we are

running clockwise the result will be:∫
dκ e−i2πκxδ−(κ) =

i

2π

∫
Γ

dκ e−i2πκx 1

κ+ iε

=
i

2π

[
−2πie−i2πκ(−iε)

]
= 1 x > 0.
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Figure 6: The integration path when integrand is exp(−i2πκx)/(κ+ iε) and x < 0.
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Figure 7: The integration path when integrand is exp(−i2πκx)/(κ+ iε) and x > 0.
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Im(κ)

o ε

Γ

B The Shannon Sampling Theorem

Let us consider a function c(x) whose domain is centered around the origin, i.e. c(x):

[−Xc, Xc] → R. Its Fourier transform is defined as

ĉ(κ) =

∫ Xc

−Xc

ei2πκxc(x)dx,

and the Fourier Inversion Theorem guarantees that the original function can be written

c(x) =
1

2Xc

∞∑
n=−∞

ĉ(κn)e−i2πκnx.

An immediate consequence is that

ĉ(κ) =
1

2Xc

∞∑
n=−∞

ĉ(κn)

∫ Xc

−Xc

ei2π(κ−κn)xdx =
1

2Xc

∞∑
n=−∞

ĉ(κn)
ei2π(κ−κn)Xc − e−i2π(κ−κn)Xc

i2π(κ− κn)

=
∞∑

n=−∞

ĉ(κn)
sin[2π(κ− κn)Xc]

2π(κ− κn)Xc

=
∞∑

n=−∞

ĉ(κn)sinc[2π(κ− κn)Xc] =
∞∑

n=−∞

ĉ(κn)sinc[2π(κn − κ)Xc],
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where we have used that the sinc is an even function, in the last equality.

Similarly, for a function z(x) defined over a bounded interval

Iz = {x : Xl ≤ x ≤ Xh},

we get back to the same case as above by properly shifting the function z, i.e.

c(x)
.
= z(x+Xm), Xm =

Xh +Xl

2
.

Hence, knowledge of this next fact

ĉ(κn) =

∫ Xc

−Xc

ei2πκnxc(x)dx = e−i2πκnXm

∫ Xh

Xl

ei2πκnxc(x−Xm)dx = e−i2πκnXm ẑ(κn)

makes it not difficult to show that

ẑ(κ) =

∫ Xh

Xl

ei2πκxz(x)dx =

∫ Xc

−Xc

ei2πκ(x+Xm)z(x+Xm)dx

= ei2πκXm

∫ Xc

−Xc

ei2πκxc(x)dx = ei2πκXm ĉ(κ)

=
∞∑

n=−∞

ei2πκXm ĉ(κn)sinc[2π(κn − κ)Xc]

=
∞∑

n=−∞

ei2π(κ−κn)Xm ẑ(κn)sinc[2π(κn − κ)Xc],

C The Modified Hilbert Transform

The object of our interest are integrals which take the following form∫
sinc[a(y − κ)]

κ+ iε
dκ =

2π

i
H−[sinc(ay)],

that is the Modified Hilbert transform already introduced in Definition 1.

Then

H−[sinc(ay)] = F̄
[
F [sinc(ax)]F [δ−(x)]

]
=

π

|a|

∫
e−i2πκyθ(−κ)1

[− |a|
2π

<κ<
|a|
2π

]
dκ =

π

|a|

∫ 0

− |a|
2π

e−i2πκydκ
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=
1

−2iy|a|
(1− eiy|a|),

where we make use of the fact that the Fourier transform of the sinc function complies to

F [sinc(ax)] =
∫

ei2πκx
sin(ax)

ax
dx =

∫
ei2πκx

sin(ax)

ax+ aiε
dx

=
π

a

∫
ei2πκx

eiax − e−iax

2πi(x+ iε)
dx =

π

a

[
θ

(
κ+

a

2π

)
− θ

(
κ− a

2π

)]
=

π

|a|
1
[− |a|

2π
<κ<

|a|
2π

]
.

This is indeed justified by the fact that the sinc function is regular in the origin, so that

we can shift the pole everywhere we want on the imaginary axis (and change the contour

accordingly) without affecting the integral.

We consequently conclude that our target integral admits solutions of an exponential type∫
sinc[a(y − κ)]

κ+ iε
dκ =

π

y|a|
(1− eiy|a|).

Choosing a = 2πXc and y = κn finally proves the desired result of Equation (8).

D An Explicit Formulation for the CoN Put Price

This section derives an explicit formulation of the CoN put price, in terms of sin and cos

functions multiplying real and imaginary parts of the Fourier transform f̂ . So, if we denote

f̂ †(·) the complex conjugate of the Fourier transform f̂(·), we immediately have

E[1{sT<k}] ≃
i

2π

N/2∑
n=−N/2

e−i2πkκn f̂(κn)

[
− iπ1n=0 +

1− (−1)n

n
1n̸=0

]

=
1

2
+

i

2π

N/2∑
n=1

(1− (−1)n)

n

[
e−i2πkκn f̂(κn)− ei2πkκn f̂ †(κn)

]
,

which can be rewritten as

=
1

2
+

i

π

N/4∑
n=1

1

2n− 1

[
e−i2πkκ2n−1 f̂(κ2n−1)− ei2πkκ2n−1 f̂ †(κ2n−1)

]
.

Properly rearranging terms based on Euler’s formula, we obtain

E[1{sT<k}] ≃
1

2
− 2

π

N/4∑
n=1

1

2n− 1

[
cos(2πkκ2n−1)ℑ

[
f̂(κ2n−1)

]
+
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− sin(2πkκ2n−1)ℜ
[
f̂(κ2n−1)

]]
.

E Numerical Moments of q-th Order

The computation of the moments of a distribution requires to manage integrals which are

not always ensured to admit a closed form solution. Nevertheless, the knowledge of the

CF allows to evaluate them numerically. This fact is of crucial importance if one wants

to truncate the PDF according to the cumulants-based rule of Fang and Oosterlee (2009)

but should be clearly recognized to have a much wider scope. That is why we suppress

dependence on sT and talk about a random variable X defined over the support [−Xc, Xc],

in this section.

Let us first recall the next fundamental relation between the q-th order moment of X and

its CF ϕX :

E[Xq] = (i2π)−q dq

dκq
ϕX(κ)

∣∣∣∣
κ=0

then, if we apply the Shannon Sampling Theorem

= (i2π)−q

∞∑
n=−∞

ϕX(κn)
dq

dκq
sinc(2π(κn − κ)Xc)

∣∣∣∣
κ=0

and perform a simple change of variable, we have

= (iXc)
q

∞∑
n=−∞

ϕX(κn)
dq

dtq
sinc(t)

∣∣∣∣
t=nπ

. (21)

Furthermore, a power series expansion of the sinc function, i.e.

sinc(t) =
∞∑
n=0

(−1)n
t2n

(2n+ 1)!

is readily obtained given the corresponding expansion for the sin function, and this clearly

justifies a number of properties. Among them we have the following:
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odd derivatives are such that

d2q+1

dt2q+1
sinc(t)

∣∣∣∣
t=0

= 0

by parity of the sinc function

• terms of the following type

d2q+1

dt2q+1
sinc(t)

∣∣∣∣
t=nπ

are odd with respect to n

•

even derivatives are such that

d2q

dt2q
sinc(t)

∣∣∣∣
t=0

=
(−1)q

2q + 1

by the theory of Taylor series

• terms of the following type

d2q

dt2q
sinc(t)

∣∣∣∣
t=nπ

are even with respect to n

•

These properties play a fundamental role when specifying Equation (21) for some given q.

We report the explicit formulation of the first few moments next:

m1 = E[X] = −2Xc

∞∑
n=1

ℑ
[
ϕX(κn)

](−1)n

nπ
,

m2 = E[X2] =
X2

c

3
+ 4X2

c

∞∑
n=1

ℜ
[
ϕX(κn)

](−1)n

(nπ)2
,

m3 = E[X3] = −2X3
c

∞∑
n=1

ℑ
[
ϕX(κn)

][(−1)n

nπ

(
1− 6

(nπ)2

)]
,

m4 = E[X4] =
X4

c

5
+ 8X4

c

∞∑
n=1

ℜ
[
ϕX(κn)

][(−1)n

(nπ)2

(
1− 6

(nπ)2

)]
.

F Error Analysis (proof)

The overall error ϵ is equal to the sum ϵ1 + ϵ2 + ϵ3 and its norm can be bounded as

|ϵ| ≤ ϵ1 + |ϵ2|+ |ϵ3| .

Arguing in the same way as in the COS paper, ϵ1 can be made arbitrarily small by choosing

a sufficiently high value for Xc. As far as ϵ2 is concerned, it is clear from Equation (7) that

it corresponds to the remainder of a series converging to E[1{sT<k}1{−Xc≤sT≤Xc}]. Then,
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when N increases, ϵ2 goes to zero 9.

Concerning ϵ3, one has

|ϵ3| ≤ 1

π

N/4∑
n=−N/4

1

|2n− 1|

∣∣∣f1{−Xc≤sT≤Xc}

∧
(κ2n−1)− f̂(κ2n−1)

∣∣∣ .
To bound the last quantity, we can proceed following two strategies, which are based upon

different assumptions. We first recall that

f̂(κ2n−1)− f1{−Xc≤sT≤Xc}

∧
(κ2n−1) =

∫
R\[−Xc,Xc]

f(sT )ei2πκ2n−1sT dsT .

To ensure convergence of AoN and PV call prices, for sT >> 1 the PDF f(sT ) has to satisfy

f(sT ) ≤ Ce−βsT ,

with C > 0 and β > 1. For sT << −1, we assume the following condition – typically

satisfied by commonly used stochastic models for log-returns

f(sT ) ≤ CeγsT ,

with γ > 0. Then,

|ϵ3| ≤
1

π

N/4∑
n=−N/4

1

|2n− 1|

∣∣∣∣∫
R\[−Xc,Xc]

f(sT )ei2πκ2n−1sT dsT

∣∣∣∣
≤ 1

π

N/4∑
n=−N/4

1

|2n− 1|

∫
R\[−Xc,Xc]

f(sT )dsT ≤ 2

π

N/4∑
n=0

1

2n+ 1

∫
R\[−Xc,Xc]

f(sT )dsT

≤ 1

π
(2 + log(N/2 + 1))

∫
R\[−Xc,Xc]

f(sT )dsT

≤ C

π
(2 + log(N/2 + 1))

(
1

γ
e−γXc +

1

β
e−βXc

)
.

Naming δ = min(β, γ) > 0, we obtain

|ϵ3| ≤
C

π
(2 + log(N/2 + 1))e−δXc .

9It is possible to derive an analytic bound for ϵ2, assuming some mild regularity for the PDF. The

reasoning is similar to that in Fang and Oosterlee (2009).

46



To conclude, it is sufficient to choose Xc proportional to log(N/2 + 1). Practically, this

assumption amounts to choose L proportional to log(N/2+1) in (6). Then, ϵ3 can be made

arbitrarily small by increasing N .

An alternative strategy allows to reach the same conclusion, without assuming the depen-

dence of Xc on N , but under a different hypothesis about the asymptotic behavior of the

density f(sT ). We can split the integral
∫
R\[−Xc,Xc]

f(sT )ei2πκ2n−1sT dsT in two terms, I1 and

I2, with

I1(κ2n−1) =

∫ −Xc

−∞
f(sT )ei2πκ2n−1sT dsT and I2(κ2n−1) =

∫ +∞

Xc

f(sT )ei2πκ2n−1sT dsT ,

so that

|ϵ3| ≤
1

π

N/4∑
n=1

1

2n− 1
|I1(κ2n−1) + I2(κ2n−1)|+

1

π

N/4∑
n=1

1

2n+ 1

∣∣∣I†1(κ2n+1) + I†2(κ2n+1)
∣∣∣ . (22)

Let us consider I2(κ2n−1) and define the variable y via the relation

sT = y +
Xc

2n− 1
.

Then,

I2(κ2n−1) = −
∫ +∞

Xc−Xc/(2n−1)

ei2πκ2n−1yf

(
y +

Xc

2n− 1

)
dy

= −
∫ +∞

Xc

ei2πκ2n−1yf

(
y +

Xc

2n− 1

)
dy −

∫ Xc

Xc−Xc/(2n−1)

ei2πκ2n−1yf

(
y +

Xc

2n− 1

)
dy .

It follows that

I2(κ2n−1) =
1

2

∫ +∞

Xc

ei2πκ2n−1y

(
f (y)− f

(
y +

Xc

2n− 1

))
dy

−1

2

∫ Xc

Xc−Xc/(2n−1)

ei2πκ2n−1yf

(
y +

Xc

2n− 1

)
dy

so

|I2(κ2n−1)| ≤
1

2

∫ +∞

Xc

∣∣∣∣f (y)− f

(
y +

Xc

2n− 1

)∣∣∣∣ dy +
1

2

∫ Xc

Xc−Xc/(2n−1)

f

(
y +

Xc

2n− 1

)
dy .

We now assume that f(sT ) is monotonically convergent to zero for sufficiently large |sT |.

The argument of the modulus is positive, so

|I2(κ2n−1)| ≤ 1

2

∫ Xc(1+ 1
2n−1)

Xc

f(sT ) dsT +
1

2

∫ Xc(1+ 1
2n−1)

Xc

f(sT ) dsT ≤ Xc

2n− 1
f(Xc) .
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Defining sT = y −Xc/(2n− 1), it readily follows that

|I1(κ2n−1)| ≤
Xc

2n− 1
f(−Xc) .

Similar results hold for I†1(κ2n+1) and I†2(κ2n+1).

From Equation (22), we obtain

|ϵ3| ≤ Xc

π
(f(Xc) + f(−Xc))

N/4∑
n=1

(
1

(2n− 1)2
+

1

(2n+ 1)2

)

and, based on the following observation10

∞∑
n=1

(
1

(2n− 1)2
+

1

(2n+ 1)2

)
=

π2

4
− 1

we write

|ϵ3| ≤
Xc

π
(f(Xc) + f(−Xc))Υ,

where Υ is a moderate constant (certainly smaller than π2/4− 1).

To conclude, it is sufficient to assume the existence of the first moment of sT . Indeed, this

implies that f(sT ) = o(1/sT ) for |sT | → +∞. Then, Xcf(Xc) and Xcf(−Xc) can be made

arbitrarily small by choosing Xc sufficiently large.

G The Fractional Fourier Transform

Throughout this paper we had to compute double infinite sums of the type:

p(x) =
1

2Xc

+∞∑
n=−∞

p̂ne
−i2πknx 0 ≤ x ≤ 2Xc, with kn =

n

2Xc

The pN approximation to p(x) is given by:

pN(x) =
1

2Xc

N/2∑
n=−N/2

p̂ne
−i2πknx.

10We thank an anonymous referee for pointing this out.

48



If we confine our interest to the discrete set of values:

xm = m
2Xc

N
, −N/2 ≤ m < N/2

we get:

pN(xm) =
1

2Xc

N−1∑
n=0

q̂ne
−i2πnm/N

qn =


pn 0 ≤ n < N/2,

pN/2 + p−N/2 n = N/2,

pn−N N/2 < n < N.

and this sum is what we compute with the FFT. The fractional Fourier transform computes:

pN(x̂m) =
1

2Xc

N/2−1∑
n=−N/2

p̂ne
−i2πnmϵ/N .

where x̂m = mϵδx.
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