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Abstract 11 

 12 

Monitoring the quality attributes of grapes is a practice that allows the state of ripeness to be checked 13 

and the optimal harvest time to be identified. A non-destructive method based on hyperspectral 14 

imaging (HSI) technology was developed. Analyses were carried out directly in the field on a 15 

Vitis vinifera L.) vineyard destined for wine production, by using a Vis/NIR (40016 

1000 nm) hyperspectral camera. One vineyard row was analysed on 13 different days during the pre-17 

harvest and harvest time. The soluble solids content (SSC) expressed in terms of °Brix was measured 18 

by a portable digital refractometer. Afterwards, the grape samples were split in two classes: the first 19 

one composed by the samples characterised by a °Brix lower than 20 (not-ripe), while the second one 20 

by the samples with a °Brix higher than 20 (ripe). Grape mean spectra were extracted from each 21 

hyperspectral image and used to predict the SSC by partial least squares regression (PLS), and to 22 

classify the samples into the two classes by PLS discriminant analysis (PLS-DA). SSC was predicted 23 

with a R2=0.77 (RMSECV=0.79 °Brix), and the samples were correctly classified with a percentage 24 

from 86 to 91%. Even if the number of wavelengths was limited, the percentages of correctly 25 

classified samples were again within the above-mentioned range. The present study shows the 26 



potential of the use of HSI technology directly in the field by proximal measurements under natural 27 

light conditions for the prediction of the harvest time of the Sangiovese  red grape. 28 

 29 
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 31 

 32 

1. Introduction 33 

Italy is the largest wine producer in the world, with a production in 2018 of 5,480 million litres 34 

(18.8% of world production) (OIV International Organisation of Vine and Wine, 2019). In an 35 

industrialised wine growing system, monitoring the quality attributes, such as soluble solids content 36 

(SSC), acidity and anthocyanin content of grapes is extremely important: well-planned monitoring 37 

allows to check the growth and ripening of the grapes, and finally to decide when to proceed with the 38 

harvest (Delrot, Medrano, Or, Bavaresco, Grando, 2010). For instance, by managing irrigation 39 

through the use of techniques such as the regulated deficit irrigation, significant increases in SSC and 40 

anthocyanins can be achieved which together with a decrease in yield and berry size can lead to 41 

substantial improvements in grape quality (Acevedo-Opazo, Ortega-Farias, Fuentes, 2010; 42 

Pellegrino, Lebon, Simonneau, Wery, 2005).  43 

Monitoring of grape quality attributes can be carried out directly in the field using traditional 44 

destructive techniques. Alternatively, quality attributes can be estimated by non-destructive 45 

techniques, such as near-infrared (NIR) spectroscopy. Portable NIR instruments were used to 46 

determine the following quality attributes of grapes: water content, SSC, reductant sugars, pH, 47 

titratable acidity, maturity index (sugar/acidity ratio), extractable anthocyanins, potential 48 

anthocyanins (Teixeira Dos Santos, Lopo, Páscoa, Lopes, 2013). 49 

Over the last two decades the use of HSI technology in the quality assessment of fruits and vegetables 50 

has become of increasing interest (Chandrasekaran, Panigrahi, Ravikanth, Singh, 2019; Liu, Zeng, 51 

Sun, 2015). HSI was initially limited to controlled environments such as laboratories but gradually, 52 



thanks to the miniaturisation and improved computing and data storage capabilities, it began to be 53 

used directly in the field (Benelli, Cevoli, Fabbri, 2020). Hyperspectral images can be captured either 54 

remotely by airborne vehicles and unmanned aerial vehicles (Ishida et al., 2018; Matese & Di 55 

Gennaro, 2015; Zarco-Tejada et al., 2013) or by ground vehicles (Deery, Jimenez-Berni, Jones, 56 

Sirault, Furbank, 2014; Gutiérrez, Fernández-Novales, Diago, Tardaguila, 2018a; Huang, Lee, 57 

Thomson, Reddy, 2016; Jay et al., 2017; Underwood, Wendel, Schofield, McMurray, Kimber, 2017; 58 

Wendel, Underwood, Walsh, 2018; Whetton, Waine, Mouazen, 2018), which produces proximal 59 

hyperspectral images with high spatial resolution. Proximal HSI could therefore allow non-60 

destructive, contactless, and automated monitoring of grape quality attributes. Moreover, the 61 

acquisition of hyperspectral images can be performed continuously, enabling the rapid scanning of 62 

large areas. Hyperspectral data is characterised by two spatial and one spectral dimension, therefore 63 

only specific regions of interest (ROIs) can be selected, and the residual regions can be excluded. In 64 

this sense, hyperspectral analysis is useful to guide the choice of true multispectral less expensive 65 

solutions. 66 

Concerning in-field grape studies, Gutiérrez et al. (2018a) adopted an on-the-go HSI system for the 67 

classification of 30 grapevine varietals directly acquired in the field. Through the development of 68 

classification models based on support vector machines (SVM) and multilayer perceptron (MLP), 69 

prediction performance (F1 score) up to 0.99 was achieved. The same on-the-go HSI system 70 

described above, combined with SVM, was adopted to estimate SSC and anthocyanin concentration 71 

of wine grapes (Gutiérrez et al., 2018b). Determination coefficients (R2) of 0.92 (RMSE=1.274 °Brix) 72 

and 0.83 (RMSE=0.211 mg g-1) were obtained for the prediction of SSC and anthocyanin 73 

concentration, respectively. These two studies highlight the potential of HSI to monitor the indices 74 

of grape ripening directly in the field and therefore to improve vineyard decisions and management. 75 

Non-linear statistical methods were used in both studies. Considering the results just mentioned, it 76 

would be interesting to investigate whether, even combining HSI with linear methods and reducing 77 

the number of wavelengths, it is possible to monitor the degree of grape maturity directly in the field. 78 



Furthermore, considering a possible application of this technique, a simple binary model able to 79 

simply determine whether grapes are ripe for harvesting could be interesting. 80 

Thus, the present study aims to identify the proper degree of ripeness, suitable for harvesting wine 81 

grapes, through the observation of the SSC evolution by means of HSI technology applied directly in 82 

the field. The mean spectra were extracted from each hyperspectral image and used to predict the 83 

SSC and to classify the samples into the two classes (not-ripe and ripe), by partial least squares 84 

regression (PLS) and discriminant analysis (PLS-DA), respectively. 85 

 86 

2. Materials and methods 87 

2.1 Samples 88 

Vitis vinifera L.) grape vineyards, located near Cesena, Italy, was 89 

analysed on 13 different days in the period between August 20th and October 4th, 2019 (from pre-90 

harvest to harvest time). The row was divided into 11 sections; from each section 3, grapes were taken 91 

for each day of analysis, for a total of 429 samples. 92 

 93 

2.2 Hyperspectral acquisitions 94 

The adopted push-broom hyperspectral camera (Nano-Hyperspec VNIR, Headwall Photonics, Inc., 95 

Fitchburg, MA, USA) scans single lines in a sequence, each one consisting of 640 voxels: the image 96 

is created by moving the camera along the scanning direction (Fig. 1a). Each voxel contains, in 97 

addition to the two spatial dimensions, a Vis/NIR spectrum (400 1000 nm) characterized by 272 98 

spectral bands, with a nominal spectral resolution of 2.2 nm. The mounted lens has an effective focal 99 

length of 17 mm, with the optical axis perpendicular to the side of the vineyard row (scanned surface) 100 

analysed (Figure 1b). The camera was installed on a garden cart (Fig. 1b) 120 cm above the ground 101 

and it was powered by a 12 V, 45 Ah automotive battery through a DC to AC power inverter. The 102 

scans were performed at about 1.6 m from the side of the vineyard row.  103 



Direct sunlight with clear sky conditions, was used as a light source. To reduce the fluctuation of the 104 

sample temperature, all the acquisitions were carried during the same period of the day, from 105 

10:30 a.m. to 12:00 p.m. 106 

The frame rate was set to approximately 100 frames s-1. The exposure time was set from 6 to 8 ms, 107 

depending on the light intensity, and was achieved through calibration, by framing a white high-108 

reflectance matter panel, placed at the same distance as the vineyard row, to cover the entire angle of 109 

view of the camera. Given the clear sky conditions and the short time required, about 10 min, 110 

acquisition of hyperspectral images of the 11 vineyard row sections and calibration was carried out 111 

only once per day. 112 

The raw diffuse reflectance spectrum (RR) was extracted from the HS images. The calibrated diffuse 113 

reflection spectrum (RC) was calculated by applying the following equation:(Guo et al., 2019): 114 

 (1) 115 

where RD is the reflectance spectrum of dark reference, obtained by applying the cap on the lens; RW 116 

is the reflectance spectrum of white reference, obtained by means calibration with the white high-117 

reflectance matte panel reported above. 118 

A hyperspectral image from each of the 11 sections obtained from the vineyard row, was acquired 119 

per day of analysis (Fig. 1c): therefore, during the 13 d of analysis, a total of 143 vineyard row sections 120 

were scanned. 121 

 122 

2.3 Soluble solids content measurement 123 

After the acquisition of the images, the SSC, expressed in °Brix, was measured on 3 grape berries 124 

(randomly selected) from each of the 11 sections by using a portable digital refractometer (PR-101 125 

Digital Refractometer, ATAGO CO., LTD, Tokyo, Japan). Subsequently, the mean for each section 126 

was calculated. 127 

One-way analysis of variance (ANOVA) with Tukey-HSD post-hoc test (p-level < 0.05) was applied 128 

to evaluate significant differences between SSC means over the different days of analysis. 129 



2.4 Hyperspectral images elaboration 130 

ROI selection was made using the software HyperCube, v. 11.52 (U.S. Army Engineer Research and 131 

Development Center (ERDC), USA). For each image, 5 points and a maximum of a further 120 132 

adjacent points (11 x 11 voxels matrix, with the selected point in the centre of the matrix) were 133 

selected on 5 different berries directly illuminated by the sun, not in the shade. The (reference) points 134 

included in the classification were characterized by a metric distance from the mean (signature) 135 

spectrum of the manually selected points within the range (tolerance threshold) [0,0.04] (Fig. 2). The 136 

metric distance was calculated by applying the absolute difference (Manhattan) function (Eq. (2)) 137 

(Deborah, Richard, Hardeberg, 2015) and normalised in the range [0,1]. 138 

 139 

where R1, R2 are two reflectance spectra. 140 

From the spectra of the classified points, the mean spectrum for each hyperspectral image was 141 

calculated. 142 

The spectral bands between 400 424 nm were omitted as a result of the low signal-to-noise ratio 143 

produced by the sensor, as reported in Wendel et al. (2018). The spectra were smoothed (Savitzky-144 

Golay method; polynomial order: 2; smoothing points: 15) to reduce noise from the spectra and 145 

following pre-treated by the standard normal variate (SNV) method, first derivative (D1) and finally 146 

mean centred (MC). The SNV is one of the most common pre-processing method used to correct 147 

spectra for changes in optical path length and light scattering, while the derivatives have the capability 148 

to remove both additive and multiplicative effects in the spectra (Rinnan, van den Berg, Engelsen, 149 

2009). After SNV, each spectrum will have a mean of 0 and a standard deviation of 1. 150 

Principal component analysis (PCA) was applied to the mean spectra as exploratory technique to 151 

visualize the data according to °Brix and time evolution. Subsequently, a preliminary PLS regression 152 

model was built to estimate the SSC. The validation was carried out by the venetian blind cross-153 

validation method (segments: 10). 154 



PLS-DA models were built to classify the samples according to °Brix. 155 

models with 2 categories (not-ripe and ripe) were developed: according to Bucelli, Costantini and 156 

Storchi (2010), the first class was composed by the samples characterized by a °Brix lower than 20 157 

(0), while the second one by the samples with a °Brix equal or higher than 20 (1). 158 

The sample dataset (n = 143) was split in calibration (venetian blinds cross-validation, including 75% 159 

of the samples) and external validation set (25% of the samples) by using the Onion method 160 

(Gallagher et al., 2004). The threshold value, able to identify the belonging category of each sample 161 

into one of the groups, To avoid 162 

the model over-fitting, the optimal number of latent variables were chosen by plotting the root mean 163 

square error of cross-validation (RMSECV) as a function of the number of components and by 164 

identifying where the curve reaches a local minimum. The receiver operating characteristic (ROC) 165 

curves in prediction were evaluated to assess the goodness of the models. 166 

All the chemometrics models were developed by using PLS Toolbox for Matlab2018a. 167 

 168 

3. Results and discussion 169 

Means and standard deviation of the °Brix measured during the 13 d of analysis are reported in Table 170 

1. The increase between the first and last day was of 27.5%, from 17.8 °Brix (day I) to 22.7 °Brix 171 

(day XIII). Several significant differences between the °Brix mean values were achieved over the 172 

different days of analysis. The whole data set was characterized by a mean value of 20.6 ± 1.7 °Brix, 173 

which make suitable to split it in two subsets with a threshold of 20 °Brix. 174 

Raw and pre-treated (smoothing and SNV) mean spectra of all the samples by day of analysis are 175 

presented in Fig. 3. In the Vis/NIR region (400 1000 nm), the visible spectrum (400 700 nm) 176 

presents the absorption bands of some substances used as ripening indexes of fruit: anthocyanins at 177 

around 500 nm, carotenoids at 570 590 nm, and chlorophyll a at 680 710 nm (ElMasry, Wang, 178 

ElSayed, Ngadi, 2007; Munera et al., 2017). In the NIR region (700 1000 nm), absorption bands of 179 

water at 760 nm and 960 970 nm are characterised by the overtone of O-H bonds (McGlone & 180 



Kawano, 1998; Nicolaï et al., 2007): since the water content of a ripe wine grape is 70 80% (FAO 181 

Food and Agriculture Organization, 2009), it can be expected that the water related absorption band 182 

will prevail. Absorption band around 840 nm was associated with sugar (Pu, Liu, Wang, Sun, 2016); 183 

moreover, peaks observed in the 950 1000 nm region were related to both water and carbohydrates, 184 

as the second overtone of O-H and N-H, a combination band of O-H bonds and the third overtone of 185 

C-H, were found in the region (Camps & Christen, 2009). As observed, the water absorption peaks 186 

in the NIR (700 1000 nm) spectral region are not very marked and wide. Therefore, spectral 187 

information from SSC in the 800 1000 nm range will tend to be less covered by water (Camps & 188 

Christen, 2009; Manley, Joubert, Myburgh, Kidd, 2007). 189 

The score plot of the first two principal components (PC1: 59%; PC2: 28%) resulting from PCA 190 

shows the samples distribution according to the day of analysis. A tendency to place the samples from 191 

left to right can be observed on PC1, starting from day I (quadrant III) to day XIII (quadrant IV) 192 

(Figure 4a). 193 

A similar distribution can be observed according to the SSC: the samples are distributed along PC1, 194 

mainly on the left those with SSC < 20 °Brix (quadrants II and III), on the right those with 195 

SSC  22 °Brix (quadrants I and IV) (Fig. 4b). 196 

The best PLS results were obtained pre-treating the spectra by SNV + MC. Particularly, R2 = 0.768 197 

and RMSECV = 0.79 °Brix were achieved in cross-validation with 7 latent variables. Figure 5 shows 198 

the predicted versus measured °Brix values. 199 

These results agree with those present in literature and developed by using spectra in the same 200 

wavelength range and acquired directly in-field. Furthermore, regardless of the R2 values, the RMSE 201 

is substantially lower. Diezma-Iglesias, Barreiro, Blanco and García-Ramos (2008) predicted SSC on 202 

-held spectrometer (590 1090 nm), 203 

reporting a R2 = 0.72, while Guidetti, Beghi and Bodria (2010) working with a simple Vis/NIR system 204 

in the range from 400 to 1000 nm, obtained in prediction r=0.82 (R2=0.67) and RMSEP=1.48°Brix. 205 

Gutiérrez et al. (2018b) used the HSI technique (400 1000 nm) to measure SSC in wine grapes in 206 



real time. R2 of 0.91 (RMSE = 1.358 °Brix) and 0.92 (RMSE = 1.274 °Brix) were achieved in cross 207 

validation and prediction, respectively, by using the SVM techniques. 208 

PLS-DA results, in terms of 209 

percentages ranged from 86 to 91%. Considering the prediction set, the best result was obtained 210 

applying as pre-treatment the SNV + MC. The results obtained with the hyperspectral technique 211 

improved those achieved by Guidetti et al. (2010) by using of a portable contact system. The authors 212 

combined Vis/NIR spectroscopy in the wavelength range 450  980 nm with PLS-DA to classify 213 

grape samples in two groups based on SSC (threshold = 21 °Brix), obtaining a percentage of samples 214 

correctly classified (in prediction) of 77.1% (Guidetti et al., 2010). 215 

The ROC curves in prediction (Fig. 6) summarise the trade-o216 

samples predicted to not be in the class divided by the actual number not in the class) and sensitivity 217 

(number of samples predicted to be in the class divided by number actually in the class) for the PLS-218 

 = 0.9855 for SNV + MC and 219 

AUC = 0.9578 for SNV + D1 + MC) suggest that the models were characterised by a high degree of 220 

discrimination, confirming that the best model was those developed considering only the SNV + MC 221 

as pre-treatment.  222 

Results,  rule) of belonging to the class °Brix < 20, are shown in Fig. 223 

7. The higher a sample is placed, the higher the probability that it will be a member of 224 

the °Brix <   20) 225 

are placed at the bottom of the graph. The threshold value (dotted red line) was set at 0.5 (probability 226 

of 50%); samples with a probability lower than this value are considered improperly classified. 227 

Considering the SNV + MC and SNV + D1 + MC pre-treatments, 89% and 77% of the samples (in 228 

prediction) were classified with a probability higher than 70%. 229 

Figure 8 shows the VIP (variable importance in projection) scores obtained by the PLS-DA models. 230 

These scores estimate the importance of each variable in the projection used in the PLS-DA model. 231 

A variable with a VIP score close to or higher than 1 can be considered important in a given model. 232 



For both the pre-treatments, similar regions with VIP score higher than 1 were obtained, suggesting 233 

that the wavelengths with the highest contribution are in the NIR region of the spectrum (from 700 234 

to 1000 nm). Consequently, the variable selection method based on the VIP scores higher than 1 was 235 

used to reduce the original data set.  236 

PLS-237 

of variables (wavelengths), are reported in Table 3. In particular, 93 (SNV + MC) and 88 238 

(SNV + D1 + MC) x-variables were used to develop the new PLS-DA. The percentages of correctly 239 

than those obtained considering the whole 240 

spectrum. However, the results are still completely acceptable. This confirms also by the high AUC 241 

values (0.939 and 0.942). 242 

This work presents a solution for in-field and non-destructively determination of grape maturity 243 

degree by using HSI combined with linear chemometric techniques. Particularly, the results confirm 244 

the suitability for estimating the soluble solid content of red grapes.  245 

The positioning of the vineyard row did not create any obstacles regarding the direct solar lighting of 246 

the grape bunches. The images along the vineyard row were acquired in the NNE-SSO direction, with 247 

the row on the right-hand side of the scanning direction. Consequently, the suitable period for analysis 248 

was during the late morning and not later than midday. To scan the other side of the row, it would 249 

have been necessary to proceed after midday. Shadows also did not present any problems, as the sun 250 

was behind the camera at the time of the acquisitions. To correctly acquire hyperspectral images, the 251 

vines should be stripped to ensure that the upper leaves do not overshadow the grapes below. Grapes 252 

often had reflection and shaded areas, which need to be excluded during the selection of the ROIs, 253 

along with fully or partially shaded grape bunches. In the presence of clouds or even just a slight 254 

cloud cover, a significant variation in light intensity was observed: this means that the camera would 255 

need to be recalibrated every time a section of the row was scanned. In addition, it is possible that the 256 

brightness conditions change soon after calibration, so it would be necessary to recalibrate and 257 

immediately proceed with the scan of the row section. 258 



The variability grape of a vineyards, in terms of SCC, often is quite high. This depends on many 259 

factors, such us the vineyards orientation, unevenness of the land and meteorological phenomena. For 260 

this reason, the grapes are harvested at different times even along the same row. Consequently, to 261 

optimise the harvest, a technique that allows to have a mapping of the SCC for all grapes, would 262 

certainly be an advantage. 263 

 264 

4. Conclusions 265 

Hyperspectral imaging technology, usually adopted in laboratories with auxiliary artificial lighting, 266 

was used in-field under natural lighting conditions to monitor the maturity degree of Sangiovese  267 

(Vitis vinifera L.) grapes. The results achieved confirm that it is possible to predict the soluble solid 268 

content and to classify grape samples into two classes (not-ripe and ripe) using a linear technique to 269 

elaborate the spectral data. Furthermore, the classification performance remained substantially 270 

unchanged by reducing the number of wavelengths, so it is expected that a less expensive 271 

multispectral camera in the 400 1000 nm range can work just as well. The implementation of a 272 

hyperspectral imaging system on an agricultural vehicle coupled to a gimbal stabilisation system, 273 

together with the development of hyperspectral image segmentation techniques, would allow 274 

on-the-go analysis of large vineyard extensions. Attention should be paid to the presence of water on 275 

the surface of the sample under analysis, to the presence of variable cloudiness and, if the leaves are 276 

analysed, to the presence of wind. 277 

 278 
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Figure captions 

Fig. 1. (a) Vineyard row, highlighted by the purple surface, scanned with the Vis/NIR hyperspectral 

camera; red arrow indicates the direction of scanning; (b) Garden cart mounted with hyperspectral 

camera. (c) In-field hyperspectral imaging to measure soluble solids content of wine grape berries 

during ripening.  

Fig. 2. (a) RGB image from hyperspectral image of a scanned vineyard row section. (b) 

Representation of the ROI (in red) resulting from the classification obtained by the Manhattan 

function. 

Fig. 3. Raw (A) and pre-treated by smoothing and SNV (B) spectra of all samples on different days 

of analysis (from I to XIII). 

Fig. 4. Score plot obtained by the PCA according to: (a) days of analysis (from I to XIII); (b) soluble 

solids content (°Brix). 

Fig. 5. Measured vs predicted values of solid soluble content (°Brix) obtained by PLS regression 

(cross validation). 

Fig. 6. ROC curve of the PLS-DA models in prediction. 

Fig. 7. Probability values of belonging to the class °Brix<20. 

Fig. 8. VIP scores of the PLS-DA.



Table 1. Mean and standard deviation values of soluble solids content (°Brix) as a function of days 

of analysis. 

Day of analisys 
Mean          
(°Brix) 

Standard deviation 
(°Brix) 

I 17.8a 1.05 

II 19.0a,b 0.81 

III 19.2b,c 0.75 

IV 19.9b,c,d 1.1 

V 20.1b,c,d 1.16 

VI 20.2b,c,d,e 0.95 

VII 20.5c,d,e,f 1.11 

VIII 20.7d,e,f 0.82 

IX 21.5e,f,g 0.76 

X 21.6e,f,g 0.89 

XI 21.7f,g 1.17 

XII 22.7g 0.94 

XIII 22.7g 0.88 

Note: means with the same letter are not significant different at p-level < 0.05. 

  



Table 2. PLS- (whole spectral 

range). 

Spectra pretreatment Class Calibration 
(n=107)  

Cross-validation 
(n=107, 10 segments) 

Prediction 
(n=36) 

LV 

SNV+MC 
°Brix<20 89% 89% 91% 

4 
 91% 91% 91% 

SNV+D1+ MC 
°Brix<20 91% 89% 86% 

4 
 91% 91% 91% 

Note: SNV=Standard Normal Variate; MC=Mean Cantered; D1=first derivative, LV=Latent Variable. 

  



Table 3. PLS- (reduced spectral 

range). 

Spectra pretreatment Class Calibration 
(n=107)  

Cross-validation 
(n=107, 10 segments) 

Prediction 
(n=36) 

LV 

SNV+MC 
°Brix<20 84% 83% 86% 

4 
 93% 92% 91% 

SNV+D1+ MC 
°Brix<20 89% 89% 88% 

3 
 90% 87% 87% 

Note: SNV=Standard Normal Variate; MC=Mean Cantered; D1=first derivative, LV=Latent Variable. 

 

 

 



Nomenclature 

AUC area under the curve 

CV cross validation 

D1 first derivative 

HSI hyperspectral imaging  

MC mean centring 

NIR near-infrared 

PCA principal component analysis 

PLS partial least squares  

PLS-DA partial least squares discriminant analysis 

R reflectance spectrum 

RMSE root mean square error 

ROC receiver operating characteristic  

ROI region of interest  

SNV standard normal variate 

SSC soluble solids content  

SVM support vector machines  

VIP variable importance in projection 



 

 
 


