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 8 

Abstract  9 

Tractor manufacturers need to know how farmers use their agricultural tractors for an 10 

optimal machine design. Tractor usage is not easy to assess due to the large variability of field 11 

operations. However, modern tractors embed sensors integrated into the CAN-BUS network 12 

and their data is accessible through the ISO 11783 protocol. Even though this technology has 13 

been available for a long time, the use of CAN-BUS data for outlining the tractor usage is still 14 

limited, because a proper post-processing method is lacking. This study aimed to present a novel 15 

classification scheme of CAN-BUS data which permits to outline the tractor usage. On a tractor, 16 

a CAN-BUS data logger and a GNSS receiver were installed, and real-world data were recorded 17 

for 579 hours. Thus, data was obtained in the most realistic condition. Tractor positions were 18 

classified using GIS layers while operating conditions were classified depending on the usage 19 

of the tractor’s subsystems. The method highlights that showed to be able to detect the 97% of 20 

the logged data and that the tractor operated on the field in working, on idle, and moving duties 21 

for 65%, 18% and 16% of the time, respectively. The method allows a far more precise outline 22 

of tractor usage opening opportunities to obtain large benefits from massively collected CAN-23 

BUS data. 24 

 25 
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Table 1: Nomenclature 

𝐷𝑂𝐹𝐹  Distance travelled in out-of-work state [m] 

𝐷𝑂𝑁 Distance travelled in in-work state [m] 

𝐺𝑁𝑆𝑆 Global navigation satellite system [−] 
𝑛𝑒 Engine speed [rpm] 

𝑛𝑃𝑇𝑂,𝑓 front PTO speed [rpm] 

𝑛𝑃𝑇𝑂,𝑟 rear PTO speed [rpm] 

𝑃𝑒 Engine power [𝑘𝑊] 

𝑅𝑊𝐼 Rear hitch in work indication [−] 
𝑇𝑒 Actual engine-percent torque [%] 

𝑇𝑓 Nominal friction-percent torque [%] 

𝑇𝐻 Headland turns duration [s] 

𝑇𝑟 Engine reference torque [Nm] 

𝑉𝑡 Tractor ground speed [𝑘𝑚 ℎ−1] 
 27 

Introduction 28 

The typical usage of a tractor model is described through its mission profile, which is a 29 

synthetic description of a tractor use. Mission profiles report the factors that influence the 30 

operational durability of tractor components (Johannesson & Speckert, 2013). A mission profile 31 

may report:  32 

• the typical tractor service life; 33 

• the typical contribution of each operating modes on the service life (e.g. ploughing, on-34 

road, and off-road transportations, etc); 35 

• how each component is typically used (e.g. the input power and speed on gearboxes, 36 

vehicle ground speed, etc).  37 

 38 

Mission profiles are essential for a proper design/selection of tractor components (Sehab et 39 

al., 2011) or for designing durable and reliable machines with an optimal balance between 40 

under-designs and over-designs (Plaskitt & Musiol, 2002).  41 
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Mission profiles of agricultural tractors include several factors, and these factors make their 42 

mission profile estimations much more challenging than that of road vehicles. Indeed, a road 43 

vehicle may travel on only three different types of roads (e.g. highway, city, country road) and 44 

two types of load levels (the driver alone and with 4 passengers and luggage) (Marchesani et 45 

al., 1992); on the other hand, row crop tractors may be used for a larger variety of uses (e.g. 46 

road transportation, soil preparation, sowing, haying, etc.), and each can be accomplished at 47 

different load levels due to the different ground conditions. 48 

To estimate a mission profile, tractor usage from a sample of farmers is necessary. This is 49 

typically carried out through surveys aimed at obtaining information about the farm size, yearly 50 

usage of tractors, list of farming operations carried out in the farm, and how each operation is 51 

performed (Mattetti et al., 2012). This approach is usually adopted for its easiness in obtaining 52 

data from large samples, but the obtained information is biased toward subjective judgements, 53 

which could lead to unreliable mission profiles. A different approach consists in installing 54 

switchboards inside tractor cabs (Paraforos et al., 2017) or through specific smartphone apps 55 

(e.g. 365Farmnet) which allow farmers to assign the task they are accomplishing with the 56 

tractor. However, these approaches require a manual effort of farmers, who may forget the task 57 

assignment. 58 

In modern tractors, the operating parameters of all the tractor subsystems can be monitored 59 

using CAN-BUS technologies together with SAE J1939, and ISO 11783 protocols (ISO, 2012; 60 

Molari et al., 2013; SAE, 2006). In previous studies, CAN-BUS messages were successfully 61 

used to outline the usage of specific tractor components (Mattetti et al., 2019), to determine 62 

field efficiencies of agricultural machinery (Pitla et al., 2014, 2016) or to monitor specific 63 

tractor operating modes (Molari et al., 2019). The best approach for a proper mission profiling 64 

would be recording and analysing real-world CAN-BUS data of a large fleet of tractors. In this 65 

way, the recording process would not interfere with farming activities and data would be 66 
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recorded in the most realistic conditions. But then, the environment where vehicles operate is 67 

unknown, and advanced classification approaches are essential for a reliable estimation of the 68 

mission profile (Fugiglando et al., 2019). Data classification is the process of grouping together 69 

portions of signals related to the same work state (Zhang et al., 2017). A sort of data 70 

classification is already provided by telemetric data service supplied by each tractor 71 

manufacturer (New Holland MyPLM Connect, John Deere JDLink). In these tools, the work 72 

states are defined on the basis of simple threshold-rules, in other words a work state is defined 73 

when any signal exceeds a threshold. For example, in telemetric data services, tractors are:  74 

• on fieldwork state when the three-point linkage is down, but farmers may drive bare 75 

tractors on the field with the three-point linkage in the down position.  76 

• on moving state when its speed exceeds a threshold specified by the driver (i.e.  77 

25 km h-1), but the proper value may change in function of the road state (i.e. presence 78 

of speed humps, road damages, etc).  79 

For these reasons, this approach is far too simplistic and data misclassifications are not 80 

infrequent. More advanced rule-based algorithms were proposed for specific tractor operations 81 

(Ettl et al., 2018), and forage harvesters (Harmon et al., 2018; Zhang et al., 2017). Rule-based 82 

algorithms require knowledge from the experts and a reasonable amount of effort to design and 83 

implement effective rules for real-world data. Indeed, in real-world conditions, tractor 84 

operativity may change according to a variety of operating conditions (in terms of soil, 85 

implement type, driving style). Thus, for outlining the tractor usage, a robust and flexible 86 

method must be developed, which can deal with the variability induced by the variability of 87 

tractor manoeuvres (Mattetti, Molari, et al., 2017). 88 

This article aimed to develop a robust and automatic classification scheme able to identify 89 

the tractor mission profile using real-world CAN-BUS, and trajectory data. 90 
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Materials and methods 91 

Data acquisition 92 

The analysis was applied to a New Holland T7 tractor (CNH Industrial N.V., Amsterdam, 93 

NL) whose specifications are reported in Table 2. This was chosen because tractors of this class 94 

are rich in terms of embedded sensors allowing for comprehensive monitoring of the activity 95 

of the different embedded subsystems. 96 

Table 2 – Specifications of the tractor used in this study.  

Maximum engine power (𝑘𝑊) 198 

Engine displacement (𝑚3) 6.728 

Number of cylinders (–) 6 

Engine tier (–) 4B 

Transmission (–) Continuously variable transmission 

Number of auxiliary hydraulic 

valves  
(–) 4 

Three-point linkage (–) Rear 

PTO (–) Front and rear 

 97 

The tractor was in use between the June 2018 and October 2019 by 5 professional drivers 98 

with more than twenty years of experience. The tractor was used in the Agricultural Farm of 99 

the University of Bologna. The size of the farm is 500 ha, where 67%, 10% and 23% of the 100 

land are devoted to cereals, orchards, and haying, respectively. The farm is distributed in three 101 

different units (i.e. areas where tractors are stored overnight) located in three different towns; 102 

the farther locations are 35 km apart. In this farm, this tractor is mostly used for transportation 103 

tasks and primary and secondary tillage tasks.  104 

A stand-alone CAN-BUS data-logger optimised by CNH Industrial was installed on the 105 

tractor. The data-logger was set up to automatically record all the CAN-BUS messages anytime 106 

the tractor engine was turned on so that the recording process did not interfere with farming 107 

activities. In particular, the CAN-BUS data logger is equipped of two separated CAN-BUS 108 

channels compatible with the standards: SAE J1939-14 (SAE, 2016a) and SAE J1939-15 (SAE, 109 
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2018b). The data-logger embeds a BLE (Bluetooth low energy) scanner which scans the BLE 110 

beacons in its surroundings (up to 10 meters) every second. Commercial BLE beacons 111 

(Mokosmart M1 Beacon, Shenzen, China) were attached to the implements available at the 112 

farm as suggested in other studies (Calcante & Mazzetto, 2014) (Fig. 1).  113 

 114 
Fig. 1: A trailer used during the project. Enclosed in the yellow circle, a BLE beacon that permitted the 115 

identification of the trailer. 116 

The BLE scanner records the identifiers of the detected BLE beacons to record implement 117 

connected to the tractor. Moreover, a Garmin Dash Cam 55 (Garmin Ltd., Olathe, KS, USA) 118 

was installed on the windshield of the tractor to document the tractor activity in order to ensure 119 

the reliability of the classification scheme.  120 

For the purpose of this study, only signals with the following Suspect Parameter Numbers 121 

(SPNs) and Parameter Group Numbers (PGNs) (ISO, 2012; SAE, 2013) were used for the 122 

analysis:  123 

• SPN 544 and PGN 65251: “Engine Reference Torque” that reports the torque as a 124 

percent of Engine Reference Torque (SPN 544 and PGN 65251) and it is denoted as 𝑇𝑟 125 

in the following. 126 
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• SPN 513 and PGN 61444: “Actual Engine - Percent Torque” that reports the torque as a 127 

percent of 𝑇𝑟 , and it is denoted as 𝑇𝑒 in the following. 128 

• SPN 513 and PGN 5398: “Nominal friction-percent torque” that reports the frictional 129 

and thermodynamic loss of the engine itself, pumping torque loss and the losses of fuel, 130 

oil and cooling pumps as a percent of 𝑇𝑟, and it is denoted as 𝑇𝑓 in the following. 131 

• SPN 190 and PGN 61444: “Engine Speed” that reports the revolution speed of the engine 132 

crankshaft, and it is denoted as 𝑛𝑒 in the following. 133 

• SPN 1883 and PGN 65090: “Rear PTO output shaft speed”, that reports the speed of the 134 

rear PTO. 135 

• SPN 1882 and PGN 65090: “Front PTO output shaft speed” that reports the speed of the 136 

front PTO. 137 

• SPN 1877 and PGN 65093: “Rear hitch in-work indication ” that reports the rear hitch 138 

is positioned below (in-work) or above (out-of-work) 85% of the position of the rear 139 

three-point linkage (SPN 1873 and PGN 65093). This signal is denoted as 𝑅𝑊𝐼 in the 140 

following. 141 

Moreover, a GNSS (global navigation satellite system) receiver with an update rate of 10 142 

Hz, with no differential correction, and with a claimed accuracy of 2.5 m (in terms of circular 143 

error probable) (IPESpeed, IPETronik GmbH, Baden Baden, Germany) was installed in the 144 

tractor to monitor its position and its tractor ground speed (𝑉𝑡).  145 

Data analysis 146 

All the signals were interpolated at 10 Hz using a cubic spline so that the sampling rate of 147 

all the signals was the same. From the recorded data, the delivered engine power (𝑃𝑒) was 148 

calculated as follows: 149 

𝑃𝑒 = 𝑇𝑟 ⋅
𝑇𝑒 − 𝑇𝑓

100
⋅ 𝑛𝑒

2𝜋

60
  150 
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All the portions of the recorded signals acquired when the tractor position was not logged 151 

(because the GNSS receiver did not obtain a strong enough satellite signal, e.g. when the tractor 152 

was moved out from an indoor environment) were excluded from the analysis. Tractor positions 153 

were classified into three categories:  154 

• 𝒓𝒐𝒂𝒅, anytime the position was closer than 3 m to any road stretch. The 3 m 155 

threshold was chosen based on the circular error probability of the GNSS receiver 156 

used in this study. For a full automation of the process, this was carried out by 157 

checking if there is any intersection point between any road stretch and a circle, with 158 

a radius of 3m, centred in the tractor position. 159 

• 𝒇𝒊𝒆𝒍𝒅, anytime the position was inside the boundary of any field plot. 160 

• 𝒇𝒂𝒓𝒎, anytime the position was inside the boundary of any farm unit. 161 

For the classification of the tractor position, a shapefile containing the road network, the 162 

boundaries of field plots, and the boundaries of the farm units were created. The creation of the 163 

shapefile started by downloading the soil use and the road network from the geoportal of the 164 

Emilia Romagna region (Dati preconfezionati — GeoER, 2019). To this shapefile, the 165 

boundaries of three farm units were added.  166 

The tractor operating conditions were classified into three categories: idling, moving, and 167 

three-point linkage use. Idling condition was defined as the state where the tractor was standing 168 

with no use of any PTO for more than 5 s; the duration threshold was added in order to not 169 

include portions where the tractor was temporary still during manoeuvring, like reversing the 170 

tractor direction at the headlands. Moving condition was defined as the state where tractor 171 

ground speed was greater than 0 km h-1 with no use of the three-point linkage or both PTOs. 172 

Three-point linkage use was defined as the state where the three-point linkage was used for 173 

field operations. This occurs anytime a sequence of a pass, headland, and pass was repeated. 174 

𝑅𝑊𝐼 signal shows a rectangular waveform, but when the tractor operates on field operations, 175 
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repetitive pulses could be observed (Fig. 2 - right). A method for discerning field operations 176 

from implement hitching or machine moving activities was developed and it is described in the 177 

following. 178 

 179 

 180 
Fig. 2: Tractor trajectory (on left), and 𝑅𝑊𝐼 signal (on right) during a field operation with a plough. 181 

First, the distance travelled by the tractor on each in-work (𝐷𝑂𝑁) and on the out-of-work (𝐷𝑂𝐹𝐹) 182 

states of 𝑅𝑊𝐼 signal was calculated. For field operations, 𝐷𝑂𝑁 and 𝐷𝑂𝐹𝐹  represent the length of 183 

passes and headlands, respectively. Both depend on several operating parameters like length of 184 

fields, and headland strategy (Paraforos et al., 2018). For field operations, 𝐷𝑂𝐹𝐹  was usually 185 

included in a range between 1 and 70 m. Values of 𝐷𝑂𝐹𝐹  below the lower bound occurred on 186 

implement hitching and values of 𝐷𝑂𝐹𝐹  above the upper bound occur when the tractor switched 187 

from or to a moving operation. The above range was determined using the following approach: 188 

• Identification of the portions where the tractor was operating in the field from video 189 

data collected with the camera. 190 

• Extraction of all the logged signals in this portion. 191 

• Calculation of histograms of 𝐷𝑜𝑛 data of 1200 headlands and from it the threshold 192 

was set.  193 
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The algorithm started by calculating the series of 𝐷𝑂𝑁 and 𝐷𝑂𝐹𝐹 , and three-point linkage use 194 

classification occurred in the timespan where 𝐷𝑂𝐹𝐹  are included in the beforementioned range. 195 

When this classification occurs, the high levels of 𝑅𝑊𝐼 described the passes, while the low 196 

levels of 𝑅𝑊𝐼 described the headlands. Then, the headland duration was calculated as the time 197 

elapsed between the falling and rising edge of 𝑅𝑊𝐼 signal when the tractor was in three-point 198 

linkage usage. 199 

The work states were defined based on a combination of the classification of the tractor 200 

position and the tractor operating activity (Table 3). 201 

Table 3 – Rule used for the work states which characterise the tractor use. 

Work states 
Classified tractor 

position 

Boolean operation Classified tractor 

operating activity 

On-road moving Road AND Moving 
Off-road moving NOT(Road) AND Moving 

Field work Field AND three-point linkage use 
Idle@field NOT(Road) AND Idle 

Idle@farm Farm AND Idle 
Marginal Otherwise 

 202 

The idling on road was included into marginal because its contribution is of minor 203 

importance to the entire idling (Molari et al., 2019).  204 

An example of the classification of the work states is reported in Fig. 3. One can note that 205 

in the first portion (in the first 6 min of the time histories) the tractor was classified as on-road 206 

moving task; indeed, the tractor was running at around 40 km h-1 and 𝑃𝑒 was on average low 207 

with peaks when high tractor accelerations occurred. On the other hand, the last portion (from 208 

13 min) was classified as field work, indeed 𝑉𝑡 was lower than 10 km h-1 and 𝑃𝑒 is close to 209 

engine limit.  210 
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Fig. 3: Classification example of tractor ground speed (on the top left) and engine power (on the bottom left) 211 
compared with the tractor trajectory data (on right).  212 

In this article, a task was defined as the portions where neither work states nor hitched 213 

implement was changed. For each task, the average values of all signals were calculated; for 214 

the subsequent dataset, outliers (i.e. misclassifications) were identified through the confidence 215 

ellipse method. This method consists of computing the confidence ellipse between two 216 

variables and considering outliers data points falling outside the confidence ellipse (Hodge & 217 

Austin, 2004). For drawn implements, the two variables were 𝑉𝑇 and 𝑃𝑒 (Fig. 4); as the power 218 

demand of this type of implements is mostly dependent on the working speed (Mattetti, Varani, 219 

et al., 2017), while for PTO-driven implements, the two variables were 𝑛𝑃𝑇𝑂,∗ (* stands for 𝑓 220 

for front mounted implements and 𝑟 for rear mounted implements) and 𝑃𝑒, as the power demand 221 

of this type of implements is dependent on the speed of the PTO (Balsari et al., 2020). The 222 

confidence level was set at 90%. A multivariate approach was necessary, since a low demanding 223 

ploughing may not be an outlier if the ground speed is low as well.  224 
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 225 
Fig. 4: An example of the outlier detection method for the field work tasks with plough. Only passes were 226 

considered. 227 

Results and Discussion 228 

The tractor was used for 107 days amounting to 579 hours overall. The tractor was used 229 

with 11 implements, but 5 of them were used for 84% of the time (Fig. 5). For 78% of the time, 230 

the tractor was used for ploughing, subsoiling, harrowing, and cultivating. Thus, the analysis 231 

was focused on the data related to those operations for the larger amount of available data. The 232 

tractor was used with no implement for 10% of the time, and in this configuration, the tractor 233 

was mostly moved from a farm unit to another. 234 
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 235 
Fig. 5: Pie chart reporting the contribution of each implement on the operating time. In the chart, the 236 

implements used for less than 20 hours were not plotted for sake of clarity. 237 

The tractor was used for field work tasks for 65% of the time and 18% of the time for idling 238 

activities (Fig. 6). The amount of idling is below the average value reported in the study by 239 

Perozzi et al.  (2016) where the idling of a large sample of tractors was analysed. 240 
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 241 
Fig. 6: Time contribution of each work state on the entire tractor activity. 242 

The time contribution of off-road moving state is lower than that of the on-roading moving 243 

state. This is because the farm where the tractor was used is spread over a large area, which 244 

leads to infrequent but prolonged on-road moving states. Indeed, for off-road moving work 245 

state, the number of tasks are 38% of all the identified tasks and their average duration is 172 246 

s. On the other hand, for on-road moving work states, the number of tasks are and 11% of all 247 

the identified tasks and their average duration is 478 s, respectively. The time contribution of 248 

idle@field work state is larger than that of idle@farm because the amount of idling stops on the 249 

field is much more frequent than those at the farm due to the varied source of stops, such as rest 250 

stops, driver turnover, checking the performance, removal of crop residual on implements (Hunt 251 

& Wilson, 2015). On the other hand, idle@farm state mostly occurs at the beginning and the 252 

end of the workday, and mostly for machine servicing or adjustment, implement hitching and 253 

machine parking (Molari et al., 2019). The sum of the time contributions for the idle@field and 254 
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field work states provide an insight of the portion of time where the tractor operated for field 255 

related activities, and it includes the time for actual work, headlands, field setting, and 256 

maintenance at field (Lovarelli et al., 2017). Headlands contribute to 24% of the entire field 257 

work state and this figure is aligned to that of Ettl et al. (2018). Moreover, the time contribution 258 

of the marginal is less than 3%, which means that the defined work states can describe most of 259 

the tractor operations. In Fig. 7, the relative frequency of headland durations (𝑇𝐻) for 10065 260 

headlands is reported. 𝑇𝐻 range from 3 s up to 230 s and it is strongly dependent on the headland 261 

patterns. 50% of the headlands ranged from 20 and 40 s and this result is aligned with that 262 

reported in other studies (Ettl et al., 2018; Paraforos et al., 2018).  263 

 264 
Fig. 7: Relative frequency distribution of the duration of the identified headlands. 265 
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Headlands shorter than 20 s are not infrequent, and they account for 32% of the headlands. 266 

These occur when the tractor worked around the field border where the circuitous turn strips at 267 

corner diagonals working pattern is adopted (Hunt & Wilson, 2015). In the most extreme cases, 268 

𝑇𝐻 is lower than 10 s, this occurs for an unconventional type of headland pattern.  In particular, 269 

the farmer tilled two different fields separated by a country road and no turns can be observed 270 

in the tractor trajectory (Fig. 8). In the same plot, also headlands longer than 100 s can be 271 

observed, which occurred because the overlapping alternation pattern was adopted. 272 

 273 
Fig. 8: Headland pattern where 𝑇𝐻 was lower than 10 s and longer than 100 s. 274 

The daily usage of the tractor ranges from 20 min to up 750 min; and the 50% of the days 275 

the tractor was used for more than 280 min (Fig. 9).  276 

 277 
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 278 
Fig. 9: Daily time of the tractor during the period of analysis. 279 

In Fig. 10, a typical daily operating cycle of the tractor is reported. This is composed of the 280 

following activities: 281 

1. tractor idling at the farm at the beginning of the day for implement hitching or, 282 

machine servicing and then moving the tractor from any farm unit to the field; 283 

2. field work where idling stops may occur for field machine maintenance; 284 

3. moving the tractor from the field to any farm unit. 285 

When the driver turnover did not occur on field, or when changes in the tractor field 286 

operation occurred during the day. The afore-described cycle was repeated twice in a day since 287 

the driver went back to any farm unit for lunch or implement swapping.  288 
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 289 
Fig. 10: Typical daily operating cycle of the tractor 290 

In Fig. 11, the daily time contribution of the different tractor work states is reported. The 291 

largest contribution is provided by the field work state for 50% of the days, and it contributed 292 

to 73% of the entire daily activity. The other work states contribute less than 30% (without 293 

considering the outliers). The tractor was not used for field activities for 4 days since the daily 294 

time contribution of the field work state is 0%. In those days, larger contributions of the idling 295 

and moving states can be observed and the tractor was used for off-field activities because the 296 

weather conditions did not permit any field activities. Those activities consisted of machine 297 

servicing or moving implements from a farm unit to another. The results reported in other 298 

studies are aligned to the median values of the daily time contribution calculated in this study 299 

(Ettl et al., 2018; Kortenbruck et al., 2017).  300 

 301 
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 302 
Fig. 11: Box-plot reporting the daily time contribution of the tractor work states. Red crosses correspond to the 303 

outliers. 304 

The kernel smoothed probability distributions of 𝑉𝑡 of the two moving states, and field work 305 

states with the four most frequent implements are reported in Fig. 12. All the distributions have 306 

unique modes except for that of the plough.  307 

 308 

 309 
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 310 
Fig. 12: Kernel smoothing distribution of tractor operating speed at various work states. Headlands were not 311 

considered on field operations. 312 

In order to compare the distributions obtained in this study with those reported in the  ASAE 313 

D497.7 (2011), the 10th and 90th percentiles, and the modes are reported in Table 4. 314 

Table 4 – Main statistics of the speed distributions 

Tractor states 
10th percentile 

[km h-1] 
Mode [km h-1] 

90th percentile 

[km h-1] 

on-road moving 20.0 36.0 40.0 

off-road moving 3.5 8.0 12.4 

subsoiler - field passes 3.3 3.5 5.8 

cultivator - field passes 3.0 4.2 6.0 

power harrow - field passes  3.2 3.7 5.9 

plough - field passes 2.6 3.0 / 4.2 5.5 

 315 
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The speed values observed in this study are slightly lower than those reported in the ASAE 316 

standard. For example, according to the ASAE standard, the speed range of a mouldboard 317 

plough is between 5 and 10 km h-1, whereas it was found to be between 2.6 km h-1 and 5.8 km 318 

h-1 in this study. This difference may be because data in the ASAE standard is based on data 319 

collected in the US, where tractors and fields larger than those available in the farm used in this 320 

study.  321 

The off-road moving distribution is overlapped with the distributions of the field work states 322 

for 𝑉𝑡 lower than 8 km h-1 (which corresponds to the 48th percentile of its cumulative 323 

distribution), and it is overlapped with the distribution of on-road moving state for 𝑉𝑡 higher 324 

than 12 km h-1 (which corresponds to the 85th percentile of its cumulative distribution). This 325 

highlights that discerning the moving states only using a threshold-rule for the speed, as it is 326 

usually done with many commercial telemetric data services, may lead to misclassifications.  327 

In Fig. 13, the confidence level ellipses reported for three work states demonstrate that to 328 

fully discern the work states, a multivariate approach is necessary. The ellipses are clearly 329 

separated with only minor overlaps occurring between the ellipses of both moving work states, 330 

and between the ellipses of field work and off-road moving work states. 𝑉𝑡 is strictly related to 331 

𝑃𝑒 depending on the type of the work state. Indeed, on field work tasks, the tractor is usually 332 

used with high engine loads, low speed and low gear ratios; while for moving tasks, lower 333 

engine loads and longer gear ratios are typically used with, high engine loads are limited to 334 

acceleration events only. For both moving tasks, 𝑃𝑒 increases with 𝑉𝑡, due to the fact that the 335 

main resistance forces are the motion resistance which increases with the ground speed (Wong, 336 

2001). The variability of 𝑉𝑡 and 𝑃𝑒 inside each operating condition depends on several factors, 337 

including driving style, operating, and environmental conditions. Indeed, 𝑃𝑒 ranges from 23 kW 338 

up to 143 kW for the field work state on passes. Through a visual inspection of the recorded 339 

video, it was observed that the tillage operations carried out at low ground speeds (below 3 km 340 
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h-1) occurred because the soil was severely covered by crop residuals. In these conditions, 341 

farmers preferred to work slowly to avoid that the implement could get clogged with crop 342 

residuals, which could force the farmer to stop at headlands for implement clearing.  343 

 344 

 345 
Fig. 13: Confidence level ellipses for three non-idling operating states. 346 

Discussion 347 

Few studies reported algorithms for classifying CAN-BUS data of agricultural tractors, and 348 

in all of them, results are based on limited datasets, not collected in real-world conditions. The 349 

strength of the classification scheme introduced in this study is the combined use of CAN-BUS, 350 

trajectory, and geographical data. This allowed to obtain a finer description of the tractor usage. 351 
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Indeed, tractor movements were classified based on the road type (i.e. on-road and off-road). 352 

On other similar studies, these two operating activities could not be distinguished because the 353 

method relies only on CAN-BUS, and trajectory data. Indeed, Kortenbruck et al. (2017) 354 

discriminated field from moving activities by evaluating the pattern of the tractor trajectory, 355 

which was that of a field operation if parallel traces not further apart than the implement width 356 

could be observed. The algorithm is not fully automatic because farmers have to input 357 

implement widths, but CEPs of non-RTK- GNSS receivers are of the same order of magnitude 358 

of typical implement widths. Thus, field operations cannot be reliably detected only with tractor 359 

trajectories. Paraforos et al. (2018) detected headlands and field passes from trajectory data, in 360 

particular, headlands were recognized when 180° overturns of tractor heading angle were 361 

identified. However, tractors do not always overturns of 180° on headlands especially when 362 

tractors work along the field contours (Fig. 8 – left). In Ettl et al. (2018), headland turns were 363 

recognised by setting the threshold of the duration with the three-point linkage is fully up 364 

position; however, the duration limit is dependent by the headland patterns (Paraforos et al., 365 

2018), and idling stops can be frequent during headlands (Molari et al., 2019) (Fig. 10 – right). 366 

The approach for recognising the field operations adopted in this study is based on the 367 

repetitive pattern of the 𝑅𝑊𝐼 signal when tractors operate on field. This approach does not rely 368 

on any threshold values of any CAN-BUS parameter, this makes it more effective in dealing 369 

with real-world data. Setting the proper thresholds is a critical task because operating 370 

parameters may change depending on the type of implement, soil conditions, ground slope, and 371 

driving style (i.e. toward productivity or efficiency). The approach used in this paper works 372 

only with mounted and semi-mounted implements where a variability on the 𝑅𝑊𝐼 signal can 373 

be observed, but the same principle could be used with other signals (e.g. steering angle) where 374 

a repetitive pattern could be observed also with trailed implements.  375 

 376 
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Conclusions 377 

Information on the usage of agricultural tractors is not well-documented and very often 378 

farmers, scientists, and engineers rely on handwritten logbook data. In this paper, a data 379 

acquisition system which facilitates the data collection on agricultural tractors, and a novel 380 

classification scheme were presented. The novelty of the data acquisition system is that it 381 

combines a CAN-BUS logger, a GNSS receiver and a BLE beacon scanner, thus the hitched 382 

implement could be recorded even if they are not ISOBUS compliant. Moreover, the novelty 383 

of the data analysis method is on the combined use of CAN-BUS, trajectory and geographical 384 

data which allowed to introduce a classification scheme more refined than those proposed in 385 

similar studies. Indeed, the kinds of tractor activities were classified into 5 states depending on 386 

the tractor operating condition and its position. Thanks to the proposed classification scheme, 387 

engineers may benefit from massively recorded real-world data in uncontrolled conditions, 388 

which may leverage their design method. Indeed, engineers may focus most of their efforts on 389 

optimising the most frequently used components; or they may extract the most relevant duty-390 

cycle from a large dataset of real-world data (Bishop et al., 2012). The dynamic characteristics 391 

of front axle and cabin suspensions could be optimised in order to achieve the best balance 392 

between on and off-road performance based on the frequency of each moving state and of the 393 

most frequent operating speeds. Future work should focus on defining work states in greater 394 

details and adapting the classification scheme in order to analyse real-time CAN-BUS data. In 395 

this way, the algorithm could be embedded in in-vehicle computer systems and thus vehicle 396 

sub-systems could be controlled based on the actual work state. For example, parameters of 397 

tractor subsystems could be preventively set when the tractor is approaching a specific road 398 

type (i.e. on-road or off-road), and that could be especially useful for setting the damping 399 

coefficient of semi-active suspensions or the tyre pressure if the tractor embeds central tyre 400 

inflating system.  401 



Pag. 25/27 

Acknowledgements 402 

This project was supported within the PRIN national framework by MUR (Ministry of 403 

University and Research), notification 2015 “Optimization of operating machinery through 404 

analysis of the mission profile for more efficient agriculture” Grant number: 2015KTY5NW. 405 

References 406 

ASAE. (2011). ASAE D497.7—Agricultural Machinery Management Data (D497.7; ASAE 407 

Standard, pagg. 1–15). https://doi.org/10.13031/2013.36431 408 

Balsari, P., Biglia, A., Comba, L., Alcatrão, L., Varani, M., Mattetti, M., Barge, P., Tortia, C., 409 

Manzone, M., Gay, P., & Ricauda Aimonino, D. (2020). Performance analysis of a tractor—410 

Power harrow system under different working conditions. Soil and Tillage Research. 411 

https://doi.org/Submitted 412 

Bishop, J. D. K., Axon, C. J., & McCulloch, M. D. (2012). A robust, data-driven methodology 413 

for real-world driving cycle development. Transportation Research Part D: Transport and 414 

Environment, 17(5), 389–397. https://doi.org/10.1016/j.trd.2012.03.003 415 

Calcante, A., & Mazzetto, F. (2014). Design, development and evaluation of a wireless system 416 

for the automatic identification of implements. Computers and Electronics in Agriculture, 417 

101, 118–127. https://doi.org/10.1016/j.compag.2013.12.010 418 

Dati preconfezionati—GeoER. (2019). http://geoportale.regione.emilia-419 

romagna.it/it/download/dati-e-prodotti-cartografici-preconfezionati/pianificazione-e-420 

catasto/uso-del-suolo-1/2014-coperture-vettoriali-uso-del-suolo-di-dettaglio-edizione-421 

2018/dati-preconfezionati 422 

Ettl, J., Bernhardt, H., Pickel, P., Remmele, E., Thuneke, K., & Emberger, P. (2018). Transfer 423 

of agricultural work operation profiles to a tractor test stand for exhaust emission evaluation. 424 

Biosystems Engineering, 176, 185–197. 425 

https://doi.org/10.1016/j.biosystemseng.2018.10.016 426 

Fugiglando, U., Massaro, E., Santi, P., Milardo, S., Abida, K., Stahlmann, R., Netter, F., & 427 

Ratti, C. (2019). Driving Behavior Analysis through CAN Bus Data in an Uncontrolled 428 

Environment. IEEE Transactions on Intelligent Transportation Systems, 20(2), 737–748. 429 

https://doi.org/10.1109/TITS.2018.2836308 430 

Harmon, J. D., Luck, B. D., Shinners, K. J., Anex, R. P., & Drewry, J. L. (2018). Time-Motion 431 

Analysis of Forage Harvest: A Case Study. Transactions of the ASABE, 61(2), 483–491. 432 

https://doi.org/10.13031/trans.12484 433 

Hodge, V. J., & Austin, J. (2004). A Survey of Outlier Detection Methodologies. Artificial 434 

Intelligence Review, 22(2), 85–126. https://doi.org/10.1007/s10462-004-4304-y 435 

Hunt, D., & Wilson, D. (2015). Farm Power and Machinery Management: Eleventh Edition. 436 

Waveland Press. 437 



Pag. 26/27 

ISO. (2012). ISO 11783-7:2012—Tractors and machinery for agriculture and forestry—Serial 438 

control and communications data network—Part7: Implement messages application layer—439 

Implement messages application layer. 440 

Johannesson, P., & Speckert, M. (2013). Guide to Load Analysis for Durability in Vehicle 441 

Engineering. John Wiley & Sons. 442 

Kortenbruck, D., Griepentrog, H. W., & Paraforos, D. S. (2017). Machine operation profiles 443 

generated from ISO 11783 communication data. Computers and Electronics in Agriculture, 444 

140, 227–236. https://doi.org/10.1016/j.compag.2017.05.039 445 

Lovarelli, D., Bacenetti, J., & Fiala, M. (2017). Effect of local conditions and machinery 446 

characteristics on the environmental impacts of primary soil tillage. Journal of Cleaner 447 

Production, 140, 479–491. https://doi.org/10.1016/j.jclepro.2016.02.011 448 

Marchesani, C., Parmigiani, F., & Vianello, M. (1992). Integrated method to define the mission 449 

profile of a passenger car. Innovation and reliability in automotive design and testing, 450 

Florence (I). 451 

Mattetti, M., Maraldi, M., Sedoni, E., & Molari, G. (2019). Optimal criteria for durability test 452 

of stepped transmissions of agricultural tractors. Biosystems Engineering, 178, 145–155. 453 

https://doi.org/10.1016/j.biosystemseng.2018.11.014 454 

Mattetti, M., Molari, G., & Sedoni, E. (2012). Methodology for the realisation of accelerated 455 

structural tests on tractors. Biosystems Engineering, 113(3), 266–271. 456 

https://doi.org/10.1016/j.biosystemseng.2012.08.008 457 

Mattetti, M., Molari, G., & Sereni, E. (2017). Damage evaluation of driving events for 458 

agricultural tractors. Computers and Electronics in Agriculture, 135, 328–337. 459 

https://doi.org/10.1016/j.compag.2017.01.018 460 

Mattetti, M., Varani, M., Molari, G., & Morelli, F. (2017). Influence of the speed on soil-461 

pressure over a plough. Biosystems Engineering, 156, 136–147. 462 

https://doi.org/10.1016/j.biosystemseng.2017.01.009 463 

Molari, G., Mattetti, M., Lenzini, N., & Fiorati, S. (2019). An updated methodology to analyse 464 

the idling of agricultural tractors. Biosystems Engineering, 187, 160–170. 465 

https://doi.org/10.1016/j.biosystemseng.2019.09.001 466 

Molari, G., Mattetti, M., Perozzi, D., & Sereni, E. (2013). Monitoring of the tractor working 467 

parameters from the CAN-Bus. AIIA 13. Horizons  in  agricultural,  forestry  and  biosystems 468 

engineering, Viterbo. 469 

Paraforos, D. S., Hübner, R., & Griepentrog, H. W. (2018). Automatic determination of 470 

headland turning from auto-steering position data for minimising the infield non-working 471 

time. Computers and Electronics in Agriculture, 152, 393–400. 472 

https://doi.org/10.1016/j.compag.2018.07.035 473 

Paraforos, D. S., Vassiliadis, V., Kortenbruck, D., Stamkopoulos, K., Ziogas, V., Sapounas, A., 474 

& Griepentrog, H. W. (2017). Automating the process of importing data into an FMIS using 475 

information from tractor’s CAN-Bus communication. Advances in Animal Biosciences, 8, 476 

650–655. https://doi.org/10.1017/S2040470017000395 477 

Perozzi, D., Mattetti, M., Molari, G., & Sereni, E. (2016). Methodology to analyse farm tractor 478 

idling time. Biosystems Engineering, 148, 81–89. 479 

https://doi.org/10.1016/j.biosystemseng.2016.05.007 480 



Pag. 27/27 

Pitla, S. K., Lin, N., Shearer, S. A., & Luck, J. D. (2014). Use of Controller Area Network 481 

(CAN)  Data To Determine Field Efficiencies  of Agricultural Machinery. Applied 482 

Engineering in Agriculture, 30(6), 829–839. https://doi.org/10.13031/aea.30.10618 483 

Pitla, S. K., Luck, J. D., Werner, J., Lin, N., & Shearer, S. A. (2016). In-field fuel use and load 484 

states of agricultural field machinery. Computers and Electronics in Agriculture, 121, 290–485 

300. https://doi.org/10.1016/j.compag.2015.12.023 486 

Plaskitt, R. J., & Musiol, C. J. M. (2002). Developing a Durable Product. 1–20. 487 

SAE. (2006). Agricultural and Forestry Off-Road Machinery Control and Communication 488 

Network (N. j1939-2). https://saemobilus.sae.org/content/j1939/2_200608 489 

SAE. (2013). Vehicle Application Layer (N. j1939-71; pagg. 1–1255). 490 

SAE. (2016a). SAE J1939-14—Physical Layer, 500 Kbps (SAE J1939-14; pagg. 1–13). 491 

SAE. (2018b). SAE J1939-15—Physical Layer, 250 Kbps (SAE J1939-15; pagg. 1–20). 492 

Sehab, R., Barbedette, B., & Chauvin, M. (2011). Electric vehicle drivetrain: Sizing and 493 

validation using general and particular mission profiles. 2011 IEEE International 494 

Conference on Mechatronics, 77–83. https://doi.org/10.1109/ICMECH.2011.5971228 495 

Wong, J. Y. (2001). Theory of Ground Vehicles. John Wiley & Sons. 496 

Zhang, Y., Ault, A., Krogmeier, J. V., & Buckmaster, D. (2017). Activity Recognition for 497 

Harvesting via GPS Tracks. 2017 ASABE Annual International Meeting. 498 

https://doi.org/10.13031/aim.201700813 499 

 500 


	Abstract
	Keywords: data mining; Agriculture 4.0; CAN-BUS; real-world data; task classification

	Introduction
	Materials and methods
	Data acquisition
	Data analysis

	Results and Discussion
	Discussion
	Conclusions
	Acknowledgements
	References

