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The thermoconvective instability of the parallel vertical flow
in a fluid saturated porous layer bounded by parallel open
boundaries is studied. The open boundaries are assumed to
be kept at constant uniform pressure while their temperatures
are uniform and different, thus forcing a horizontal tempera-
ture gradient across the layer. The anisotropic permeability
of the porous layer is accounted for by assuming the prin-
cipal axes to be oriented along the directions perpendicular
and parallel to the layer boundaries. A linear stability anal-
ysis based on the Fourier normal modes of perturbation is
carried out by testing the effect of the inclination of the nor-
mal mode wave vector to the vertical. The neutral stability
curves and the critical Rayleigh number for the onset of the
instability are evaluated by solving numerically the stability
eigenvalue problem.

Nomenclature
f (x),h(x) Eigenfunctions.
g Gravitational acceleration.
g Modulus of g.
k Wave number.
ky,kz Wave vector components.
K Permeability.
KL,KT Permeability components.
L Slab thickness.
P Difference between the pressure and the hydrostatic

pressure.
Ra Rayleigh number.
S Scaled Rayleigh number, S = kz Ra/k.
t Time.
T Temperature.
T0 Reference temperature, T0 = (T1 +T2)/2.
T1,T2 Boundary temperatures.
u Seepage velocity, u = (u,v,w).
x,y,z Cartesian coordinates.

Greek Symbols
α Average thermal diffusivity.
β Coefficient of thermal expansion for the fluid.
λ Complex growth rate.
µ Dynamic viscosity.
ξ Anisotropy parameter.
ρ0 Reference fluid density.
σ Heat capacity ratio.
Superscripts, Subscripts
∗ Dimensionless quantities in equation (5).
∼ Perturbations.
∨∨∨ Scaled quantities in equations (15) and (17).
b Basic solution.
c Critical values.
t Tip values.

1 Introduction
The emergence of the thermoconvective instability in a

fluid system is a typical feature of a horizontal fluid layer or
fluid saturated porous layer where conduction heat transfer
changes into convection due to a vertical downward temper-
ature gradient. This phenomenon is typical of the Rayleigh–
Bénard system, where a horizontal fluid layer is bounded
by isothermal planes kept at different temperatures yielding
conditions of heating from below [1]. As is well–known,
a version of the Rayleigh–Bénard stability problem involv-
ing a layer of fluid saturated porous medium has been stud-
ied in the classical papers by Horton and Rogers [2] and by
Lapwood [3]. Nowadays, the porous medium version of the
Rayleigh–Bénard problem is either known as Darcy–Bénard
problem or Horton–Rogers–Lapwood problem [4–6].

The onset of multicellular convection patterns is a typi-
cal phenomenon also for vertical fluid layers [7–9], where a
side–heating configuration is induced by boundaries kept at
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different uniform temperatures. Interestingly enough, the on-
set of multicellular convection patterns destabilizing the con-
duction regime was ruled out in the case of a vertical porous
slab. This conclusion is a consequence of a pioneering paper
by Gill [10]. In fact, Gill proposed a rigorous proof of the
absence of thermoconvective instability in a vertical porous
slab saturated by a fluid and bounded by isothermal and im-
permeable sidewalls. Other authors further enhanced Gill’s
results by taking into account other effects or developing a
nonlinear stability analysis [11–15]. Only recently, evidence
that thermoconvective instability can indeed arise in a verti-
cal porous layer has been given [16]. The key argument is
the observation that Gill’s proof of stability relies on the as-
sumption that the boundaries are impermeable. When this
assumption is relaxed, then the thermoconvective instability
is possible at sufficiently large Rayleigh numbers.

Most of the studies regarding the onset of the thermo-
convective instability in a fluid saturated porous medium are
based on the model of isotropic permeability. The perme-
ability is considered as a scalar, while for anisotropic porous
materials it is modelled as a second–rank tensor. Anisotropy
effects may be significant in several materials of engineer-
ing interest. Thus, some authors extended the knowledge
on the thermoconvective instability in porous media by en-
visaging anisotropic materials [5, 17, 18]. Among these pa-
pers, we mention the studies by Kvernvold and Tyvand [19]
and by Nilsen and Storesletten [20], where the Rayleigh–
Bénard instability is reconsidered for an anisotropic porous
medium, as well as the analysis carried out by Rees and
Postelnicu [21], where the effect of the porous layer incli-
nation to the horizontal is taken into account. Very recent
developments on the onset of the thermoconvective insta-
bility in anisotropic porous media have been achieved by
Straughan [22], by Storesletten and Rees [23] and by Naveen
et al. [24]. The latter contribution is of special interest for
the present paper as it provides an extension of Gill’s analy-
sis [10] to the case of an anisotropic porous medium.

The aim of this paper is to provide an extension of the
study carried out by Barletta [16] by envisaging a situation
where the porous material has an anisotropic permeability.
More precisely, we will consider a vertical porous slab with
open boundaries, modelled as isobaric planes, kept at un-
equal uniform temperatures. The permeability is considered
as anisotropic, meaning that it is given by a second–rank ten-
sor. The principal axes will be assumed to be transversal and
longitudinal with respect to the plane slab, thus following the
description adopted by Storesletten and Rees [23]. The sta-
bility of the basic parallel buoyant flow in the slab will be
studied by adopting a modal analysis. The stability eigen-
value problem will be solved numerically by employing the
shooting method. The effects of the anisotropy will be dis-
cussed for the neutral stability curves and for the critical val-
ues of the wave number and of the Rayleigh number.

2 Mathematical Model
We consider a vertical porous slab and a Cartesian coor-

dinate system with the x axis horizontal and perpendicular to

z

x
−L/2 0 L/2

T1 T2

g

Fig. 1. A sketch of the vertical porous slab

the slab, the y axis horizontal and parallel to the slab, and the
z axis vertical and parallel to the slab. The origin of the axes
is in the slab vertical midplane. The slab is assumed to be in-
finitely wide in the y and z direction, while its thickness is L.
A sketch of the slab cross–section in the xz plane is given in
Fig. 1. The permeable side boundaries at x =±L/2 are kept
at a uniform hydrostatic pressure and uniform temperatures
T1 and T2, with T2 > T1.

2.1 Governing Equations
The fluid saturated porous medium is anisotropic with

principal axes directed along the (x,y,z) axes. The local mo-
mentum balance equation is modelled according to Darcy’s
law including the buoyancy force, namely [5]

µu =−K [∇∇∇P+ρ0 β(T −T0)g], (1)

where the permeability tensor is expressed as

K =

KT 0 0
0 KL 0
0 0 KL

. (2)

Equation (2) is a special case of anisotropic permeability
where one direction, the transverse x axis, is selected out of
the other two longitudinal y and z directions. This is typi-
cal of fibrous or layered porous media where the direction of
the fibres or layers displays an hydraulic resistance different
from that of the other directions [17, 23].

According to the Oberbeck–Boussinesq approximation,
the only effect of the temperature–dependent density is the
buoyancy force so that the mass, momentum and energy bal-
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ance equations can be written as [5, 23]

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (3a)

u =−KT

µ
∂P
∂x

, (3b)

v =−KL

µ
∂P
∂y

, (3c)

w =−KL

µ

[
∂P
∂z
−ρ0 βg(T −T0)

]
, (3d)

σ
∂T
∂t

+u
∂T
∂x

+ v
∂T
∂y

+w
∂T
∂z

= α∇2T. (3e)

Here, σ is the ratio between the heat capacity of the saturated
porous medium and that of the fluid. Following Barletta [16],
the boundary conditions can be written as

P = 0, T = T1 in x =−L/2,
P = 0, T = T2 in x = L/2. (4)

In order to keep the complexity of the anisotropy model at its
minimum, we assumed an isotropic thermal diffusivity, while
the most general situation would imply, at the right hand side
of equation (3e), a term

∇∇∇ · (ααα∇∇∇T )

instead. Here, ααα stands for the second–rank diffusivity ten-
sor accounting for the thermal anisotropy. Since the thermal
diffusivity α in equation (3e) comes out from a volume aver-
aging of the conductivities of the solid and the fluid, we con-
sider this parameter as one including average over the trans-
verse and longitudinal directions as well. This simplification,
similar to that adopted by Storesletten and Rees [23], will re-
duce the number of dimensionless parameters governing the
onset of the instability.

2.2 Dimensionless Quantities
A nondimensional formulation of equations (3) is

achieved by defining

(x∗,y∗,z∗) = (x,y,z)/L, t∗ = t α/(σL2),

(u∗,v∗,w∗) = (u,v,w)L/α, P∗ = PKL/(µα),
T ∗ = (T −T0)/(T2−T1), (5)

where the asterisks denote the dimensionless quantities.
Hereafter, such asterisks will be omitted for the sake of
brevity, as we will only deal with dimensionless quantities.
Thus, the nondimensional reformulation of equations (3) and

(4), based on the fields T and P, is given by

ξ
∂2P
∂x2 +

∂2P
∂y2 +

∂2P
∂z2 = Ra

∂T
∂z

, (6a)

∂T
∂t
−ξ

∂P
∂x

∂T
∂x
− ∂P

∂y
∂T
∂y
−
(

∂P
∂z
−RaT

)
∂T
∂z

=
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 , (6b)

and

P = 0, T =±1/2 in x =±1/2. (7)

In equations (6), the anisotropy parameter ξ and the porous
medium version of the Rayleigh number Ra are defined as

ξ = KT/KL, Ra = [ρ0 gβ(T2−T1)KL L]/(µα). (8)

3 The Basic Flow
A basic flow solution driven by the buoyancy force is

obtained in a stationary regime and with a purely vertical
velocity field, namely

Pb = 0, Tb = x, wb = Rax. (9)

The basic flow rate is zero. In fact, the integral of wb over
the interval −1/2≤ x≤ 1/2 is zero.

4 Stability Analysis
Perturbations of the basic solution can be defined as

P = Pb + P̃, T = Tb + T̃ . (10)

We substitute equation (10) into equations (6) and (7), we
take into account equation (9) and we linearise the resulting
equations by assuming that the strength of the perturbation is
much smaller than that of the basic state. Thus, we obtain

ξ
∂2P̃
∂x2 +

∂2P̃
∂y2 +

∂2P̃
∂z2 = Ra

∂T̃
∂z

, (11a)

∂T̃
∂t
−ξ

∂P̃
∂x

+Rax
∂T̃
∂z

=
∂2T̃
∂x2 +

∂2T̃
∂y2 +

∂2T̃
∂z2 , (11b)

with boundary conditions

P̃ = 0, T̃ = 0 in x =±1/2. (12)
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Fig. 2. Neutral stability curves in the (k,S) plane for different values
of ξ

4.1 The Stability Eigenvalue Problem
We assume normal mode perturbations given by

[
P̃(x,y,z, t)
T̃ (x,y,z, t)

]
=

[
f (x)
h(x)

]
ei(ky y+kz z) eλ t . (13)

Here, (ky,kz) are the components of the wave vector whose
modulus, k = (k2

y + k2
z )

1/2, is the wave number. The growth
rate of the perturbation is Re(λ), while − Im(λ) yields the
angular frequency of the normal mode.

By substituting equation (13) in equations (11) and (12),
we are lead to the stability eigenvalue problem,

ξ f ′′− k2 f − i k Sh = 0, (14a)

h′′−
(
λ+ k2 + i k Sx

)
h+ξ f ′ = 0, (14b)

f = 0, h = 0 in x =±1/2, (14c)

where the primes denote derivatives with respect to x. In
equations (14), we introduced the scaled Rayleigh number,
S = kz Ra/k.

A numerical solution of equations (14) yields the com-
plex eigenvalue λ and the complex–valued eigenfunctions
( f ,h) for prescribed input values of (k,S,ξ). In this paper,
the numerical technique adopted to achieve this task is the
shooting method. Here, such method is exploited and coded
along the lines described in chapter 10 of the book by Bar-
letta [6]. The main purpose is determining the neutral stabil-
ity condition where Re(λ) = 0. Such a condition marks the
threshold of the transition from linear stability, Re(λ)< 0, to
instability, Re(λ)> 0.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

100

200

300

400

500

600

700

ξ → 0ξ → 0

ξ = 0.1

ǩ

Š

Fig. 3. Neutral stability curves in the (ǩ, Š) plane for ξ→ 0

4.2 The Limiting Case ξ� 1
Let us introduce the scaled eigenfunction,

ȟ = ξ−1 h. (15)

Then, by substituting equation (15) into equations (14), by
simplifying wherever needed and by taking the limit ξ→ ∞,
we get

f ′′− i k S ȟ = 0, (16a)

ȟ′′−
(
λ+ k2 + i k Sx

)
ȟ+ f ′ = 0, (16b)

f = 0, ȟ = 0 in x =±1/2. (16c)

Equations (16) are independent of ξ and, as such, they serve
for capturing the neutral stability condition when ξ is in-
finitely large. Physically, this limit means a transverse per-
meability much larger than the longitudinal permeability, i.e.
KT � KL.

4.3 The Limiting Case ξ� 1
We define the scaled parameter and eigenfunction,

ǩ = ξ−1/2 k, Š = ξ1/2 S, ȟ = ξ−1 h. (17)

We substitute equation (17) into equations (14), simplify and
take the limit ξ→ 0. Thus, we obtain

f ′′− ǩ2 f − i ǩ Š ȟ = 0, (18a)

ȟ′′−
(
λ+ i ǩ Š x

)
ȟ+ f ′ = 0, (18b)

f = 0, ȟ = 0 in x =±1/2. (18c)
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Fig. 4. Plots of the critical and tip values of S versus ξ. The dotted
lines illustrate the asymptotic trends for small ξ and for large ξ

Once again, equations (18) define an eigenvalue problem
independent of ξ which serves to describe the features of
the neutral stability condition when ξ � 1, namely in an
anisotropic medium where KL� KT .

5 Discussion of the Results
The first evident feature observed with the numerical so-

lution of the eigenvalue problem (14) is that the eigenval-
ues are real or, equivalently, the angular frequency − Im(λ)
is zero. This means that the onset of the thermoconvec-
tive instability reflects the principle of exchange of stabili-
ties [1]. Such a behaviour has been already pointed out for
the isotropic case [16]. We also note that the stability eigen-
value problem (14) coincides with that formulated by Bar-
letta [16] in the isotropic case, ξ = 1 meaning KT = KL.

Figure 2 displays the neutral stability curves for differ-
ent values of ξ. The isotropic case (ξ = 1) is evidenced with
a grey line. The limiting case ξ→ ∞, obtained by solving
equations (16) is also displayed. The instability arises within
the region entrapped by the neutral stability curve. Hence,
the minimum value of S along each neutral stability curve
defines the critical values (kc,Sc) which depend on ξ. In-
stability is possible for S > Sc. Thus, Fig. 2 shows clearly
that the anisotropy is destabilising when ξ > 1, while it is
stabilising when ξ < 1. This is physically sound as ξ > 1
means a larger hydraulic resistance for the longitudinal di-
rections, y and z, than for the transverse x direction. This
feature inevitably tends to favour the onset of cellular flow
patterns over the basic vertical and, hence, longitudinal flow.
Another feature typical of the teardrop–shaped neutral sta-
bility curves is that, for each ξ, there exists a maximum k

10−1 100 101 102
0

1

2

3

4

5

kc

kt

ξ

k

Fig. 5. Plots of the critical and tip values of k versus ξ. The dotted
lines illustrate the asymptotic trends for small ξ and for large ξ

Table 1. Critical and tip values of k and S

ξ kc Sc kt St

0.1 0.3611961 563.6479 0.4265219 714.8381
0.5 0.7795100 264.3892 0.9281404 337.5210
1 1.059498 197.0812 1.272911 253.3400

1.5 1.252150 168.6391 1.516234 218.0511
2 1.399648 152.3492 1.706706 197.9887
5 1.900118 116.8669 2.389042 155.1100

10 2.262886 101.7467 2.933712 137.7329
100 2.958457 84.64271 4.230445 121.8534

position where k = kt and S = St . Here, the subscript t stands
for “tip”. With k > kt , no instability is observed for a fixed ξ.

Figure 3 explores the regime of small ξ, by comparing
the neutral stability curves for ξ→ 0 and for ξ = 1/10 dis-
played in the (ǩ, Š) plane. We note that the two curves are al-
most overlapped suggesting that the regime ξ� 1 is almost
attained when ξ = 0.1. We also point out that the numerical
data for the limiting case ξ→ 0 have been obtained from the
solution of the eigenvalue problem (18).

The critical and tip values of S are plotted versus ξ in
Fig. 4. This figure illustrates also the asymptotic behaviour
for both ξ� 1 and ξ� 1 obtained by solving equations (16)
and equations (18), respectively. In particular, for the limit-
ing case where ξ� 1, we have

kc = 3.101992, Sc = 82.32102,
kt = 4.593909, St = 121.3962. (19)
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On the other hand, for ξ� 1, we obtain

kc = 1.153106ξ1/2, Sc = 175.9625/ξ1/2,

kt = 1.358588ξ1/2, St = 222.7531/ξ1/2. (20)

The asymptotic trends revealed by equation (20) show that
the instability cannot arise when ξ→ 0 as the neutral stabil-
ity curve is compressed to vanishingly small wave numbers
and pushed to infinitely large values of S. This feature is also
suggested by Fig. 2. Figure 5 is the dual part of Fig. 4 with
the critical and tip values of the wave number k plotted ver-
sus ξ. Again, the dotted lines show the asymptotic solutions
found in the limits ξ→ ∞ and ξ→ 0. Samples of the same
sets of data are also reported in Table 1. We report that the
numerical data for the isotropic case ξ = 1 perfectly coincide
with those found in Barletta [16].

A final remark is for the role of the wave vector orien-
tation for a given k, which means the interpretation of the
data provided so far in terms of the Rayleigh number Ra,
instead of its scaled counterpart S. By relying on its defi-
nition, S = kz Ra/k, we immediately infer that the most un-
stable modes are those with kz = k or, equivalently, ky = 0.
Such two–dimensional modes are usually termed transverse
rolls. That the instability arises with these modes is a feature
that has been already pointed out, for the isotropic case, in
Barletta [16].

6 Conclusions
The instability of the stationary and parallel flow in a

vertical porous layer caused by the buoyancy force has been
studied. The effect of the anisotropic permeability of the
medium has been taken into account. The linear response to
small–amplitude perturbations in the form of normal modes
has been tested. The stability eigenvalue problem has been
solved numerically for a wide range of the governing pa-
rameters, ξ (the anisotropy parameter) and Ra (the Rayleigh
number).

The most important results of this analysis can be out-
lined as follows:
• The onset of the instability is due to the transverse rolls,
namely the two–dimensional normal modes lying in the
plane of the basic buoyant flow.
• When ξ > 1, which means a transverse permeability
larger than the longitudinal permeability, the effect of the
anisotropy is destabilizing. When ξ < 1, the longitudinal
permeability is larger than the transverse permeability and
the effect of anisotropy is stabilising.
• In the limit of very large values of ξ, the critical Rayleigh
number attains the asymptotic value 82.32102, which is the
lowest possible value for the onset of the instability in the
anisotropic porous layer. In the limit of a vanishingly small
ξ, no instability arises according to the linear analysis.

There are several possible future developments of the
analysis reported in this paper. For instance, the nonlinear
behaviour in the supercritical regime needs a specific study,
focussed on the evaluation of the heat transfer rate across

the porous layer and on the planforms of the multicellular
patterns resulting from the instability.
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