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A Deep Learning and Social IoT approach
for Plants Disease Prediction

toward a Sustainable Agriculture
Giovanni Delnevo, Roberto Girau*, Chiara Ceccarini, and Catia Prandi

Abstract—As the world becomes increasingly interconnected,
emerging and innovative sensing technologies are shaping the
future of agriculture, with a special focus on sustainability-
related issues. In this context, we envision the possibility to exploit
Social Internet of Things for sensing of environmental conditions
(solar radiation, humidity, air temperature, soil moisture) and
communications, deep learning for plant disease detection, and
crowdsourcing for images collection and classification, engaging
farmers and community garden owners and experts. Through
data fusion and deep learning, the designed system can exploit
the collected data and predict when a plant would (or not)
get a disease, with a specific degree of precision, with the
final purpose to render agriculture more sustainable. We here
present the architecture, the deep learning model, and the
responsive web app. Finally, some experimental evaluations and
usability/engagement tests are reported and discussed, together
with final remarks, limitations, and future work.

Index Terms—Plant Disease Prediction, Plant Disease Detec-
tion, Social IoT, Deep Learning.

I. INTRODUCTION

With the advancement in innovative communication tech-
nologies and the rapid growth of smart sensors, the Internet
of Thing (IoT) has emerged as a new computing paradigm [1].
Thanks to its pervasiveness, IoT is permeating our daily lives,
showing the potential to impact several domains, ranging from
personal to industrial ecosystems, as enablers for responsible
digital transformation [2].

One of the critical domains where the IoT can have a
positive impact is sustainability, as reported by the World
Economic Forum, in its document titled “Internet of Things
Guidelines for Sustainability” [3]. The report claims that
“84% of IoT deployments [considering 2017] are currently
addressing, or have the potential to address, the Sustainable
Development Goals (SDGs) as defined by the United Nations”
and it continues, assessing that the reason why the IoT could
become a game-changer for sustainability lies in its technology
[3]. Along this line of thinking, the synergies between IoT
solutions and SDGs have been investigated in other studies
and reports (e.g., [4]).

Smart cities, smart energy, connected industries, connected
health, and smart agriculture are just a few of the sectors where
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the Internet of Things may provide substantial benefits in terms
of sustainability [4].. Focusing on the latter one, several studies
are presenting IoT-enabled strategies in the area of smart
agriculture [5], [6], [7]. Nonetheless, limited are the studies
where the IoT solutions for smart agriculture are analyzed
under a sustainability lens [8]. In this context, we envision
the opportunity to exploit IoT and emerging technologies and
paradigms to promote sustainable agriculture. In particular, we
are interested in investigating the possibility to employ the
IoT not only for plants diseases detection, but also prediction,
with the final purpose to render agriculture more sustainable,
safe and resilient, avoiding expensive use of pesticides in crop
protection and a sustainable pest management [9].

Inspired by previous studies concerning IoT and Social
Internet of Thing (SIoT) (e.g., [10], [11]), machine learning
in the area of smart agriculture and plant disease diagnosis
(e.g., [12], [13]), crowdsensing and crowdsourcing (e.g., [14]),
we investigated a strategy to deploy a sensors infrastructure
to collect data and use such data, together with crowdsourced
photos, to predict (and control) the plant diseases. We seek the
opportunity to provide farmers and community garden owners
with a SIoT infrastructure and a responsive web app for plant
diseases prediction (and control), towards sustainable agricul-
ture. In doing that, we designed and developed a system,
called FruGar, exploiting data fusion of environmental data
collected via a SIoT and crowdsourced photos, and automatic
image recognition systems and disease prediction based on
deep learning. We validated our approach using a small dataset
about coffee leaf rust. To the best of our knowledge, this is the
first study investigating data fusion of environmental data and
crowdsourced photos for plants disease prediction employing
deep learning.

The rest of the paper is organized as follows. First, Section
II details previous studies in the area of i) machine learning
strategies that have been used for plant disease diagnostics;
ii) the Social IoT paradigm, focusing, in particular, on iii)
Lysis, a cloud Social IoT architecture. Then, we describe
the overall system, describing the system architecture and
the micro engines, while Section IV presents the architecture
and the features of the responsive web application. Some
preliminary experimental evaluations are presented in Section
V. Finally, Section VI concludes the paper with final remarks,
limitations and strategies for future work.
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II. RELATED WORK

This Section discusses some researches related to our study
with a particular focus on plant disease detection approaches,
the SIoT paradigm, and the Lysis platform, the SIoT platform
on which this work relies.

A. Plant Disease Detection

Deep learning algorithms represent the state-of-art for plant
disease detection. However, in order to reach a high-level
performance of accuracy, they need to be trained on a huge
amount of data. Most researches concerning plant disease
detection are based on the PlantVillage dataset [15]. It is the
largest open-access repository of crop images since it contains
54,307 JPEG images. They include leaves of healthy and
diseased plants, relative to fourteen different crop species.. The
diseases were confirmed by expert plant pathologists based
on standard phenotyping approaches. The peculiarity of this
dataset is that the pictures have been taken removing the leaves
from the plant and placing it on a grey background, even if
this negatively influences the performance of models in real
scenarios [16].

This has led to the publication of new datasets which have
tried to compensate for this limitation, providing images of
leaves in different real-life situations of cultivation fields.
Among them, we can cite PlantDoc [17], RoCoLe [18], and
the one proposed by Chouhan et al. [19]. The most similar
is undoubtedly PlantDoc [17], since it covers 13 of the 14
species included in the Plant Village dataset (the only missing
is Orange) but it consists of only 2598 images. RoCoLe [18] is
comprised of 1560 high-resolution images, taken under differ-
ent environmental conditions, and classified by professionals
but they are only relative to coffee leaves. Furthermore, the
dataset presented in [19] contains 4503 sample images of
leaves during different stages of their life cycle. The plants
considered are all different from the ones of the Plant Village
dataset. Finally, there are also a lot of small datasets focused
on specific plants [20], [21]. As highlighted, none of these
datasets are truly comparable with the Plant Village one,
for various reasons ranging from the number of images to
the diseases and plants represented. Anyway, all the public
datasets available do not provide any additional information
other than the images.

Employing these datasets, different studies evaluated several
deep learning algorithms [22]. They focused on the most
common convolutional neural network architectures [23], the
impact of transfer learning on them [24], and their inter-
pretability [25]. Unlike the previously mentioned works, Zhao
et al. [26], instead, employed data fusion to merge images
of leaves with other contextual information like the season,
temperature, and humidity. They designed a Multi-Context
Fusion Network, that essentially has two parallel inputs. The
first one, that analyzes the images, exploits a Convolutional
Neural Network (CNN) while the second, which takes as
input the contextual information, simply employs some fully-
connected layers.

All the systems presented in the literature deal with detect-
ing the current disease of the plant. None of these, however,

allow you to predict a future disease of the plant when it is
still healthy so that measures can be taken to prevent it.

B. Social Internet of Things

Recently, several studies have looked at the problems of
managing and effectively using large numbers of heteroge-
neous devices, and have found a solution in the use of
social networking principles and technologies. The guiding
motivation is that a social-oriented approach is intended to
aid in the discovery, collection, and composition of resources
and knowledge offered by distributed objects and networks
[27].

In [10], the definition of the Social IoT (SIoT) has been
formalized, and it is intended to be a social network in which
each node is an entity capable of forming social relationships
with other things on its own, according to the rules set by the
owner. The SIoT relies on certain key relationship types:

• Ownership Object Relationship: it is established between
objects belonging to the same owner.

• Co-location Object Relationship (CLOR): it is established
between fixed devices in the same location

• Parental Object Relationship: it is achieved by connecting
objects from the same model, vendor, and production
batch.

• Co-work Object Relationship: it is built between objects
which meet in the workplace of their owners

• Social Object Relationship (SOR): it is formed as a result
of repeated encounters between objects, such as those that
can occur between smartphones of students in the same
class.

These relationships are generated and modified based on the
characteristics of the objects (such as object type, comput-
ing capacity, accessibility capability, and brand) and their
operation (frequency of meeting other objects, mainly). Re-
cently, some work has studied how the SIoT can be used to
monitor certain types of smartphone activities to minimize
users’ concerns about accessibility and tracking in smart
social spaces [28]. The resulting object social activity can
also be used for the management of trust in object-to-object
communications [29], [30].

C. The Lysis implementation of SIoT

The scenario of a community garden consists of a dis-
tributed system of heterogeneous devices, both fixed (sensors,
valves, etc.) and mobile, such as the smartphones of the
users-farmers. IoT applications built on these devices may
have to analyze a large amount of information generated by
the cooperation between the devices. In such a scenario, we
foresee each device being linked to its virtual counterpart in
the cloud or at the edge through virtualization technologies.
The solution we proposed in this paper relies on the cloud
SIoT architecture, named Lysis [11], that foresees a four-level
structure as described below.

The bottom layer is populated by real-world objects. At
this layer, physical devices directly access the platform via
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direct links to the Internet, while other objects (more resource-
constrained) need to rely on gateways for the Internet connec-
tion, allowing them to send data to and receive commands
from the level above. Physical devices and gateways are able
to perform basic tasks, such as secure communication with
their respective virtual counterparts, as well as management
and presentation of data coming from sensors. The above layer
is the Virtualization layer that directly interacts with the real
world and is composed of Social Virtual Objects (SVOs). The
virtualization functionalities are common to most IoT cloud-
based platforms to address most of the issues related to the
low level of resources the IoT objects are equipped with [31].
In Lysis, these tasks are enhanced by the social skills of the
agent executing the virtual object, allowing it to create and
maintain friendships with other SVOs independently of the
user. Accordingly, a network of social digital counterparts of
the physical devices is created and available at this layer. This
can be used to look for objects and knowledge they generate,
assess trust levels, and form communities to promote coop-
eration. The Aggregation layer is responsible for composing
several SVOs into entities with extended capabilities, called
Micro Engines (MEs); the ME is the entity that implements
part of the application logic performed at the upper layer. In
each ME, the output for a request coming from an application
can be reused to serve requests from different applications that
require the same information or service to save bandwidth and
CPU. Finally, user-oriented macro services are provided at the
Application layer.

III. FRUGAR SYSTEM

In this Section, we present the overall system architecture,
describing the different micro engines (the collector, the de-
tector, and the model builder) and how they interact to build
new datasets.

A. The System Architecture

Fig. 1 shows the framework of the FruGar system, which
is completely based on the Lysis SIoT architecture presented
in Section II-C. The main components are as follows.

1) The Smartphone of the FruGar User: it has the applica-
tion to check the plant health status from pictures and
from the garden sensors. It includes the Lysis drivers
needed to communicate with its virtual counterpart and
implement all the features of the SIoT.

2) The garden sensors: smart and modern cultivation in-
cludes sensors for soil monitoring (soil moisture, nu-
trient concentration, etc.) and sensors for atmospheric
monitoring (solar radiation, humidity, and air tempera-
ture, etc.). These sensors have access to the Internet and
are able to communicate with the virtualization layer.

3) Social Virtual Objects: the SM SVO and GS SVO are
the virtual counterpart of the smartphones and Garden
sensors, respectively. These SVOs are created and man-
aged by the virtualization layer of Lysis. By means
of the SVOs, Lysis allows the communication between
smartphones and garden sensors.

4) The Collecting Micro Engine (C-ME): an ME in charge
to collect data coming from the garden sensors which
will be used to build the dataset for the classifier.
The labeling of the classifier dataset is implemented
using voluntary feedback provided by people experts in
recognizing plant disease.

5) The Detector Micro Engine (D-ME): it is the classifier
that receives the plant picture from the smartphone and
the sensors time series from the C-ME.

6) The Model Builder Micro Engine (MB-ME): the dataset
is stored on the MB-ME which executes the training
process and provides the model to the D-ME.

7) The Mobile App (APP): it is a mobile application that
allows mobile users to read their garden sensor data, to
check the plant’s health by taking some pictures, and to
give feedback for plant pictures not yet labeled in the
classifier dataset.

Fig. 1. The FruGar System’s architecture.

When users logged into the web app on their smartphones,
an SM-SVO is created for the smartphone at the Lysis vir-
tualization layer. The SM-SVO (like all SVOs) provides the
socialization features foreseen in the Lysis architecture and
necessary to create social relationships, as shown in Fig. 2.

Fig. 2. Building the social graph.

The user’s smartphone is brought into the garden where the
socialization algorithms exploit closeness detection to establish
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the relationships between the SM SVO and the GS SVOs of
the nearby sensors. The mac addresses of the access points are
generally used as a point of reference [32], [33]. In a similar
way, once installed in the garden, the sensors’ SVOs create
a CLOR-type relationship since they are fixed devices in the
same place.

B. The Collector Micro Engine

The detection of a crop disease requires, in addition to
the photo taken from the user’s smartphone, all the data of
the sensors belonging to other users and monitoring various
environmental parameters in the garden. To this, the C-ME
performs three operations: it tunes the sampling frequency
of each involved sensor accordingly to the requirements set
by the experts in order to build the right dataset; it sends
a request for sensors relating to cultivation; it requests and
aggregates the data measured in the previous days from the
sensors found in the search process. The sampling frequency
setting is possible thanks to the HW abstraction guaranteed by
the SVOs and which allows us to use the sensors in the same
way with simple and uniform APIs. The search process begins
with a query to the SM-SVO of the user acting as root in the
social graph. The query can provide some description tags in
order to fully describe the type of sensors it is looking for, the
place in which they are located, the context, and what kind
of social relationships they are connected to each other. In the
best case, the smartphone has a direct relationship (one hop
of separation) with all the sensors of the crop and it will be a
SOR relationship as the user (with her smartphone) frequently
goes to the garden. In the worst case, the smartphone has a
relationship only with some of the sensors, but all the sensors
in the garden have a CLOR relationship with each other as they
are all located in the same place (the garden). In the latter case,
the search is spread over two hops of separation. The query is
passed in JSON format and includes the following: a) the key
to verify access permissions (if different from “public”); b) the
maximum number of resources requested (limit); c) the depth
of the search in the social graph (hop); d) the geographical
area and a description of the resources in text format in the
description parameter; e) the type of relationship that can be
exploited the SVO search process, specified in the relationship
field. The output of the search process will be a list of GS
SVOs’ resources with their access keys.

C. The Detector Micro Engine

The Detector Micro Engine has two main tasks. The former
consists of detecting the current disease of the plant using
a simple convolutional neural network, as described in [34].
Once a disease is detected, all the data relative to such a plant
are aggregated and extracted by the Collector ME to be added
to the dataset for the disease prediction, which is the latter task
of the engine. In fact, once there are data available to a specific
disease of a plant, the model for predicting a future disease
of the plant is trained. Its architecture is depicted in Figure 3.
It takes two parallel inputs. The first one consists of all the
data collected by the different sensors. There is a time series
for each type of sensor (in the example four). They passed

through a Long Short-Term Memory (LSTM) layer [35] and a
fully-connected one. The second input is for the image series.
In this case, we exploit a CNN LSTM [36] with the aim of
taking advantage of the CNN to extract features from the
images and employing the LSTM to process the sequences
of features extracted. Then, the two outputs of these two
branches are concatenated together. A fully-connected layer
deals with making high-level reasoning on the combination
of the extracted features, both images and sensors data series.
Finally, there is the output layer with softmax as the activation
function which gives an indication of the state of the health
of the plant together with the relative probabilities.

Fig. 3. Proposed deep neural network to predict future plant disease.

D. The Model Builder Micro Engine and Dataset Definition
The assessment of possible plant disease may not be possi-

ble due to the lack of a pre-loaded decision model. In this case,
the proposed system is able to build a dataset starting from the
history of the measurements made by the sensors in the crop of
interest. By exploiting the C-ME, it is possible to collect and
aggregate the data from the social network. Essentially, they
are a list of the data collected by the sensors together with
the evaluation of the human expert who indicates the moment
the plant gets sick. An example is reported in Table I, where
the sensed data are: i. temperature, ii. humidity, iii. pressure,
and iv. soil moisture. They are just an example and some or
all of them could be replaced with other sensors such as ph
or illuminance. In the Disease column, depending on the plant
and the disease, the values could be only healthy and diseased
or the experts could identify different stages of the disease
(such as early and late blight for tomatoes).

In addition to these data, there also images of the plants.
Instead of being collected using sensors, they are taken using
the web application directly from the users. For this reason,
the system does not require these to be collected at regular
time intervals but it simply saves also the current time.
Since in a real-world end-use scenario of the FruGar system,
pictures can be taken in different settings and environmental
conditions, it is important to collect datasets where the photos
are taken in different positions and conditions. Otherwise, a
significant decline in system performance could be observed
as highlighted in [37]. For these reasons, the system allows to
collect also new images.
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Temperature Humidity Pression Soil Mosture Disease
t1 h1 p1 sm1 d1
t2 h2 p2 sm2 d2
t3 h3 p3 sm3 d3
t4 h4 p4 sm4 d4
t5 h5 p5 sm5 d5
t6 h6 p6 sm6 d6
t7 h7 p7 sm7 d7
t8 h8 p8 sm8 d8
t9 h9 p9 sm9 d9
t10 h10 p10 sm10 d10

TABLE I
EXAMPLE OF RAW DATA COLLECTED BY FOUR POSSIBLE SENSORS.

Starting from these raw data, a dataset can be generated
according to four main parameters, which can be set according
to the plant and disease:

1) F: the frequency with which we consider the data
collected, that depends on the sensors sampling rate.

2) N: the number of instants used to build the input.
3) NI: the number of last images used as input.
4) T: how far we predict the possible disease of the plant.
F can be an integer greater than or equal to 1. If F is equal

to 1, we employ the same sampling rate of the sensors. Hence,
we consider all the rows in the Table. Instead, if for example,
it is equal to 2, we consider only half of the raw data, the ones
collected in an instant of time with an odd index.

Then, N is the number of rows (without the Disease column)
using as input. Considering F equal to 1, N equal to 4 implies
that the input of the final dataset will consist of four rows of
the raw data. Hence, the first input sample will be composed
of rows 1 to 4, the second of rows from 2 to 5, and so on.

Finally, T is the number of lines, following the last input
line, in which we select the disease item as output. Considering
F equal to 1 and N equal to 4, if we set the value of T to 6,
the output of the first sample will be d10.

Once the data are collected, an evaluation of the best
combination of these three parameters has to be carried
out. Obviously, it will depend on the plant and the disease
considered. For this reason, it might be useful a discussion
with domain experts also at this stage. As N varies, not only
the length of the data series that the model will have to manage
will change but also the minimum time required to be able to
make a prediction. Even more interesting, it will be finding
the best value of T. A too small value makes it impossible to
take timely action on the plant to prevent the disease, while it
is impossible to predict the disease too early.

At this point, it is possible to use the generated dataset to
train a deep learning model. Since the diseases of a plant can
be very different from each other and can spread differently
according to the type of plant, our choice is to train specific
models for each plant and disease.

IV. THE RESPONSIVE WEB APPLICATION

We designed and developed a responsive web application to
provide support to citizens in their activities related to com-
munity gardening and urban farming. Initially, we designed a
preliminary version of the system, as presented in [34]. We ex-
ploited the smartphone through a frugal innovation lens, taking

(a) Plant’s Data (b) Future Prediction

Fig. 4. Screenshots of the User Interface of the web application.

advantages of the ubiquitous built-in smartphone components
(such as the camera) in the context of home and community
gardening, to assist casual citizens in gardening activities.
We here present an extended and refined version, with the
main goal of employing machine learning, crowdsourcing, and
Social IoT to inform the prediction of future plant diseases,
based on historical sensed environmental conditions. In doing
that, we considered, as the main target audience, farmers and
community garden owners who are interested in exploiting
low-cost solutions for sustainable agriculture through a sus-
tainable disease prediction/control system.

Presenting the application in detail, the back-end is built
in Node.js1. It provides some APIs to get information about
users’ accounts and, most importantly, it communicates di-
rectly with our D-ME, through the dedicated APIs , to get the
status of the user’s plants. Concerning the front-end of our
prototype, we used Vue.js2, a JavaScript framework to build
the web application, which needs to be responsive, as it will
be enjoyed mainly on smartphones.

In Figure 5, the sequence diagram presenting the workflow
of the app core functions, i.e. detection and prediction, is
depicted. Accordingly, to check the health or disease of the
plant, the application requires the user to open the application
and selected the plant of interest. The interface in Figures 4(a)
will appear with all of the latest data taken from the sensors
and some textual information that indicate if temperature,
humidity, soil moisture, and pressure are good or harmful to
the plant. When the user clicks on the evaluate button at the
bottom of the interface, s/he has to select the type of the plant
(from a drop-down menu), and to provide a photo. As soon as
the user has uploaded the photo of the plant, it is sent to our
back-end which forwards it to our D-ME. The prediction made
by the D-ME, exploiting the deep learning model presented in

1https://nodejs.org/it/
2https://vuejs.org/
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Fig. 5. The sequence diagram presenting the App workflow.

Section III-C, is then returned to our back-end and displayed
in the web application (as shown in Figure 4(b)). The users
can now see if the plant is healthy or if there is a chance
of developing some disease, with some related information
about how to prevent it. When the D-ME detects a diseased
plant, such a photo is forwarded to an expert (as depicted at
the bottom of Figure 5) who will evaluate it, confirming or
modifying the D-ME prediction.

In addition, each user can contribute to our application by
providing images of healthy or diseased plants of new crop
species, contributing to the system in a crowdsourcing fashion.

V. EXPERIMENTAL EVALUATION

Using a system based on the Lysis architecture allows us to
isolate sensor data acquiring concerns from data aggregation
and analysis problems. In fact, the virtualization layer is
significant in that it provides a HW abstraction that allows
all sensors to be managed in the same way, with uniform
APIs for reading sensor data, setting sample frequencies, and
controlling actuators such as irrigation valves or greenhouse
windows. For this, we focused on the components of analysis
and prediction. In this Section, we present i) an experimental
evaluation of both plant disease detection and prediction;
ii) a preliminary App evaluation, in terms of usability and
engagement, involving some users (four community garden
owners and two urban farmers).

A. D-ME evaluation

We conducted different experiments for both tasks of the
D-ME, the plant disease detection and prediction. For the
disease detection, we evaluated different CNN architectures:
DenseNet121, MobileNet, MobileNetV2, and NasNetMobile.

With respect to those used in [34], such architectures are much
lighter, having far fewer parameters. In this way, they can
be used in any node of the system even directly on users’
smartphones. They have been trained on the PlantVillage
dataset, splitting it into 80% for training and 20% for testing.
During training, we augmented the data by rotating and
flipping images and the 10% of the images were used for
validation. We employed the Tensorflow 2.0 framework. All
the architectures have been trained from scratch, without using
transfer learning, for 100 epochs using Adam with a learning
rate of 0.001 and a decay of 0.0005. Table II reports the
accuracy and the F1-score of each architecture on the test set.

Model Accuracy F1-score
DenseNet121 94.51% 94.51%

MobileNet 93.17% 93.14%
MobileNetV2 94.58% 94.58%

NASNetMobile 93.97% 93.98%
TABLE II

ACCURACY OF CNNS ON VALIDATION AND TEST SET.

Given that the data collection process is still in progress,
we evaluated the plant prediction capabilities using an already
available dataset, the Coffee Leaf Rust dataset [38], which
contains three-month data about coffee plants. Data consists
of environmental humidity and temperature, ph, soil moisture,
soil temperature, and illuminance and are sampled by the
sensors on average 7 times a day. In addition to them,
there are also pictures of the plants. Since they have been
taken by humans, for each sampling of sensors, they are not
always available. Each sample has been labeled by a team of
biologists, that has indicated the severity of the Coffee Leaf
Rust development stage. For the dataset definition, we used the
following values for the parameters: F=1, N=2, NI=1, and we
varied T from 35 to 70. This implies that we use input series
composed of two values and we predict the plant disease from
5 (considering that there are 7 samples per day) to 10 days
later. We employed only one image, given the fact that they
were not always available. Depending on the T parameter,
we have a number of samples that varies from 1,930 (T=35)
to 1,790 (T=70). Given the limited amount of samples, we
slightly modified the architecture depicted in Figure 3. With
regard to the sensors part, there are six input series of two
elements. The LSTM and the Dense layers are composed
respectively of 32 and 8 neurons. In the image part, instead,
we use a single CNN instead of a CNN LSTM, since we
have only one image. The CNN employed has three pairs of
Convolutional and Max Pooling layers, followed by Dense,
Batch normalization, Dropout, and Dense layers. Finally, the
two parallel branches are concatenated and passed as input to
a Dense layer of 4 neurons, which precedes the output layer.
The model has been implemented using the Keras framework.
We chose Adam as the optimizer with a learning rate of 0.001
and a decay of 0.0005. The training and test sets are composed
respectively of the 80% and the 20% of the examples. As
evaluation metrics, we employed precision, recall, and F1-
score, since the dataset is not perfectly balanced. The results
are reported in Table III.
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T Precision Recall F1-score
35 0.99 0.99 0.99
42 0.97 0.98 0.97
49 0.97 0.94 0.95
56 0.99 0,87 0,92
63 0.99 0,71 0,83
70 0.92 0.65 0.76

TABLE III
PLANT PREDICTION PERFORMANCE ON THE TEST SET VARYING T.

B. App evaluation

To evaluate the App, we engaged six users (four community
garden owners and two urban farmers; average age: 37, min:
22, max: 54) in a usability session. The session was designed
to assess the User Interface usability (employing the System
Usability Scale - SUS [39]), and the level of engagement
(employing the User Engagement Scale - UES - short form
[40]). Participation was voluntary, and all participants had the
right to comply with or refuse participation, considering also
details about the data storage and analysis (accordingly with
European General Data Protection Regulation). We engaged
users through snowball sampling. Unfortunately, due to the
COVID-19 pandemic, we were able to recruit only six users.
Nonetheless, the literature states that six users, under specific
conditions, can discover circa 90% of usability issues [41].
During the session, we asked each user to enjoy FruGar and
perform some defined tasks (such as taking a picture and verify
the plant health status). After this phase, the users answered
an online questionnaire comprised of 22 items (10 items from
SUS and 12 from UES, short form), using a 5-point Likert
scale (from 1 = strongly disagree to 5 = strongly agree). The
score obtained analyzing the SUS responses was very high,
90 out of 100 (a score above 68 is considered above average).
The average score for each question is presented in Figure 6,
left side. Interesting is to notice that the average score of the
question “I would imagine that most people would learn to
use this system very quickly.” (item #7 in SUS) obtained a
score of 4.8 out of 5.

Considering the level of engagement (Figure 6, right side),
we obtained an average score of 4.075 (out of 5, strongly
agree), analyzing all the items expressed with a positive tone.
Interesting to notice that, the average score of the question
“Using FruGar was worthwhile” (item #10 in UES, short form)
got a score of 4.8 out of 5. The collected data confirm the
possibility to release FruGar to a large amount of users, to
perform on-the-field evaluations.

Fig. 6. The average outcome obtained considering each SUS and UES item.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present an approach that takes advantage of
different emerging technologies and paradigms, such as Social
IoT for sensing environmental conditions, deep learning for
plant disease detection, crowdsourcing for engaging citizens
and experts, with the final aim of promoting sustainable
agriculture. Our approach has been designed to perform data
fusion of environmental sensed data (such as solar radiation,
humidity, air temperature, and soil moisture) and plant photos
crowdsourced by users, to predict the probability for a plant
to get a disease (based on the historical gathered environmen-
tal conditions and related collected photos), exploiting deep
learning. We also exploit experts to validate the predictions
and correct labelling of the new images. Some preliminary
experiments are presented, to validate the precision of the deep
learning model and to prove the usability and engagement level
of the Frugal web app, engaging six urban farmers/community
garden owners.

The most important limitation of this work is surely the
limited test of the deep neural network, that has been evaluated
only on a small dataset about coffee leaves. The reasons are
manifold. First of all, as previously mentioned, we have found
only one dataset similar to those ones collectible using the
proposed system. Even if we have started the data collection
process, we have to collect a large amount of data to be able
to train such a model and this process has been slow down
by the global health emergency and the imposed individual
restrictions. Moreover, the plants in which we have placed
the sensors must get a disease to collect the appropriate
data and this has not been possible so far given the Italian
climate (spring has just begun). As soon as enough raw
data are available, we will train further models and evaluate
which is the best combination for the various hyper-parameters
presented in this work. Anyway, the preliminary tests on the
plant prediction performance presented are encouraging. As
well as, we here prove the potential and precision of the
implemented deep learning model for plant detection, and,
finally, the advantages of using a Social IoT architecture.

Moreover, as future work, we would like to deeper in-
vestigate the advantages of using a Social IoT architecture,
exploiting the plants’ proximity, improving the performance
and efficiency of the prediction model.

ACRONYMS

CNN Convolutional Neural Network
CLOR Co-location Object Relationship
C-ME Collecting Micro Engine
D-ME Detector Micro Engine
GS SVO Garden Sensor Social Virtual Objects
LSTM Long Short-Term Memory
ME Micro Engines
MB-ME Model Builder Micro Engine
PD Physical Devices
SIoT Social Internet of Thing
SM SVO Smartphone Social Virtual Object
SOR Social Object Relationship
SVO Social Virtual Objects
SUS System Usability Scale
UES User Engagement Scale
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