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  1 

Abstract  2 

Aims  3 

The link between spectral diversity and ground plant biodiversity is one promising approach 4 

for using remote sensing for biodiversity assessment. Nevertheless, there is little evidence to 5 

whether this link is maintained at fine scales, as well as to how it is influenced by vegetation’s 6 

vertical complexity. Here we test, at community level in grasslands, the link between diversity 7 



of the spectral signal (SDiv) and taxonomic diversity (TDiv), and the influence of vertical 8 

complexity. 9 

Methods 10 

We used 196 1.5×1.5 m experimental communities with different biodiversity levels. To 11 

measure vertical complexity, we quantified height diversity (HDiv) of the most abundant 12 

species in the community. TDiv was calculated using Shannon index based on species cover. 13 

Canopy spectral information was gathered using an UAV mounted with a multi-spectral sensor 14 

providing spectral information via six 10 nm bands covering the visible and near-infrared region 15 

at 3 cm spatial resolution. We measured SDiv in a core area of 1×1 m within the communities 16 

as mean Euclidean distance of all pixels in a feature space spanned between the two first 17 

components of a PCA calculated for the complete raster stack. We modelled SDiv through 18 

mixed effect linear models, using TDiv in interaction with HDiv as fixed effect predictors. 19 

Results  20 

Contrarily to our expectations, TDiv was negatively linked to SDiv. The diversity in plant 21 

height was positively related to SDiv. More importantly, diversity in plant height and TDiv had 22 

a significant negative interaction, meaning the more complex the vegetation was in terms of 23 

height, the more the SDiv-TDiv relationship became negative. 24 

Conclusions 25 

Our results suggest that in order to exploit the SDiv-TDiv link for monitoring purposes, it needs 26 

to be contextualized. Moreover, they highlight that communities’ functional characteristics (i.e. 27 

plant height) mediate such link, calling for new insights on the relation between SDiv and 28 

functional diversity. 29 

 30 

Keywords: spectral diversity, grasslands, species diversity, community scale, vertical 31 

stratification, height diversity, taxonomic diversity, mixed effect models, remote sensing, multi-32 

spectral sensor, UAV.   33 



Introduction 34 

Improving our ability to monitor biodiversity across scales is critical to understand its role in 35 

shaping ecosystem functioning across the world, as well as to track ecological communities’ 36 

responses to rapid environmental changes. Despite a growing interest in biodiversity in recent 37 

decades, the ability to measure and monitor biodiversity through traditional methods continues 38 

to lag behind current global changes and its related challenges (Palmer et al. 2002; Wang and 39 

Gamon 2019). National biodiversity monitoring programs differ widely, most data sets are 40 

inconsistent, and few data are shared openly; further, measuring biodiversity on the ground is 41 

laborious, requiring a lot of time, human, and financial resources, as well as being limited by a 42 

lack of standardized procedures for reproducible data gathering (Rocchini, Marcantonio, and 43 

Ricotta 2017; but see also the GEOBON initiative, Scholes et al. 2018). Recently, it has been 44 

suggested that variation in plant diversity could be promptly monitored through remote sensing 45 

(RS) techniques (Féret and Asner 2014; Jetz et al. 2016; Lausch et al. 2016; Skidmore et al. 46 

2015; Wang and Gamon 2019), which provide a continuous source of information on different 47 

facets of plant diversity on a wide range of scales in a consistent, borderless, and repeatable 48 

manner (Turner 2014).  49 

Among the many approaches used to estimate plant diversity through RS (for a review 50 

see Wang and Gamon 2019), “Spectral Diversity” (SDiv), has been gaining momentum 51 

(Rocchini et al. 2021). SDiv, defined as the variation in spectral reflectance across a set of 52 

neighbouring pixels (Palmer et al. 2002; Ustin and Gamon 2010), was originally proposed 53 

under the framework of Spectral Variation Hypothesis (SVH; Palmer 1992). This framework 54 

suggests that a higher spectral diversity can be interpreted as a higher ecosystem spatial 55 

heterogeneity, thus as a potentially higher number of available niches and their related species. 56 

However, this relationship also depends on the scale of the RS data. With the development of 57 

RS techniques and the advances of instruments such as Unmanned Aerial Vehicles (UAV) it is 58 

now possible to flexibly acquire data at very high spatial resolutions (Whitehead and 59 

Hugenholtz 2014). Such high-resolution data can capture the direct link between the spectral 60 

information at leaf and canopy level and the functional characteristics of the different plant 61 

species in the analysed area (Asner and Martin 2009; Wang and Gamon 2019).  It follows that 62 

with a larger availability of fine spatial resolution images, SDiv can be used to directly estimate 63 

plant species diversity, since a higher spectral diversity should relate to a higher number of 64 

species with corresponding species-specific optical traits at leaf and canopy level (Asner and 65 

Martin 2009; Wang and Gamon 2019). Several RS indices based on SDiv have been applied so 66 



far to assess plant diversity and they have been recently grouped in three main categories (Wang 67 

and Gamon 2019): metrics based on variation in vegetation indices (e.g. the Normalized 68 

Difference Vegetation Index - NDVI) which often scales with species richness (Gillespie 2005); 69 

metrics based on information theory (e.g. spectral entropy) providing information on the 70 

“dimensionality” of a dataset for a given area, which can then be related to the number of 71 

species present in that area (Rocchini et al. 2021); and metrics based on spectral species where 72 

these are considered proxies or analogues for biological species, and spatial variation in spectral 73 

species can be used to infer species richness (see Féret and Asner 2014). .   74 

Nonetheless, while the link between SDiv and plant diversity has been confirmed in 75 

several empirical studies (Rocchini et al. 2016; Wang et al. 2018; Wang and Gamon 2019), it 76 

has also been criticized for being unstable and not reliable in every context (Schmidtlein and 77 

Fassnacht 2017). These contradictory findings might be due to a lack of studies systematically 78 

considering the most important factors influencing such relationship such as scale, phenology, 79 

used metrics, and vertical structure of the observed ecosystems. In particular, the vertical 80 

structure of the vegetation may hamper the optical detection of some of the plant species in the 81 

area. In a closed vegetation with a complex vertical structure, taller species would tend to 82 

obscure short species from RS detection (occlusion effect), which would lead to an 83 

underestimation of ground plant diversity. However, a complex vertical structure could also 84 

give rise to underexposed pixels or shadow patterns, which on the contrary could determine a 85 

higher diversity of spectral values and lead to an overestimation of ground plant diversity. To 86 

our knowledge, no studies have addressed the influence of the vertical complexity on the link 87 

between SDiv and plant diversity. Moreover, no study has addressed this issue in herbaceous 88 

communities, where despite having one single canopy level, species height variability can give 89 

rise to an important gradient of vertical complexity (Brown and Cahill 2019).  90 

Here, we focus on a grassland experiment situated on a mesic meadow in South 91 

Bohemia (Czech Republic) to test the relationship between SDiv and communities’ taxonomic 92 

plant diversity (TDiv) while accounting for the effect of the grassland vertical complexity. We 93 

expect this relationship to be positive, although weaker in more vertically complex 94 

communities, due to the occlusion effect. The unique settings of the experiment enabled us to 95 

test this relationship by using a considerable span of plant diversity within grassland 96 

ecosystems. Semi-natural meadows are considered to be one of the most important plant species 97 

diversity hotspots worldwide (Dengler et al. 2014) and improving our ability of diversity 98 



monitoring is essential to mitigate the loss of vascular plant species and associated ecosystem 99 

services (Edwards and Kučera 2019). 100 

 101 

Methods 102 

To explore the relationship of SDiv and plant diversity at community level, we used data from 103 

a permanent grassland experiment, established in 2015 and situated on a mesic meadow in 104 

South Bohemia, Czech Republic (49.331N, 15.003E; for further details see Galland et al., 105 

2019). The experiment comprises 40 mesic grassland communities which cover independent 106 

gradients of plant functional and phylogenetic diversity (Figure 1). Each sown community 107 

comprised a combination of 6 species obtained from a pool of 19 species naturally present in 108 

Czech mesic meadows. Each community was sown in two randomly situated 1.5 × 1.5 m plots 109 

(fertilized and unfertilized), with a buffer zone of 0.5 m between each of them. Monoculture 110 

plots were also sown in three replicates each, for a total of 196 plots. These represent the sown 111 

communities, which are the basis for the actual communities present in each plot, composed by 112 

sown and colonizer species (species present in the surroundings that invaded the experiment), 113 

which were the communities actually sampled (see Supporting Information, Appendix S1). 114 

In May 2018, at the peak of the growing season, species composition and percentage 115 

cover were measured in each of the plots. Data regarding vegetative plant height was measured 116 

on site for each species (sown or colonizer) that cumulatively covered 80% in at least one of 117 

the plots, on fully developed individuals and following standardized protocols (Pérez-118 

Harguindeguy et al. 2013). 119 

Shortly after the vegetation sampling, multi-spectral imagery at high spatial resolution 120 

(~3 cm) was acquired over the grassland experiment by an Unmanned Aerial Vehicle. 121 

Specifically, a hexacopter Kingfisher (Robodrone Industries) equipped with a Tetracam 122 

μMCA6 global shutter (Kelcey and Lucieer 2012), providing optical image data across six 10-123 

20 nm width bands ranging from 490 to 900 nm (Table 1). Acquired imagery was processed 124 

using Structure from Motion and Multi-View Stereo algorithms in Photoscan image-matching 125 

software (version 1.4, Agisoft LLC 2018). Orthomosaics were built and accurately 126 

georeferenced using six Ground Control Points placed across the experimental site and 127 

surveyed with a Leica GPS1200 GNSS aperture in RTK mode. The surface reflectance values 128 

were calculated using a grey calibration target for which the spectral properties were known 129 

through spectrometer measurements to produce radiometrically calibrated orthomosaics.  130 



 131 

Statistical analyses 132 

In each plot, first we determined vertical complexity, TDiv, and SDiv. Vertical complexity was 133 

quantified through diversity in plant height (HDiv), measured as mean Euclidean distances 134 

between the height values (normalized via log-transformation) of the species present in each of 135 

the plots, weighted by the abundance of each species in terms of cover (de Bello et al. 2016). 136 

TDiv was calculated using Shannon index based on species cover (Shannon and Weaver 1949). 137 

To measure SDiv we used an index based on spectral entropy (Wang and Gamon 2019), 138 

which is now the main approach used to quantify spectral diversity as a proxy for plant diversity 139 

(see Schweiger et al. 2018, Wang et al 2018, Rocchini et al. 2021). We first performed a 140 

standardized PCA (centered and scaled input image for equal weighting of all layers) to 141 

summarize the values of the six bands (using ‘rasterPCA’ function in R package ‘RStoolbox’), 142 

a common practice for spectral entropy metrics (Rocchini et al 2021). Then, for each plot, we 143 

extracted the values of the first and second principal component axes derived from the PCA. 144 

These values were extracted considering the pixels within a core area of 1 × 1 m inside the plot, 145 

in order to avoid edge areas and thus avoid sampling bias due to potential overlap between 146 

adjacent communities or between buffer zone and the actual sampled plot (Figure 1). We then 147 

calculated the mean Euclidean distance of these two sets of values in each of the core areas. We 148 

also quantified two separate SDiv measures, corresponding to the spectral diversity when 149 

considering only the first axis (SDiv1) or only the second axis (SDiv2), results regarding these 150 

indexes are in line with the results presented here and can be found in Supporting Information, 151 

Appendix S2. We modelled the variation in SDiv through mixed effect linear models (R 152 

package ‘nlme4’), using TDiv and HDiv (both scaled and centred), separately and in interaction, 153 

as fixed effect predictors, and the combination of diversity level (type of community sowed) 154 

and fertilization treatments as random effect. In addition, for each model we calculated marginal 155 

and conditional R2s to assess the variance explained by fixed effect and both fixed and random 156 

effects, respectively (function ‘r.squaredGLMM’ in R package ‘MuMIn’). A visual 157 

representation of all the values used in the models on the study area is found in Appendix S3, 158 

Supporting Information. Finally, we controlled for potential effect of visible flowerheads in our 159 

images. We compared values of SDiv and HDiv in plots with or without flowers though 160 

Kruskal-Wallis rank sum test. We did not find any effect of the flowers in either SDiv or HDiv 161 

(see Supporting Information, Appendix S4). All analyses were performed in R statistical 162 

software (version 3.5.2, Team R Core 2013) 163 



 164 

Results  165 

The two first principal components derived from the standardized PCA accounted for nearly 166 

90% of the variance in the spectral signal of the communities (Table 2). When correlating these 167 

components to the reflectance values in each of the bands, Pearson’s correlation coefficients 168 

showed that the first component is highly and positively correlated with bands 2, 4, and 6 169 

(Green, Red Edge, and Near Infrared 2, respectively), while the second component is positively 170 

correlated mainly with bands 1 and 3 (Blue and Red respectively), while negatively correlated 171 

with bands 5 and 6 (Near Infrared 1 and 2; Table 3). Therefore, the higher variance in the 172 

spectral signal of these communities is enclosed in the red edge, near infrared, and green 173 

regions, which is represented in the first component axis. The rest of the spectral variance, 174 

specially the one in the blue and red regions, is described mainly by the second component axis.  175 

The mixed model showed that TDiv was significantly linked to SDiv, although with a 176 

negative coefficient (estimate = -0.26, standard error = 0.05, p-value < 0.001; Figure 2). On the 177 

contrary, HDiv, i.e. the vertical structure of the communities, was positively related to SDiv 178 

(estimate = 0.36, standard error = 0.05; p-value < 0.001 Fig. 2). More importantly, HDiv and 179 

TDiv had a significant negative interaction (estimate = -0.27, standard error = 0.06, p-value < 180 

0.001; Fig. 2), meaning that the more complex the vertical structure of the vegetation, the more 181 

negative the relationship between TDiv and SDiv became (Fig. 2). The marginal R2 calculated 182 

was of 0.36, thus the fixed effects explained more than 30% of the variability. Together with 183 

the random effects, the model explained 61% of the total variability (conditional R2 = 0.61). 184 

 185 

Discussion 186 

Generally, our results show how the relationship between SDiv and communities’ taxonomic 187 

diversity (TDiv) is mediated by grasslands’ vertical complexity. The negative relationship 188 

found between SDiv and TDiv is in contrast with previous empirical studies (Rocchini et al. 189 

2016; Wang et al. 2018; Wang and Gamon 2019). This found relationship highlights that SDiv 190 

can’t be used routinely to predict plant species diversity (e.g. Schmidtlein and Fassnacht 2017). 191 

This is also suggested by the fact that in our models, the random effect (i.e. the fertility and 192 

diversity treatment of each plot), explained nearly 30 percent of the variability in SDiv. Our 193 

results do show both a relationship between SDiv and HDiv, and an interaction effect of HDiv 194 



and TDiv. This means that herbaceous communities with a higher diversity in terms of height, 195 

i.e. a more complex vertical structure, have a more diverse spectral signal. More importantly, 196 

herbaceous communities with the most complex vertical structure manifest a more negative 197 

relationship between SDiv and TDiv; meaning that these communities will express high SDiv 198 

even when having low TDiv (probably because of taller species contributing to spectral 199 

diversity by casting shadows and hence generating underexposed pixels) and will express low 200 

SDiv even with high TDiv (due to potential occlusion effect). These relationships were also 201 

confirmed when analysing the spectral variability using single PCA axes, meaning that they are 202 

valid across different optical features of the communities (Supporting Information, Appendix 203 

S2).  204 

Results regarding the PCA highlighted that the highest variability in terms of spectral 205 

signal is expressed in the wavelength range corresponding to the RE, G and NIR2 spectral 206 

bands, while the rest of the spectral variability is expressed in the bands B and R but also 207 

negatively through NRI1 and NRI2 (Table 2). The variability expressed in these ranges is linked 208 

to species-specific differences in pigment content, leaf structure and canopy structural 209 

components such as leaf area index (Jones and Vaughan 2010). The second principal 210 

component linked mainly to R and B bands, which relate to pigments, including carotene and 211 

xanthophylls. However, this axis is also expressing a negative correlation with NIR2, in contrast 212 

with the first axis being positively correlated to NIR2. This variability could reflect the different 213 

composition of the communities also in terms of phenological stage, e.g. flowers presence and 214 

leaf senescence variability. These results show that despite the dimensionality reduction applied 215 

to the spectral variance, SDiv metrics based on PC components, which belong to the 216 

information theory type of metrics, are able to convey information across all bands as well as 217 

important vegetation properties.  218 

We observed an overall negative relationship between SDiv and TDiv, which suggests 219 

that the inconsiderate use of spectral variation to quantify species diversity, at this scale, might 220 

be misleading (Fig. 3). The use of spectral diversity as a surrogate of species diversity has been 221 

indeed long debated, as this link is highly dependent on various factors that might be hard to 222 

control (Schmidtlein and Fassnacht, 2017). Indeed, our results seem to confirm the context-223 

dependency of this method, with the relationship between SDiv and TDiv in this case being 224 

opposite to expectations, and generally driven by the diversity of heights, i.e. vertical 225 

complexity, in the communities analysed (as seen in Fig. 3). Despite our results being 226 

supposedly able to capture the direct spectral footprint of each plant individual given their high 227 



spatial resolution, i.e. exploiting the known direct link between the spectral information at leaf 228 

and canopy level and the characteristics of plant species (Asner and Martin 2009), the 229 

relationship between SDiv and TDiv was actually more negative when analysing more 230 

vertically complex communities. Reasons leading to the variation of the SDiv-TDiv 231 

relationship may be connected partially to spatial grain effects, as well as to the effect of the 232 

spatial configuration of the vegetation on the spectral diversity, as discussed below. 233 

The effect of spatial grain on the link between SDiv and TDiv has been highlighted by 234 

several authors (Rocchini et al. 2016; Wang et al. 2018). In particular, Wang et al. (2018), using 235 

central-European experimental grasslands, highlighted that in order to observe a positive 236 

relationship, the used pixel size should reflect the individual plant size. Despite the use of a fine 237 

spatial grain (~3 cm, corresponding to the average size of the individuals found in our 238 

communities), the SDiv measure used presented a negative link to TDiv. In our system and at 239 

this scale, more taxonomically diverse communities were less diverse in terms of spectra, and 240 

less taxonomically diverse species had higher spectral diversity. One explanation might be that 241 

within this particular setting species’ taxonomic identity doesn’t correspond to the species’ 242 

spectral identity. On the one hand individuals of the same species might have slightly different 243 

spectral signals, because of intra-specific variability or different phenological stages; on the 244 

other hand, different species might have similar spectral signals, as they might possess similar 245 

plant functional traits. In order to better discriminate between species specific signals, a 246 

hyperspectral sensor could be preferred over the here adopted multi-spectral sensor (e.g. 247 

Lopatin et al. 2017; Möckel et al. 2014). In any case, plant functional types (defined by plant 248 

traits), are more closely and more mechanistically linked to the spectral identity of species. 249 

Therefore, functional diversity would be more strongly related to spectral variability (as seen 250 

in Schweiger et al. 2018; and Ustin and Gamon 2010), compared to species or taxonomic 251 

diversity. Which is also highlighted by the direct link we found between diversity in spectral 252 

variability and plant height diversity. 253 

Our findings show that SDiv was linked more strongly to the vertical structure of the 254 

sampled communities, compared to TDiv (Figs. 1 and 3). While the link between vegetation 255 

structure and different remote sensing indicators has been highlighted by previous studies, 256 

especially in woody vegetation (Campos et al. 2018; Wood et al. 2012), the present work is the 257 

first work assessing this link using optical data within grasslands. Spatial configuration of 258 

vegetation is an important functional characteristic, tightly linked with different ecosystem 259 

functions such as biomass production and ecological niche availability (Zuppinger-Dingley et 260 



al. 2014). Indeed, remote sensing techniques have been employed to quantify spatial 261 

configuration of vegetation and its spatial variability. In particular, regarding optical data, a 262 

series of textural indices have been linked to vegetation vertical structure (Campos et al. 2018; 263 

Wood et al. 2012). These studies have been performed at wide extent and coarse spatial 264 

resolution, as they focus mainly on differences in the vertical structure of different vegetation 265 

types. Our results suggest that, when using the proper resolution, communities’ spatial structure 266 

can be quantified even within a seemingly homogeneous vegetation type, with diversity of plant 267 

height being directly related to the diversity of reflectance within a certain area.  268 

Finally, not only HDiv was directly linked to SDiv, it mediated the relationship between 269 

SDiv and TDiv, and thus provided an explanation for the found negative link between the two 270 

variables. For highly structured communities in terms of their vertical configuration, we found 271 

a more negative relationship between the diversity of species measured at ground level and the 272 

diversity of the spectral signal (negative interaction, Fig. 2 and 3). Moreover, communities with 273 

a low species diversity but high HDiv showed a high spectral diversity. This may depend on 274 

the horizontal configuration of the communities, which is constrained by the pre-established 275 

size of the experimental plot. At high HDiv, the species-poor communities might have more 276 

space compared to species-rich communities which express a low SDiv. That is to say that 277 

wherever in our experimental plots we observe a species-rich community with high HDiv, its 278 

species, in order to populate the plot, may be squeezed in a relatively small area, overlapping 279 

one another in the vertical and horizontal space. In this case, fewer species would be able to 280 

lean out in the higher strata and mask the lower layers, which results in a more homogeneous 281 

canopy sensed and therefore lower SDiv (i.e., occlusion effect).  282 

 283 

Conclusions 284 

Ultimately, our results show that the link between SDiv and species diversity in grasslands is 285 

mediated by vegetation’s vertical complexity. In particular, they suggest that in order to exploit 286 

the link for monitoring purposes, it needs to be contextualized. Despite recent evidence pointing 287 

at the use of remote sensing data for estimating species richness and diversity (Rocchini et al. 288 

2016; Wang et al. 2018; Wang and Gamon 2019), this approach is not straightforward, 289 

especially when focusing on grassland systems on community scale. However, the relationship 290 

between SDiv and structural characteristics of the communities found here calls for more 291 



insights regarding the link between SDiv and functional diversity (as seen in Schweiger et al. 292 

2018). 293 

Finally, although our findings partly reject the theorized link between SDiv and plant species 294 

diversity, this does not mean that spectral diversity cannot be useful for biodiversity monitoring. 295 

Besides the promising usefulness of its link with functional diversity (e.g. Schweiger et al. 296 

2018), our results indicate that spectral diversity can be used when appropriately calibrated to 297 

the context analysed. In particular, our work highlights the importance of considering 298 

vegetation structural characteristics affecting the relationship between spectral diversity and 299 

plant diversity. 300 
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Table 1. Spectral bands measured and their corresponding range. 417 

Band Band peak 

(nm) 

Band full width at 

half maximum 

(nm) 

Corresponding 

range 

Abbreviation 

Band 1 490 485 - 495 Blue B 

Band 2 550 545 - 555 Green G 

Band 3 680 675 - 685 Red R 

Band 4 720 715 - 725 Red edge RE 

Band 5 800 795 - 805 Near infra-red NIR1 

Band 6 900 890 - 910 Near infra-red NIR2 

 418 

Table 2. Variability explained by the principal components derived from the standardized PCA 419 

(centered and scaled input layers) performed over the 6 spectral bands. 420 

 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 

Standard 

deviation 

2.0532060 1.0874347 0.54525290 0.38164219 0.3254505 0.230133368 

Proportion 

of Variance   

0.7026091 0.1970857 0.04955012 0.02427513 0.0176530 0.008826895 

Cumulative 

Proportion    

0.7026091 0.8996949 0.94924497 0.97352010 0.9911731 1.00000000 

 421 

Table 3. Pearsons’ correlation estimates between principal components 1 and 2, and spectral 422 

bands 423 

 Band.1 (B) Band.2 (G) Band.3 (R) Band.4 

(RE) 

Band.5 

(NIR1) 

Band.6 

(NIR2) 

Comp.1 0.7725979 0.9039081 0.8194706 0.91142 0.7912322 0.8206282 

Comp.2   0.5090558 0.2589284 0.5005981 -0.1966337 -0.5297212 -0.535224 

 424 

425 



426 

 427 

 428 

Figure 1. RGB image of the multi-spectral image sampled. Whole area in the left panel, zoom-429 

in on the single plots in the right panel. Community plots are shown with black lines while the 430 

core areas considered in the analyses are delineated in cyan.  431 

 432 



 433 

Figure 2. Coefficient plot of the mixed model showing estimate values for each explanatory 434 

variable and their interaction, as well as their 95% confidence interval. R2 marginal and 435 

conditional are shown in-graph. 436 



 437 

Figure 3. Predicted relationships between SDiv and TDiv derived from the mixed effect model, 438 

when setting different values of HDiv (in legend).  439 

 440 


