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DOI: 10.5427/jsing.2020.21d

JET BUNDLES ON GORENSTEIN CURVES AND APPLICATIONS

LETTERIO GATTO AND ANDREA T. RICOLFI

Dedicated to Professor Goo Ishikawa, on the occasion of his 60th birthday

Abstract. In the last twenty years a number of papers appeared aiming to construct locally
free replacements of the sheaf of principal parts for families of Gorenstein curves. The main

goal of this survey is to present to the widest possible mathematical audience a catalogue of

such constructions, discussing the related literature and reporting on a few applications to
classical problems in Enumerative Algebraic Geometry.

0. Introduction

The purpose of this expository paper is to present a catalogue of locally free replacements of
the sheaves of principal parts for (families of) Gorenstein curves. In the smooth category, locally
free sheaves of principal parts are better known as jet bundles, understood as those locally free
sheaves whose transition functions reflect the transformation rules of the partial derivatives of a
local section under a change of local coordinates (more details in Section 1.4). Being a natural
globalisation of the fundamental notion of Taylor expansion of a function in a neighborhood of
a point, jet bundles are ubiquitous in Mathematics. They proved powerful tools for the study
of deformation theories within a wide variety of mathematical situations and have a number of
purely algebraic incarnations: besides the aforementioned principal parts of a quasi-coherent
sheaf [28] we should mention, for instance, the theory of arc spaces on algebraic varieties [10, 40],
introduced by Nash in [44] to deal with resolutions of singular loci of singular varieties.

The issue we want to cope with in this survey is that sheaves of principal parts of vector
bundles defined on a singular variety X are not locally free. Roughly speaking, the reason is that
the analytic construction carried out in the smooth category, based on gluing local expressions
of sections together with their partial derivatives, up to a given order, is no longer available.
Indeed, around singular points there are no local parameters with respect to which one can take
derivatives. This is yet another way of saying that the sheaf Ω1

X of sections of the cotangent
bundle is not locally free at the singular points.

If C is a projective reduced singular curve, it is desirable, in many interesting situations, to
dispose of a notion of global derivative of a regular section. If the singularities of C are mild,
that is, if they are Gorenstein, locally free substitutes of the classical principal parts can be
constructed by exploiting a natural derivation OC → ωC , taking values in the dualising sheaf,
which by the Gorenstein condition is an invertible sheaf. This allows one to mimic the usual
procedure adopted in the smooth category. Related constructions have recently been reconsidered
by A. Patel and A. Swaminathan in [46], under the name of sheaves of invincible parts, motivated
by the classical problem of counting hyperflexes in one-parameter families of plane curves. Besides
loc. cit., locally free jets on Gorenstein curves have been investigated by a number of authors,
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starting about twenty years ago [35, 36, 34, 18, 25]. The reader can consult [19, 26, 20], and the
references therein, for several applications.

0.1. The role of jet bundles in Algebraic Geometry. The importance of jet extensions
of line bundles in algebraic geometry emerges from their ability to provide the proper flexible
framework where to formulate and solve elementary but classical enumerative questions, such as:

(i) How many flexes does a plane curve possess?
(ii) How many members in a generic pencil of plane curves have a hyperflex?
(iii) How many fibres in a one-parameter family of curves of genus 3 are hyperelliptic?
(iv) What is the class, in the rational Picard group of Mg, the moduli space of stable curves

of genus g, of the closure of the locus of smooth curves possessing a special Weierstrass
point?

We will touch upon each of these problems in this survey report.

0.2. Wronskian sections over Gorenstein curves. A theory of ramification points of linear
systems on Gorenstein curves was proposed in 1984 by C. Widland in his Ph.D. thesis, also
exposed in a number of joint papers with Robert F. Lax [53, 52]. The dualising sheaf ωC on an

integral curve C, first defined by Rosenlicht [49] via residues on the normalisation C̃, can be
realised as the sheaf of regular differentials on C, as explained by Serre in [50, Ch. 4 § 3]. There
is a natural map Ω1

C → ωC allowing one to define a derivation d: OC → ωC , by composition
with the universal derivation OC → Ω1

C . Differentiating local regular functions by means of
this composed differential allowed Widland [51] and Lax to define a global Wronskian section
associated to a linear system on a Gorenstein curve C, coinciding with the classical one for
smooth curves.

As a quick illustration of how such construction works, consider a plane curve ι : C ↪→ P2 of
degree d, carrying the degree d line bundle OC(1) = ι∗OP2(1). The Wronskian by Widland and
Lax vanishes along all the flexes of C, but also at singular points. The total order of vanishing
equals the number of flexes on a smooth curve of the same degree. For example, if C is an
irreducible nodal plane cubic, the Wronskian associated to the bundle OC(1) would vanish at
three smooth flexes, but also at the node with multiplicity 6. If C were cuspidal, the Wronskian
would vanish at the unique smooth flex, and at the cusp with multiplicity 8. In all cases the
“total number” (which is 9) of inflection points is conserved.

In sum, the Wronskian defined by Widland and Lax is able to recover the classical Plücker
formula counting smooth flexes on singular curves, but within a framework that is particularly
suited to deal with degeneration problems, provided one learns how to extend it to families. For
families of smooth curves, as pointed out by Laksov [33], the Wronskian section of a relative line
bundle should be thought of as the determinant of a map from the pullback of the Hodge bundle
to a jet bundle. The theory by Widland and Lax, however, was lacking a suitable notion of jet
bundles for Gorenstein curves, as Ragni Piene [47] remarked in her AMS review of [53]:

“This (Widland and Lax) Wronskian is a section of the line bundle

L⊗s ⊗ ω⊗(s−1)s/2
C ,

where s ..= dimH0(X,L). They define the section locally and show that it
patches. (In the classical case in which X is smooth, one easily defines the
Wronskian globally, by using the (s − 1)st sheaf of principal parts on X of L.
To do this in the present case, one would need a generalisation of these sheaves,
where ω plays the role of Ω1

X . Such a generalisation is known only for s = 2.)”



52 L. GATTO AND A. T. RICOLFI

These generalisations are nowadays available in the aforementioned references. In the last two
sections we will present a few applications and open questions arising from the use of such an
extended notion of jet bundles for one-parameter families of stable curves.

0.3. Overview of contents. In the first section we describe the construction of principal
parts, jet bundles (with a glimpse on an abstract construction by Laksov and Thorup) and
invincible parts by Patel and Swaminathan. In Section 2 we describe two applications of locally
free replacements: the enumeration of hyperflexes in families of plane curves via automatic
degeneracies [46], and the determination of the class of the stable hyperelliptic locus in genus 3
[19]. In Section 3 we define ramification points of linear systems on smooth curves; we introduce
the classical Wronskian section attached to a linear system and state the associated Brill–Segre
formula. In Section 4 we describe a generalisation to Gorenstein curves, due to Lax and Widland.
In Section 5 we review the main ingredients needed in the computation of the class in Pic(Mg)⊗Q
of the locus of curves possessing a special Weierstrass point as in [26]. In Section 6 we propose a
few examples and some natural but still open questions.

Conventions. All schemes are noetherian and defined over C. Any scheme X comes equipped
with a sheaf of C-algebras OX . If U ⊂ X is an open subset in the Zariski (resp. analytic) topology,
then OX(U) is the ring of regular (resp. holomorphic) functions on U . A curve is a reduced,
purely 1-dimensional scheme of finite type over C. We denote by KC the canonical line bundle of
a smooth curve C. In the presence of singularities, we will write ωC for the dualising sheaf. We
denote by Ω1

π the sheaf of relative Kähler differentials on a (flat) family of curves π : X → S.

Acknowledgment. Both authors are grateful to the anonymous referee for carefully reading
the paper and for providing valuable comments, that definitely improved the shape of the paper in
terms of clarity and readability. The first author is also indebted to Professor Stanis law (Staszek)
Janeczko for encouraging support. The second author wishes to thank Max-Planck Institut für
Mathematik for support.

This paper is dedicated to Professor Goo Ishikawa, on the occasion of the celebration (Goo
’60) of his sixtieth birthday, wishing him many more years of new beautiful theorems.

1. Principal parts, jets and invincible parts

This first section is devoted to recall the definition and properties of the sheaves of principal
parts and to introduce a couple of related constructions: jets of vector bundles, especially those
of rank 1, and the Patel–Swaminathan invincible parts. We start by giving the general idea of
jets, which blends their analytic construction with the algebraic presence of the dualising sheaf.

These constructions lead to the technique of locally free replacements of principal parts
for families of curves with at worst Gorenstein singularities. They are intended to deal with
degenerations of ramification points of linear systems in one parameter families of curves of fixed
arithmetic genus. In fact, in Section 2 we shall give two applications to see the theory in action:
the count of hyperflexes in a pencil, as performed in [46], and the determination of the class of
the stable hyperelliptic locus in genus 3, as worked out by Esteves [19].

1.1. The idea of jets. Our guiding idea is the following ansatz, which we shall implement below
only in the case of algebraic curves. Let X be a (not necessarily smooth) complex algebraic
variety of dimension r. If X is not smooth, the sheaf of differentials Ω1

X is not locally free. Even
in this case it is possible to construct, in a purely algebraic fashion, the sheaf of principal parts
(see Section 1.3) attached to any quasi-coherent sheaf M . If X is singular, this sheaf is not
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locally free (even if M is locally free), and this makes harder its use even to solve elementary
enumerative problems. But suppose one has an OX -module homomorphism φ : Ω1

X →M , where
M is a locally free sheaf of rank r = dimX. This induces a derivation d: OX →M obtained by
composing φ with the universal derivation OX → Ω1

X attached to X. Let P ∈ X be a point and
U an open neighborhood of P trivialising M , that is,

M (U) = O(U) ·m1 ⊕ · · · ⊕ O(U) ·mr.

Such a trivialisation allows one to define partial derivatives with respect to the generators
m1, . . . ,mr ∈ M (U). In the smooth case, and taking M = Ω1

X , these generators can just
be taken to be the differentials of a local system of parameters around P . Following an idea
essentially due to Lax and Widland, one defines for each f ∈ O(U) its “partial derivatives”
dif ∈ O(U) by means of the relation

d f =
r∑
i=1

dif ·mi

in M (U). Iterating this process in the obvious way, one can define higher order partial derivatives
(with respect to m1, . . . ,mr), and thus jet bundles, precisely as in the smooth category.

1.2. Dualising sheaves. This technical section can be skipped at a first reading. It will be
applied below in special cases only, but it is important because it puts the subject in the
perspective of new applications.

Any proper flat family of curves π : X → S has a dualising complex ω·π
..= π!OS . Here π! is

the right adjoint to Rπ∗. The cohomology sheaf of the dualising complex

ωπ = h−1(ω·π),

in degree −1 (where 1 is the relative dimension of π) is called the relative dualising sheaf of the
family. Its formation commutes with arbitrary base change; for instance, we have

ωπ
∣∣
Xs

= ωXs

for Xs = π−1(s) a fibre of π.

Example 1.1. Let π : X → S be a local complete intersection morphism. This means that there
is a factorisation π : X → Y → S with i : X → Y a regular immersion and Y → S a smooth
morphism. Then one can compute the dualising sheaf of π as

(1.1) ωπ = det(I /I 2)∨ ⊗OX i
∗ det Ω1

Y/S ,

where I ⊂ OY is the ideal sheaf of X in Y . Every curve in a smooth surface is a local complete
intersection scheme. For instance, if i : C ↪→ P2 is a plane curve of degree d, the ideal sheaf of i
is OP2(−d) and so (1.1) yields

ωC = OC(d)⊗OC i
∗ det Ω1

P2 = OC(d− 3).

Definition 1.2. A (proper) C-scheme X is said to be Cohen–Macaulay if its dualising complex
ω·X is quasi-isomorphic to a sheaf. When this sheaf, necessarily isomorphic to ωX , is invertible,
X is called Gorenstein.

For a proper flat morphism π : X → S, the relative dualising sheaf ωπ is invertible precisely
when π has Gorenstein fibres.
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1.3. Principal parts. Sheaves of principal parts were introduced in [28, Ch. 16.3]. Let π : X → S
be a morphism of schemes, I the ideal sheaf of the diagonal ∆: X → X ×S X and denote by
Ω1
π = ∆∗(I /I 2) the sheaf of relative Kähler differentials. Let p and q denote the projections

X ×S X → X, and denote by ∆k ⊂ X ×S X the closed subscheme defined by I k+1, for every
k ≥ 0. Then, for every quasi-coherent OX -module E, the sheaf

P kπ (E) ..= p∗ (q∗E ⊗ O∆k
)

is quasi-coherent and is called the k-th sheaf of principal parts associated to the pair (π,E).
When S = Spec C we simply write P k(E) instead of P kπ (E).

Proposition 1.3. Let π : X → S be a smooth morphism, E a quasi-coherent OX -module.
The sheaves of principal parts fit into right exact sequences

E ⊗ Symk Ω1
π → P kπ (E)→ P k−1

π (E)→ 0

for every k ≥ 1. If E is locally free then the sequence is exact on the left, and P kπ (E) is locally
free for all k ≥ 0.

Proof. Consider the short exact sequence

0→ I k/I k+1 → O∆k
→ O∆k−1

→ 0.

Tensoring it with q∗E gives an exact sequence

(1.2) q∗E ⊗I k/I k+1 ε−→ q∗E ⊗ O∆k
→ q∗E ⊗ O∆k−1

→ 0.

The sheaf q∗E ⊗I k/I k+1 is supported on the diagonal ∆0 ⊂ X ×S X, and the same is true for
its quotient Q ..= (q∗E ⊗I k/I k+1)/ ker ε ⊂ q∗E ⊗O∆k

. Since p|∆0 is an isomorphism, we have
Rip∗F = 0 for all i > 0 and all sheaves F supported on ∆0. Therefore, applying p∗ to (1.2) we
obtain

(1.3) p∗
(
q∗E ⊗I k/I k+1

)
→ P kπ (E)→ P k−1

π (E)→ R1p∗Q = 0,

which is the required exact sequence, since

p∗
(
q∗E ⊗I k/I k+1

)
= ∆∗

(
q∗E ⊗I k/I k+1

)
= ∆∗q∗E ⊗∆∗

(
I k/I k+1

)
= E ⊗∆∗ Symk

(
I /I 2

)
= E ⊗ Symk Ω1

π.

We used smoothness of π to ensure that I is locally generated by a regular sequence. This
allowed us to make the identification I k/I k+1 = Symk(I /I 2) in the third equality above.
If E is locally free, then (1.2) is exact on the left, and the same is true for (1.3), so that local
freeness of P kπ (E) follows by induction exploiting the resulting short exact sequence and the base
case provided by P 0

π (E) = E. �

Example 1.4. Suppose π : X → S is smooth. Then there is a splitting P 1
π (OX) = OX ⊕ Ω1

π.
For an arbitrary vector bundle E, the splitting of the first order bundle of principal parts usually
fails even when S is a point. In fact, in this case, the splitting is equivalent to the vanishing of
the Atiyah class of E, which by definition is the extension class

A(E) ∈ Ext1
X(E,E ⊗ Ω1

X)

attached to the short exact sequence of Proposition 1.3 taken with k = 1. But the vanishing of
the Atiyah class is known to be equivalent to the existence of a holomorphic connection on E.
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Note that for every quasi-coherent sheaf E on X one has a canonical map

(1.4) ν : π∗π∗E → p∗q
∗E → P kπ (E),

where the first one is an isomorphism when π is flat, and the second one comes from applying
p∗(q

∗E ⊗−) to the surjection O � O∆k
.

Example 1.5. To illustrate the classical way of dealing with bundles of principal parts, we now
compute the number δ of singular fibres in a general pencil of hypersurfaces of degree d in Pn.
This calculation will be used in Subsection 2.1.2. The number δ is nothing but the degree of the
discriminant hypersurface in the space of degree d forms on Pn, which in turn is the degree of

cn(P 1(OPn(d))) ∈ An(Pn).

By Proposition 1.3, the bundle P 1(OPn(d)) is an extension of OPn(d) by Ω1
Pn(d). The Euler

sequence
0→ Ω1

Pn → OPn(−1)n+1 → OPn → 0

twisted by OPn(d) says that the same is true for the bundle OPn(d− 1)n+1. Then the Whitney
sum formula implies that

c(P 1(OPn(d))) = c(OPn(d− 1)n+1) = (1 + (d− 1)ζ)n+1,

where ζ ∈ A1(Pn) is the hyperplane class. Computing the n-th Chern class gives

(1.5) δ = (n+ 1) · (d− 1)n.

1.4. Jet bundles. Let π : X → S be a quasi-projective local complete intersection morphism of
constant relative dimension d ≥ 0. Let Ω1

π be the sheaf of relative differentials, and Ωdπ its d-th
exterior power. Then there exists a canonical morphism Ωdπ → ωπ restricting to the identity over
the smooth locus of π (see Corollary 4.13 in [39, Section 6.4] for a proof). The construction goes
as follows. Let X → Y → S be a factorisation of π, with i : X → Y a regular immersion with
ideal I ⊂ OY and Y → S smooth. The exact sequence

I /I 2 → i∗Ω1
Y/S → Ω1

π → 0

induces a canonical map
µY : Ωdπ ⊗ det I /I 2 → i∗ det Ω1

Y/S .

According to (1.1), tensoring µY with the dual of det I /I 2 gives a morphism Ωdπ → ωπ. It is
not difficult to see that this map does not depend on the choice of the factorisation.

A natural morphism of sheaves Ω1
π → ωπ, restricting to the identity on the smooth locus of π,

exists for arbitrary flat families π : (X,x0)→ (S, 0) of germs of reduced curves [1, Prop. 4.2.1].
More generally, the results in [17, Sec. 4.4] show that a natural morphism

(1.6) φ : Ωdπ → ωπ,

can be constructed for every flat morphism π : X → S of relative dimension d over a reduced
base S (and over a field of characteristic zero).

We now apply this construction to flat families π : X → S of Gorenstein curves (so for d = 1),
taking advantage of the invertibility of ωπ in order to construct locally free jets. When dealing
with such families, we will therefore assume to be working over a reduced base, which will
be enough for all our applications. Composing φ with the exterior derivative homomorphism
d: OX → Ω1

π attached to the family gives an OS-linear derivation

(1.7) dπ : OX → ωπ.

For every integer k ≥ 0 and line bundle L on X, there exists a vector bundle

(1.8) Jkπ (L)
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of rank k + 1 on X, called the k-th jet extension of L relative to the family π. We refer to [26,
Section 2] for its detailed construction in the case of stable curves. The same construction (as
well as the proof of Proposition 1.7 below) extends to any family of Gorenstein curves as one
only uses the map Ω1

π → ωπ and the invertibility of the relative dualising sheaf. The bundle (1.8)
depends on the derivation dπ (although we do not emphasise it in the notation), and formalises
the idea of taking derivatives (with respect to dπ) of sections of L along the fibres of π. It can be
thought of as a holomorphic, or algebraic, analogue of the C∞ bundle of coefficients of the Taylor
expansion of the smooth functions on a differentiable manifold. When S = Spec C we simply
write Jk(L).

We now sketch the construction of the jet bundle (1.8). Suppose we have an open covering
U = {Uα } of X, trivialising ωπ and L at the same time, with generators εα ∈ ωπ(Uα) and
ψα ∈ L(Uα) respectively over the ring of functions on Uα. Then for every non constant global
section λ ∈ H0(X,L) we can write

λ|Uα = ρα · ψα ∈ L(Uα)

for certain functions ρα ∈ OX(Uα). Define operators Di
α : OUα → OUα inductively for i ≥ 0, by

letting D0
α(ρα) = ρα and by the relation

dπ(Di−1
α (ρα)) = Di

α(ρα) · εα.
It is then an easy technical step to show that over the intersection Uαβ = Uα ∩ Uβ , the (k + 1)-
vectors (Di

α(ρα))T and (Di
β(ρβ))T differ by a matrix Mαβ ∈ GLk+1(OUαβ ), and that in fact the

data {Mαβ} define a 1-cocycle with respect to U . The verification of this fact uses that dπ is a
derivation. The upshot is that the vectors (Di

α(ρα)) glue to a global section

(1.9) Dkλ

of a well defined vector bundle Jkπ (L). Moreover, the bundle obtained comes with a natural
C-linear morphism

(1.10) δ : OX → Jkπ (L)

such that if Jkπ (L)|Uα is free with basis { εα,i : 0 ≤ i ≤ k }, then δ is defined on this open patch

by f 7→
∑k
i=0D

i
α(f) · εα,i.

Example 1.6. When S is a point, X is a smooth projective curve, L is the cotangent bundle
Ω1
X with the exterior derivative d: OX → Ω1

X , the C-linear map (1.10) reduces to the “Taylor
expansion” truncated at order k. More precisely, let U ⊂ X be an open subset (trivialising
ωX = Ω1

X) with local coordinate x. Then we can take ε = dx ∈ Ω1
X(U) as an OX(U)-linear

generator, and { dxi : 0 ≤ i ≤ k } can be taken as a basis of Jk(Ω1
X)|U . The restriction δ|U of

(1.10) then takes the form

f 7→
k∑
i=0

1

i!

∂if

∂xi
dxi,

where the denominator 1/i! is there for cosmetic reasons. The cocycle condition that the above
coefficients need to satisfy is equivalent to the chain rule for holomorphic functions.

Computations in intersection theory involving jet bundles often rely on the application of the
following key result.

Proposition 1.7 ([26, Prop. 2.5]). Let π : X → S be a flat family of Gorenstein curves. Then,
for every k ≥ 1 and line bundle L on X, there is an exact sequence of vector bundles

(1.11) 0→ L⊗ ω⊗kπ → Jkπ (L)→ Jk−1
π (L)→ 0.
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Lemma 1.8. Let π : X → S be a flat family of Gorenstein curves with smooth locus U ⊂ X,
let L be a line bundle on X, and fix an integer k ≥ 0. Then

Jkπ (L)
∣∣
U

= P kπ (L)
∣∣
U
.

Proof. The derivation dπ : OX → ωπ defined in (1.7) and used to define the k-jets restricts
to the universal derivation d: OU → Ω1

U/S over the smooth locus U . But jet bundles taken with

respect to the universal derivation agree with principal parts in the smooth case, as one can
verify directly from their construction; see also [35, Section 4.11] for a reference. �

1.4.1. The approach of Laksov and Thorup. Laksov and Thorup [35] generalised the construction
of (1.10) in the following sense. Given an S-scheme X and a quasi-coherent OX -module M
admitting an OS-linear derivation d: OX →M , they constructed for all k ≥ 0 an OS-algebra

J k = J kM ,d

over X, along with an algebra map δ : OX → J k generalising the one constructed in (1.10). The
sheaf J k is called the k-th algebra of jets. It is quasi-coherent, and of finite type whenever M is.
For every OX -module L , one can consider the OX -module

J k(L ) = J k ⊗OX L

of L -twisted jets. They fit into exact sequences

L ⊗M⊗k → J k(L )→ J k−1(L )→ 0,

that are left exact whenever M is S-flat. The construction carried out in [35] works over fields of
arbitrary characteristic and is completely intrinsic, in particular it avoids the technical step of
verifying the cocycle condition.

1.4.2. Arc spaces. The study of arc spaces (also called jet schemes) was initiated by Nash [44] in
the 60’s in the context of Singularity Theory. Arcs on algebraic varieties received a lot of attention
more recently since Kontsevich’s lecture [32]. See for instance the papers by Denef–Loeser [10, 9]
and Looijenga [40]. An arc of order n on a variety X based at point P is a morphism

α : Spec C[t]/tn+1 → X

sending the closed point to P . The reader may correctly think of it as the expression of a germ of
complex curve considered together with its first n derivatives. For instance if n = 1, one obtains
the classical notion of tangent space at a point. These maps form an algebraic variety Ln(X),
and the inverse limit L(X) = limLn(X) is the full arc space of X, an infinite type scheme whose
C-points correspond to morphisms Spec CJtK→ X. Kontsevich invented Motivic Integration in
order to prove that smooth birational Calabi–Yau manifolds have the same Hodge numbers; he
constructed a motivic measure on L(X), which can be thought of as the analogue of the p-adic
measure used earlier by Batyrev to show that smooth birational Calabi–Yau manifolds have
equal Betti numbers. Other remarkable notions introduced by Denef–Loeser are the motivic
Milnor fibre and the motivic vanishing cycle; the latter is the motivic incarnation of the perverse
sheaf of vanishing cycles attached to a regular (holomorphic) function U → C. This theory has a
wide variety of applications in Singularity Theory, but it has also proven successful in Algebraic
Geometry, for instance in the study of degenerations of abelian varieties via motivic zeta functions
[29].
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1.5. Invincible parts. An elegant approach to the problem of locally free replacements of
principal parts has been proposed by Patel and Swaminathan in their recent report [46]. Their
construction is formally more adherent to the purely algebraic definition of principal parts as
described in Section 1.3. To perform the construction they restrict to certain families of curves
according to the following:

Definition 1.9. Let π : X → S be a proper flat morphism of pure Gorenstein curves. Then π is
called an admissible family if the locus Γ ⊂ X over which π is not smooth has codimension at
least 2.

Let π : X → S be an admissible family with X and S smooth, irreducible varieties, and assume
dimS = 1. Let E be a vector bundle on the total space X. Patel and Swaminathan define the
k-th order sheaf of invincible parts associated to (π,E) as the double dual sheaf

P kπ (E)∨∨.

This intrinsic construction is related to the gluing procedure (giving rise to jets) described in
Section 1.4, via the following observation.

Proposition 1.10. Let π : X → S be an admissible family of Gorenstein curves, with X and
S smooth irreducible varieties and dimS = 1. Let L be a line bundle on X. Then the sheaf of
invincible parts P kπ (L)∨∨ agrees with the jet bundle Jkπ (L) of (1.8).

Proof. The vector bundle Jkπ (L) restricted to the smooth locus U = X \ Γ of π agrees with
P kπ (L)|U by Lemma 1.8. But by [46, Prop. 10], P kπ (L)∨∨ is the unique locally free sheaf with this
property. �

2. Two applications

2.1. Counting flexes via automatic degeneracies. In this section we report on one of the
main applications of the sheaves of invincible parts that motivated the research by Patel and
Swaminathan. In particular, we wish to describe the application of their theory of automatic
degeneracies to the enumeration of hyperflexes in general pencils of plane curves. A hyperflex

on a plane curve C ⊂ P2 is a point on the normalisation P ∈ C̃ such that for some line ` ⊂ P2

we have ordP (ν∗`) ≥ 4, where ν : C̃ → C is the normalisation map. The general plane curve
of degree d > 1 has no hyperflexes, but one expects to find a finite number of hyperflexes in a
pencil. One has the following classical result.

Proposition 2.1. In a general pencil of plane curves of degree d, exactly

6(d− 3)(3d− 2)

will have hyperflexes.

Remark 2.2. Note that this number vanishes for d = 3. This should be expected, for in a
general pencil of plane cubics all fibres are irreducible, but a cubic possessing a hyperflex is
necessarily reducible.

A proof of Proposition 2.1 via principal parts can be found in [16]. A different approach, via
relative Hilbert schemes, has been taken by Ran [48]. In [46], the authors apply their theory of
automatic degeneracies to give a new proof of Proposition 2.1. More precisely, after a suitable
Chern class calculation, which we review below in the language of jet bundles, the authors subtract
the individual contribution of each node in the pencil to get the desired answer. Let us note
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that it is extremely useful to have an explicit function (see Subsection 2.1.1 below) computing
the “correction term” one has to take into account while performing a Chern class/Porteous
calculation over a family of curves containing singular members.

2.1.1. Automatic degeneracies. Given a (proper, non-smooth) morphism of Gorenstein curves
X → S, the associated sheaves of principal parts are not locally free, but the jets constructed
out of the derivation (1.7) are locally free. To answer questions on the inflectionary behavior of
the family X → S, the classical strategy is to set up a suitable Porteous calculation and compute
the degree of the appropriate Chern classes of the jet bundles. However, inflection points are by
definition smooth points, and singularities in the fibres Xs tend to “attract” inflection points as
limits; so one has to excise the contribution to this Porteous calculation coming from the singular
points of the fibres. This problem was tackled in [46], where the authors propose a theoretical
solution, working nicely at least under certain assumptions. More precisely, the authors are able
to attach to any germ f ∈ CJx, yK of a plane curve singularity a function

AD(f) : N→ N, m 7→ ADm(f),

whose value at m ∈ N they call the m-th order automatic degeneracy associated to f . As
explained in [46, Remark 18], the function AD(f) is an analytic invariant of the germ f . We
refer the reader to [46, Section 5] for an algorithmic approach to the computation of the values
of this function.

Given a 1-parameter admissible family X → S of curves where the singularity f = 0 appears
in a fibre, the number ADm(f) is the correction term one has to take into account in the Porteous
calculation aimed at enumerating m-th order inflection points on X → S. The authors determine
this function in the nodal case by proving [46, Theorem 24] the formula

(2.1) ADm(xy) =

(
m+ 1

4

)
.

It remains an open problem to compute the function AD(f) for other singularities, although in
loc. cit. a few computations for a specific m are carried out, for instance

AD4
(
y2 − x3

)
= 10

for the cusp singularity.

2.1.2. The count of hyperflexes. Let X ⊂ P2 × P1 → P1 be a generic pencil of plane curves of
degree d. It can be realised explicitly as follows. Let us choose two general plane curves C1 and
C2 of degree d, the generators of the pencil. Their intersection will consist of d2 reduced points.
Blowing up these points gives

π : X ↪→ P2 × P1 → P1.

Consider the line bundle Ld = b∗OP2(d), where b : X → P2 is the blow up map. The number we
are after is ∫

X

c2(J3
π(Ld))−

(
5

4

)
· δ,

where δ = 3(d−1)2 is the number of nodes computed in (1.5) and the binomial coefficient computes
the automatic degeneracy of a node, using (2.1) with m = 4. This number is determined by the
Chern classes

η = c1(ωπ), ζ = c1(Ld).

Using the exact sequences of Proposition 1.7 we get

c2(J3
π(Ld)) = 11η2 + 18ηζ + 6ζ2.
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It is easy to see that ζ2 ∈ A2(X) has degree 1. Exploiting that E2 = −d2, one can check that η2

has degree 3d2 − 12d+ 9. Finally, ηζ has degree 2d− 3. The difference

11(3d2 − 12d+ 9) + 18(2d− 3) + 6− 5 · 3(d− 1)2 = 6(d− 3)(3d− 2)

computes the number of hyperflexes prescribed by Proposition 2.1.

2.2. The stable hyperelliptic locus in genus 3, after Esteves. In this section we will see
the sheaves of principal parts and the technique of locally free replacements in action to solve
a concrete problem. The results in this section hold over an algebraically closed field k of
characteristic different from 2. Consider the moduli space M3 of smooth, projective, connected
curves of genus 3. A hyperelliptic curve of genus 3 is a 2 : 1 branched covering of the projective
line with 8 ramification points.

Let H ⊂M3 be the divisor parametrising hyperelliptic curves, and let H be its closure in the
Deligne–Mumford moduli space M3 of stable curves. The vector space Pic(M3)⊗Q is generated
by the Hodge class λ (pulled back from M3), whereas Pic(M3)⊗Q is generated by λ, δ0 and δ1,
with δi denoting the boundary classes on M3. A proof of the following theorem, expressing the
classes [H] and [H] in terms of the above generators, can be found in [30].

Theorem 2.1. One has

(2.2) [H] = 9λ

and

(2.3) [H] = 9λ− δ0 − 3δ1.

Formula (2.2) also follows from Mumford’s relation [43, p. 314]. Below is a quick description
of how Esteves [19, Thm. 1] proves formula (2.3).

2.2.1. Smooth curves. Let π : C → S be a smooth family of genus 3 curves. We constructed
in (1.4) a natural map of vector bundles ν : π∗π∗Ω

1
π → P 1

π (Ω1
π) on C, where the source has

rank 3 and the target has rank 2. Assuming the general fibre is not hyperelliptic, it turns
out that the top degeneracy scheme D of ν (supported on points P such that ν|P is not
onto) has the expected codimension, namely 2. Then Porteous formula applies and gives
[D] = c2(P 1

π (Ω1
π)− π∗π∗Ω1

π) ∩ [C]. Pushing this identity down to S, and observing that there are
8 Weierstrass points on a hyperelliptic curve of genus 3, one gets, after a few calculations, the
relation 8hπ = 72λπ, proving the formula for [H].

2.2.2. Stable curves. Let now X→ S be a family of stable curves of genus 3, which for simplicity
we assume general from the start. This means S is smooth and 1-dimensional, the general fibre
of π is smooth and the finitely many singular fibres have only one singularity. One can see that
only two types of singularities can appear in the fibres: a uninodal irreducible curve Z ⊂ X, or a
reducible curve X∪N Y ⊂ X consisting of a genus 1 curve X meeting a genus 2 curve transversally
at the node N . It is also harmless to assume there is exactly one singular fibre of each type.

After replacing the sheaf of differentials Ω1
π with the (invertible) dualising sheaf ωπ, Esteves

obtains, via a certain pushout construction, a natural map of vector bundles

ν : π∗π∗ωπ → P 1
π (ωπ)→ F

where, as before, the source has rank 3 and the target has rank 2. Note that the middle sheaf,
the sheaf P 1

π (ωπ) of principal parts, is not locally free because of the presence of singularities.
However, by construction, the restriction of ν to the smooth locus recovers the old map ν from
the previous paragraph. Unfortunately, one cannot apply Porteous formula directly here, because
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this time the top degeneracy scheme of ν has the wrong dimension, as it contains the elliptic
component X.

The way out is to replace ωπ by its twist L = ωπ ⊗ OX(−X).1 Repeating the pushout
construction gives the diagram

0 L⊗ Ω1
π P 1

π (L) L 0

0 L⊗ ωπ F ′ L 0

←→

←→id⊗φ

←→

←→

←→

⇐⇐

←→

←→ ←→ ←→ ←→

where φ is as in (1.6). The map of vector bundles

ν′ : π∗π∗L→ P 1
π (L)→ F ′

has now top degeneracy scheme of the expected dimension. It can be characterised as follows.

Proposition 2.3 ([19, Prop. 2]). The top degeneracy scheme D′ of ν′ consists of:

(1) the 8 Weierstrass points of each smooth hyperelliptic fibre, each with multiplicity 1;
(2) the node of Z, with multiplicity 1;
(3) the node N = X ∩ Y , with multiplicity 2;
(4) the 3 points A ∈ X \ {N} such that 2A = 2N , each with multiplicity 1;
(5) the 6 Weierstrass points of Y , each with multiplicity 1.

The multiplicities tell us how much the points we do not want to count actually contribute.
Esteves then proves [19, Prop. 3] the crucial relation π∗[D

′] = 72λπ − 7δ0,π − 7δ1,π. Subtracting
the unwanted contributions (2) – (5) with the indicated multiplicities on both sides, one gets the
relation

8hπ = 72λπ − 8δ0,π − 24δ1,π,

thus proving the formula for [H] in Theorem 2.1.

3. Ramification points on Riemann surfaces

In order to make clear that, at least from the point of view of ramification points of linear
systems, Gorenstein curves almost behave as if they were smooth, it is probably useful to quickly
introduce the notion of ramification loci of linear systems in the classical case of compact Riemann
surfaces, which correspond, in the algebraic category, to smooth projective curves.

3.1. Ramification loci of Linear Systems. A linear system on a smooth curve C of genus g
is a pair (L, V ), where L is a line bundle and V ⊂ H0(C,L) is a linear subspace. If L has degree
d and dimV = r+ 1, one refers to (L, V ) as a grd on C. When V = H0(C,L) the linear system is
called complete. For instance the complete linear system attached to KC is the canonical linear
system. Every grd defines a rational map

ϕV : C 99K PV, P 7→ (v0(P ) : v1(P ) : · · · : vr(P )),

where (v0, . . . , vr) is a C-basis of V . The closure of the image of ϕV is a projective curve, not
necessarily smooth, of arithmetic genus g + δ where δ is a measure of the singularities of the
image, that may be also rather nasty. See Proposition 4.8 in the next section for the (local)
meaning of the number δ. The rational map ϕV turns into a morphism if (L, V ) has no base
point, that is, for all P ∈ C there is a section v ∈ V not vanishing at P . If moreover the map
separates points, in the sense that for all pairs P1, P2 ∈ C there is a section vanishing at Pi and

1A similar technique involving twisting by suitable divisors will be exploited in Section 5.2.
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not at Pj , then the map is an embedding and the image itself is smooth of the same geometric
genus as C. For most curves a basis (ω0, . . . , ωg−1) of H0(C,KC) is enough to embed C in Pg−1.
The curves for which the canonical morphism is not an embedding are called hyperelliptic. They
can be embedded in P3g−4 by means of a basis of K⊗2

C .

We now define what it means for a section v ∈ V \ 0 to vanish at a point P ∈ C to a given
order. This is a crucial concept in the theory of ramification (or inflectionary behavior) of linear
systems. Observe that, given a point P ∈ C, any section v ∈ V defines an element vP in the
stalk LP via the maps

V ⊂ H0(C,L)→ LP .

Definition 3.1. Let v ∈ V \ 0 be a section, P ∈ C a point. We define

ordP v ..= dimC LP /vP ∈ N

to be the order of vanishing of v at P .

Definition 3.2. Let (L, V ) be a grd. A point P ∈ C is said to be a ramification point of (L, V )
if there exists a section v ∈ V \ 0 such that ordP v ≥ r + 1. A ramification point of the canonical
linear system (KC , H

0(C,KC)) is called a Weierstrass point.

Example 3.3. Let ι : C ↪→ P2 be a smooth plane quartic. Then C has genus 3 and the complete
linear system attached to KC = ι∗OP2(1) is the linear system cut out by lines. Therefore the
Weierstrass points of C are precisely the flexes. It is known classically that there are 24 of them.
We take the opportunity here to recall that flexes of plane quartics are geometrically very relevant:
their configuration in the plane determines and is determined by the smooth quartic. See the
work of Pacini and Testa [45] for this exciting story.

Example 3.4. The g2
4 on P1 determined by

V = C · x0x
3
1 ⊕ C · x4

1 ⊕ C · x4
0 ∈ G(3, H0(OP1(4)))

defines the morphism ϕV : P1 → P2 given by

(x0 : x1) 7→ (x0x
3
1 : x4

1 : x4
0).

In the coordinates x, y and z on P2, the image of ϕV is the plane quartic curve x4−y3z = 0. The
curve possesses a unique triple point at P ..= (0 : 0 : 1) and a hyperflex at the point Q ..= (0 : 1 : 0),
as it is clear from the local equation x4 − z = 0 (the tangent is z = 0). An elementary Hessian
calculation shows that Q has multiplicity2 2 in the count of flexes of C. Then, by Example 3.3,
any reasonable theory of Weierstrass points on singular curves should assign the “weight” 22 to
the triple point P , in order to reach the total number of flexes of a quartic curve. See Example
4.11 for the same calculation in terms of the Wronskian (cf. also Remark 4.12 for the relationship
between the Hessian and the Wronskian at smooth points).

In fact, the curve C can be easily smoothed in a pencil

x4 − y3z + t · L(x, y)z3 = 0,

where L(x, y) = ax+ by is a general linear form. An easy check, based on the computation of the
Jacobian ideal, shows that the generic fibre of the pencil is a smooth quartic having a hyperflex
at the point (0 : 1 : 0). Then there must be exactly 22 smooth flexes that for t = 0 collapse at
the point P = (0 : 0 : 1). According to the theory of Widland and Lax, sketched in Section 4,
the triple point is a singular Weierstrass point of the curve, thought of as a Gorenstein curve of
arithmetic genus 3.

2We will soon interpret this multiplicity as ramification weight, see (3.2).
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3.2. Gap sequences and weights. Let P ∈ C be an arbitrary point, (L, V ) a linear system,
and assume 0 < r < d. For i ≥ 0, let us denote by

V (−iP ) ⊂ V
the subspace of sections vanishing at P with order at least i. Note that V (−(d+ 1)P ) = 0. If

dimV (−(i− 1)P ) > dimV (−iP ),

then i is called a gap of (L, V ) at P . It is immediate to check that in the descending filtration

(3.1) V ⊇ V (−P ) ⊇ V (−2P ) ⊇ · · · ⊇ V (−(r + 1)P ) ⊇ · · · ⊇ V (−dP ) ⊇ 0

there are exactly r + 1 = dimV gaps. Note that 1 is not a gap at P if and only if P is a base
point of V .

Definition 3.5. The gap sequence of (L, V ) at P ∈ C is the sequence

αL,V (P ) : α1 < α2 < · · · < αr+1

consisting of the gaps of (L, V ) at P , ordered increasingly.

For a generic point on C, the gap sequence is (1, 2, . . . , r + 1), meaning that the dimension
jumps in (3.1) occur as early as possible. Equivalent to the gap sequence is the vanishing sequence,
whose i-th term is αi − i. The ramification weight of (L, V ) at P is the sum

(3.2) wtL,V (P ) =
∑
i

(αi − i).

One may rephrase the condition that P is a ramification point for (L, V ) in the following equivalent
ways:

(i) V (−(r + 1)P ) 6= 0, that is, (r + 1)P is a special divisor on C;
(ii) the gap sequence of (L, V ) at P is not (1, 2, . . . , r + 1);
(iii) the vanishing sequence of (L, V ) at P is not (0, 0, . . . , 0);
(iv) the ramification weight wtL,V (P ) is strictly positive.

According to (i), P ∈ C is a Weierstrass point if and only if h0(KC(−gP )) > 0.

Definition 3.6. Weierstrass points of weight one are called normal, or simple. On a general
curve of genus at least 3 these are the only Weierstrass points to be found. Those of weight at
least two are usually called special (or exceptional) Weierstrass points.

The locus in Mg of curves possessing special Weierstrass points has been studied by Cukierman
and Diaz. We review the core computations in the subject in Section 5.

3.3. Total ramification weight and Brill–Segre formulas. The notion of ramification point
of a linear system (L, V ) recalled in Definition 3.2 relies on the notion of order of vanishing of a
section of L. This compact algebraic definition can be phrased also in the following way, which
was used for the first time by Laksov [33] to study ramification points of linear systems on curves
in arbitrary characteristic. There exists a map

(3.3) Dr : C × V → Jr(L), (P, v) 7→ Drv(P ),

where Drv ∈ H0(C, Jr(L)) is the section defined in (1.9), and whose vanishing at P is equivalent
to the condition ordP v ≥ r + 1 of Definition 3.2. The map Dr is a map of vector bundles of
the same rank r + 1, so it is locally represented by an (r + 1)× (r + 1) matrix. The condition
Drv(P ) = 0 then says that (3.3) drops rank at P . This in turn means that P is a zero of the
Wronskian section

WV
..= detDr ∈ H0

(
C,

r+1∧
Jr(L)

)
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attached to (L, V ). The total ramification weight of (L, V ), namely the total number of ramifica-
tion points (counted with multiplicities), is

wtV ..= deg

r+1∧
Jr(L) =

∑
P

wtL,V (P ).

It can be computed by means of the short exact sequence

0→ L⊗K⊗rC → Jr(L)→ Jr−1(L)→ 0,

reviewed in Proposition 1.7. By induction, one obtains a canonical identification

r+1∧
Jr(L) = L⊗r+1 ⊗Kr(r+1)/2

C .

Using that degKC = 2g − 2, one finds the Brill–Segre formula

(3.4) wtV = (r + 1)d+ (g − 1)r(r + 1)

attached to (L, V ). For instance, since h0(C,KC) = g, the number of Weierstrass points (counted
with multiplicities) is easily computed as

(3.5) wtKC = deg

g∧
Jg−1(KC) = (g − 1)g(g + 1).

For g = 3, (3.5) gives the 24 flexes on a plane quartic, as in Example 3.3.

4. Ramification points on Gorentein curves

The study of Weierstrass points on singular curves is mainly motivated by degeneration
problems. For instance it is a well known result of Diaz [13, Appendix 2, p. 60] that the node of
an irreducible uninodal curve of arithmetic genus g can be seen as a limit of g(g − 1) Weierstrass
points on nearby curves. In this section we review the Lax and Widland construction of the
Wronskian section attached to a linear system on a Gorenstein curve.

The key idea is to define derivatives of local regular functions in the extended sense sketched at
the beginning of Section 1. One exploits the natural map Ω1

C → ωC (see the references in Section
1.4 for its construction), where ωC is invertible by the Gorenstein condition. The dualising sheaf
is explicitly described by means of regular differentials on C. Thanks to this extended definition
of differential Widland and Lax are able to attach a Wronskian section to each linear system on
C, as we shall show in Section 4.2, after a few preliminaries aimed to reinterpret the Gorenstein
condition of Definition 1.2 in local analytic terms. In the last year some progress has been
done also in the direction of linear systems on non-Gorenstein curves, essentially thanks to the
investigations of R. Vidal-Martins. See e.g. [41] and references therein. As for Gorenstein curves
we should mention the clever way to deform monomial curves due to Contiero and Stöhr [2] to
compute dimension of moduli spaces of curves possessing a Weierstrass point with prescribed
numerical semigroup.

4.1. The analytic Gorenstein condition. Let C be a Cohen–Macaulay curve. Its dualising
sheaf ωC has the properties

(4.1) H0(C,OC) = H1(C,ωC)∨, H1(C,OC) = H0(C,ωC)∨.

Recall that g ..= pa(C) ..= h1(C,OC) is the arithmetic genus of C. For smooth curves we have
Ω1
C = ωC . But if C is singular, the sheaf Ω1

C is no longer locally free and it does not coincide
with ωC . The dualising sheaf itself may or may not be locally free: the curves for which it is are
the Gorenstein curves.
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Example 4.1. All local complete intersection curves are Gorenstein. This includes curves
embedded in smooth surfaces as well as the stable curves of Deligne–Mumford. Note that, by the
adjunction formula, a plane curve ι : C ↪→ P2 of degree d has canonical bundle ωC = ι∗OP2(d− 3),
clearly a line bundle. See also Example 1.1 for a relative, more general formula.

The dualising sheaf ωC of a reduced curve C was first defined by Rosenlicht [49] in terms of
residues on the normalisation of C. For a Gorenstein curve, this sheaf has a very simple local
description. In [50, Section IV.10], to which we refer the reader for further details, it is shown
that the stalk ωC,P is the module of regular differentials at P . We now recall an analytic criterion
allowing one to check local freeness of ωC .

Let ν : C̃ → C be the normalisation of an integral curve C, and let S ⊂ C be its singular locus.
The canonical morphism OC → ν∗OC̃ is injective, with quotient a finite length sheaf supported
on S. We denote by

(4.2) δP ..= dimC ÕC,P /OC,P

the fibre dimension of this finite sheaf at a point P ∈ C. Clearly δP > 0 if and only if P ∈ S.

This number is an analytic invariant of singularities [50, p. 59]. The sum
∑
P δP = pa(C)− pa(C̃)

is the number δ quickly mentioned in Section 3. Another local measure of singularities is the
conductor ideal.

Definition 4.2. Let B be the integral closure of an integral domain A. The conductor ideal of
A ⊂ B is the largest ideal I ⊂ A that is an ideal of B, that is, the set of elements a ∈ A such that
a ·B ⊂ A. Let C be an integral curve, P ∈ C a point. We denote by cP ⊂ OC,P the conductor

ideal of OC,P ⊂ ÕC,P . Define the number

nP ..= dimC ÕC,P /cP .

For instance if ÕC,P = OC,P then cP = ÕC,P and nP vanishes in this case. We wish to recall
the following characterisation.

Proposition 4.3 ([50, Proposition IV.7]). An integral projective curve C is Gorenstein if and
only if nP = 2δP for all P ∈ C.

In other words, the numerical condition nP = 2δP guarantees that the sheaf of regular
differentials is invertible at P .

Example 4.4. Let P be the origin (0, 0) of the affine cuspidal plane cubic y2 − x3 = 0. Then

OC,P = C[t2, t3](t2,t3). The normalisation is the local ring ÕC,P = C[t](t). In this case the

conductor is the localisation of the conductor of the subring C[t2, t3] ⊂ C[t]. Since

C[t2, t3] = C + Ct2 + Ct3 + t2C[t],

the conductor is the ideal (t2, t3), and its extension in ÕC,P is (t2). Then nP = dimC C[t]/t2 = 2,
and δP = dimC C[t]/C[t2, t3] = 1. Thus P is a Gorenstein singularity. Having this point as its
only singularity, the cuspidal curve is a Gorenstein curve of arithmetic genus 1.

Example 4.5. Let C be the complex rational curve defined by the parametric equations
X = t3, Y = t4, Z = t5. Then C is the spectrum (the set of prime ideals) of the ring C[t3, t4, t5].
Clearly the origin P = (0, 0, 0) of A3 is a singular point of C. One has that

OC,P = C[t3, t4, t5](t3,t4,t5)

is not a Gorenstein singularity: the conductor of C[t3, t4, t5](t3,t4,t5) ⊂ C[t](t) is t3C[t](t). Thus
nP = 3, an odd number, and C cannot be Gorenstein at P .
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4.2. The Wronskian section after Widland–Lax. We now explain the construction, due to
Widland and Lax, of the Wronskian attached to a linear system (L, V ) on a Gorenstein curve.
For simplicity we shall stick to the case of integral (reduced, as usual, and irreducible) curves
to avoid coping with linear systems possessing non zero sections identically vanishing along an
irreducible component. For example if X ∪ Y is a uninodal reducible curve of arithmetic genus g
the space of global sections of the dualising sheaf has dimension g but there are non-zero sections
vanishing identically along X (or on Y ). However if one considers a linear system on a reducible
curve that is not degenerate on any component, then everything goes through just as in the
irreducible case.

If P ∈ C is a singular point on an (integral) curve C, the maximal ideal mP ⊂ OC,P is not
principal and so there is no local parameter whose differential would be able to freely generate
Ω1
C,P . But we can still consider the natural map Ω1

C → ωC (cf. Section 1.4) and its composition

d: OC → ωC

with the universal derivation OC → Ω1
C .

Let now (L, V ) be a grd on the (Gorenstein) curve C, and let P be any point (smooth or not).
Let (v0, v1, . . . , vr) be a basis of V . Then vi,P , the image of vi in the stalk LP , is of the form
vi,P = fi · ψP where fi ∈ OC,P and ψP generates LP over OC,P . Letting σP be a generator of

ωC,P over OC,P , one can define regular functions f ′i , f
(2)
i , . . . , f

(r)
i ∈ OC,P through the identities

d fi = f ′i · σP , d f
(j−1)
i = f (j) · σP

in ωC,P , for each i = 0, 1, . . . , r (cf. also Section 1.4). If P were a smooth point, one could take
σP = d z, where z is a generator of the maximal ideal mP ⊂ OC,P , thus recovering the classical
situation.

Definition 4.6. The Widland–Lax (WL) Wronskian around P ∈ C is the determinant

(4.3) WLV,σP =

∣∣∣∣∣∣∣∣∣
f0 f1 . . . fr
f ′0 f ′1 . . . f ′r
...

...
. . .

...

f
(r)
0 f

(r)
1 . . . f

(r)
r

∣∣∣∣∣∣∣∣∣ ∈ OC,P .

A point P is said to be a V -ramificaton point (or also a V -Weierstrass point) if WLV,σP (P ) = 0,
that is, if ordP WLV,σP > 0.

Our next task will be to show that the germ (4.3), as well as its vanishing at P , does not depend
on the choice of the generators ψP and σP of LP and ωC,P respectively; then we will use the
explicit description of ωC in the previous section to check that singular points are V -ramification
points with high weight.

So if φP and τP are others generators, then vi = giφP and d g(i−1) = g(i)τP . Let ψP = `PφP
and σP = kP τP . Then a straightforward exercise shows that

WLV,σP = `r+1
P k

r(r+1)/2
P ·WLV,τP .

This proves at once that the vanishing is well defined and that all the sections WLV,σP patch
together to give a global section

WLV,P ∈ H0
(
C,L⊗r+1 ⊗ ω⊗r(r+1)/2

C

)
.
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If f ∈ OC,P is any germ, according to Definition 3.1 one has

(4.4) ordP f = dimC
OP

f · OP
= dimC

ÕP

f · ÕP
=

∑
Q∈ν−1(P )

ordQ f,

where in the last equality f is seen as an element of OC̃,Q via OC,P ⊂ ÕC,P ⊂ OC̃,Q.

Definition 4.7. Let P ∈ C. Define the V -weight of P and total V -ramification weight as

wtV (P ) ..= ordP WLV,P , wtV ..=
∑
P∈C

wtV (P ).

According to (4.4), one can compute the V -weight at P as

wtV (P ) =
∑

Q∈ν−1(P )

ordQWLV,P .

Proposition 4.8. Let (L, V ) be a grd on a Gorenstein curve C of arithmetic genus g. Then

(4.5) wtV = (r + 1)d+ (g − 1)r(r + 1).

Moreover, for all P ∈ C, the inequality

(4.6) wtV (P ) ≥ δP r(r + 1)

holds, with δP as defined in (4.2). That is, singular points have “high weight”.

In particular if L = ωC , one has that wtωC (P ) ≥ δP g(g − 1). Proposition 4.8 in [38] relies on
an explicit description of the generator of the dualising sheaf around the singularities, that we
shall review below just to provide a few examples illustrating the situation. The verification we
offer here makes evident how the theory by Lax and Widland offers the right framework to study
the classical Plücker formulas in terms of degenerations.

Proof of Proposition 4.8. Formula (4.5) is clear. Let now P be a singular point of C

and νP : C̃P → C be the partial normalisation of C around a singular point P . Then C̃P is

Gorenstein of arithmetic genus g − δP . Consider the linear system (Ṽ , ν∗PL), where Ṽ is spanned

by ν∗P v0, ν
∗
P v1, . . . , ν

∗
P vr. It is a grd on C̃P . Applying the formula (4.5) for the total weight to Ṽ ,

we find

wtṼ = (r + 1)d+ (g − 1− δP )r(r + 1) = wtV − δP r(r + 1).

The Ṽ -Weierstrass points on C̃P are the same as the V -Weierstrass points on C. Then the
difference counts the minimum weight of the singular point P with respect to (L, V ). �

In general wtV (P ) = δP r(r + 1) +E(P ). The correction E(P ) is called the extraweight. It is

zero if no point of ν−1
P (P ) is a ramification point of the linear system (Ṽ , ν∗PL).

Example 4.9. If P ∈ C is a cusp, one has δP = 1, hence its weight is at least r(r+ 1). However

the vanishing sequence of Ṽ at the preimage of P in the normalisation is 0, 2, . . . , r+ 1. It follows
that

wtV (P ) = r(r + 1) + r = r(r + 2).

If L = ωC then wtωC (P ) = g2 − 1.

Before offering a few examples of how the WL Wronskian works concretely in computations,
we recall the following fact.
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Proposition 4.10 ([24, p. 362]). Let τ be a local section of Ω1
C̃

and let τQ its image in

the stalk Ω1
C̃,Q

. Assume that Ω1
C̃,Q

= OC̃,Q · τQ for all Q ∈ ν−1(P ) and that h generates the

conductor in each local ring OC̃,Q. Then τ/h generates ωC,P over OC,P .

Example 4.11. Let us revisit from Example 3.4 the rational irreducible quartic plane curve given
by x4 − y3z = 0 in homogeneous coordinates x, y, z on P2. It is Gorenstein of arithmetic genus 3
with ωC = OP2(1)|C . It has a triple point at P ..= (0 : 0 : 1) and a hyperflex at Q ..= (0 : 1 : 0),
i.e. a Weierstrass point of weight 2. To see that the Weierstrass weight at Q is 2 one may argue
by writing down the Wronskian of a basis of holomorphic differentials adapted at Q (i.e. ω0 = d t,
ω1 = td t and ω2 = t4 d t). The vanishing sequence is 0, 1, 4 (equivalently, the gap sequence is
1, 2, 5) so the weight is 2.

In the chart z 6= 0, V = H0(C,ωC) is spanned by (t3, t4, 1), which are nothing but the
parametric equations mapping P1 onto the quartic. One has

OC,P = C + C · t3 + C · t4 + t6 · C[t](t), nP = 6, δP = 3.

According to Proposition 4.8, P is a Weierstrass point with weight at least δP · 3(3− 1) = 18.
The exact weight can be directly computed through the Wronskian as follows. The preimage of

P through the normalisation map is just one point P̃ . Then d t generates Ω1
C̃,P̃

and therefore

σ = d t/t6 is a regular differential at P . A basis of the space of regular differentials at P is then
given by

(σ, t3σ, t4σ),

so the Wronskian is ∣∣∣∣∣∣
1 t3 t4

0 3t8 4t9

0 24t13 36t14

∣∣∣∣∣∣ ∈ t22 · C[t].

It follows that P is a Weierstrass point of weight 22, as anticipated in Example 3.4. Together with
the hyperflex at Q, one fills the total weight, 24, of a Gorenstein curve of genus 3. The example
shows that the point P has extraweight E(P ) = 4. This can also be computed by looking at

the vanishing sequence of the linear system Ṽ , generated by (1, t3, t4). Clearly the vanishing
sequence is 0, 3, 4, whose weight is 4, as predicted by the calculation above.

The output of this example is of course in agreement with the classical fact that the Hessian
of the given plane curve cuts the singular points and the flexes. In this case the Hessian cuts
indeed the singular point with multiplicity 22 and the hyperflex Q with multiplicity 2.

Remark 4.12. A local calculation shows that the Hessian of a plane curve cutting the inflection
points with respect the linear system of lines follows by the vanishing of the Wronskians at those
points (at least when they are smooth).

Example 4.13. The previous example was rather easy because we have dealt with a unibranch
singularity (that is, ν−1(P ) consisted of just one point). To illustrate the behavior of the WL
Wronskian with multibranch singularities, let C be the plane cubic x3 + x2z − y2z = 0. It has a
unique singular point, the node P ..= (0 : 0 : 1). The curve C is Gorenstein of arithmetic genus
1. Let us compute its V -weight, where V denotes the complete linear system H0(C,OP2(1)|C).
Clearly the coordinate functions x, y and z form a basis of V . They can be expressed by
means of a local parameter t on the normalisation ν : P1 → C. In the open set z 6= 1, indeed,
C has parametric equations x = t2 − 1 and y = t(t2 − 1). The preimage of the point P
via ν are Q1

..= (t − 1) and Q2
..= (t + 1) thought of as points of Spec C[t]. One has that

OC,P = C+ (t2− 1) · ÕC,P , thus the conductor is (t2− 1). Since d t generates both Ω1
Q1

and Ω1
Q2

,
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σP ..= d t/(t2 − 1) generates the dualising sheaf ωC,P . Let

σQ1
..=

d t

t− 1
and σQ2

..=
d t

t+ 1
.

Then one has

wtV (P ) = ordP WLV,σP = ordQ1 WLV,σQ1
+ ordQ2 WLV,σQ2

.

We shall show that ordQ1
WLV,σQ1

= 3, By symmetry, the same will hold for ordQ2
WLV,σQ2

,
showing that the weight of P as a singular ramification point is 6 as expected. For simplicity,
let us put z = t− 1. In this new coordinate the basis of ν∗L near Q1 is given by v0

..= z(z + 2),
v1

..= z(z2+3z+2) and v3 = 1. The conductor is generated by z near Q1. Then the WL-Wronskian
near Q1 is:

WLV,σQ1
=

∣∣∣∣∣∣
z2 + 2z z3 + 3z2 + 2z 1
2z2 + 2z 3z2 + 6z2 + 2z 0
4z2 + 2z 6z2 + 12z2 + 2z 0

∣∣∣∣∣∣ = z3(3z + 4) ∈ z3 · C[z]

as desired. The computations around Q2 are similar and then P is a singular ramification point
of weight 6.

5. The class of special Weierstrass points

5.1. Introducing the main characters. Let Mg be the moduli space of smooth projective
curves of genus g ≥ 2. It is a normal quasi-projective variety of dimension 3g − 3. Let

Mg ⊂Mg

be its Deligne–Mumford compactification via stable curves. It is a projective variety with orbifold
singularities. Thus, its Picard group with rational coefficients is as well-behaved as the Picard
group of a smooth variety. The boundary Mg \Mg is a union of divisors ∆i ⊂Mg, each obtained
as the image of the clutching morphism

M i,1 ×Mg−i,1 →Mg,

defined by glueing two stable 1-pointed curves (X,x) and (Y, y) identifying the markings x and
y. By a general point of ∆i we shall mean a curve that lies in the image of the open part
Mi,1 ×Mg−i,1. Note that i ranges from 0 to [g/2], with i = 0 corresponding to irreducible

uninodal curves. We use the standard notation δi for the class of ∆i in Pic(Mg)⊗Q, and we
always assume i ≤ g − i.

·
X Y

A

i g − i

Figure 1. A general element of the boundary divisor ∆i ⊂Mg.

This section aims to sketch the calculation of the class in Pic(Mg)⊗Q of the closure in Mg of
the locus of points in Mg corresponding to curves possessing a special Weierstrass point. Recall
from Definition 3.6 that a Weierstrass point (WP, for short) is special if its weight as a zero of
the Wronskian is strictly bigger than 1. Let us define

(5.1) wt(k) ..= { [C] ∈Mg | C has a WP with weight at least k } .
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Let Mg,1 be the space of 1-pointed smooth curves, and Mg,1 be the moduli space of stable
1-pointed curves. Borrowing standard notation from the literature, define the “vertical” loci

VDg−1
..= { [C,P ] ∈Mg,1 | P is a WP whose first non-gap is g − 1 }

VDg+1
..=
{

[C,P ] ∈Mg,1

∣∣ there is σ ∈ H0(C,KC) such that Dgσ(P ) = 0
}
.

Taking their images along the forgetful morphism Mg,1 → Mg we get the subvarieties Dg−1

and Dg+1 of Mg, respectively. Diaz [13, Section 7] and Cukierman [6, Section 5] were able to
determine the classes [

Dg±1

]
∈ Pic(Mg)⊗Q.

The main observation of [26] is that while computing the classes of Dg±1 is quite hard, the
computation of their sum is quite straightforward. Let

Vwt(2) ⊂Mg,1

be the closure of the locus of points [C,P ] ∈Mg,1 such that P is a special Weierstrass point on
C, namely a zero of the Wronskian of order bigger than 1. The goal is to globalise the notion of
Wronskian to families possessing singular fibres. This will be achieved through jet extensions
of the relative dualising sheaf defined on a family of stable curves. Using (a) the invertibility
of the relative dualising sheaf and (b) the locally free replacement of the principal part sheaves
for such families, everything goes through via a standard Chern class calculation, as we show
below. We warn the reader that our computation is not performed on the entire moduli space
but just on 1-parameter families of stable curves with smooth generic fibre, in order to avoid
delicate foundational issues regarding the geometry of the moduli space of curves.

5.2. Special Weierstrass points. Let π′ : C′ → T be a (proper, flat) family of stable curves
over a smooth projective curve T , such that C′ is a smooth surface, with smooth generic fibre C′η.
In particular, by the compactness of T , the fibre C′t is smooth for all but finitely many t ∈ T .
If the family is general, the singular fibres are general curves of type ∆i. The general fibre of
type ∆0 is an irreducible uninodal curve of arithmetic genus g. Let π : C → T be the family one
gets by blowing up all the nodes of the irreducible singular curves. The irreducible nodal fibres
get replaced by curves of the form C ∪ L, where C is a smooth irreducible curve of genus g − 1
and L is a smooth rational curve, intersecting C transversally at two points (the preimages of
the node through the blow up map). The rational component L is the exceptional divisor which
contracts onto the node by blow down. From now on we shall work with the new family

π : C → T,

where all the singular fibres are reducible.
As for all families of stable curves, the dualising sheaf ωπ is invertible, and its pushforward

Eπ ..= π∗ωπ

is a rank g vector bundle on T , called the Hodge bundle (of the family). Its fibre over t ∈ T
computes

H0(Ct, ωπ|Ct) = H0(Ct, ωCt).
If Ct0 = X ∪A Y is a uninodal reducible curve of type ∆i, one has a splitting

(5.2) H0(C0, ωC0) = H0(X,KX(A))⊕H0(Y,KY (A)).

A Weierstrass point on the generic fibre is a ramification point of the complete linear series
attached to KCη

..= ωπ|Cη . So it must belong to the degeneracy locus of the map of rank g vector
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bundles

π∗Eπ Jg−1
π (ωπ)

C

T

← →Dg−1

←

←
←

←

←→ π

The zero locus of the determinant map
∧g Dg−1 may be identified with a section Wπ of the line

bundle

L ..=

g∧
Jg−1
π (ωπ)⊗ π∗

g∧
E∨π .

The vanishing locus of this section cuts the Weierstrass points on the generic fibre. Moreover
Wπ identically vanishes on the reducible fibres Ct of type ∆i for 1 ≤ i ≤ [g/2]. Indeed, the
identification (5.2) shows that there exist nonzero regular differentials on Ct vanishing identically
on either component. Moreover Wπ identically vanishes on the rational components L gotten by
blowing up the nodes of the original irreducible nodal fibres.

A local computation due to Cukierman [6, Proposition 2.0.8] (but see also [7] for an alternative
way of computing), determines the order of vanishing of Wπ along each component of the reducible
fibres of π. Let F ⊂ C be the Cartier divisor corresponding to the zero locus of Wπ along the
singular fibres. Then, letting Zη be the cycle representing Z(Wπ|Cη ) ⊂ C, one has

[Z(Wπ)] = Zη + F.

One can view Z(Wπ|Cη ) as the zero locus of the Wronskian section “divided out” by the local

equations of the components of the singular fibres. More precisely, Wπ induces a section W̃π of
the line bundle L (−F ), which coincides with Wπ away from F . Therefore we have

(5.3) Zη = c1

(
g∧
Jg−1
π (ωπ)

)
− π∗c1(Eπ)− F =

1

2
g(g + 1)c1(ωπ)− π∗λπ − F

where λπ ..= c1(Eπ) denotes, as is customary, the first Chern class of the Hodge bundle of the
family. From now on, we use the (standard) notation Kπ

..= c1(ωπ).

Remark 5.1. Intersecting the class (5.3) with a fibre Ct, one gets

Zη · Ct =
1

2
g(g + 1)Kπ · Ct − π∗λπ · Ct − F · Ct.

But the second and third products vanish because Ct is linearly equivalent to the generic fibre
(and the intersection of two fibres is zero), whereas the first term corresponds to a divisor of
degree (g − 1)g(g + 1) on Ct. In the case where t corresponds to a singular fibre, the degree of
this divisor would be the total weight of the limits of Weierstrass points on that fibre.

The issue is now to detect and compute the class of the locus of special Weierstrass points in
the fibres of π. Since the family π may have singular fibres, the traditional version of principal
parts would not help unless one decided to focus on open sets where they are locally free. This is
for example the approach followed in [6]. However, using the locally free replacement provided

by jet bundles, we can now consider the “derivative” DW̃π of the section W̃π ∈ H0(C,L (−F )),

where L (−F )) denotes the twist L ⊗OC OC(−F ). The derivative DW̃π is a global holomorphic
section of the rank two bundle

J1
π(L (−F )).
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By abuse of notation let us write simply Vwt(2) for the locus Vwt(2)π ⊂ C defined by the zero

locus of DW̃π.

Definition 5.2. Let C0 be any stable curve of arithmetic genus g ≥ 2. A point P0 ∈ C0 is said
to be a limit of a (special) Weierstrass point if there exists a family X→ Spec CJtK such that Xη
is smooth, X0 is semistably equivalent to C0 and there is a (special) Weierstrass point Pη such

that P0 ∈ Pη.

It turns out that Vwt(2) is the locus of special Weierstrass points on smooth fibres of π. In
fact if the family C → T is general, then only singular fibres of the codimension 1 boundary strata
of Mg occur. If X ∪A Y is a general member of ∆i, one may assume that A is not a Weierstrass
point neither for X nor for Y . Then if P0 ∈ X ⊂ X ∪A Y is a limit of a special Weierstrass point
it must be a special ramification point of KX((g− i+ 1)P ) by [7, Theorem 5.1]. But by [8], for a
general curve X and for each j ≥ 0, there are only finitely many pairs (P,Q) ∈ X ×X such that
Q is a special ramification point of the linear system KX((j + 1)P ). See also Example 6.4 below.

It follows that the locus Vwt(2) is zero dimensional. Indeed, the special Weierstrass points
have the expected codimension 2 in general family of smooth curves. Its class is given by the top
(that is, second) Chern class of J1

π(L (−F )). Explicitly, we have

(5.4)
[
Vwt(2)

]
= c2

(
J1
π

(
ω⊗g(g+1)/2
π ⊗ π∗

g∧
E∨π (−F )

))
.

By the Whitney sum formula applied to the short exact sequence

0→ ωπ ⊗L (−F )→ J1
π(L (−F ))→ L (−F )→ 0,

and recalling that (5.3) is computing precisely c1(L (−F )), one finds[
Vwt(2)

]
=

(
1

2
g(g + 1)Kπ − π∗λπ − F

)(
1

2
g(g + 1)Kπ +Kπ − π∗λπ − F

)
.

Thus in A2(C) we find[
Vwt(2)

]
=

1

4
g(g + 1)(g2 + g + 2)K2

π − (g2 + g + 1)(Kπ(F + π∗λπ)) + F 2,

where we have used (π∗λπ)2 = 0 = F · π∗λπ. We want to compute the pushforward

(5.5) π∗

[
Vwt(2)

]
=

1

4
g(g + 1)(g2 + g + 2)π∗K

2
π

− (g2 + g + 1)
(
π∗(Kπ · F ) + π∗(Kπ · π∗λπ)

)
+ π∗F

2.

The reason why we are interested in the class (5.5) is that if g ≥ 4 the degree of π restricted
to Vwt(2) is 1. Therefore, if we let

wt(2) ⊂ T

be the locus of points parametrising fibres possessing special Weierstrass points, then its class
is given by (5.5). The reason why for g ≥ 4 the degree of π is 1, is because of the following
important result, obtained by combining results by Coppens [3] and Diaz [11].

Theorem 5.1. If a general curve of genus g ≥ 4 has a special Weierstrass point, then all the
other points are normal.
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To complete the computation, let Fi ⊂ C be the (vertical) divisor corresponding to the zero
locus of the Wronskian along the singular fibres of type type ∆i, for 1 ≤ i ≤ [g/2]. Thus

F =
∑[g/2]
i=1 Fi and clearly we have Fi1 · Fi2 = 0 for i1 6= i2. Moreover, we have decompositions

Fi ..=
∑
j

Fij , Fij = miXj +mg−iYj ,

with each Fij supported on a fibre Xj ∪Aj Yj of type ∆i. Recall that the notation means that
Xj and Yj have genus i and g − i respectively, and they meet transversally at the (unique) node
Aj . The multiplicities mi (resp. mg−i) with which Wπ vanishes along Xj (resp. Yj) only depend
on i. Using that −Y 2

j = −X2
j = Xj · Yj = [Aj ] ∈ A2(C), it is easy to check that

F 2
ij =

(
2mimg−i −m2

i −m2
g−i
)

[Aj ].

To compute (5.5), we will apply the projection formula π∗(π
∗α ·β) = α ·π∗β. The pushforward

π∗K
2
π is by definition the tautological class κ1 ∈ A1(T ). Define

δi,π ..=
∑
j

π∗[Aj ] ∈ A1(T ).

This is the class of the points corresponding to singular fibres of type ∆i. We have the following
equalities in A1(T ):

π∗(Kπ · π∗λπ) = π∗Kπ · λπ = (2g − 2)λπ

π∗(Kπ · Fij) = miπ∗(Kπ ·Xj) +mg−iπ∗(Kπ · Yj)
= (mi(2i− 1) +mg−i(2(g − i)− 1)) · π∗[Aj ]
= (2(imi + (g − i)mg−i)−mi −mg−i) · π∗[Aj ].

Substituting the above equalities in (5.5) we obtain

(5.6) π∗

[
Vwt(2)

]
=

1

4
g(g + 1)(g2 + g + 2)κ1 − 2(g2 + g + 1)(g − 1)λπ − c0δ0,π −

[g/2]∑
i=1

ciδi,π

where δ0 is the class of the locus in T of type ∆0 (irreducible uninodal), c0 is a coefficient to be
determined and

(5.7) ci = (g2 + g + 1) (2(imi + (g − i)mg−i)−mi −mg−i) + 2mimg−i −m2
i −m2

g−i.

Now one uses one of the most fundamental relations between tautological classes. The class κ1,π

and λπ are not independent, as they are related by

κ1,π = 12λπ −
∑
i

δi,π.

This is a consequence of the Grothendieck–Riemann–Roch formula, as explained for instance in
[42]. Thus formula (5.6) can be simplified into

(5.8) π∗

[
Vwt(2)

]
=
(
3g(g + 1)(g2 + g + 2)− 2(g2 + g + 1)(g − 1)

)
λπ

−
[g/2]∑
i=0

(
ci +

1

4
g(g + 1)(g2 + g + 2)

)
δi,π,

which, after renaming coefficients, becomes

(5.9) π∗

[
Vwt(2)

]
=
(
2 + 6g + 9g2 + 4g3 + 3g4

)
λπ − a0δ0 −

[g/2]∑
i=1

biδi,π.
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Clearly the expression (5.9) is not complete: one still needs to determine the coefficients a0 and
bi. Computing bi amounts to finding the explicit expressions for mi, for all 1 ≤ i ≤ [g/2]. This
has been done by Cukierman in his doctoral thesis (but see [7, Proposition 6.3] for an alternative
slightly more conceptual, although probably longer, proof).

Theorem 5.2 ([6, Prop. 2.0.8]). The multiplicities mi with which the Wronskian Wπ vanishes
along Xj (of genus i), are given by:

(5.10) mi =

(
g − i+ 1

2

)
.

The way Cukierman proves Theorem 5.2 is the following. He considers a family f : X→ S of
curves of genus g parametrised by S = Spec CJtK, with smooth generic fibre and special fibre
semistably equivalent to a uninodal reducible curve X ∪A Y with components of genus i and
g − i respectively. After checking that f∗ωf ⊗ k(0) is isomorphic to H0(KX(A))⊕H0(KY (A)),
he constructs suitable global bases of f∗ωf such that the first elements are non degenerate on
one component and vanish on the other. He then computes the relative Wronskian using such
bases and finds the multiplicity displayed in (5.10). All the technical details are in [6].

Granting Theorem 5.2, we can now compute the right hand side of (5.9). We need to substitute
the expressions (5.10) into the constant ci defined in (5.7). This finally gives (see also [26] for
more computational details)

(5.11) bi = (g3 + 3g2 + 2g + 2)i(g − i).

We still have to determine a0. To this end, we use the following argument, due to Harris and
Mumford [31]. Consider the simple elliptic pencil x0E1 + x1E2, where E1 and E2 are two plane
cubics intersecting transversally at 9 points. Let S be the blow-up of P2 at the intersection points.
This gives an elliptic fibration

(5.12) ε : S → P1

with nine sections (the exceptional divisors of the blown up points). Let Σ1 be any one of them.
Then consider a general curve C of genus g − 1, and choose a constant section P : C → C × C.
Construct the family φ : F1 → P1, by gluing C × C and S, by identifying Σ1 with P . The fibre
over a point t ∈ P1 is the union C ∪ Et, with C meeting Et = ε−1(t) transversally at a single
point. In other words, what varies in the family is just the j-invariant of the elliptic curve.

Theorem 5.3 ([13, Lemma 7.2]). The fibres of φ : F1 → P1 contain no limits of special

Weierstrass points, that is, φ∗[Vwt(2)] = 0.

Harris and Mumford computed the degrees of λ, δ0 and δ1 to be, respectively: 1, 12 and −1.
Taking degrees on both sides of (5.9), with φ taking the role of π, we get the (numerical) relation

0 =

∫
P1

φ∗

[
Vwt(2)

]
= (2 + 6g + 9g2 + 4g3 + 3g4) · 1− a0 · 12 + b1 · 1.

Given the expression of b1 computed in (5.11), one obtains

a0 =
1

6
g(g + 1)(2g2 + g + 3).

We have therefore reconstructed the proof of the following result.
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Theorem 5.4 ([26, Theorem 5.1]). Let π : C → T be a family of stable curves of genus g ≥ 4
with smooth generic fibre. Then the class in A1(T ) of the locus of points whose fibres possess a
special Weierstrass point is

(5.13) π∗

[
Vwt(2)

]
=
(
2 + 6g + 9g2 + 4g3 + 3g4

)
λπ

− 1

6
g(g + 1)(2g2 + g + 3)δ0 −

[g/2]∑
i=1

(g3 + 3g2 + 2g + 2)i(g − i)δi.

Remark 5.3. Let now [wt(2)] be the class in A1(T ) of the locus of points of T corresponding to
fibres carrying special Weierstrass points. By Theorem 5.1, for g ≥ 4 one has[

wt(2)
]

= deg(π)
[
π(Vwt(2))

]
=
[
π(Vwt(2))

]
= π∗

[
Vwt(2))

]
,

because deg(π) = 1. We may conclude that for g ≥ 4, the right hand side of (5.13) is the

expression of the class [wt(2)].

5.3. Low genus. We observe that formula (5.13) holds for genus 1, 2 and 3 as well, and actually
recovers classical relations among tautological classes.

5.3.1. Genus 1. Recall the elliptic fibration ε from (5.12). No member of the pencil (either a
smooth or rational plane cubic) possesses Weierstrass points. In particular there are no special

Weierstrass points. Then [wt(2)] = 0. Setting g = 1 in (5.13) one obtains the relation

(5.14) 12λ− δ0 = 0,

expressing the classical fact that ε : S → P1 has 12 irreducible nodal fibres. Indeed, the degree of
λ on this pencil is 1, as the relative dualising sheaf restricted to the section Σ1 ⊂ S is OS(−Σ1)|Σ1

,
which has degree −Σ2

1 = 1.

5.3.2. Genus 2. A curve of genus 2 is hyperelliptic: it is a ramified double cover of the projective
line. The Riemann–Hurwitz formula gives 6 ramification points which are the Weierstrass points.
All these ramification points are simple. This means that if C → T is a family of curves of genus
2, then

(5.15) 0 =
[
wt(2)

]
= 130λ− 13δ0 − 26δ1.

This recovers the well known relation 10λ − δ0 − 2δ1 = 0, discussed in [43], showing that the
classes λ, δ0, δ1 are not independent in Pic(M2)⊗Q. See [5] for the generalisation and [20] for
the interpretation of the Cornalba and Harris formula generalising (5.15) in the rational Picard
group of moduli spaces of stable hyperelliptic curves.

5.3.3. Genus 3. In genus 3 the hyperelliptic locus is contained in Vwt(2). Since each hyperelliptic
curve of genus 3 has 8 Weierstrass points, the map π restricted to it has degree greater than 1.
Since each hyperelliptic Weierstrass point has weight 3, a local check performed carefully in [12]
shows that the degree of π restricted to VH3 is 16. On the other hand it is known (see e. g. [14])
that each genus 3 curve possessing a hyperflex has only one such. So the degree of π restricted to
H, the hyperflex locus, is 1 and then for g = 3 formula (5.13) can be correctly written as

16 · [H3] + [H] =
[
wt(2)

]
= 452λ− 48δ0 − 124δ1.
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The calculation [H3] = 9λ− δ0 − 3δ1 was already reviewed in Section 2.2. Then, the class of the
curves possessing a hyperflex is given by

(5.16) [H] = 308λ− 32δ0 − 82δ1.

Example 5.4. Consider a pencil of plane quartic curves with smooth generic fibre. Since it has
no reducible fibres, the degree of δ1 is zero on this family. The degree of δ0 is 27 while the degree
of λ is 3. Then in a pencil of plane quartics one finds precisely 308 ·3−32 ·27 = 60 hyperflexes, as
predicted by Proposition 2.1 using the automatic degeneracy formula by Patel and Swaminathan.

6. Further examples and open questions

The purpose of this section is to show how the theory of Weierstrass points on Gorenstein
curves may help to interpret some phenomenologies that naturally occur in the geometry and
intersection theory of the moduli space of curves.

6.1. The Examples.

Example 6.1. Let π : X→ S ..= Spec CJtK be a family of stable curves, such that

(1) X is a smooth surface analytically equivalent to xy − t = 0,
(2) Xη is a smooth curve of genus g, and
(3) X0 is a stable uninodal curve, union of a smooth curve X of genus g − 1 intersecting

transversally an elliptic curve E at a point A, that is, X0 = X ∪A E.

• •

Xη

η 0

X

E

genus 1

g − 1

S

A ·

Figure 2. A family of stable curves degenerating to a general member of ∆1 ⊂Mg.

One says that P0 ∈ X0 \ {A} is a limit of a Weierstrass point if, possibly after a base change,
there is a rational section P : S → X such that Pη is a Weierstrass point on Xη. The limit of
Weierstrass points are very well understood for reducible curves of compact type, by means of
many investigations due to Eisenbud, Harris and their school. In fact several classical references
(see e.g. [13, 15]) show that

(a) if P0 ∈ E, then P0 6= A is a ramification point of the linear system O(gA). Applying the
Brill–Segre formula (3.4), the total weight wtV of the ramification points of the linear
system V = H0(E,O(gA)) is g2, including the point A. Thus there are at most g2 − 1
Weierstrass points on the smooth generic fibre degenerating to the elliptic component. All
the ramification points of V are simple, as one can check via the sequence of dimensions

dimV ≥ dimV (−A) ≥ · · · ≥ dimV (−gA) ≥ dimV (−(g + 1)A) = 0.
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(b) If P0 ∈ X \ {A} is a limit of a Weierstrass point, then it is a ramification point of the
linear system W ..= H0(X,KX(2A)). Applying the Brill–Segre formula (3.4) once more,
by replacing r + 1 by g and d by 2g − 2, one obtains

wtW = 2g(g − 1) + (g − 2)g(g − 1) = (g − 1)(2g + g2 − 2g) = g2(g − 1).

The point A contributes with weight g−1 (as one easily checks by looking at its vanishing
sequence) and thus there are at most (g−1)2(g+1) Weierstrass points on Xη degenerating
to X.

It follows that no more than

(wtV − 1) + (wtW − g + 1) = wtV + wtW − g = g3 − g

Weierstrass points on Xη can degenerate to X0. Since the total weight of the Weierstrass points of
Xη is g3 − g, it follows that all the ramification points of the linear systems V and W are indeed
limits of Weierstrass points. There are exactly g2 − 1 distinct Weierstrass points degenerating on
E and a total weight of (g − 1)2(g + 1) Weierstrass points on Xη degenerating on X. Moreover,
the counting argument shows that the node A is not a limit. Notice that g2 − 1 is the weight of
a cuspidal curve of arithmetic genus g, according to Example 4.9. This is not a coincidence.

The situation just described is related to the behavior of a family of smooth genus g curves,
degenerating to a cuspidal curve of arithmetic genus g. The relative dualising sheaf coincides
with the canonical sheaf on smooth fibres. The Weierstrass points of the smooth fibres degenerate
to the Weierstrass points on the special fibre (with respect to the dualising sheaf), including the
cusp, and the cusp has weight g2 − 1 in the sense of Widland and Lax. Let us now show how to
construct a model of the original family contracting the elliptic curve to a cusp. The idea is to
consider ωπ(−X), the dualising sheaf twisted by −X (a Cartier divisor, due to the smoothness
hypothesis on X). We have

π∗ωπ(−X)⊗ C(0) ∼= H0(X0, ωπ(−X)|X0
).

Now observe that h0(X0, ωπ(−X)|X0
) ≥ g = h0(X,ωX(2A)). But the restriction map

(6.1) H0(X0, ωπ(−X)|X0
)→ H0(X,ωX(2A)), σ 7→ σ|X ,

is injective. Indeed, if σ|X = 0 then σ(A) = 0, that is, σ|E ∈ H0(OE(−A)) = 0. Thus σ = 0,
which implies that the (6.1) is an isomorphism. Now the sheaf M ..= π∗ωπ(−X) maps the family
π : X→ S in P(π∗ωπ(−X)), i.e. we have the following diagram:

X P(π∗ωπ(−X))

S

← →φM

←→π ←

→

The generic fibre Xη is mapped by φM isomorphically onto its canonical image, a geometrically
smooth curve of genus g, whereas the special fibre is a cuspidal curve having a cusp in A, and the
elliptic component of X0 is contracted to A by φM . In fact, since the restriction of such a map
to E has degree 0, one has φM (Q) = φM (A) for all Q ∈ E. Then there are g2 − 1 Weierstrass
points degenerating onto the cusp: this number equals the weight of the cusp as a Weierstrass
point with respect to the dualising sheaf.

Example 6.2. As another illustration of the same phenomenology, consider the classical case of
a pencil of cubics, for instance

Ct : zy2 − x3 − tyz2 = 0.
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The generic fibre Ct is smooth. It has 9 flexes, as classically known. But C0 has only one smooth
flex at F ..= (0 : 1 : 0). Thus the remaining flexes collapse to the cusp P ..= (1 : 0 : 0), as is
visible by considering the normalisation. The Weierstrass points with respect to the linear system
of lines can be detected via the Wronskian determinant by Widland and Lax. It predicts that
the cusp has weight 8. The cubic C0 is the image of the map (x3

0, x0x
2
1, x

3
1) : P1 → P2. In the

open affine set x0 = 1, it is just the map t→ (t2, t3). Notice that d t is a regular differential at
P of A1 ⊂ P1 and then σ ..= d t/t2 generates the dualising sheaf at the cusp (where (t2) is the

conductor of OP ⊂ ÕP ). One has

(tn)′σ ..= d(tn) = ntn−1 d t = ntn+1 d t

t2
= ntn+1σ

from which (tn)′ = ntn+1. The Wronskian around the point P is then given by∣∣∣∣∣∣
1 t2 t3

0 (t2)′ (t3)′

0 (t2)′′ (t3)′′

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 t2 t3

0 2t3 3t4

0 6t4 12t5

∣∣∣∣∣∣ ∈ t8 · C[t].

Example 6.3. In [15], Eisenbud and Harris study limits of Weierstrass points on a nodal
reducible curve C which is the union of a curve X of genus g − i together with 1 ≤ i ≤ g elliptic
tails, a curve of arithmetic genus g. More precisely, if X→ S has smooth generic fibre Xη and X0

is semistably equivalent to C, then each elliptic tail carries g2 − 1 limits of Weierstrass points on
nearby smooth curves: these are in turn the ramification points of the linear systems OEj (Aj),
where Aj is the intersection point X ∩Ej . The remaining Weierstrass points of Xη degenerate on
smooth points of X. The theory predicts that if P0 ∈ X is a limit of a Weierstrass point Pη ∈ Xη,
then it is a ramification point of a linear system V ∈ G(g,H0(KX(2A1 + · · ·+ 2Ai)) such that Ai
is a base point of V (−A1 − · · · −Ai). If X̂ is the i-cuspidal curve got by making each Aj into a

cusp, as explained in [50], then V = 〈ν∗ω1, . . . , ν
∗ωg〉, where (ω1, . . . , ωg) is a basis of H0(X̂, ωX̂)

and ν : X → X̂ is the normalisation. This linear system coincides with the one induced by the
dualising sheaf of the irreducible curve with i cusps that X normalises.

E1

E2

.

.

.

Ei

g − i

X X̂

A1

A2

...

Ai

Figure 3. Stable reduction of a degeneration to a cuspidal curve.

Example 6.4. Let C be a smooth complex curve of genus g − 1 ≥ 1 and let Ĉ → C be a family
of cuspidal curves parametrised by C itself contructed as follows. If Q ∈ C is a point, the fibre

ĈQ is the cuspidal curve obtained from C by creating a cusp at the point Q, that is, the cuspidal

curve associated to the modulus 2Q in the sense of [50, p. 61]. In other words, ĈQ is the curve
such that OĈQ,P = OC,P if P 6= Q, whilst OĈQ,Q is the subring of OC,Q of the regular functions

whose derivatives vanish at Q. One wonders which fibres of the family carry special Weierstrass

points (with respect to the dualising sheaf) away from the cusp {Q}. Let ν : C → ĈQ be the

normalisation of ĈQ. Then ν∗ωĈQ = KC(2Q) and then the special ramification points, but Q, of
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ĈQ are the special ramification points of the linear system KC(2Q). For general Q, one cannot
expect to find any such point. So, solving the problem amounts to finding the locus SW1 of all
the pairs (P,Q) ∈ C × C such that P is a special ramification point of KC(2Q). The number
N(g) of such pairs is obtained by putting i = 1 in [8, formula (20)]:

N(g) ..=

∫
C×C

[SW1] = 6g4 + 14g3 + 10g2 − 14g − 16.

Notice that N(1) = 0, because a rational cuspidal curve of arithmetic genus 1 (i.e. a plane
cuspidal cubic) has no hyperflexes.

Example 6.5. Example 6.4 can be interpreted within the geometrical framework of moduli
space of stable curves as follows. Let C → X be a family such that CQ is the curve X ∪Q∼0 E,
where (E, 0) is an elliptic curve. Then P0 ∈ X is a limit of a special Weierstrass point if and only
if it is a special Weierstrass point of the linear system KC(2P ). This fact has been generalised
first of all in [7]: if X ∪A Y is a uninodal stable curve of arithmetic genus g union of a smooth
curve of genus i and a smooth curve of genus g − i then P0 ∈ X is limit of a special Weierstrass
point on Xη if and only if either P0 is a ramification point of the linear system KX((gY + 1)A)
or P0 is a ramification point of the linear system KX((gY + 2)A) and A is a Weierstrass point for
the component Y . In case Y is an elliptic curve, i.e. without Weierstrass points, the limits on X
are solely the ramification points of KX(2P ), as claimed.

Example 6.6. The first example not immediately treated by the theory of Eisenbud and Harris
is that of a family X→ S of curves of genus 3 such that the special fibre X0 is the union of two
elliptic curves intersecting transversally at two points A1 and A2 (the “banana curve”).

E1

E2

Figure 4. The banana curve: an example of a genus 3 curve carrying a 1-
parameter family of limits of Weierstrass points.

In this case each point on each component can be limit of Weierstrass points, in the sense
that for each point P0, say in E1, there exists a smoothing family X→ S such that P0 is limit of
a Weierstrass point of a curve of genus 3. All the Weierstrass points distribute themselves in
twelve points on E1 and twelve points on E2. Esteves and Medeiros prove in [21] that the variety
of limit canonical system of the “banana curve” is parametrised by P1.

Indeed each P0 ∈ Ei determines uniquely a point in the pencil of linear systems

V ∈ G(3, H0(O(2A1 + 2A2))

which contains H0(O(A1 + A2)). Thus for each component there is a 12 : 1 ramified covering
Ei → P1 and the (fixed) ramification points are the limits of special Weierstrass points on nearby
smooth curves. Also this example may be interpreted in terms of the theory of Widland and Lax
(see [4] for details). In fact the linear system VP0

defined on E1 maps E1 to a plane quartic with
a tacnodal singularity (δA = 2, local analytic equation (y − x2)2 = 0) at the coincident images of
A1 and A2 . Then the limits of Weierstrass points on E1 are precisely the smooth flexes, while
the information about the Weierstrass points degenerating on the other components is lost in the
tacnode. Notice that according the theory of Widland and Lax a tacnode must have weight at
least δ · 3 · 2 = 2 · 3 · 2 = 12.
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6.2. Open Questions.

6.2.1. Porteous Formula with excess. Consider the loci

wt(2) ..= { [C] ∈Mg | C has a special Weierstrass point } ,
Dg−1

..= { [C] ∈Mg | C has a special Weierstrass point of type g − 1 } ,
Dg+1

..= { [C] ∈Mg | C has a special Weierstrass point of type g + 1 } .

Although wt(2) is clearly equal to the set-theoretic union Dg−1 ∪ Dg+1, it is not obvious that[
wt(2)

]
=
[
Dg−1

]
+
[
Dg+1

]
.

This is the main result of [26]. Within the general framework discussed in Section 5, consider the
maps of vector bundles

π∗Eπ Jg−2
π ωπ

C

T

← →Dg−2

←

←
←←

←→

π∗Eπ Jgπωπ

C

T

← →Dg

←

←
←←

←→

The loci Dg−1 and Dg+1 are in fact in the degeneracy loci of the above maps; however these
maps degenerate identically along the special singular fibre which are divisors of C. So, to
compute the class of the loci of Dg−1 and Dg+1 one should dispose of a Porteous formula with
excess, generalising the residual formula for top Chern classes as in [23, Example 14.1.4]. To our
knowledge, such formulas are not known up to now.

6.2.2. Computing automatic degeneracies. It is an interesting problem, already raised in [46],
to compute the function ADm(f) of automatic degeneracies (as discussed in Section 2.1.1) for
more complicated plane curve singularities than the node. Some results for low values of m have
already been obtained in loc. cit. For instance it would be very useful to be able to determine
the function AD(f) for cusps, ordinary triple points, tacnodes.

6.2.3. Porteous formula for Coherent sheaves. To study situations like 6.2.1 but avoiding the
locally free replacement of the principal parts, S. Diaz proposed in [14] a Porteous formula for
maps of coherent sheaves. This was a question asked by Harris and Morrison in [30]. The purpose
is that of getting rid of two issues at once: excess contributions, and the lack of local freeness of
principal parts of the dualising sheaf at singularities. Diaz’s theory is nice and elegant. However
the main example he proposes is the computation of the hyperelliptic locus in genus 3, which
Esteves computed as sketched in Section 2.2, again using locally free substitute of principal parts.
It would be interesting to work out more examples to extract all the potential of Diaz’ extension
of Porteous’ formula for coherent sheaves.

6.2.4. Dimension estimates. Recall the definition (5.1) of wt(k). In [27] it is proven that for
g ≥ 4 the locus wt(3) of curves possessing a special Weierstrass point of weight at least 3 has the
expected codimension 2. It is a hard problem to determine the irreducible components of wt(k)
and their dimensions. For instance Eisenbud and Harris prove that if k ≤ [g/2] then wt(k) has at
least one irreducible component of the expected codimension k. In general, however, the problem
is widely open. It would be natural to conjecture that wt(k) ⊂Mg has the expected codimension
k if g � 0, but there is really no rigorous evidence to support such a guess.
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6.2.5. Computing new classes. Only a handful of classes of geometrically defined loci of higher
codimension in Mg have been computed. For instance Faber and Pandharipande have determined

the class of the hyperelliptic locus in M4 via stable maps [22]. Let C → S be a family of stable
curves of genus g ≥ 5 parametrised by a smooth complete surface S. Many singular fibres
belonging to boundary strata of Mg of higher codimension can occur. If π : X→ S is a family of
stable curves of genus 4 parameterised by a complete scheme of dimension at least 2, then Faber
and Pandharipande are able to compute the locus of points in S corresponding to hyperelliptic
fibres. Esteves and Abreu (private communication) are able to compute the class [H4] using the
same method we discussed in Section 2.2. However it seems a hard problem to determine the
class in A3g−5(Mg) (already for g = 4) of the locus wt(3). This would be the push forward of
the third Chern class of

J2
π

(
ωg(g+1)/2
π ⊗

g∧
E∨π

)
,

where J2
π is the locally free replacement constructed in the previous sections. Unfortunately, one

has no control on the degree of the restriction of π to the irreducible components of Vwt(3). In
genus 4 this locus should contain, with some multiplicity, the hyperelliptic locus, the (nonempty)
locus of curves possessing a Weierstrass point with gap sequence (1, 2, 3, 7) and the (nonempty)
locus of curves possessing a Weierstrass point with gap sequence (1, 2, 4, 7). These loci all have

the expected codimension 2 (by [37]), but as far as we know their multiplicities in wt(3) are not
known.
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40. Eduard Looijenga, Motivic measures, Séminaire Bourbaki. Volume 1999/2000. Exposés 865–879, Paris: Société
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