
25 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Federico Sabbatini, G.C. (2021). GridEx: An Algorithm for Knowledge Extraction from Black-Box
Regressors. Cham : Springer Nature [10.1007/978-3-030-82017-6_2].

Published Version:

GridEx: An Algorithm for Knowledge Extraction from Black-Box Regressors

Published:
DOI: http://doi.org/10.1007/978-3-030-82017-6_2

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/834616 since: 2022-06-29

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-030-82017-6_2
https://hdl.handle.net/11585/834616

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Sabbatini, F., Ciatto, G., Omicini, A. (2021). GridEx: An Algorithm for Knowledge
Extraction from Black-Box Regressors. In: Calvaresi, D., Najjar, A., Winikoff, M.,
Främling, K. (eds) Explainable and Transparent AI and Multi-Agent Systems.
EXTRAAMAS 2021. Lecture Notes in Computer Science(), vol 12688. Springer,
Cham.

The final published version is available online at: https://doi.org/10.1007/978-3-
030-82017-6_2

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1007/978-3-030-82017-6_2
https://doi.org/10.1007/978-3-030-82017-6_2

GridEx: An Algorithm for Knowledge Extraction
from Black-Box Regressors

Federico Sabbatini⋆[0000−0002−0532−6777], Giovanni Ciatto[0000−0002−1841−8996],
and Andrea Omicini[0000−0002−6655−3869]

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum—Università di Bologna, Italy

f.sabbatini@unibo.it, giovanni.ciatto@unibo.it, andrea.omicini@unibo.it

Abstract. Knowledge extraction methods are applied to ML-based pre-
dictors to attain explainable representations of their operation when the
lack of interpretable results constitutes a problem. Several algorithms
have been proposed for knowledge extraction, mostly focusing on the ex-
traction of either lists or trees of rules. Yet, most of them only support
supervised learning – and, in particular, classification – tasks. Iter is
among the few rule-extraction methods capable of extracting symbolic
rules out of sub-symbolic regressors. However, its performance – here
intended as the interpretability of the rules it extracts – easily degrades
as the complexity of the regression task at hand increases.
In this paper we propose GridEx, an extension of the Iter algorithm,
aimed at extracting symbolic knowledge – in the form of lists of if-then-
else rules – from any sort of sub-symbolic regressor—there including neu-
ral networks of arbitrary depth. With respect to Iter, GridEx produces
shorter rule lists retaining higher fidelity w.r.t. the original regressor. We
report several experiments assessing GridEx performance against Iter
and Cart (i.e., decision-tree regressors) used as benchmarks.

Keywords: explainable AI · knowledge extraction · interpretable pre-
diction · regression · Iter· GridEx

1 Introduction

Nowadays, black-box data-driven predictors such as neural networks or support-
vector machines are among the most used tools to solve a wide range of different
tasks [35]. Such predictors are opaque systems that operate in a sub-symbolic
fashion, making it very hard for humans to understand how they manipulate data
to compute their outputs. Nevertheless, they are being increasingly adopted in
many application fields – including, but not limited to, healthcare, finance, and
law – to support forecasting and decision making.

Thus, to enable the exploitation of black-box predictors within critical ap-
plications where interpretability is not an option, several methods have been de-
veloped to extract intelligible knowledge out of black-box predictors [4], aimed
at explaining the operation and the outcomes of black boxes to humans.

⋆ Corresponding author

2 F. Sabbatini et al.

Virtually all knowledge-extraction methods proposed so far focus on the ex-
traction of either lists or trees of rules, and are exploited in many application
areas. For instance, knowledge extraction is applied to credit-risk evaluation
[7,6,41]. In healthcare, they are used to make early breast cancer prognosis pre-
dictions [21], to help the diagnosis of hepatobiliary disorders [25], coronary artery
disease or thyroid dysfunctions [10], to determine the type of dermatological dis-
eases, and to discriminate among liver diseases or diabetes [9]. Rule-extraction
algorithms are also applied to, e.g., predictive models for credit card screening
[39], intrusion detection in computer networks [26], and keyword extraction [5].

However, while most of the algorithms from the literature focus on classi-
fication tasks – e.g. Trepan [19], Rule-extraction-as-learning [18], and others
[8,31] –, a few are explicitly designed for regression tasks—such as Iter [27] and
RefAnn [40]. To the best of our knowledge, no algorithm has been proposed so
far to tackle other branches of machine learning, such as unsupervised learning.
RefAnn is a decompositional extraction procedure which can be only applied
to neural networks with just one hidden layer, and also requires a reduction of
the network aimed at minimising the number of hidden neurons, to simplify the
extraction process. It is then poorly suited for modern deep neural networks.
Conversely, Iter is a pedagogical approach [3] which can be applied to regres-
sors of any sort, as it does not make any assumption on the type, structure, and
operation of the regressors it is applied to. However, its predictive performance
degrades when applied to high-dimensional data sets.

Accordingly, in this work we propose GridEx, a new knowledge-extraction
procedure extending the Iter algorithm to overcome its limitations and to re-
duce its computational-time complexity. As an extension of Iter, GridEx inher-
its a number of relevant features. For instance, they both extract rule lists out
of regressors of any sort. However, GridEx outperforms Iter in terms of fidelity
of the extracted rules w.r.t. the underlying regressor, especially when applied
to high-dimensional data sets. In other words, GridEx extracts rule lists whose
predictive capabilities are generally closer to the original black box.

To demonstrate the effectiveness of GridEx, we present a number of exper-
imental evaluations aimed at comparing GridEx and Iter. The predictions of
both extraction algorithms are compared among each other and w.r.t. a decision
tree regressor (Cart) trained on the same data. This evaluation is repeated on
six data sets – having incremental amounts of dimensions and instances –, in
order to analyse GridEx scalability, other than predictive performance and its
ability to mimic – and therefore explain – the underlying black-box predictor.

2 State of the Art

As the adoption of machine learning (ML) predictors pervades human activities,
critical aspects become more evident and challenging, and require more care. In
particular, as widely recognised within the explainable AI (XAI) community, the
exploitation of ML comes at the price of relying on sub-symbolic algorithms that
leverage on poorly-intelligible mechanisms for their operation, since they do not

GridEx: Knowledge Extraction from Black-Box Regressors 3

represent knowledge explicitly. Lacking interpretability, those algorithms – such
as artificial neural networks (ANNs) and support vector machines (SVMs) – are
often described as “black boxes” [30]. While it may be negligible or harmless in
some application scenarios, interpretability is a critical issue in a growing number
of areas. Several solutions have been proposed in the XAI field: the exploitation
of (more) interpretable predictors – such as linear models and decision trees –
rather than (more) opaque ones – e.g., ANNs and SVMs – in the particular case
of supervised learning [36]; or, the exploitation of inspection techniques focusing
on either input/output or the black-box internal structure [24].

As discussed in [16], computational systems can be considered as interpretable
if their operation and outcomes can be easily understood by a human being:
unfortunately, most predictors exploited in modern AI tend to sacrifice inter-
pretability, by becoming increasingly complex while seeking for predictive per-
formance. Instead, this paper focuses on those techniques aimed at explaining
a sub-symbolic predictor ex-post. We restrict our scope to knowledge-extraction
algorithms which attempt to explain black-box predictors by reverse-engineering
their machinery, with the purpose of making their knowledge explicit.

2.1 Knowledge Extraction

Within the scope of supervised learning, knowledge extraction refers to the task
of extracting some explicit intelligible representation for the sub-symbolic knowl-
edge acquired by some predictor (either classifier or regressor) via learning from
data. Assuming that a procedure for knowledge extraction exists for a particular
predictor, any extracted knowledge can then be used as a basis to construct ex-
planations – and sometimes as a replacement – for that predictor, provided that
such knowledge retains a high fidelity w.r.t. the original predictor and the data
it has been trained upon [15]. Extracted knowledge, in turn, may then enable
further manipulations for the user’s benefit—such as merging the knowledge of
two or more black-boxes [14]. Unfortunately, no one-size-fit-all solution exists for
this tasks, and several algorithms have been proposed for this purpose [24].

According to [13], virtually all knowledge-extraction methods proposed so
far into the literature can be categorised along three orthogonal dimensions,
namely: (i) the supported sort of learning tasks, (ii) the form of the knowledge
extracted, and (iii) the translucency requirements of the black box.

Item (i) refers to which supervised learning tasks must be supported by
a black box to enable extraction. While most methods support classification
tasks – e.g. Trepan [19], Rule-extraction-as-learning [18] and others [8,31] –,
only a few are explicitly designed to tackle regression tasks—such as Iter [27],
RefAnn [40], Ann-DT [38] and RN2 [37]. Methods extracting knowledge from
black boxes independently of their task are, e.g., G-Rex [29] and Cart [11].

Conversely, item (ii) refers to the form of the extracted knowledge. As deci-
sion rules [22,28,32] and decision trees [34,33] are the most widespread human-
understandable predictors, most methods produce either decision rules or trees.

Finally, the translucency notion [3] from item (iii) refers to the relation-
ship between the extracted rules and the internal structure of the underlying

4 F. Sabbatini et al.

black box—and how much of it the extraction procedure can take into account.
In particular, there exist two sorts of knowledge extractors w.r.t. translucency.
Decompositional extractors take into account the black-box internal structure
during the extraction process, whereas pedagogical ones do not. Therefore, ped-
agogical approaches are usually more general, despite potentially less precise.

To evaluate the quality of knowledge-extraction methods, different indicators
can be exploited, including fidelity and predictive performance measurements
[42]. In particular, the former is a meta-measure of how good the extracted
knowledge mimics the underlying black-box predictions. The latter measures
the predictive power of the explanator with respect to the data. In both cases
measurements are taken via the same scoring function used for assessing the
performance of the black box—which in turn depends on the black-box per-
formed task. For instance, in the particular case of black-box regressors, the
mean absolute error (MAE) and the R2 scores could be exploited.

2.2 The Iter Algorithm

Iter [27] is a pedagogical knowledge-extraction algorithm explicitly designed
for black-box regressors. It extracts knowledge in the form of rule lists, while
imposing no constraint on the nature, structure, or training of the regressors.

To extract rules, the Iter algorithm steps through the creation and iterative
expansion of several disjoint hypercubes, covering the whole input space the re-
gressor has been trained upon. In other words, Iter accepts as input a regressor
and the data set used for its training, then iteratively partitions the surrounding
hypercube containing the whole data set following a bottom-up strategy.

At the end of the process, each partition is converted into a rule of the form

if Var1 ∈ [Value1
Low

,Value1
High

]

and Var2 ∈ [Value2
Low

,Value2
High

]

and ... and Vark ∈ [Valuek
Low

,Valuek
High

]

then predict some Constant

where k is the dimension of the input space, i.e. the number of input variables.
The predicted output value – Constant – is attained by averaging the output val-
ues of all samples belonging to the originating hypercube. To compute Constant
for each hypercube, samples can be both picked from the data set or randomly
generated. In the latter case, the underlying regressor is used as an oracle.

Pros and Cons As a pedagogical approach, Iter supports any sort of black-
box regressor. For instance, it can be applied to ANNs with any number of
hidden layers and neurons, unlike decompositional algorithms as RefAnn.

The if-then-else rules produced by Iter are human-readable and globally
approximate the underlying black box with high fidelity. Therefore, when the
total amount of hypercubes – and rules – found by Iter is relatively small, the
resulting rule list is a valuable form of explanation for the underlying black box.

As for the predictive performance, the authors of Iter report very good
results with respect to both the data set samples and the underlying black-box

GridEx: Knowledge Extraction from Black-Box Regressors 5

outputs. However, the performance of Iter easily degrades when the algorithm
is applied to complex data sets—where the complexity is represented by the
number of input dimensions. Furthermore, several major Iter drawbacks are
also reported, such as (i) non-exhaustivity – i.e. the extracted rules do not cover
the entire input space –, described with more details in Section 2.2 and shown
in Figure 1, (ii) the impossibility to handle categorical features, and (iii) the
impossibility to associate anything than a constant value to each rule—which
introduces an undesired discretisation in the predicted values.

In our experience, another limitation of Iter concerns the hypercube expan-
sion mechanism. In fact, as further discussed in Section 4, the algorithm may
waste a lot of computational efforts processing irrelevant regions of the input
space – i.e. regions containing no samples from the data set –, and therefore end-
ing up producing several useless rules—which, ultimately, hinder interpretability.

Non-Exhaustivity Issue Iter’s hypercube expansion is an iterative procedure
strongly affected by the initial conditions, such as the number, position and
dimension of the starting cubes. Even by tuning the algorithm parameters, there
is always a chance that hypercupe expansion converges to a situation where some
portions of the input space are left uncovered. This is undesirable, since the rule
list resulting by Iter would then be poorly predictive for data laying in those
portions of the input space.

To better clarify the issue, we report in Figure 1 a trivial example with only
two input features taken from [27]. There, the authors show how, after several
iterations, the further expansion of the cubes is impossible and a little region of
the input space – namely, the central one – is not covered by any of them.

To circumvent this issue, the same authors suggest the creation of additional,
smaller cubes to fill the uncovered area. However, despite this solution provides
good results for simple data sets, the opposite is true in more complex contexts.
In these cases, the uncovered regions require an high number of small hypercubes
to be generated. They are smaller and smaller, resulting in an explosion of the
amount of rules—which would in turn hinder the interpretability of the final rule
list.

The authors suggest another fix for the non-exhaustivity issue: adopting a
smaller hypercube update parameter. However, this solution implies more it-
erations and longer execution time. Thus, this may increase the chance of the
algorithm terminating without converging to a valuable partitioning within the
maximum iterations limit.

3 GridEx

The design of GridEx aims at overcoming the non-exhaustivity of Iter, other
than its inability to discriminate among interesting and negligible regions of
the input space. We consider as interesting the regions that contain at least
one training-set sample, with the others considered as negligible. Furthermore,
GridEx is designed to tackle complex data sets—i.e. high-dimensional data sets

6 F. Sabbatini et al.

Fig. 1: Example of the Iter non-exhaustivity taken from [27].

whose data distribution is non-trivial. In particular, the goal of GridEx is to
find bigger and more interesting regions than Iter, while retaining the idea that
samples belonging to the same region should have a similar output value. In doing
so, GridEx tries to keep the computational and human efforts minimal—where by
“human effort” we mean manual parameter tuning, whereas by “computational
effort” we mean time and memory requirements for the algorithm execution.

3.1 The Algorithm

GridEx is a pedagogical knowledge-extraction algorithm that – similarly to Iter
– produces rule lists out of sub-symbolic predictors, by using them as oracles.
In other words, GridEx only takes into account the inputs and outputs of the
underlying predictor. For this reason its performance is not tied to the kind
or the structure of the model and it can thus be applied to neural networks
regardless of their depth, as well as to other sorts of regressors.

Similarly to Iter, GridEx assumes that a black-box regressor R is available,
as well as the input data D it has been trained upon. Under that hypothesis,
both algorithms strictly operate inside the surrounding hypercube containing
all data in D, by trying to find a partitioning of the surrounding hypercube
such that, for each partition, the output value of R is similar for all samples
contained into that partition. In that case, both can produce a list of if-then-else
rules approximating the behaviour of R, one for each partition selected by the
algorithm.

Of course, finding fewer relevant partitions implies producing more concise
rule lists, which are more easily grasped by humans. Accordingly, GridEx dif-
fers from Iter in the way partitions are computed, and relevant hypercubes
are selected. In fact, while Iter relies on a bottom-up strategy – starting from
infinitely small hypercubes containing just one input space point and expanding
them as much as possible –, GridEx adopts a top-down strategy—starting from
a single partition containing the whole input space and recursively splitting it
for a user-defined amount of times, into partitions of equal size. Thanks to this
strategy, GridEx actually succeeds in finding fewer partitions w.r.t. Iter, while

GridEx: Knowledge Extraction from Black-Box Regressors 7

producing rules retaining a good fidelity w.r.t. R. After every split, GridEx at-
tempts to merge couples of adjacent partitions—provided that all the samples
therein contained yield similar values for R. Split and merge phases are alter-
nated until a stopping criterion is met.

User can choose between two stopping criteria – not necessarily mutually-
exclusive –, one based on the similarity (w.r.t. R) among the samples in the
current hypercube, the other considering whether a maximum number of itera-
tions has been reached or not. More precisely, if the standard deviation of the R
output values of some hypercube exceeds a given threshold, then that hypercube
is further partitioned: when all hypercubes are under threshold the algorithm
terminates. The threshold value is a trade-off between sensitivity – intended as
how similar should be samples grouped together – and number of rules extracted
so far—i.e., the more increases the sensitivity, the more the output rules will be.

This procedure may eventually bring to the creation of adjacent hypercubes
with similar averaged values of R. Thus, after each split and before proceeding to
the successive iteration, the algorithm tries to pair-wisemerge similar hypercubes
so as to reduce the total amount of hypercubes—and thus to preserve the model
interpretability. More precisely, two adjacent hypercubes are merged only if the
standard deviation of R for the samples belonging to the merged hypercube
does not exceed a given threshold. In this way, GridEx attains larger hypercubes
without affecting the predictive performance of the resulting rules.

Overall, GridEx relies upon n + 3 user-defined parameters, being n ∈ N>0

the maximum amount of iterations it performs. Such parameters are: n, θ,m and
p1, . . . , pn, where θ ∈ R≥0 is the similarity threshold, m is the minimum amount
of samples to be considered in non-empty hypercubes, and pi is the number of
slices the algorithm performs along each dimension of the current hypercube
during the i-th iteration. In the remainder of this section, we use P to denote
⟨p1, . . . , pn⟩, k = dim(D) to denote the dimension of the input space D.

Under such hypotheses, a formal definition of GridEx is provided in Algo-
rithm 1. Intuitively, the operation of the algorithm can be described as follows. It
firstly computes the surrounding hypercube containing all data in D by finding
the minimum and maximum value of each input variable. Then it recursively
splits such hypercube into pi parts along each direction, n times, therefore pro-
ducing pki adjacent and non-overlapping partitions of equal size, at each step.
Only non-empty partitions (w.r.t. the data in D) are taken into account by
the algorithm. Similarly, partitions containing samples whose standard devia-
tion (w.r.t. R) is greater than θ are further partitioned in successive steps of the
algorithm. It may happen, however, that some partition contains too few sam-
ples to provide precise predictions. To prevent this, before computing standard
deviation, GridEx generates m new random samples, using R as an oracle.

3.2 An Example

An example of hypercube partitioning executed by GridEx is reported in Fig-
ure 2. The merging phase is not represented. The data set has two input variables
(i.e. k = 2); user-defined parameters are n = 3, P = ⟨2, 3, 2⟩ and θ = 2.0. In

8 F. Sabbatini et al.

Algorithm 1 GridEx pseudocode

Require: parameters n, θ,m, p1, . . . , pn to be provided

1: function GridEx(R, D)
2: H0 ← SurroundingHyperCube(D)
3: return Slpit(1, H0, R, D)

4: function SurroundingHyperCube(D)
5: return the minimal hyper-cube that includes all the samples of D

6: function Split(i, H, R, D)
7: if i > n then return {H}
8: Π ← ∅, Π ′ ← ∅
9: for all H ′ ∈ Partitions(H, pi) s.t. H

′ ∩D ̸= ∅ do
10: D ← D ∪GenerateSamplesIn(H ′)
11: if StdDev(H ′, R, D) ≤ θ then
12: Π ← Π ∪ {H ′}
13: else
14: Π ′ ← Π ′ ∪ {H ′}
15: Π ′′ ←Merge(Π,R,D)
16: for all H ′ ∈ Π ′ do
17: Π ′′ ← Π ′′ ∪ Split(i+ 1, H ′, R, D) ▷ Recursion!

18: return Π ′′

19: function GenerateSamplesIn(H)
20: return {m random points in H}

21: function Partitions(H, p)
22: return {all pk partitions of H after splitting each edge into p parts}

23: function Merge(Π,R,D)
24: C ← AdjacentCouples(Π)
25: while (|C| > 0) do
26: (H∗

1 , H
∗
2)← argmin

(H1,H2)∈C

{StdDev(H1 ∪H2, D,R)}

27: H ← H∗
1 ∪H∗

2

28: if StdDev(H, R, D) ≤ θ then
29: Π ← Π \ {H∗

1 , H
∗
2} ∪ {H}

30: C ← AdjacentCouples(Π)
31: else
32: return Π
33: return Π

34: function StdDev(H, R, D)
35: return the standard deviation of all {R(x) | x ∈ H ∩D}

36: function AdjacentCouples(Π)
37: return {(H1, H2) | H1, H2 ∈ Π ∧ (H1 and H2 are adjacent)}

GridEx: Knowledge Extraction from Black-Box Regressors 9

(a) Surrounding
cube

(b) Iteration 1
(p1 = 2)

(c) Iteration 2
(p2 = 2).

(d) Iteration 3
(p3 = 2).

Fig. 2: Example of GridEx hyper-cube partitioning (merging step not reported).

particular, Figure 2a depicts the surrounding cube and the data set samples,
represented by red dots. After first iteration (Figure 2b), the surrounding cube
is split into 4 (pk1) hypercubes (continuous lines), as p1 = 2. The bottom-left and
top-right ones are discarded as they are empty (white background). The top-left
hypercube standard deviation (1.5) does not exceed θ (2.0), so it is not parti-
tioned any further. Conversely, the fourth hypercube (standard deviation 2.1)
must be further partitioned: thus, in the second iteration, it is split into 9 (pk2)
partitions (dashed lines, Figure 2c), as p2 = 3. The same logic is then recursively
applied to the 9 new hypercubes, leading to the final stage in Figure 2d: 5 hyper-
cubes out of 9 are discarded as empty (white background), 3 remain unaffected
as their standard deviation is lower than θ (orange background), whereas the
remaining one is partitioned into 22 smaller partitions (dotted lines), as p3 = 2.
Finally, of these 4 partitions, only 1 is non-empty then kept (green background).

3.3 GridEx Adaptive Splitting

Operationally, GridEx partitions a hypercube by relying on the parameters P =
⟨p1, . . . , pn⟩, which essentially state how many splits must be performed per
dimension, at each step of the algorithm. In practice, the actual values of the
many pi greatly impact on the outcome of GridEx—both in terms of efficiency of
the whole procedure, and in terms of predictive performance (and complexity) of
the resulting partitioning. However, they still implicitly rely on the assumption
that all the input variables present a comparable relevance w.r.t. the output
value definition—i.e. the expected output can be more dependent or almost not
dependent at all on some variables rather than others.

Accordingly, we argue that a wiser strategy in hypercubes partitioning could
rely on the following insight: more relevant dimensions of a hypercube should be
split into more parts, whereas less relevant ones can be split in fewer parts. Thus,
to further optimise the amount of selected hypercubes – without sacrificing pre-
dictive performance –, users of GridEx may adopt an adaptive splitting. When in
adaptive splitting mode, GridEx takes into account the relevance of each dimen-

10 F. Sabbatini et al.

sion of D w.r.t. the expected output value. In particular, it uses an importance
measure to choose the number of splits for each dimension of a hypercube.

Importance values can be estimated in several ways. Among the many meth-
ods available – e.g. [45,44,2] – here we leverage on a simple feature selection
method, SciKit-Learn’s feature selection.f regression1. It consists of a se-
quential algorithm aimed at iteratively and greedly selecting the most relevant
features of a dataset. It starts by training a temporary regressor on a single
feature – namely, the most correlated w.r.t. the output values – and it keeps re-
peating this operation by adding one feature at a time, always peaking the one
that mostly increases the temporary regressor predictive performance. At the
end of this process, features are ranked w.r.t. their relevance, and such ranking
is used for the adaptive splitting.

Accordingly, users willing to exploit adaptive splitting should specify the
number of partitions assigned to each dimension on the basis of the importance
calculated w.r.t.D. Importance values are normalised into range [0, 1] so that the
value of the most important value is 1. The algorithm should then be provided
with an increasingly-monotone function of the form f : [0, 1] → N to set the
splits to perform. For instance, a reasonable enhancement for standard two-split
iterations could be: a single split along dimensions whose importance is < 0.1,
two splits if the importance is between 0.1 and 0.65, and three splits otherwise.

We remark that there exists no fixed optimal choices for f : yet, a trial-and-
error approach can possibly lead to quickly find the most suitable combination.

3.4 Parameter Tuning

As described in Section 3.1, GridEx relies on a number of parameters.
The similarity threshold θ depends on the problem under study, i.e. on the

problem output value distribution, and on the trade-off between the interpretable
prediction performance and the total number of extracted rules. Small values of
θ lead to more rules with higher predictive performance. Conversely, large values
produce less rules at the expense of the predictive performance.

As for the m parameter – representing the minimum amount of considered
samples in each cube –, our experiments showed that it does not notably influence
the final results. Values ranging from 10 to 100 are a good choice. We adopted
m = 15 for the experiments reported in this paper.

For both the standard and adaptive versions of GridEx, one or two iterative
partitions are enough to obtain very good results with a limited amount of output
rules. Our experiments showed that larger values lead to an explosion of the rule
number without any significant enhancement of the predictive performance.

Similarly, we found that values of 2 or 3 are suitable for the various pi parame-
ters identifying the number of partitions to create on each cube dimension. Larger
values should be avoided, adopting instead an additional partitioning step. For
instance, P = ⟨4⟩ gives the same predictive performance than P = ⟨2, 2⟩, but
1 cf. https://scikit-learn.org/stable/modules/generated/sklearn.feature_

selection.f_regression.html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html

GridEx: Knowledge Extraction from Black-Box Regressors 11

producing a great excess of hypercubes. This fact occurs because the single-
step partitioning is equivalent to a 2-step partitioning where all the hypercubes
created during the former iteration are further split during the latter.

When the output is not satisfying, it is possible to take advantage of the
adaptive splitting for reducing the number of output rules with negligible dete-
rioration of the predictive performance following the aforementioned suggestions.

4 Assessment of GridEx

In this section we provide a numerical analysis of GridEx under an explainabil-
ity perspective. More precisely, our analysis is aimed at understanding if and to
what extent GridEx: (i) is capable to approximate a black-box regressor, (ii) per-
forms better than Iter in doing so, and (iii) is capable to provide concise and
intelligible explanations for regression tasks.

Accordingly, we construct our experiments as follows. We implement both
GridEx and Iter in Python and run them on a pool of black-box regressors –
trained on many publicly-available data sets of growing size and dimensionality
– to compare their rule-extraction capabilities. We also compare the complexity
of the partitioning produced by GridEx and Iter with the ones produced by
the Cart decision tree regressor trained on the same data2. Similarly, the data
sets for our experiments are summarised in Table 1, providing, for each data set,
(i) a bibliographic reference, (ii) the number of input features, (iii) the total
number of instances, (iv) the percentage of samples taken apart as test set while
training a black-box regressor on that data set, and (v) the performance of the
black-box regressor. In particular, our black-box regressors are ANNs with one
or two hidden layers, depending on the data set. The predicting performance of
the ANN is reported in terms of MAE and R2 value averaged on 100 tests.

Generally speaking, our experiments show how GridEx performs better than
both Iter – as it produces partitionings containing fewer hypercubes, while at-
taining rule lists with better predictive performances – andCart—as it produces
simpler rule lists having choice points.

4.1 Iter Experimental Analysis

As a first step, we run Iter on all the aforementioned black-box regressors and
data sets. Experiments concerning each data set are repeated 10 times. The
averaged results of such experiments are summarised in Table 2.

In all the experiments, Iter parameters are the same: the number of initial
hypercubes is set to 1 for all data sets, while the update parameter is chosen
as double w.r.t. the predefined one described by the authors of Iter—i.e. 0.1
instead of 0.05. This aims at reducing the amount of iterations required by
Iter to converge, especially with the more complex data sets, provided that

2 For the sake of reproducibility, the source code of our experiments is publicly available
at https://github.com/sabbatinif/GridEx

https://github.com/sabbatinif/GridEx

12 F. Sabbatini et al.

Table 1: Overview of the adopted data sets and the performances of the black-
box regressors trained upon them.

Data set name Acron. Ref. Features Instances Test set (%) MAE R2

ARTI1 (α = 0) ARTI1 [27] 2 1 000 50 0.01 0.99

Combined Cycle CCPP [17] 4 9 568 20 4.16 0.89
Power Plant

Airfoil Self-Noise ASN [1] 5 1 503 20 2.04 0.85

Energy Efficiency EE [20] 8 768 20 2.70 0.87

Gas Turbine CO GAS [23] 10 36 733 20 3.16 0.84
and NOx Emission

Wine Quality WQ [43] 11 6 497 20 0.60 0.31

Table 2: Results of Iter applied to the data sets described in Table 1.
Data set ARTI1 CCPP ASN EE GAS WQ

features 2 4 5 8 10 11
Threshold 0.2 7.0 4.0 4.0 15.0 2.0
iterations 26 600 582 600 600 600
hyper-cubes 4 329 113 55 44 23
useful hyper-cubes 4 16 64 25 14 11
Coverage (%) 100.0 91.8 97.9 83.5 76.6 62.3
Left training samples (%) 0.0 8.4 0.0 2.9 6.6 6.1
Missed test samples (%) 0.0 9.1 1.7 3.3 6.7 7.8
MAE (data) 0.04 5.37 4.24 3.52 8.77 0.73
MAE (ANN) 0.04 3.77 3.40 2.37 7.88 0.55
R2 (data) 0.92 0.83 0.40 0.76 0.10 -0.05
R2 (ANN) 0.92 0.91 0.55 0.92 0.17 -0.12

the algorithm terminates when either 600 iterations are performed, or all the
training samples have been covered by the created hypercubes.

Accordingly, for each data set we collect (i) the overall number of actually
useful hypercubes – i.e. those containing at least one training sample – found by
Iter, (ii) the total number of iterations performed by the algorithm, (iii) the
selected threshold parameter value, (iv) the amount of input space covered by
the hypercubes expressed in percentage, (v) the percentage of training samples
that are not included in any hypercube and, analogously, (vi) the percentage of
test samples that the output model is not able to predict. To improve readability,
the feature number of each data set is reported in Table 2 as well. Finally, the
MAE and R2 scores of all Iter predictions are reported w.r.t. both the original
data set and the black-box predictions. These latter measurements are performed
using the test-set samples—which in turn are never used for training.

Table 2 highlights that in 4 cases out of 6 the algorithm reaches the maximum
allowed iterations without covering the whole training set. When this is the
case, the resulting rule list produced by Iter is affected by a reduced predictive

GridEx: Knowledge Extraction from Black-Box Regressors 13

capability, w.r.t. the black-box regressor it mimics. This effect can be detected by
comparing their test-set performance. Such non-exhaustivity issue is particularly
evident for the ASN data set as well.

Generally speaking, the overall Iter performance is very good with simple
data sets (e.g., the ARTI1 data set). However, we observe a degradation as the
complexity of the data set grows. In any case, both performance and computa-
tional cost heavily depend on the parameter values and initial conditions, such
as the starting cube number and position. Parameter tuning can be performed
through a trial-and-error approach [27], but this often implies a trade-off between
execution time, number of extracted rules and result accuracy.

To better analyse how Iter attempts to address the non-exhaustivity issue,
the left side of Figure 3 depicts several plots describing executions of the al-
gorithm on different data sets and black boxes. Each plot has two panels. In
both panels the horizontal axis refers to the computational time (from left to
right), whereas the vertical bars refer to hypercubes. So left-most bars refer to
hypercubes which are found earlier. Top panels represent the number of samples
belonging to each hypercube, expressed as the percentage of the overall train-
ing examples. Conversely, bottom panels represent the relative volume of each
hypercube, expressed as the percentage of the whole input feature space.

Notably, we observe that later iterations of Iter tend to create smaller hy-
percubes that include less samples than the ones computed in previous iterations
(cf. the GAS and WQ data sets). Exceptions may occur when samples are not
uniformly distributed within the input space. This happens for instance in the
EE data set, where it is possible to find big hypercubes with few samples and,
conversely, very small cubes including up to a fourth of the training set. Finally,
the CCPP data set is a perfect example of Iter uncontrolled hypercube expan-
sion towards irrelevant input space regions: more than 95% of the hypercubes
have no predictive relevance. The algorithm wastes time and resources exploring
these regions, reaching the maximum iteration number with almost a 10% of the
samples uncovered by the interpretable model rules.

As discussed below, GridEx overcomes those drawbacks by achieving better
predictive performance in less time and with a lower computational effort.

4.2 GridEx Experimental Analysis

To fairly compare Iter and GridEx, we evaluate the latter as well against all
the aforementioned black-box regressors and data sets. Results are reported in
Table 3, where rows and columns retain the same meaning as in Table 2, except
for the “Left training samples” row, missing. Indeed, it is not useful to report the
number of training samples left out by the algorithm, as GridEx always covers
the entire training set, by construction. Furthermore, the user-defined partitions
are reported as either integer numbers for the standard GridEx or as ‘a’ for the
adaptive variant. When the adaptive option is chosen, the user-defined feature
importance ranges and the corresponding partition numbers are also reported.

Unlike Iter, GridEx can predict almost every sample of the test set. Further-
more, the extracted rules only describe relevant regions of the input space. This

14 F. Sabbatini et al.

0

10

20

30

Tr
ai

ni
ng

 sa
m

pl
es

 (%
)

Hyper-cubes0

5

10

15

Vo
lu

m
e

(%
)

(a) Iter on CCPP.

0

5

10

15

Tr
ai

ni
ng

 sa
m

pl
es

 (%
)

Hyper-cubes0

10

20

Vo
lu

m
e

(%
)

(b) GridEx on CCPP.

0

10

20

Tr
ai

ni
ng

 sa
m

pl
es

 (%
)

Hyper-cubes0

10

20

Vo
lu

m
e

(%
)

(c) Iter on EE.

0

10

20

Tr
ai

ni
ng

 sa
m

pl
es

 (%
)

Hyper-cubes0.0

0.5

1.0
Vo

lu
m

e
(%

)

(d) GridEx on EE.

0

10

20

Tr
ai

ni
ng

 sa
m

pl
es

 (%
)

Hyper-cubes0

10

20

Vo
lu

m
e

(%
)

(e) Iter on GAS.

0

10

20

Tr
ai

ni
ng

 sa
m

pl
es

 (%
)

Hyper-cubes0

5

10

15

Vo
lu

m
e

(%
)

(f) GridEx on GAS.

0

25

50

75

Tr
ai

ni
ng

 sa
m

pl
es

 (%
)

Hyper-cubes0

20

40

Vo
lu

m
e

(%
)

(g) Iter on WQ.

0

20

40

Tr
ai

ni
ng

 sa
m

pl
es

 (%
)

Hyper-cubes0

1

2

Vo
lu

m
e

(%
)

(h) GridEx on WQ.

Fig. 3: Number of training examples (top panels) and volume (bottom panels)
of each hyper-cube created by Iter (left plots) and GridEx (right plots). Values
are expressed as percentage of the total number of training samples and the
surrounding cube volume, respectively. Each row represents a different data set.

GridEx: Knowledge Extraction from Black-Box Regressors 15

Table 3: Results of GridEx applied to the data sets described in Table 1.
Data set ARTI1 CCPP ASN EE GAS WQ

features 2 4 5 8 10 11
Threshold 0.01 4.10 4.00 2.00 7.00 1.00
Partitions ⟨2⟩ ⟨a, a⟩ ⟨a, a⟩ ⟨a⟩ ⟨a, a⟩ ⟨a⟩
Feature importance, - ≤ 0.04, 1 ≤ 0.2, 1 ≤ 0.001, 1 ≤ 0.1, 1 ≤ 0.03, 1
adaptive partitions ≤ 0.5, 2 ≤ 0.5, 2 ≤ 0.5, 2 ≤ 0.7, 3 ≤ 0.6, 2

≤ 1, 4 ≤ 0.7, 3 ≤ 1, 3 ≤ 1, 4 ≤ 1, 3
≤ 1, 4

hyper-cubes 4 18 38 13 41 12
Coverage (%) 100.0 93.8 43.2 9.7 84.0 13.0
Missed test samples (%) 0.0 0.0 1.3 0.0 0.0 0.1
MAE (data) 0.01 4.37 3.27 2.65 6.79 0.69
MAE (ANN) 0.01 2.61 2.57 1.23 5.51 0.38
R2 (data) 1.00 0.89 0.66 0.88 0.48 0.17
R2 (ANN) 0.99 0.96 0.76 0.98 0.61 0.46

design choice may lead to a partial coverage of the input space—e.g. for the EE
and WQ data sets. Little coverage commonly occurs when the training samples
are not uniformly distributed in the input space, but they are, conversely, con-
centrated only in some sub-regions that GridEx is able to discern and mark as
relevant. However, in some corner cases, GridEx may require a larger number of
hypercubes to achieve a significantly better predictive performance than Iter:
then, it produces more rules at the expense of readability of the final rule set.

The right side of Figure 3 depicts plots describing executions of GridEx on
different data sets and black boxes, as previously described for Iter. The plots
show how, in general, GridEx produces fewer hypercubes than Iter, proving
itself more concise on most data sets. There are, however, notable exceptions—
such as the GAS data set, where Iter produces slightly fewer hypercubes than
GridEx (considering only the relevant ones). So, also GridEx may sometimes
find hypercubes with little predictive relevance, for the shortage of examples
contained: in that case, a pruning algorithm could be exploited to reduce the
number of extracted rules with no relevant impact on the overall performance.

Also, some peculiar features of GridEx are effective in overcoming Iter, in
the general case. For instance, the iterative multi-level partitioning performed by
GridEx is a very flexible feature, enabling users to tune the refinement of those
inaccurate rules that include samples with larger standard deviations. However,
to be effective, it must be carefully tuned, as the number of hypercubes may grow
exponentially when samples are uniformly distributed among the entire input
space. Similarly, GridEx merging phase supports the creation of compact rule
lists with less, coarser-grained rules and no predictive performance degradation.

4.3 Comparison of Iter and GridEx

Finally, to perform an unbiased comparison between GridEx and Iter, a decision
tree regressor [11] is taken as a reference—similarly to [12]. More precisely, we

16 F. Sabbatini et al.

Table 4: Results of Cart applied to the data sets in Table 1.
Data set ARTI1 CCPP ASN EE GAS WQ

leaves 4 15 50 40 50 15
MAE (data) 0.01 4.49 3.06 2.78 4.88 0.65
MAE (ANN) 0.01 2.44 2.08 0.59 3.53 0.24
R2 (data) 1.00 0.88 0.70 0.86 0.67 0.25
R2 (ANN) 0.99 0.96 0.80 0.99 0.78 0.71

adopt the Cart algorithm for each data set in Table 1, with a maximum depth
parameter equal to twice the amount of input features. The resulting decision
trees are summarised in Table 4, in terms of MAE and R2 value w.r.t. both the
data and the underlying neural network. The number of leaves is reported as
well since it determines the number of decision rules exploited by the regressor.

The choice of the maximum depth parameter comes from the following con-
siderations. Iter and GridEx rules are expressed as hypercubes. Every cube has
2 constraints on each input variable, i.e. the lower and upper values. Since each
node of the decision tree represents a constraint on a variable, our choice of the
maximum depth parameter ensures that the resulting decision rules cannot be
subject to more constraints than the rules produced by either Iter or GridEx.

Figure 4 summarises results of the comparison among the three extraction
procedures. GridEx (Figure 4a) produces an equal or smaller number of rules
w.r.t. both Iter and Cart in almost all the cases—even if we cut off the irrele-
vant hypercubes produced by Iter. Since interpretability of a rule list decreases
with its length, we argue that GridEx produces more interpretable results.

As for the predictive performance, GridEx is always better than Iter in terms
of MAE (Figures 4b and 4c) and R2 value (Figures 4d and 4e), with respect to
both the data and the underlying black-box predictions. However, Cart has
generally smaller MAE and larger R2 than GridEx. This can be explained by
the undesired discretisation introduced by the constant output value of GridEx
and Iter rules, as well as by the higher amount of rules extracted by Cart.

5 Conclusions

In this paper we present GridEx, a new pedagogical knowledge-extraction proce-
dure aimed at globally explaining black-box regressors. GridEx extends Iter by
overcoming some of its major limitations—namely, its non-exhaustivity and its
tendency to focus on non-interesting regions of the input space. GridEx is able to
create an interpretable approximation of any black-box regressor in the form of
decision rules. W.r.t. Iter, GridEx produces fewer decision rules, while attaining
better predictive performance, even when the data set is high-dimensional.

In our next research efforts we plan to extend GridEx so as to address other
limitations of Iter, such as the inability to handle categorical input features
– with no pre-processing – and the constant output value of its decision rules.
Furthermore, we intend to design an automatic procedure regarding the best

GridEx: Knowledge Extraction from Black-Box Regressors 17

ARTI1 CCPP ASN EE GAS WQ
0

50

100

150

200

250

300
ITER
GridEx
CART

(a) Number of extracted rules.

ARTI1 CCPP ASN EE GAS WQ
0

2

4

6

8
ITER
GridEx
CART

(b) MAE with respect to the data.

ARTI1 CCPP ASN EE GAS WQ
0

1

2

3

4

5

6

7

8 ITER
GridEx
CART

(c) MAE fidelity with respect to the un-
derlying black box.

ARTI1 CCPP ASN EE GAS WQ

0.0

0.2

0.4

0.6

0.8

1.0 ITER
GridEx
CART

(d) R2 value with respect to the data.

ARTI1 CCPP ASN EE GAS WQ

0.0

0.2

0.4

0.6

0.8

1.0 ITER
GridEx
CART

(e) R2 value with respect to the underly-
ing black box.

Fig. 4: Comparison between Iter, GridEx, and Cart using both MAE (the
lower the better) and R2 scores (the higher the better).

18 F. Sabbatini et al.

adaptive splitting parameter selection. We also plan to extend our comparative
numerical analysis to the other rule-extraction algorithms for regression men-
tioned in Section 2.1.

Acknowledgements

This paper has been partially supported by (i) the H2020 project “StairwAI”
(G.A. 101017142), and (ii) the CHIST-ERA IV project “EXPECTATION” (G.A.
CHIST-ERA-19-XAI-005).

References

1. Airfoil Self-Noise Data Set. https://archive.ics.uci.edu/ml/datasets/

Airfoil+Self-Noise (2014), [Online; last accessed 19 Jan 2021]
2. Altmann, A., Toloşi, L., Sander, O., Lengauer, T.: Permutation importance: a

corrected feature importance measure. Bioinformatics 26(10), 1340–1347 (2010)
3. Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for

extracting rules from trained artificial neural networks. Knowledge-based systems
8(6), 373–389 (1995)

4. Ayache, S., Eyraud, R., Goudian, N.: Explaining black boxes on sequential data
using weighted automata. In: International Conference on Grammatical Inference.
pp. 81–103. PMLR (2019)

5. Azcarraga, A., Liu, M.D., Setiono, R.: Keyword extraction using backpropagation
neural networks and rule extraction. In: The 2012 international joint conference
on neural networks (IJCNN). pp. 1–7. IEEE (2012)

6. Baesens, B., Setiono, R., De Lille, V., Viaene, S., Vanthienen, J.: Building credit-
risk evaluation expert systems using neural network rule extraction and deci-
sion tables. In: ICIS 2001 Proceedings. vol. 20 (2001), http://aisel.aisnet.org/
icis2001/20

7. Baesens, B., Setiono, R., Mues, C., Vanthienen, J.: Using neural network rule ex-
traction and decision tables for credit-risk evaluation. Management science 49(3),
312–329 (2003)

8. Barakat, N., Diederich, J.: Eclectic rule-extraction from support vector machines.
International Journal of Computational Intelligence 2(1), 59–62 (2005)

9. Bologna, G.: A study on rule extraction from neural networks applied to med-
ical databases. In: The 4th European Conference on Principles and Practice of
Knowledge Discovery (PKDD2000) (2000)

10. Bologna, G., Pellegrini, C.: Three medical examples in neural network rule extrac-
tion. Physica Medica 13, 183–187 (1997)

11. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression
Trees. CRC Press (1984)

12. Calegari, R., Ciatto, G., Dellaluce, J., Omicini, A.: Interpretable narrative explana-
tion for ML predictors with LP: A case study for XAI. In: Bergenti, F., Monica, S.
(eds.) WOA 2019 – 20th Workshop “From Objects to Agents”, CEUR Workshop
Proceedings, vol. 2404, pp. 105–112. Sun SITE Central Europe, RWTH Aachen
University (26–28 Jun 2019), http://ceur-ws.org/Vol-2404/paper16.pdf

13. Calegari, R., Ciatto, G., Omicini, A.: On the integration of symbolic and sub-
symbolic techniques for XAI: A survey. Intelligenza Artificiale 14(1), 7–32 (2020).
https://doi.org/10.3233/IA-190036

https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise
https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise
http://aisel.aisnet.org/icis2001/20
http://aisel.aisnet.org/icis2001/20
http://ceur-ws.org/Vol-2404/paper16.pdf
https://doi.org/10.3233/IA-190036

GridEx: Knowledge Extraction from Black-Box Regressors 19

14. Ciatto, G., Calegari, R., Omicini, A., Calvaresi, D.: Towards XMAS: eXplainability
through Multi-Agent Systems. In: Savaglio, C., Fortino, G., Ciatto, G., Omicini,
A. (eds.) AI&IoT 2019 – Artificial Intelligence and Internet of Things 2019, CEUR
Workshop Proceedings, vol. 2502, pp. 40–53. Sun SITE Central Europe, RWTH
Aachen University (Nov 2019)

15. Ciatto, G., Calvaresi, D., Schumacher, M.I., Omicini, A.: An abstract framework
for agent-based explanations in AI. In: El Fallah Seghrouchni, A., Sukthankar,
G., An, B., Yorke-Smith, N. (eds.) 19th International Conference on Autonomous
Agents and MultiAgent Systems. pp. 1816–1818. IFAAMAS (May 2020), http:
//ifaamas.org/Proceedings/aamas2020/pdfs/p1816.pdf

16. Ciatto, G., Schumacher, M.I., Omicini, A., Calvaresi, D.: Agent-based expla-
nations in AI: Towards an abstract framework. In: Calvaresi, D., Najjar, A.,
Winikoff, M., Främling, K. (eds.) Explainable, Transparent Autonomous Agents
and Multi-Agent Systems, LNCS, vol. 12175, pp. 3–20. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-51924-7 1

17. Combined Cycle Power Plant Data Set. https://archive.ics.uci.edu/ml/

datasets/Combined+Cycle+Power+Plant (2014), [Online; last accessed 19 Jan
2021]

18. Craven, M.W., Shavlik, J.W.: Using sampling and queries to extract rules from
trained neural networks. In: Machine Learning Proceedings 1994, pp. 37–45. Else-
vier (1994). https://doi.org/10.1016/B978-1-55860-335-6.50013-1

19. Craven, M.W., Shavlik, J.W.: Extracting tree-structured representations of trained
networks. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in
Neural Information Processing Systems 8. Proceedings of the 1995 Conference, pp.
24–30. The MIT Press (Jun 1996)

20. Energy Efficiency Data Set. https://archive.ics.uci.edu/ml/datasets/

Energy+efficiency (2012), [Online; last accessed 19 Jan 2021]
21. Franco, L., Subirats, J.L., Molina, I., Alba, E., Jerez, J.M.: Early breast cancer

prognosis prediction and rule extraction using a new constructive neural network
algorithm. In: International Work-Conference on Artificial Neural Networks. pp.
1004–1011. Springer (2007)

22. Freitas, A.A.: Comprehensible classification models: a position paper. ACM
SIGKDD explorations newsletter 15(1), 1–10 (2014)

23. Gas Turbine CO and NOx Emission Data Set. https://archive.ics.uci.edu/
ml/datasets/Gas+Turbine+CO+and+NOx+Emission+Data+Set (2019), [Online; last
accessed 19 Jan 2021]

24. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM computing surveys
(CSUR) 51(5), 1–42 (2018)

25. Hayashi, Y., Setiono, R., Yoshida, K.: A comparison between two neural network
rule extraction techniques for the diagnosis of hepatobiliary disorders. Artificial
intelligence in Medicine 20(3), 205–216 (2000)

26. Hofmann, A., Schmitz, C., Sick, B.: Rule extraction from neural networks for
intrusion detection in computer networks. In: SMC’03 Conference Proceedings.
2003 IEEE International Conference on Systems, Man and Cybernetics. Confer-
ence Theme-System Security and Assurance (Cat. No. 03CH37483). vol. 2, pp.
1259–1265. IEEE (2003)

27. Huysmans, J., Baesens, B., Vanthienen, J.: Iter: an algorithm for predictive re-
gression rule extraction. In: International Conference on Data Warehousing and
Knowledge Discovery. pp. 270–279. Springer (2006)

http://ifaamas.org/Proceedings/aamas2020/pdfs/p1816.pdf
http://ifaamas.org/Proceedings/aamas2020/pdfs/p1816.pdf
https://doi.org/10.1007/978-3-030-51924-7_1
https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
https://doi.org/10.1016/B978-1-55860-335-6.50013-1
https://archive.ics.uci.edu/ml/datasets/Energy+efficiency
https://archive.ics.uci.edu/ml/datasets/Energy+efficiency
https://archive.ics.uci.edu/ml/datasets/Gas+Turbine+CO+and+NOx+Emission+Data+Set
https://archive.ics.uci.edu/ml/datasets/Gas+Turbine+CO+and+NOx+Emission+Data+Set

20 F. Sabbatini et al.

28. Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., Baesens, B.: An empirical
evaluation of the comprehensibility of decision table, tree and rule based predictive
models. Decision Support Systems 51(1), 141–154 (2011)

29. Johansson, U., König, R., Niklasson, L.: Rule extraction from trained neural net-
works using genetic programming. In: 13th International Conference on Artificial
Neural Networks. pp. 13–16 (2003)

30. Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 31—57 (Jun
2018). https://doi.org/10.1145/3236386.3241340

31. Martens, D., Baesens, B., Van Gestel, T., Vanthienen, J.: Comprehensible credit
scoring models using rule extraction from support vector machines. European jour-
nal of operational research 183(3), 1466–1476 (2007)

32. Murphy, P.M., Pazzani, M.J.: Id2-of-3: Constructive induction of m-of-n concepts
for discriminators in decision trees. In: Machine Learning Proceedings 1991, pp.
183–187. Elsevier (1991)

33. Quinlan, J.R.: Simplifying decision trees. International Journal of Man-Machine
Studies 27(3), 221–234 (1987). https://doi.org/10.1016/S0020-7373(87)80053-6

34. Quinlan, J.R.: C4.5: Programming for machine learning. Morgan Kauffmann 38,
48 (1993)

35. Rocha, A., Papa, J.P., Meira, L.A.: How far do we get using machine learning
black-boxes? International Journal of Pattern Recognition and Artificial Intelli-
gence 26(02), 1261001–(1–23) (2012). https://doi.org/10.1142/S0218001412610010

36. Rudin, C.: Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence 1(5),
206–215 (2019). https://doi.org/10.1038/s42256-019-0048-x

37. Saito, K., Nakano, R.: Extracting regression rules from neural networks.
Neural Networks 15(10), 1279–1288 (2002). https://doi.org/10.1016/S0893-
6080(02)00089-8

38. Schmitz, G.P., Aldrich, C., Gouws, F.S.: ANN-DT: an algorithm for extraction
of decision trees from artificial neural networks. IEEE Transactions on Neural
Networks 10(6), 1392–1401 (1999). https://doi.org/10.1109/72.809084

39. Setiono, R., Baesens, B., Mues, C.: Rule extraction from minimal neural networks
for credit card screening. International Journal of Neural Systems 21(04), 265–276
(2011). https://doi.org/10.1142/S0129065711002821

40. Setiono, R., Leow, W.K., Zurada, J.M.: Extraction of rules from artificial neural
networks for nonlinear regression. IEEE Transactions on Neural Networks 13(3),
564–577 (2002). https://doi.org/10.1109/TNN.2002.1000125

41. Steiner, M.T.A., Neto, P.J.S., Soma, N.Y., Shimizu, T., Nievola, J.: Using neural
network rule extraction for credit-risk evaluation. International Journal of Com-
puter Science and Network Security 6(5), 6–16 (2006)

42. Towell, G.G., Shavlik, J.W.: Extracting refined rules from knowledge-
based neural networks. Machine Learning 13(1), 71–101 (1993).
https://doi.org/10.1007/BF00993103

43. Wine Quality Data Set. https://archive.ics.uci.edu/ml/datasets/Wine+

Quality (2009), [Online; last accessed 19 Jan 2021]
44. Zhuang, J., Dvornek, N.C., Li, X., Yang, J., Duncan, J.: Decision explanation

and feature importance for invertible networks. In: 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW). pp. 4235–4239. IEEE (2019)

45. Zien, A., Krämer, N., Sonnenburg, S., Rätsch, G.: The feature importance rank-
ing measure. In: Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases (ECML PKDD 2009). pp. 694–709. Springer (2009).
https://doi.org/10.1007/978-3-642-04174-7 45

https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1016/S0020-7373(87)80053-6
https://doi.org/10.1142/S0218001412610010
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1016/S0893-6080(02)00089-8
https://doi.org/10.1016/S0893-6080(02)00089-8
https://doi.org/10.1109/72.809084
https://doi.org/10.1142/S0129065711002821
https://doi.org/10.1109/TNN.2002.1000125
https://doi.org/10.1007/BF00993103
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://doi.org/10.1007/978-3-642-04174-7_45

	Copertina_postprint_IRIS_UNIBO
	extraamas-2021-iter
	 GridEx: An Algorithm for Knowledge Extractionfrom Black-Box Regressors

