
Logical Methods in Computer Science
Vol. 4 (3:4) 2008, pp. 1–44
www.lmcs-online.org

Submitted Nov. 8, 2007
Published Sep. 4, 2008

SEPARABILITY IN THE AMBIENT LOGIC ∗

DANIEL HIRSCHKOFF a, ÉTIENNE LOZES b, AND DAVIDE SANGIORGI c

a ENS Lyon, Université de Lyon, CNRS, INRIA – France
e-mail address: Daniel.Hirschkoff@ens-lyon.fr

b LSV, ENS Cachan, CNRS – France
e-mail address: lozes@lsv.ens-cachan.fr

c Università di Bologna – Italy
e-mail address: Davide.Sangiorgi@cs.unibo.it

Abstract. The Ambient Logic (AL) has been proposed for expressing properties of pro-
cess mobility in the calculus of Mobile Ambients (MA), and as a basis for query languages
on semistructured data.

We study some basic questions concerning the discriminating power of AL, focusing on
the equivalence on processes induced by the logic (=L). As underlying calculi besides MA
we consider a subcalculus in which an image-finiteness condition holds and that we prove
to be Turing complete. Synchronous variants of these calculi are studied as well.

In these calculi, we provide two operational characterisations of =L: a coinductive one
(as a form of bisimilarity) and an inductive one (based on structual properties of processes).
After showing =L to be stricly finer than barbed congruence, we establish axiomatisations
of =L on the subcalculus of MA (both the asynchronous and the synchronous version),
enabling us to relate =L to structural congruence. We also present some (un)decidability
results that are related to the above separation properties for AL: the undecidability of
=L on MA and its decidability on the subcalculus.

1. Introduction

This paper is devoted to the study of the Ambient Logic [14] (AL), a modal logic
for expressing properties of Mobile Ambients [13] (MA) processes. The model of Mobile
Ambients is based on the notion of locality (an ambient is a named locality), and interaction
in MA appears as movement of localities. Localities may be nested, as in a[P | b[Q] | c[R]],
which describes an ambient a containing a process P as well as two sublocalities named b
and c.

1998 ACM Subject Classification: F.3.2, F.4.1.
Key words and phrases: Process algebra, modal logic, Mobile Ambients, spatial logic.

∗ This work is a revised and extended version of parts of [30] and [20] (precisely, those parts that deal with
issues related to separability).
a Work supported by the french projects ACI GEOCAL and ANR CHoCo.
c Work supported by european project Sensoria, italian MIUR Project n. 2005015785, ”Logical Foundations

of Distributed Systems and Mobile Code”.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-4 (3:4) 2008

c© D. Hirschkof, É. Lozes, and D. Sangiorgi
CC© Creative Commons

http://creativecommons.org/about/licenses

2 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

An ambient can be thought of as a labelled tree. The sibling relation on subtrees
represents spatial contiguity; the subtree relation represents spatial nesting. A label may
represent an ambient name or a capability; moreover, a replication tag on labels indicates
the resources that are persistent. The trees are unordered: the order of the children of

a node is not important. As an example, the process P
def
= !a[in c] | open a. b[0] can be

thought of as a tree with open a. b[0] on the roots node and in c on a child node labeled
with a. The replication !a indicates that the resource a[in c] is persistent: unboundedly
many such ambients can be spawned. By contrast, open a is ephemeral: it can open only
one ambient.

Syntactically, each tree is finite. Semantically, however, due to replications, a tree is an
infinite object. As a consequence, the temporal developments of a tree can be quite rich.
The process P above (we freely switch between processes and their tree representation) has
only one reduction, to in c | !a[in c] | b[0]. However, the process !a[in c] | !open a. b[0] can
evolve into any process of the form

in c | . . . | in c | b[0] | . . . | b[0] | !a[in c] | !open a. b[0] .

In general, a tree may have an infinite temporal branching, that is, it can evolve into an
infinite number of trees, possibly quite different from each other (for instance, pairwise
behaviourally unrelated). Technically, this means that the trees are not image-finite, where
image-finite indicates a finiteness on the temporal branching of a process (we will come back
to the definition of image-finiteness later).

Although the MA calculus often includes name restriction, (νn)P , reminiscent of the
pi-calculus, we will omit this construction (unless we mention it explicitly), and will refer
to public MA, or simply MA, for the calculus without name restriction.

In summary, MA is a calculus of dynamically-evolving unordered edge-labelled trees.
AL is a logic for reasoning on such trees. The actual definition of satisfaction of the formulas
is given on MA processes quotiented by a relation of structural congruence, ≡, which equates
processes with the same tree representation. (This relation is similar to Milner’s structural
congruence for the π-calculus [28].)

AL has also been advocated as a foundation of query languages for semistructured
data [9]. Here, the laws of the logic are used to describe query rewriting rules and query
optimisations. This line of work exploits the similarities between dynamically-evolving
edge-labelled trees, underlying the ambient computational model, and standard models of
semistructured data.

AL has a connective that talks about time, that is, how processes can evolve. The
formula ✸ A is satisfied by those processes with a future in which A holds. The logic has
also connectives that talk about space, that is, the shape of the edge-labelled trees that
describe process distributions. the formula n[A] is satisfied by ambients named n whose
content satisfies A (read on trees: n[A] is satisfied by the trees whose root has just a
single edge n leading to a subtree that satisfies A); the formula A1 | A2 is satisfied by
the processes that can be decomposed into parallel components P1 and P2 where each Pi

satisfies Ai (read on trees: A1 | A2 is satisfied by the trees that are the juxtaposition of two
trees that respectively satisfy the formulas A1 and A2); the formula 0 is satisfied by the
terminated process 0 (on trees: 0 is satisfied by the tree consisting of just the root node).

AL is quite different from standard modal logics. First, the latter logics do not talk
about space. Secondly, they have more precise temporal connectives. The only temporal
connective of AL talks about the many-step evolution of a system on its own. In standard

SEPARABILITY IN THE AMBIENT LOGIC ∗ 3

modal logics, by contrast, the temporal connectives also talk about the potential interactions
between a process and its environment. For instance, in the Hennessy-Milner logic [18], the
temporal modality 〈µ〉.A is satisfied by the processes that can perform the action µ and
become a process that satisfies A. The action µ can be a reduction, but also an input or
an output.

In this paper we study the equivalence between MA processes induced by the logic,
written =L: we write P=LQ if P and Q satisfy exactly the same formulas. Our main goal
is to understand how much the logic discriminates between processes, i.e., to study the
separating power of =L. We show that =L is a rather fine-grained relation. Related to
the problem of the equivalence induced by the logic are issues of decidability, that we also
investigate.

The central technical device we rely on to analyse =L is a characterisation as a form
of bisimilarity, that we call intensional bisimilarity and write ≃int. The bisimulation game
defining ≃int takes into account the interaction possibilities of agents, and also includes
clauses to observe the spatial structure of processes, corresponding to the logical connectives
of emptyness, spatial conjunction, and ambient. Intensional bisimilarity is to AL what
standard bisimilarity is to Hennessy-Milner logic. In particular, ≃int can be used to assess
separability and expressiveness properties of the modal logic it captures. For instance, the
definition of ≃int reveals that, in some cases, logical observations are unable to distinguish
between an agent entering an ambient, and the same agent going in and out of this ambient
before finally entering it. We call this phenomenon stuttering. Stuttering can be seen as
the spatial counterpart of the following ‘eta law’ for the asynchronous π-calculus [31]:

a(x).
(
a〈x〉 | a(x).P

)
= a(x).P

(a similar equality also holds for communication in MA). Indeed, stuttering disappears when
the asynchronous movements are replaced by synchronous ones, as is the case, e.g., in the
model of Safe Ambients [25].

Something worth stressing is that our characterisation results are established on the full,
public, MA calculus in which, as mentioned earlier, terms need not be image-finite, and with
respect to a finitary logic. We are not aware of other results of this kind: characterisation
results for a bisimilarity with respect to a modal logic in the literature (precisely, the
completeness part of the characterisations) rely either on an image-finiteness hypothesis
for the terms of the language, or on the presence of some infinitary constructs (such as
infinitary conjunctions) in the syntax of the logic. Technically, the proof of our result is
based on the definition of some complex modal formulas. To make it easier to understand
our approach, we first present the main structure of the proof in a subcalculus without
infinite behaviours; we then move to the full public MA calculus to show how replication
is handled. Our proof exploits two main technical notions. The first idea is to introduce
an induction principle on processes, that allows us to provide an inductive characterisation
of ≃int. We then introduce modal formulas whose role is, intuitively, to establish that only
finitely many terms have to be taken into consideration when exploring the outcomes of a
given process.

4 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

Exploiting ≃int, we relate logical equivalence with two important equivalences for pro-
cesses. The first equivalence is the standard extensional equivalence, namely barbed con-
gruence (≈). Here the main result is that logical equivalence is strictly finer. As counterex-
amples to the inclusion ≈⊆ =L, we have found three axiom schemata. We do not know
whether they are complete, that is, if they exactly describe the difference between the two
relations on MA.

We then compare logical equivalence with a second relation, namely structural con-
gruence (≡), an intensional and very discriminating equivalence. We establish an axioma-
tisation of logical equivalence on a rather broad class of processes, called MAs

IF (defined
in 5.1). The definition of MAs

IF relies on an image-finiteness constraint that is lighter than
the usual notion of image-finiteness in process calculi, because only certain subterms of
processes are required to give rise to finitely many reducts. This subcalculus is shown to
be Turing complete in Section 6. We are not aware of other axiomatisations of semantic
equivalences (defined by operational, denotational, logical, or other means) in higher-order
process calculi. Our result says that on MAs

IF, =L almost exactly coincides with structural
congruence, the only difference being an ‘eta law’ for communication of the form men-
tioned above. This axiomatisation does not hold in the full MA, for instance because of the
phenomenon of stuttering.

Communication in MA is asynchronous, in the sense that outputs have no continuation.
We show in 5.2 that if asynchronous communication is dropped in favour of synchronous
communication, then logical equivalence exactly coincides with structural congruence on
the synchronous version of MAs

IF.
The comparisons reveal the intensional flavour of AL. Although the logic has operators

for looking into the parallel structure of processes, the intensionality of the logic was far
from immediate, essentially for two reasons. The first reason is that not all syntactical
constructions of MA are reflected in the logic, which entirely lacks operators for capabilities,
communications, and replication. The second reason is that we adopt a weak interpretation
for reductions (i.e., we abstract from actions internal to the processes); this makes it possible
to handle infinite processes, but at the same time entails a loss of precision when describing
properties of processes. In such a setting it is therefore surprising that =L is actually so
close to ≡, also because ≡ is a very strong relation – a few axioms are the only difference
with syntactic identity.

Being very close to a syntactical description of processes, the relation of structural
congruence is decidable. As a consequence, in the subcalculus of MA where we show that
=L coincides with ≡, we can also derive decidability for =L. However, the frontier with
undecidability for =L is very subtle: we establish undecidability of =L in the full calculus
by encoding the halting problem of a Turing machine. This boils down in our setting to
specifing Turing machines in Mobile Ambients and building a scenario where the halting of
a machine corresponds to the existence of reduction loops, i.e., of processes P , Q such that
P reduces to Q and Q reduces to P . This encoding is a challenging ‘programming task’,
since the process must return to its initial state modulo =L; this is a demanding condition,
since, as mentioned above, =L is a rather strong relation. For instance, one has to be very
precise in garbage collecting dead code during the execution of the Turing machine.

Other related work Although not directly related from a technical point of view, a work
worth mentioning is [15]. In that work, models of (enrichments of) relevant and linear
logic are defined using Milner’s SCCS. In particular, the interpretation of implication is

SEPARABILITY IN THE AMBIENT LOGIC ∗ 5

reminscent of the definition of satisfaction for the guarantee operator (⊲) in AL. Dam
however explicitely renounces giving sense to formulas that talk about the structure of
processes, as is the case in the Ambient Logic.

As stated before, intensional bisimilarity is to AL what bisimilarity is to Hennessy-
Milner logic. Approximants of intensional bisimilarity, that will be needed in our proofs
of completeness, may also be expressed in terms of Ehrenfeucht-Fräıssé games for spatial
logics, as shown in [16]. These equivalences are standard devices to establish expressiveness
results. For instance, they have been exploited to obtain adjunct elimination properties of
spatial logics in [6, 26].

This work is a revised and extended version of parts of [30] and [20], precisely, those
parts that deal with issues related to separability of AL. A companion paper [21] studies
expressiveness issues. By the time the writing of the present paper was completed, a few
papers have appeared that make use of results or methods presented here. These are works
that study the intensionality of spatial logics or decidability properties. Works related to the
intensionality of spatial logics include [8] where the spatial logic is static, and [6, 5], where
the logic is applied to reason on calculi that feature a simpler notion of space, with a strong
interpretation of the temporal modality. A spatial logic for the π-calculus satisfying the
property that logical equivalence coincides with behavioural equivalence has been studied
in [19]. This logic is defined by removing modal operators like 0 or spatial conjunction, and
keeping only ‘contextual’ operators (guarantee and revelation adjunct). A similar result, but
for a logic that includes spatial conjunction and 0, has been established for a process calculus
encompassing a form of distribution in [7]. Works related to the decidability properties of
Mobile Ambients include [3, 27], that address questions of termination, and [2, 4], that
consider reachability in syntactic subcalculi of MA (in the sense that these subcalculi are
obtained by eliminating some syntactical constructs). It can be noted that our analysis
of decidability (in Section 6) allows us to deduce a property in terms of reachability: as
discussed above, we establish that one cannot detect the presence of reduction loops (i.e.,
the existence of processes P and Q that reduce to eachother). This in particular entails
undecidability of reachability.

Structure of the paper. We define the Mobile Ambients calculus and the Ambient Logic in
Section 2. Section 3 is devoted to the study of intensional bisimilarity, ≃int. We show that
≃int is included in logical equivalence, =L. Completeness, i.e., the reverse inclusion, is first
proved only for finite MA processes. For this, we need a certain number of expressiveness
results about AL from [21], which are collected in 3.3. The completeness proof for the whole
calculus is presented in Section 4, which completes our study of ≃int by finally estabilishing
that ≃int and =L coincide. The inductive characterisation of ≃int is given in 4.1, and the
logical characterisation of the outcomes of a process in 4.3. We compare =L with barbed
congruence and structural congruence in Section 5. The subcalculus MAs

IF, on which we
establish an axiomatisation of =L, is also introduced here. Subsection 5.2 explains how our
results are modified when moving to synchronous Ambients. We present our encoding of
Turing machines into MAs

IF in Section 6, and give concluding remarks in Section 7.

2. Background

This section collects the necessary background for this paper. It includes the Mobile
Ambients calculus [13] syntax and semantics, and the Ambient Logic [11].

6 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

2.1. Syntax of Mobile Ambients. We recall here the syntax of Mobile Ambients (MA)
(we sometimes also call this calculus the Ambient calculus). In the calculus we study, only
names, not capabilities, can be communicated; this allows us to work in an untyped calculus.

The calculus is asynchronous; a synchronous extension will be considered in Section 5.
As in [11, 9, 10], the calculus has no restriction operator for creating new names.

Table 2.1 shows the syntax. Letters n,m, h range over names, x, y, z over variables; η
ranges over names and variables. Both the set of names and the set of variables are infinite.
The expressions in η, out η, and open η are the capabilities. Messages and abstractions
are the input/output (I/O) primitives. A guard is either an abstraction or a capability.
A process P is single iff there exists P ′ such that either P ≡ cap.P ′ for some cap or
P ≡ n[P ′] for some n).

Abstraction is a binding construct, giving rise to the set of free variables of a process
P , written fv(P). We ignore syntactic differences due to alpha conversion. We write fn(P)
for the set of (free) names of process P . A closed process has no free variable. Unless
explicitely stated, we use P,Q, . . . to range over closed processes in our definitions and
results. Substitutions, ranged over with σ, are partial functions from variables to names.
Given σ, we write Pσ to denote the result of the application of σ to P . Given two processes
P and Q, we say that σ is a closing substitution for P and Q (in short, a closing substitution)
if Pσ and Qσ are closed processes. We also introduce another notation: P{n/x} stands for
the capture avoiding substitution of variable x with name n in P , and P{n/m} stands for
the process obtained by replacing name m with name n in P . Given n processes P1, . . . , Pn,
we sometimes write Π1≤i≤nPi for the parallel composition P1 | . . . | Pn.

Process contexts (simply called contexts) are processes containing an occurrence of a
special process, called the hole. We use C to range over process contexts, and C{| P |} stands
for the process obtained by replacing the hole in C with P . Given two processes P and Q,
a closing context for P and Q (in short, a closing context) is a context C such that C{| P |}
and C{| Q |} are closed processes.

h, k, . . . n,m Names

x, y, . . . Variables

η Names ∪ Variables

Capabilities

cap ::= in η (enter)

| out η (exit)

| open η (open)

Processes

P,Q,R ::= 0 (nil)

| P | Q (parallel)

| !P (replication)

| cap.P (prefixing)

| η[P] (ambient)

| {η} (message)

| (x) P (abstraction)

Processes with the same internal structure are identified. This is expressed by means of
the structural congruence relation, ≡, the smallest congruence such that the following laws
hold:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

!P ≡ !P | P !0 ≡ 0 !(P | Q) ≡ !P | !Q !!P ≡ !P

As a consequence of the results presented in [32], which works with a richer calculus
than the one we study, we have:

SEPARABILITY IN THE AMBIENT LOGIC ∗ 7

openn.P | n[Q] −→ P | Q
Red-Open

n[inm.P1 | P2] | m[Q] −→ m[n[P1 | P2] | Q]
Red-In

m[n[outm.P1 | P2] | Q] −→ n[P1 | P2] | m[Q]
Red-Out

{η} | (x) P −→ P{η/x}
Red-Com

P −→ P ′

P | Q −→ P ′ | Q
Red-Par

P −→ P ′

n[P] −→ n[P ′]
Red-Amb

P ≡ P ′ P ′ −→ P ′′ P ′′ ≡ P ′′′

P −→ P ′′′
Red-Str

Table 1: The rules for reduction

Theorem 2.1. ≡ is decidable.

Definition 2.2 (Finite process). A process P is finite iff there exists a process P ′ with no
occurrence of the replication operator such that P ≡ P ′.

2.2. Operational Semantics. The semantics of the calculus is given by a reduction re-
lation −→. We shall sometimes use the phrase ‘τ -transitions’ to refer to −→ transitions.
The corresponding rules are given in Table 2.2. The reflexive and transitive closure of −→
is written =⇒.

Behavioural equivalence is defined using reduction and observability predicates ⇓n that
indicate whether a process can liberate an ambient named n: formally, P ⇓n holds if there
are P ′, P ′′ such that P =⇒ n[P ′] | P ′′.

Definition 2.3 (barbed congruence, [29, 24]). A symmetric relation R between processes
is a barbed bisimulation if PRQ implies:

(1) whenever P =⇒ P ′, there exists Q′ such that Q=⇒Q′ and P ′RQ′;
(2) for each name n, P ⇓n iff Q ⇓n.

Barbed bisimilarity, written ≈· , is the largest barbed bisimulation. Two processes P and
Q are barbed congruent, written P ≈ Q, if C{| P |} ≈· C{| Q |} for all closing contexts C.

2.3. Ambient Logic. The Ambient Logic (AL), is presented in Table 2). We use an infinite
set of logical variables, ranged over with x, y, z; η ranges over names and variables. (We can
use the same syntax as for variables and names of the Ambient calculus, since formula and
process terms are separate.) We use A,B, . . . ,F ,F ′, . . . to range over formulas.

The logic has the propositional connectives, ⊤,¬A,A∨B, and universal quantification
on names, ∀x. A, with the standard logical interpretation. The temporal connective, ✸A
is considered with a weak interpretation. The spatial connectives, 0, A | B, and η[A], are
the logical counterpart of the corresponding constructions on processes. A ⊲ B and A@η

8 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

A ::= ⊤ (true) classical logic

| ¬A (negation)

| A∨ B (disjunction)

| ∀ x . A (universal quantification over names)

| ✸ A (sometime) temporal and spatial connectives

| 0 (void)

| η[A] (edge)

| A | B (composition)

| A@η (localisation) logical adjuncts

| A ⊲ B (linear implication)

Table 2: The syntax of logical formulas

are the adjuncts of A | B and η[A], in the sense of being, roughly, their inverse (see below).
A{n/x} is the formula obtained from A by substituting variable x by name n. A formula
without free variables is closed. Along the lines of the definition of process contexts, we
define formula contexts as formulas containing an occurrence of a special hole formula.

We use A{| · |} to range over formula contexts; then A{| B |} stands for the formula
obtained by replacing the hole in A{| · |} with B.

Definition 2.4 (Satisfaction). The satisfaction relation is defined between closed processes
and closed formulas as follows:

P |= ⊤
def
= always true

P |= ∀ x . A
def
= for any n, P |= A{n/x}

P |= ¬A
def
= not P |= A

P |= A1 | A2
def
= ∃P1, P2 s.t. P ≡ P1 | P2 and Pi |= Ai, i = 1, 2

P |= A ∨ B
def
= P |= A or P |= B

P |= n[A]
def
= ∃P ′ s.t. P ≡ n[P ′] and P ′ |= A

P |= 0
def
= P ≡ 0

P |= ✸A
def
= ∃P ′ s.t. P=⇒P ′ and P ′ |= A

P |= A@n
def
= n[P] |= A

P |= A ⊲ B
def
= ∀R, R|=A implies P | R |= B

The logic in [11] has also a somewhere connective, that holds of a process containing,
at some arbitrary level of nesting of ambients, an ambient whose content satisfies A. For
the sake of simplicity, we omit this connective, but we believe that the addition of this
connective would not change the results in the paper (in particular Theorem 3.29 can be
adapted easily).

Lemma 2.5 ([11]). If P ≡ Q and P |= A, then also Q |= A.

SEPARABILITY IN THE AMBIENT LOGIC ∗ 9

We give ∨ the least syntactic precedence, thus A1 ⊲ A2 ∨ A3 reads (A1 ⊲ A2) ∨ A3,
and A1 ⊲ (✸A2 ∨✸A3) reads A1 ⊲ ((✸A2) ∨ (✸A3)). We shall use the following standard
duals of disjunction and universal quantification:

A ∧B
def
= ¬(¬A ∨ ¬B) ∃ x . A

def
= ¬∀ x . ¬A

Definition 2.6 (Logical equivalence). For processes P and Q, we say that P and Q are
logically equivalent, written P =LQ, if for any closed formula A it holds that P |= A iff
Q |= A.

The remainder of this paper is devoted to the study of =L on MA and on some subcalculi
of MA.

3. Intensional bisimilarity

In order to be able to carry out our programme for =L, as discussed in the introduction,
we look for a co-inductive characterisation of this relation, as a form of labelled bisimilarity.
Before introducing the bisimilarity relation, we need to define labelled transitions on MA,
and a few derived relations such as the stuttering relation.

3.1. Definitions.

3.1.1. Labelled transitions and stuttering.

Definition 3.1. Let P be a closed process. We write:

• P
cap
−→ P ′, where cap is a capability, if P ≡ cap.P1 | P2 and P ′ = P1 | P2.

• P
{n}
−→ P ′ if P ≡ {n} | P ′.

• P
?n
−→ P ′ if P ≡ (x) P1 | P2 and P ′ ≡ P1{n/x} | P2.

• P
µ

=⇒ P ′, where µ is one of the above labels, if P =⇒
µ
−→ =⇒ P ′ (where =⇒

µ
−→ =⇒ is

relation composition).

• (stuttering) P
(M1,M2)⋆=======⇒P ′ if there is i ≥ 1 and processes P1, . . . , Pi with P = P1 and

P ′ = Pi such that Pr
M1=⇒

M2=⇒ Pr+1 for all 1 ≤ r < i.

• Finally,
〈cap〉
=⇒ is a convenient notation for compacting statements involving capability

transitions.
〈in n〉
=⇒ is

(out n,in n)⋆
========⇒; similarly

〈out n〉
=⇒ is

(in n,out n)⋆
========⇒; and

〈open n〉
=⇒ is =⇒.

We discuss in Example 3.3 below why stuttering is needed to capture logical equivalence
in MA.

3.1.2. Intensional bisimilarity, ≃int. We present here our main labelled bisimilarity, inten-
sional bisimilarity, written ≃int. This relation will be used to capture the separating power
of =L.

Intuitively, the definition of ≃int is based on the observations made available by the logic
either using built-in operators or through derived formulas for capabilities (see below).

Definition 3.2. A symmetric relation R on closed processes is an intensional bisimulation
if PRQ implies:

10 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

(1) If P ≡ P1 | P2 then there are Q1, Q2 such that Q ≡ Q1 | Q2 and PiRQi, for i = 1, 2.
(2) If P ≡ 0 then Q ≡ 0.
(3) If P −→ P ′ then there is Q′ such that Q =⇒ Q′ and P ′RQ′.

(4) If P
inn
−→ P ′ then there is Q′ such that Q

inn
=⇒

(out n,in n)⋆
========⇒Q′ and P ′RQ′.

(5) If P
outn
−−→ P ′ then there is Q′ such that Q

outn
=⇒

(in n,out n)⋆
========⇒Q′ and P ′RQ′.

(6) If P
openn
−−−→ P ′ then there is Q′ such that Q

openn
=⇒ Q′ and P ′RQ′.

(7) If P
{n}
−→ P ′ then there is Q′ such that Q

{n}
=⇒ Q′ and P ′RQ′.

(8) If P
?n
−→ P ′ then there is Q′ such that Q | {n} =⇒ Q′ and P ′RQ′.

(9) If P ≡ n[P ′] then there is Q′ such that Q ≡ n[Q′] and P ′RQ′.

Intensional bisimilarity, written ≃int, is the largest intensional bisimulation. The definition
of ≃int induces a relation ≃o

int, defined on open terms by saying that P ≃o
int Q iff for any

closing substitution σ, Pσ ≃int Qσ.

The definition of ≃int has (at least) three intensional clauses, namely (1), (2) and (9),
which allow us to observe parallel compositions, the terminated process, and ambients.
These clauses correspond to the intensional connectives ‘|’, ‘0’ and ‘n[·]’ of the logic. The
clause (8) for abstraction is similar to the input clause of bisimilarity in asynchronous
message-passing calculi [1]. This is so because communication in MA is asynchronous (see

also Subsection 5.2 below). Note that, using notation
〈cap〉
=⇒ introduced above, items 4, 5,

and 6 can be replaced by the following one:

• if P
cap
−→ P ′, then there is Q′ such that Q

cap
=⇒

〈cap〉
=⇒ Q′ and P ′RQ′.

As we have pointed out above, stuttering is used to capture some transitions of processes
that the logic cannot detect. It gives rise to particular kinds of loops, that we illustrate in
the following example.

Example 3.3 (Stuttering Loop). Consider the processes

P
def
= !open n. in n. out n. in n. out n.n[0] | n[0]

Q
def
= !open n. in n. out n. in n. out n.n[0] | in n. out n.n[0] .

We have the following loop, modulo stuttering:

P
(in n,out n)⋆

========⇒ Q
(in n,out n)⋆

========⇒ P .

The existence of such pairs of processes that reduce one to each other modulo stuttering
will play an important role in the axiomatization of =L. We call such a situation a loop.

It holds that P 6≃int Q; however, since P
(in n,out n)⋆

========⇒ Q
(in n,out n)⋆

========⇒ P , we have

out n.P ≃int out n.Q .

Actually, out n.P ≈ out n.Q., that is, these two processes are extensionally equivalent,
and they are also equated by the logic (i.e., out n.P =L out n.Q). But they would not be
intensionally bisimilar without the stuttering relations.

The reason for this peculiarity is that, intuitively, these processes have the same be-
haviour in any testing context. To see why the extra capabilities of Q do not affect its
behaviour, consider a reduction involving out n.P , of the following shape:

n[m[out n.P | R]] −→ n[0] | m[P | R] .

SEPARABILITY IN THE AMBIENT LOGIC ∗ 11

Process out n.Q can match this transition using three reductions:

n[m[out n.Q | R]] −→ n[0] | m[in n. out n.n[0] | Q′ | R]

−→ n[m[out n.n[0] | Q′ | R]]

−→ n[0] | m[P | R] ,

where Q′ is !open n. in n. out n. in n. out n.n[0]. Conversely, the process out n.Q may be
involved in the following scenario:

n[m[out n.Q | R]] −→ n[0] | m[Q | R] ,

and the process out n.P can mimic this reduction.
If we set Q′ = !open n. in n. out n. in n. out n.n[0], we have

n[m[out n.P | R]] −→ n[0] | m[n[0] | Q′ | R]

−→ n[0] | m[Q′ | in n. out n. in n. out n.n[0] | R]

−→ n[m[Q′ | out n. in n. out n.n[0] | R]]

−→ n[0] | m[Q | R] .

By contrast, stuttering does not show up in Safe Ambients [24], where movements are
achieved by means of synchronisations between a capability and a co-capability, and alike
models.

The following result is an easy consequence of the definition of ≃int:

Lemma 3.4. ≃int is an equivalence relation.

Proof. The only point worth mentioning is that, for transitivity, to handle clause (8), one
first needs to prove that ≃int is preserved by parallel compositions with messages (which is
anyhow straightforward). ✷

However, it is not obvious that ≃int is preserved by all operators of the calculus, due
to the fact that ≃int is, intrinsically, higher-order. Formally, ≃int is not higher-order, in
that the labels of actions do not contain terms. Clause (3) of Definition 3.2, however,
involves some higher-order computation, for a reduction may involve movement of terms
(for instance, if the reduction uses rules Red-In or Red-Out). This, as usual in higher-
order forms of bisimilarity, complicates the proof that bisimilarity is preserved by parallel
composition.

3.2. Congruence. In this section, we establish congruence of intensional bisimilarity, using
an auxiliary relation.

3.2.1. Syntactical relation, ≅. Our proof of congruence makes use of a second bisimilarity,
≅, that, by construction, is preserved by all operators of the calculus, and that is defined
as follows:

Definition 3.5. A symmetric relation on processes R is a syntax-based intensional bisim-
ulation if PRQ implies:

(1) If P ≡ P1 | P2 then there are Qs (s = 1, 2) such that Q ≡ Q1 | Q2 and for all s PsRQs.
(2) If P ≡ cap.P ′ then there are Q′, Q′′ such that

(a) Q ≡ cap.Q′,

12 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

(b) Q′ 〈cap〉
=⇒ Q′′, and

(c) P ′RQ′.
(3) If P ≡ {n} then Q ≡ {n}.
(4) If P ≡ (x) P ′ then there is Q′ such that

(a) Q ≡ (x)Q′ and
(b) for all n there is Q′′ such that {n} | Q =⇒ Q′′ and P ′{n/x}RQ′′.

(5) If P ≡ n[P ′] then there is Q′ such that Q ≡ n[Q′] and P ′RQ′.

≅ is the largest syntax-based intensional bisimulation. Given two open terms P and Q, we
say that P ≅o Q holds iff for any closing substitution σ, Pσ ≅ Qσ.

Clause (4) is typical of asynchronous calculi, as in clause (8) of Definition 3.2. The
differences between the definitions of ≃int and ≅ are the following. First, labelled transitions
are replaced by structural congruence in the hypothesis of the corresponding clause. Second,
clause (3) about reductions of related processes is removed. Note that a clause for the
process 0 is not necessary (see Lemma 3.9 below).

Transitivity of ≅ is not obvious, because it is not immediate that ≅ is preserved under
reductions (there is no clause for matching τ -transitions, and reductions (i.e., relation =⇒)
are used in a few places, such as the stuttering relation in the clauses for movement.

We shall prove that ≃int and ≅ coincide (Corollary 3.18 below). Thus, transitivity
of ≅ will hold because of ≃int’s transitivity, and conversely, congruence of ≅ will ensure
congruence of ≃int. This proof method, which exploits an auxiliary relation that is mani-
festly preserved by the operators of the calculus but that is not manifestly preserved under
reductions, brings to mind Howe’s proof technique for proving congruence of bisimilarity
in higher-order languages [23]. In our case, however, the problem is simpler because of the
intensional clauses (1) and (2) of the bisimilarity and because MA is not a fully higher-
order calculus: terms may move during a computation, but they may not be copied as a
consequence of a movement. We may say that MA is a linear higher-order calculus (indeed
the congruence of ≃int could also be proved directly, with a little more work).

In order to establish congruence of ≅, we introduce an important equality between
processes, that plays a technical role here but will also be used when characterising logical
equivalence in Section 5.

Definition 3.6 (Eta law, ≡E). The eta law is given by the following equation:

(x) ((x) P | {x}) = (x) P .

We use the eta law to define the following three relations:

• −→η is the eta law oriented from left to right; that is, P −→η Q holds if Q is obtained
from P by applying the eta law once, from left to right, to one of its subterms (modulo
≡).
• −→∗

η stands for the reflexive, transitive closure of −→η;
• ≡E is the smallest congruence satisfying the laws of ≡ plus the eta law.

In the lemma below, we write P −→ηh P ′ if P −→η P ′ and this represents a top-level
rewrite step, i.e., we do not rewrite under capabilities and input prefixes. Similarly, −→∗

ηh

is the reflexive and transitive closure of −→ηh.

Lemma 3.7. Let R stand for −→η or −→ηh. We say that

(1) R is confluent up to ≡, that is, for all P,Q,R such that PR∗Q and PR∗R, there is
Q′, R′ such that QR∗Q′, RR∗R′ and Q′ ≡ R′.

SEPARABILITY IN THE AMBIENT LOGIC ∗ 13

(2) R is terminating, that is R∗ is a well-founded order.

We call the eta normal form of P (the head eta normal form of P , respectively) the
unique normal form, up to ≡, of −→η (of −→ηh, respectively).

Remark 3.8 (Eta law and stuttering). The eta law expresses a form of stuttering (in
communication, as opposed to stuttering in movements – see Definition 3.1). The logic
being insensitive to both forms of stuttering, we have to reason modulo the eta law.

We now present some results that are needed to prove congruence of ≅.

Lemma 3.9. If 0 ≅ Q then Q ≡ 0.

Proof. Suppose Q ≡ 0 does not hold. This means that there exists Q′, Q′′ s.t. Q ≡ Q′ | Q′′,
with Q′ is of the form (x) R, {p}, M .R, or n[R]. Then by applying the corresponding
clause in the definition of ≅, we deduce Q 6≡ 0, i.e., a contradiction. ✷

Lemma 3.10. ≡E ⊆≅ and ≡E≅≡E ⊆ ≅.

Proof. Straightforward from the definition of ≅. ✷

If R is a binary relation on processes, we note R{n/m} for the relation defined as
{(P{n/m}, Q{n/m}). (P,Q) ∈ R}.

Lemma 3.11. If R is a ≅-bisimulation, then for any n,m, R{n/m} is a ≅-bisimulation.

Proof. Since τ transitions are not tested in ≅, substitution is not mentioned in Def. 3.5.
All clauses of the latter definition are obviously stable by substitution. ✷

Lemma 3.12. For any possibly open processes P and Q, if P ≅o Q then C{| P |} ≅o C{| Q |},
for all contexts C.

Proof. By induction on C, using the definition of ≅. ✷

To prove that ≃int and ≅ coincide, the main result we need is that ≅ is preserved under
reductions:

Lemma 3.13. Suppose P ≅ Q and P −→ P ′. Then there is Q′ such that Q =⇒ Q′ and
P ′ ≅ Q′.

Proof. By induction on the depth of the derivation proof of P −→ P ′. We proceed by case
analysis on the last rule used in the derivation.

• Rule Red-struct:
P ≡ P1 P1 −→ P2 P2 ≡ P3

P −→ P3

By Lemma 3.10, P1 ≅ Q; by induction Q =⇒ Q′ ≅ P2; again by Lemma 3.10, Q′ ≅ P3.
• Rule Red-Par:

P1 −→ P ′
1

P1 | P2 −→ P ′
1 | P2

By definition of ≅ there are Qi such that Q ≡ Q1 | Q2 and Pi ≅ Qi. Then we conclude,
using induction and Lemma 3.12.
• Rule Red-Amb: Use induction and Lemma 3.12.

14 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

• Rule Red-Com: Immediate by clauses (1), (3), and (4) of Definition 3.5.
• Rule Red-Open:

openn.P1 | n[P2] −→ P1 | P2

By definition of ≅, Q ≡ openn.Q1 | n[Q2], and for some Q′
1 with Q1 =⇒ Q′

1, we
have: P2 ≅ Q2, P1 ≅ Q′

1. We also have Q =⇒ Q′
1 | Q2. Using Lemma 3.12, we derive

P1 | P2 ≅ Q′
1 | Q2, which concludes the case.

• Rule Red-In:

n[inm.P1 | P2] | m[P3] −→ m[n[P1 | P2] | P3]

By definition of ≅, Q ≡ n[inm.Q1 | Q2] | m[Q3], and there exists Q′
1 such that

Q1
(out n,in n)⋆

========⇒Q′
1 and we have: P2 ≅ Q2, P3 ≅ Q3, and P1 ≅ Q′

1.

We also have Q =⇒ m[n[Q′
1 | Q2] | Q3]. Using Lemma 3.12, we derive

m[n[P1 | P2] | P3] ≅ m[n[Q′
1 | Q2] | Q3],

which concludes the case.
• Rule Red-Out: similar to the previous case. ✷

Corollary 3.14. Suppose P ≅ Q and P =⇒ P ′. Then there is Q′ such that Q =⇒ Q′ and
P ′ ≅ Q′.

Proof. By induction on the number of transitions in P =⇒ P ′, using Lemma 3.13 for the
inductive case. ✷

Lemma 3.15.

− cap.P ≃int Q implies Q ≡ cap.Q′, for some Q′.
− {n} ≃int Q implies Q ≡ {n}.
− (x) P ≃int Q implies Q ≡ (x)Q′, for some Q′.

Proof. In every case, we suppose by contadiction that Q ≡ Q1 | Q2 where none of the Qis
is structurally congruent to 0. Then P and Q can be distinguished using the clauses of ≃int

for parallel composition and 0, which means a contradiction.
Therefore, Q is single (it has only one component), and we can conclude using the

appropriate clause of the definition of ≃int in each case. ✷

Lemma 3.16. ≃int⊆≅.

Proof. By proving that ≃int is a ≅-bisimulation. The proof is easy, using Lemma 3.15. ✷

Lemma 3.17. ≅⊆≃int.

Proof. By proving that ≅ is a ≃int-bisimulation. We need Lemma 3.12 (precisely, the fact
that ≅ is preserved by parallel composition), Lemma 3.10, Corollary 3.14, and Lemma 3.9.

✷

Corollary 3.18. Relations ≃int and ≅ coincide.

Corollary 3.19. Relations ≃o
int and ≅o are congruence relations.

Proof. Follows from Corollary 3.18, and Lemmas 3.4 and 3.12 ✷

SEPARABILITY IN THE AMBIENT LOGIC ∗ 15

3.3. Expressiveness results. In this subsection we recall some expressiveness results for
AL. These results state the existence of formulas capturing some nontrivial properties of
processes. They are proved in [21], and will be exploited later to assess the separating power
of the logic.

We start by introducing two measures on terms, that represent two ways of defining
the depth of a process. The first definition exploits the notion of eta normal form (see
Lemma 3.7):

Definition 3.20 (Sequentiality degree, sd). The sequentiality degree of a term P is defined
as follows:

• sd(0) = 0, sd(P | Q) = max
(
sd(P), sd(Q)

)
;

• sd(n[P]) = sd(!P) = sd(P);
• sd(cap.P) = 1 + sd(P);
• sd({n}) = 1;
• sd((x) P) = sd(P ′) + 1 where (x) P ′ is the eta normal form of (x) P .

Intuitively, the sequentiality degree counts the number of ‘parcels of interaction’ (capa-
bilities, messages, input prefixes) in a term. We now define the depth degree, that is sensitive
to the number of nested ambients. This quantity will be soon used in the interpretation of
some formulas of AL, but also to define an inductive order on processes (see Subsection 3.4).

Definition 3.21 (Depth degree). The depth degree of a process is computed using a func-
tion dd from MA processes to natural numbers, inductively defined by:

• dd(0)
def
= 0, dd(cap.P)

def
= 0;

• dd((x) P)
def
= 0, dd({n})

def
= 0;

• dd(n[P])
def
= dd(P) + 1;

• dd((!)P1 | . . . | (!)Pr)
def
= max1≤i≤r dd(Pi).

We introduce formulas that express some kind of possibility modalities corresponding
to the movement capabilities and input prefix of MA.

Lemma 3.22. For any cap, there exists a formula context 〈〈cap〉〉. {| · |} such that for any
closed process P , and any formula A,

P |=〈〈cap〉〉. {| A |} iff ∃P ′, P ′′. P ≡ cap.P ′ , P ′ 〈cap〉
=⇒ P ′′ and P ′′|=A .

For all n, there is a formula {n} such that

P |={n} iff P ≡ {n} .

For all n, there exists a formula context 〈〈?n〉〉. {| · |} such that for all process P and formula
A,

P |=〈〈?n〉〉. {| A |} iff ∃x, P ′, P ′′. P ≡ (x)P ′ , (x)P ′ | {n}=⇒P ′′ and P ′′|=A .

We will also need the necessity modalities, that have a dual interpretation w.r.t. the
above formulas:

Lemma 3.23. For all cap, there is a formula context [[cap]]. {| · |} such that for all process
P and formula A,

P |=[[cap]]. {| A |} iff ∃P ′. P ≡ cap.P ′ and ∀P ′′. P ′ 〈cap〉
=⇒ P ′′ implies P ′′|=A .

16 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

For all n, there is a formula context [[?n]]. {| · |} such that, for all process P and formula A,

P |=[[?n]]. {| A |} iff ∃P ′, x. P ≡ (x)P ′ and ∀P ′′. (x)P ′ | {n}=⇒P ′′ implies P ′′|=A .

Each operator of the syntax of MA (Table 2.1) has thus a counterpart in the logic, ex-
cept replication. It is possible to express in AL a restricted form of replication on formulas,
by defining a formula !A, expressing that there are infinitely many processes in parallel sat-
isfying A, modulo some additional condition on A. More precisely, based on Definitions 3.20
and 3.21 above, we say that a formula A is sequentially selective (resp. depth selective) if
all processes satisfying A have the same sequentiality degree (resp. depth degree).

Lemma 3.24. For all cap, there exists a formula context Repcap{| · |} such that for all
process P and for all sequentially selective formula A, whose models are only of the form
cap.R,

P |=Repcap{| A |} iff ∃P1, . . . , Pr. P ≡ !P1 | (!)P2 | . . . | (!)Pr and, Pi |=A , i = 1 . . . r .

For all n, there is a formula !{n} such that

P |= !{n} iff P ≡ !{n} .

There exists a formula context Repinput{| · |} such that for all process P and for all formula
A sequentially selective whose models are only of the form (x)P ,

P |=Repinput{| A |} iff ∃P1, . . . , Pr. P ≡ !P1 | (!)P2 | . . . | (!)Pr and, Pi |=A , i = 1 . . . r .

Similar results hold for the replicated version of the dual modalities. The notion of
depth selectiveness allows us to derive formulas that capture replicated ambients:

Lemma 3.25. For all n, there is a formula context !n[{| · |}] such that for all process P
and for all depth selective formula A,

P |= !n[{| A |}] iff ∃P1, . . . , Pr. P ≡ !P1 | (!)P2 | . . . | (!)Pr and, Pi |=n[A] , i = 1 . . . r .

By putting together these expressiveness results, we can derive formulas characterising
the equivalence class of a process w.r.t. logical equivalence for a subcalculus of MA, defined
as follows:

Definition 3.26 (Subcalculus MAIF). Consider a process P , and a name n 6∈ fn(P). We
say that P is image-finite if any subterm of P of the form cap.P ′ (resp. (x)P ′) is such that
the set

{P ′′ : P ′ 〈cap〉
=⇒ P ′′}/≃int

(resp. {P ′′ : P ′{n/x} =⇒ P ′′}/≃int
) is finite. MAIF is the set of image-finite MA processes.

In the standard definition of image-finiteness, as used, e.g., to establish inductively
completeness of the Hennessy-Milner logic, one requires that the set of outcomes of the
process is finite. While exploring the possible outcomes (and in absence of restriction in
the process calculus), we may expose at top-level any subterm of the process, and hence
we implicitly require that all of its subterms are image-finite in the standard sense. On the
other hand, in our case, we do not impose that P has only finitely many outcomes, but
only do so for some subterms. As a consequence, our notion is less restrictive, and any
image-finite process in the standard sense belongs to MAIF.

Lemma 3.27 (Characteristic formulas on MAIF). For any closed MAIF process P , there
exists a formula AP s.t. for any Q, these three conditions are equivalent:

SEPARABILITY IN THE AMBIENT LOGIC ∗ 17

(1) Q |=AP ;
(2) P =LQ;
(3) P ≃int Q.

A final expressiveness result that will be needed later is the ability to test free name
occurrences in a process.

Lemma 3.28. For any name n, there exists a formula c©n such that for any P , P |= c©n
iff n ∈ fn(P).

3.4. Soundness, and Completeness for Finite Processes. We now study soundness
and completeness of ≃int with respect to =L. Soundness means that ≃int⊆ =L, and
completeness is the converse. We show here soundness on the whole calculus. By contrast,
we only prove completeness on the finite processes, deferring the general result to the next
section. We chose to do this for the sake of clarity: the proof in the finite case is much
simpler, and exposes the basic ideas of the argument in the full calculus.

3.4.1. Soundness on full public MA. In order to prove soundness (on the whole calculus),
we use the definition of ≅ and the congruence property to establish that bisimilar processes
satisfy the same formulas.

Theorem 3.29 (Soundness of ≃int). Assume P,Q ∈ MA, and suppose P ≃int Q. Then,
for all A, it holds that P |=A iff Q|=A.

Proof. By induction on the size of A.

• A = ⊤.
Nothing to prove.

• A = ¬B or A = B1 ∨ B2.
By induction and the definition of satisfaction.

• A = 0.
By definition of satisfaction and clause (2) of the definition of ≃int.

• A = n[B].
Then P ≡ n[P ′] and P ′ |= B. Hence Q ≡ n[Q′] for some Q′ ≃int P

′. By induction,
Q′ |= B; we can therefore conclude that also Q |= n[B] holds.
• A = A1 | A2.

Then P ≡ P1 | P2 and Pi |= Ai. By clause (1) of Definition 3.2, Q ≡ Q1 | Q2 for some
Qi ≃int Pi. By induction, Qi |= Ai; we can therefore conclude that also Q |= A1 | A2

holds.
• A = ∀ x . B.

By definition of satisfaction, P |= B{n/x} for all n. The result for Q then follows by
induction, for B{n/x} is strictly small than ∀ x . B.
• A = ✸ B.

By definition of satisfaction, there is P ′ such that P =⇒ P ′ and P ′ |= B. Using clause
(3) of the definition of ≃int, there is Q

′ such that Q =⇒ Q′ ≃int P
′. By induction, Q′ |= B;

hence Q |= A.
• A = B@n or A = A1 ⊲ A2.

Follows using induction and the congruence of ≃int. ✷

18 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

3.4.2. Completeness, on finite processes. The proof of completeness we develop here is based
on the construction of a sequence of approximants of ≅, which is a standard approach for
image-finite calculi. This works in the finite case (finiteness implies image-finiteness), but
not in presence of replication. The proof is however interesting on its own, and gives a much
simpler account on how the logic expresses the clauses of ≃int than the proof for the whole
calculus.

Note that the definability of characteristic formulas for≃int on MAIF (see Definition 3.26
and Lemma 3.27) implies completeness: for two MAIF processes P and Q, P =LQ entails
P ≃int Q. Since MAIF contains the set of finite processes, this already gives completeness
on finite processes. We nevertheless present here a proof that is specific to the finite case,
to prepare the ground for completeness on full public MA. The route we are interested
in for the completeness proof uses i-th approximants ≅i of relation ≅, and the fact that

≅ω
def
=

⋂

i ≅i coincides with ≅.

Definition 3.30. We define the relations ≅i between processes, for all i ≥ 0, as follows.
≅0 is the universal relation, and ≅i+1 is defined by saying that P ≅i+1 Q holds if we

have:

(1) If P ≡ P1 | P2 then there are Qs (s = 1, 2) such that Q ≡ Q1 | Q2 and for all s Ps ≅i Qs.
(2) If P ≡ cap.P ′ then there are Q′, Q′′ such that

(a) Q ≡ cap.Q′,

(b) Q′ 〈cap〉
=⇒ Q′′, and

(c) P ′ ≅i Q
′.

(3) If P ≡ {n} then Q ≡ {n}.
(4) If P ≡ (x) P ′ then there is Q′ such that

(a) Q ≡ (x)Q′ and
(b) for all n there is Q′′ such that {n} | Q =⇒ Q′′ and P ′{n/x} ≅i Q

′′.
(5) If P ≡ n[P ′] then there is Q′ such that Q ≡ n[Q′] and P ′ ≅i Q

′.

We set ≅ω
def
=

⋂

i≥0 ≅i.

Lemma 3.31. ≅ω coincides with ≅ on finite processes.

Proof. Standard approximation result (finite processes are image finite). ✷

Lemma 3.32. Let P,Q be two finite processes. If P =LQ then P ≅ω Q.

Proof. Suppose P 6≅ω Q. Then there is i such that P 6≅i Q. We prove, by induction on i,
that in this case we can find a formula A such that P |= A holds but Q |= A does not.

For i = 0, this trivially holds since the hypothesis P 6≅0 Q is absurd for ≅0 being the
universal relation.

Now the case i+ 1, for i ≥ 0. We proceed by case analysis:

(1) P ≡ P1 | P2, and for all Q1, Q2 such that Q ≡ Q1 | Q2 there is t (1 ≤ t ≤ 2) such that
Pt 6≅i Qt.

Modulo ≡, there is a finite number, say s, of pairs of processes Q1, Q2 such that
Q ≡ Q1 | Q2 (note that by hypothesis P is finite). Call Qt,u the t-th process of the u-th
pair. Then for all u (1 ≤ u ≤ s) there is t such that Pt 6≅i Qt,u. By induction, there is
At,u such that

Pt |= At,u and Qt,u 6|= At,u .

SEPARABILITY IN THE AMBIENT LOGIC ∗ 19

Define

Bt
def
=

∧

u. 1≤u≤sand Pt 6≅iQt,u

At,u .

Then
P |= B1 | B2 ,

whereas
Q 6|= B1 | B2 .

(2) P ≡ cap.P ′; then necessarily Q ≡ cap.Q′, and for all Qt such that Q′ 〈cap〉
=⇒ Qt, it holds

that P ′ 6≅i Qt.
By induction, for all t there is At such that P ′ |= At but Qt 6|= At. Since Q is finite,

there is only a finite number of such processes Qt (up to ≡). Write (Qt)t∈I for this set
of processes up to ≡ (we pick a representant for each ≡-equivalence class), and call At

the formula corresponding to each Qt. Define

A
def
= 〈〈cap〉〉. {|

∧

t∈I

At |} ,

using the standard notation for the (finite) conjunction of the Ats. Then P |= A but
Q 6|= A.

(3) P ≡ {n}, and Q 6≡ {n}: then P |={n}, and Q 6 |={n}.
(4) P ≡ (x) P ′, Q ≡ (x)Q′ and there is n such that for all Qt such that {n} | Q =⇒ Qt, it

holds that P ′′ 6≅i Qt, for P
′′ def= P ′{n/x}.

Modulo ≡, there is only a finite number of such Qts, say Q1, . . . , Qs. By induction,
there are formulas A1, . . . ,As with P ′′ |= At and Qt 6|= At. We introduce as above the
notation (Qt)t∈I , and we define

A
def
= 〈〈?n〉〉. {|

∧

t∈I

At |} .

Then P |= A, but Q 6|= A, because whenever {n} | Q =⇒ Qt, it holds that Qt 6|= At.
(5) P ≡ n[P ′], Q ≡ n[Q′] and P ′ 6≅i Q

′.

By induction there is A′ with P ′ |= A′ but Q′ 6|= A′. Define A
def
= n[A′]; then P |= A

but Q 6|= A. ✷

Theorem 3.33 (Completeness on finite processes). Let P,Q be two finite closed processes.
If P =LQ then P ≃int Q.

Proof. Follows from Lemma 3.31 and 3.32. ✷

4. Completeness of ≃int in the full calculus

The proof we have presented in the finite case cannot be used directly in the full MA
calculus, because we lack the image-finiteness hypothesis, which allowed us to show that the
limit ≅ω coincides with ≅. In this section, we present a proof of the completeness of ≃int

for all processes. To do this, we establish the existence, for any processes P,Q, of a formula
FP,Q such that P |=FP,Q, and such that Q|=FP,Q holds if and only if P ≃int Q. This result
is hence weaker than the existence of characteristic formulas, but it does not require image
finiteness.

20 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

We sketch the structure of the proof. Our approach exploits two technical devices, that
we introduce first. We start by proving some lemmas related to the sequentiality degree
of a term (Definition 3.20), which allows us to define a sound induction principle on MA
processes. This principle supports the introduction of an inductive characterisation of ≃int.
The second technical device we introduce is the set of frozen subterms of a process, that
intuitively corresponds to the collection of subterms appearing under guards (capabilities
or input prefixes) in a given term. These two technical notions are then used to define local
characteristic formulas, which correspond to a relaxed notion of characteristic formula w.r.t.
logical equivalence. An important fact about the set of frozen subterms of a process is that it
enjoys a kind of subject reduction property; this allows us to replace the potentially infinite
set of images of a term with a finite set when constructing local characteristic formulas.

4.1. An inductive characterisation of ≃int. We now establish some properties related
to the sequentiality degree of processes. These allow us to introduce a well-founded order
on terms which supports the definition of an inductive relation that coincides with ≃int.

Lemma 4.1. Let P,Q be two terms of MA. Then:

(1) if P ≡ Q, then sd(P) = sd(Q);

(2) if P −→Q or P
µ
−→ Q then sd(P) ≥ sd(Q).

Proof. 1 is immediate, as is the result on
µ
−→ in 2. For P −→Q, we reason by induction on

the height of the derivation of P −→Q. ✷

Corollary 4.2. For all cap, if P
〈cap〉
=⇒ Q, then sd(P) ≥ sd(Q).

This result will be important for the justification of Definition 4.9 below.

Lemma 4.3. For any closed process P ∈ MA, there exists a formula Fsd(P) such that:

• P |= Fsd(P), and
• for any term Q, if Q |= Fsd(P), then sd(Q) ≥ sd(P).

Proof. We can assume that P is eta normalised. Let us first reason by induction on sd(P):

• for sd(P) = 0, Fsd(P) = ⊤ is sufficient.
• for sd(P) > 0, let us assume that there exist formulas Fsd(P ′) for any P ′ such that
sd(P ′) < sd(P). We reason by induction on P .
− the case P = 0 is impossible.
− for P = P1 | P2, there is i such that sd(P) = sd(Pi). Then we may choose Fsd(P) =
Fsd(Pi) | ⊤. In the same way, let us set Fsd({n}) = F{n}, Fsd(!P) = Fsd(P) | ⊤ and
Fsd(n[P]) = n[Fsd(P)].

− for P = cap.P ′, we use the general induction hypothesis to construct Fsd(P ′). Let
us then take Fsd(P) = 〈〈cap〉〉.Fsd(P ′). Then P |= Fsd(P), and for any Q such that

Q |= Fsd(P), we deduce (from Lemma 3.22) that there are Q′, Q′′ such that Q ≡ cap.Q′

and Q′ 〈cap〉
=⇒ Q′′ with Q′′ |= Fsd(P ′). Now by Lemma 4.1, sd(Q)− 1 = sd(Q′) ≥ sd(Q′′),

and by induction hypothesis sd(Q′′) ≥ sd(P ′) = sd(P) − 1, so that finally sd(Q) ≥
sd(P).

− for P = (x)P ′, we use the general induction hypothesis to get Fsd(P ′). Let us then take
Fsd(P) = ∃x. 〈〈?x〉〉.Fsd(P ′). Then P |= Fsd(P), and for any Q such that Q |= Fsd(P),
we deduce (from Lemma 3.22) that there are n,Q′, Q′′ such that Q ≡ (x) Q′ and

SEPARABILITY IN THE AMBIENT LOGIC ∗ 21

Q1 = {n} | (x)Q
′=⇒Q′′ with Q′′ |= Fsd(P ′). Now by Lemma 4.1, sd(Q1)− 1 = sd(Q)−

1 = sd(Q′{n/x}) ≥ sd(Q′′), and by induction hypothesis sd(Q′′) ≥ sd(P ′) = sd(P) − 1,
so that finally sd(Q) ≥ sd(P). ✷

A similar result can be proved for the depth degree of a process:

Lemma 4.4. For any closed process P ∈ MA, there exists a formula Fdd(P) such that:

• P |= Fdd(P), and
• for any term Q, if Q |= Fdd(P), then dd(Q) ≥ dd(P).

Proof. We reason as in the proof of the previous lemma. ✷

Corollary 4.5. If P ≃int Q, then sd(P) = sd(Q) and dd(P) = dd(Q).

Proof. By Theorem 3.29, P ≃int Q implies P =LQ, which gives the result. ✷

The sequentiality degree can be used as a basis for inductive reasoning on processes up
to reductions of some subterms. This is formalized by the following definition:

Definition 4.6 (Well-founded order). Given two processes P and Q , we write P < Q (or
Q > P) if either sd(P) < sd(Q) or P is a strict subterm of Q.

Lemma 4.7.

• < is well-founded.
• Suppose P is of the form either cap.P ′ or (x)P ′, and suppose moreover P > Q and

Q
〈cap〉
=⇒ Q′ for some cap. Then P > Q′.

Proof. • Well-foundedness: if P is a strict subterm of Q, then sd(P) ≤ sd(Q).
• P > Q′: follows from Lemma 4.1. ✷

In order to give an inductive characterisation of ≃int, we establish the following results
about ≃int. These are inversion properties, in the sense that they allow one to deduce, from
P ≃int Q, with P having a given shape, consequences about the shape of Q.

Lemma 4.8 (Inversion results for ≃int). Let P,P1, P2, Q be processes of MA. Then

(1) 0 ≃int Q iff Q ≡ 0.
(2) n[P] ≃int Q iff there exists Q′ such that Q ≡ n[Q′] and P ≃int Q′.
(3) P1 | P2 ≃int Q iff there exist Q1, Q2 such that Q ≡ Q1 | Q2 and Pi ≃int Qi for

i = 1, 2.
(4) !P ≃int Q iff there exist r ≥ 1, s ≥ r,Qi (1 ≤ i ≤ s) such that Q ≡ Π1≤i≤r!Qi |

Πr+1≤i≤sQi, and P ≃int Qi for i = 1 . . . s.

(5) cap.P ≃int Q iff there exists Q′ such that Q ≡ cap.Q′ with P
〈cap〉
=⇒ ≃int Q′ and

Q′ 〈cap〉
=⇒ ≃int P .

(6) {n} ≃int Q iff Q ≡ {n}
(7) (x) P ≃int Q iff there exists Q′,m. such that m 6∈ fn(P) ∪ fn(Q), Q ≡ (x) Q′

Q | {m}=⇒ ≃int P{m/x} and (x) P | {m}=⇒ ≃int Q
′{m/x}.

Proof. We first leave out the fourth case.
For the other cases, the left to right implications follow by the fact that, in each case,

the corresponding clauses in the definitions of ≅ and ≃int are almost the same.
For the right to left implication, cases 1 and 6 hold by reflexivity of ≃int, and cases 2

and 3 follow from congruence of ≃int (Corollary 3.19). Case 5 is similar to the corresponding
condition in ≅ (note that all other conditions are trivially fulfilled).

22 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

We explain case 7 in more details. We take P,Q,Q′, x,m satisfying the required proper-
ties, and further introduce processes P1 and Q1 by imposing (x)P | {m}=⇒P1 ≃int Q

′{m/x}
and Q | {m}=⇒Q1 ≃int P{m/x}. To show that P ≃int Q, we need to show that these
processes satisfy the condition for receptions in the definition of ≅ (Definition 3.5), all
other requirements being satisfied. Consider an arbitrary name m′, we want to show
that there exist P ′′, Q′′ such that Q | {m′}=⇒Q′′, P{m

′

/x} ≃int Q′′, (x)P | {m′}=⇒P ′′

and P ′′ ≃int Q′{m
′

/x}. By hypothesis, this holds for m′ = m, by taking P ′′ = P1 and
Q′′ = Q1. Otherwise, we set P ′′ = P1{m

′

/m} and Q′′ = Q1{m
′

/m}. Then (x)P | {m′} =
((x)P | {m}){m

′

/m}=⇒P1{m
′

/m} = P ′′ since =⇒ is closed under name replacement, and
Q | {m′}=⇒Q′′ for the same reason. Moreover, since ≃int is also closed under name replace-
ment (Lemma 3.11), we deduce from the hypothesis P1 ≃int Q

′{m/x} that P ′′ ≃int Q
′{m

′

/x},
and similarly from Q1 ≃int P{m/x} that Q

′′ ≃int P{m
′

/x}. As a consequence, the condition
is established for all m′. Note that the hypothesis about m being fresh for P,Q is crucial
in the proof above.

We are thus left with case 4. The right to left implication holds because, if we define
R as ≅ extended with all pairs of the form (P,Π1≤i≤r!Qi | Πr+1≤i≤sQi), with the above
conditions, then R satisfies the clauses of ≅, hence R is ≅. We now consider the left to right
implication. First, note that by applying clauses 1 and 2 of Def. 3.2, it can be shown that for
any two bisimilar processes P,Q, if P ≡ P ′ | P ′ |. .P ′ | P ′′, where P contains at least n copies
of some single process P ′, then necessarily Q ≡ Q1 |. . | Qn | Q

′ with Qi ≅ P ′ for all i. This
entails the left to right implication in the case where P is a single process. When P is not
single, we write P ≡ Π1≤i≤r!Pi | Πr+1≤i≤sPi, where P1, . . , Ps are single processes. Thanks
to the congruence rule !(R1 | R2) = !R1 | !R2, !P ≡ !P1 |. . | !Ps. Assume !P ≅ Q. Applying
the inversion rule for parallel composition, we have Q ≡ Q1 | Qs with, for every i, !Pi ≅ Qi,
that is, using our reasoning on single processes, Qi ≡ Π1≤j≤ri !Qi,j | Πri+1≤j≤siQi,j. Using
the law !R ≡ !R | !R, it is possible to choose all ri equal, and similarly applying !R ≡ !R | R
we can choose all si equal. It is then a matter of rearranging the Qi,j in Q′

1 |. . | Q
′
s to write

Q in the expected form. ✷

We can now define the inductively defined relation that characterises ≃int.

Definition 4.9. Let ∼ind be the binary relation P ∼ind Q defined by induction on P for
the order < as follows:

(1) 0 ∼ind Q if Q ≡ 0.
(2) n[P] ∼ind Q if there exists Q′ such that Q ≡ n[Q′] and P ∼ind Q′.
(3) P1 | P2 ∼ind Q if there exist Q1, Q2 such that Q ≡ Q1 | Q2 and Pi ∼ind Qi for

i = 1, 2.
(4) !P ∼ind Q if there exist r ≥ 1, s ≥ r,Qi (1 ≤ i ≤ s) such that Q ≡ Π1≤i≤r!Qi |

Πr+1≤i≤sQi, and P ∼ind Qi for i = 1 . . . s.

(5) cap.P ∼ind Q if there exists Q′ such that Q ≡ cap.Q′ with P
〈cap〉
=⇒ ∼ind Q′ and

Q′ 〈cap〉
=⇒∼ind P .

(6) {n} ∼ind Q if Q ≡ {n}
(7) (x) P ∼ind Q if there exists Q′,m. such that m 6∈ fn(P) ∪ fn(Q), Q ≡ (x) Q′,

Q | {m}=⇒ ∼ind P{m/x} and (x) P | {m}=⇒ ∼ind Q′{m/x}.

Theorem 4.10. Relation ∼ind is well defined. Moreover, relations ∼ind and ≃int coincide.

SEPARABILITY IN THE AMBIENT LOGIC ∗ 23

Proof. The definition of ∼ind is justified using Lemma 4.7. The inclusion ≃int⊆∼ind is
established using the results of Lemma 4.8, which correspond precisely to the defining
clauses of ∼ind. The converse inclusion follows from Lemma 4.8 too. ✷

4.2. Frozen subterms. We now introduce the notion of frozen subterms of a process. The
frozen subterms of a process correspond to occurrences that do not participate in immediate
interactions but that may play a role in future reductions.

In the reminder, we use N to range over sets of names. Unless otherwise stated, we
always implicitly suppose that such a set is finite.

Definition 4.11 (Frozen subterms). Let N be a set of names; the set frozN (P) is defined
by induction on P as follows:

• frozN (0) = frozN ({n}) = ∅;
• frozN (P1 | P2) = frozN (P1) ∪ frozN (P2);
• frozN (!P) = frozN (P);
• frozN (cap.P) = {P} ∪ frozN (P);
• frozN ((x)P) =

⋃

n∈N{P{
n/x}} ∪ frozN (P{n/x}).

If P,P ′ are two structurally congruent terms, then, modulo ≡, frozN (P) = frozN (P ′).
Hence this set (in its quotiented version with respect to ≡) is uniquely determined by the
structural congruence class of P .

Lemma 4.12 (Finiteness of frozN (P)). For any P ∈ MA, if N is finite, then the set
obtained by taking the quotient of frozN (P) w.r.t. ≡ is finite.

Proof. By induction on P . ✷

Not only is frozN (P) finite, but, as expressed by the following result, this set is preserved
by reduction, in the following sense:

Lemma 4.13. Let P,Q be two processes such that P −→Q or P
cap
−→ Q for some cap, and

assume fn(P) ⊆ N . Then the quotient of frozN (Q) w.r.t. ≡ is included in the quotient of
frozN (P) w.r.t. ≡.

Proof. We recall that relation
cap
−→ is defined on the syntax of processes (see Definition 3.1),

and the result follows by definition of frozN (P), frozN (Q).
For −→, we reason by induction on the derivation of P −→Q. The cases corresponding

to movement transitions follow from
cap
−→ . So the only way a reduction could alter the set

of frozen terms is through name substitutions generated by communications, and this is
handled by the condition fn(P) ⊆ N . ✷

4.3. Local characteristic formulas and completeness. The purpose of this subsection
is to derive local characteristic formulas, defined as follows:

Definition 4.14 (Local characteristic formula). Let E be a set of terms, P a term and
F a formula. We say that F is a characteristic formula for P on E (or, alternatively, a
E-characteristic formula for P) if

• P |=F , and
• for any Q ∈ E , if Q |=F then Q ≃int P .

24 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

Note that the converse of the second condition always holds, due to soundness of ≃int

(Theorem 3.29): if Q ∈ E and Q ≃int P , then Q |=F .
With this definition, completeness of ≃int boils down to the existence, for any processes

P,Q, of a characteristic formula of P on the set {Q}. Although we do not define directly
such a formula, this idea guides the construction of the completeness proof. More precisely,
we reason inductively on the sequentiality degree of processes, and manipulate two sets of
terms, given a process P :

• E⇓P
def
= {P ′, ∃ cap. P

〈cap〉
=⇒ P ′}, that collects the possible evolutions of P ,

• and E frz,NP
def
= {P ′, frozN (P ′) ⊆ frozN (P)}, that intuitively is the set of processes whose

possible evolutions can be captured using the evolutions of P .

We want to establish the existence, for all P,Q, of a local characteristic formula for P

on E⇓Q and E frz,NQ . We first prove the following result:

Lemma 4.15. If a formula F characterises P on E frz,NQ and N ⊇ fn(Q), then F charac-

terises P on E⇓Q.

Proof. Follows from Lemma 4.13. ✷

The following lemma describes the construction of a local characteristic formula for

guarded terms (of the form cap.P or (x)P) on E frz,NQ , provided we can compute, given

several (smaller) processes R, local characteristic formulas on E⇓R:

Lemma 4.16. Consider two processes P and Q, and a set N of names such that fn(P) ∪
fn(Q) ⊆ N . Assume moreover that, for all Q′ ∈ frozN (Q), we can construct a formula

FP,Q′ characterising P on E⇓Q′ and a formula FQ′,P characterising Q′ on E⇓P . We then have:

• for all cap there exists a formula characterising cap.P on E frz,NQ ,

• for all n such that P is not of the form {n} | (y)P ′ with n 6∈ fn(P ′), and for all x with

x 6∈ fv(P), there exists a formula characterising (x)
(
P{x/n}

)
on E frz,NQ .

Proof.

• Let cap be a given capability. Set E = {Q′ ∈ frozN (Q) : ∀P ′ s.t. P
〈cap〉
=⇒ P ′, P ′ 6≃int Q

′};
E ⊆ frozN (Q), so by Lemma 4.12, E is finite, and we can define the formula:

F
def
= 〈〈cap〉〉{|

∧

Q′∈frozN (Q)

FP,Q′ |} ∧ [[cap]]{|
∧

Q′∈E

¬FQ′,P |} .

We prove first that cap.P |=F ; by hypothesis, P |=FP,Q′ for all Q′ ∈ frozN (Q), so that we

have cap.P |= 〈〈cap〉〉{|
∧

Q′∈frozN (Q)FP,Q′ |}. Let P ′ be such that P
〈cap〉
=⇒ P ′, and consider

any Q′ ∈ E . Then by hypothesis P ′ |=FQ′,P would imply P ′ ≃int Q
′, and hence Q′ 6∈ E ,

which is contradictory. So P ′ |=
∧

Q′∈E ¬FQ′,P , and finally P |=F .

Conversely, consider R ∈ E frz,NQ such that R |=F . We show that R ≃int P . First, there

is Q′ such that R ≡ cap.Q′ and Q′ 〈cap〉
=⇒ |=FP,Q′′ for all Q′′ ∈ frozN (Q). Since R ∈ E frz,NQ

and Q′ ∈ frozN (R), Q′ ∈ frozN (Q), so Q′ 〈cap〉
=⇒ |=FP,Q′, and by hypothesis, Q′=⇒ ≃int

P , which gives the first part of the condition to have cap.P ∼ind R (Definition 4.9).
Furthermore, since R satisfies the ‘necessity’ part of the formula F , Q′ |=

∧

Q′′∈E ¬FQ′′,P ,

SEPARABILITY IN THE AMBIENT LOGIC ∗ 25

that is Q′ 6∈ E . Thus, there is P ′ with P
〈cap〉
=⇒ P ′ and P ′ ≃int Q

′, which gives the second
part of the condition.
• Let n, x be chosen as in the statement of the lemma. We set P0 = (x)

(
P{x/n}

)
. Similarly

as before, we define E = {Q′ ∈ frozN (Q) : ∀P ′ s.t. P=⇒P ′, P ′ 6≃int Q′}; again E ⊆
frozN (Q), so E is finite, and we may define the formula:

F
def
= ¬ c©n
∧ 〈〈?n〉〉

(
NonEta ∧

∧

Q′∈frozN (Q)FP,Q′

)

∧ [[?n]]
(
NonEta −→

∧

Q′∈E ¬FQ′,P

)

with

NonEta
def
= ¬

(
{n} | (¬ c©n ∧ 〈〈?n〉〉⊤)

)

Intuitively, the role of formula NonEta is to detect when the reducts of a process satisfying
F stop being eta-equivalent to the initial state.

Let us prove that P0 |=F : n 6∈ fn(P0) by construction, P0 | {n}=⇒P , P |=NonEta

and P |=
∧
FP,Q′ by hypothesis, so P0 satisfies the second conjunct in F . Take P ′ such

that P0 | {n}=⇒P ′ and P ′ |=NonEta; we prove that P ′ 6 |=FQ′,P for all Q′ ∈ E . Since
P ′ |=NonEta, P0 | {n} 6≡ P ′, so P=⇒P ′. As a consequence, P ′ |=FQ′,P iff P ′ ≃int Q′.
Then by definition of E , P ′ |=

∧

Q′∈E ¬FQ′,P . As this holds for all P
′, we have that P0 |=F .

Let us now prove that if R ∈ E frz,NQ and R |=F , then P ≃int R. Consider such a

process R. Then n 6∈ fn(R), and there exists Q′, R′ such that R ≡ (x)Q′ and R |
{n}=⇒R′ with R′ |=NonEta∧

∧

Q′∈frozN (Q)FP,Q′ . Let (x)Q′′ be the head eta normal form

of (x)Q′. By definition, Q′′{n/x} belongs to frozN (Q), and any reduction (x)Q′ | {n}=⇒T
where T is not eta equivalent to (x)Q′ | {n} goes through the state Q′′{n/x} (i.e., that
reduction can be written (x)Q′ | {n}=⇒Q′′{n/x}=⇒T). Due to the definition of NonEta,
we actually have that R′ 6≡E (x)Q′ | {n}, so Q′′{n/x}=⇒R′. Since R′ |=FP,Q′′{n/x},

R′ ≃int P and the first part of the condition for input in Definition 4.9 is satisfied.
Moreover, R | {n}=⇒Q′′{n/x} and Q′′{n/x} |=NonEta, so Q′′{n/x} |=

∧

Q′∈E ¬FQ′,P . Since

Q′′{n/x} ∈ frozN (Q), we finally have Q′′{n/x} 6∈ E , that is there is P ′ such that P=⇒P ′

and P ′ ≃int Q′′{n/x}. This proves the second condition for P0 ∼ind (x)Q′′, and since
(x)Q′′ ≡E R, we finally have P0 ≃int R. ✷

We now prove that given P , we can deduce a local characteristic formula for P from
local characteristic formulas for its guarded subterms.

Lemma 4.17. Consider two processes P and Q, and a set of names N , and suppose that,

for each subterm of P of the form cap.P ′ or (x)P ′, we can construct a E frz,NQ -characteristic

formula. Then there exists a E frz,NQ -characteristic formula for P .

Proof. We assume, without loss of generality, that all occurrences of the replication operator
in P are immediately above a guarded process (this is always possible up to ≡).

We construct such a formula FP by induction on P . The cases for 0, parallel composi-
tion, and ambient are easy. Formulas for messages and replicated messages have been given
above, and by hypothesis, we have formulas for guarded processes. We are thus left with
the case of replicated terms.

If P = !n[P], then FP = !n[{| F ′
P |}] is a E frz,NQ -characteristic formula, since FP ′ is

depth selective (all processes satysfying FP ′ are intensionally bisimilar to P ′, so their depth

26 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

degree is equal to dd(P ′) – see Corollary 4.5). If P = !cap.P ′, then FP = Repcap{| Fcap.P ′ |},
since Fcap.P ′ is sequentially selective. We reason in the same way for the case P = !(x)P ′.

✷

Lemma 4.18. For all P,Q and N ⊇ fn(P) ∪ fn(Q), there exist characteristic formulas for

P on E⇓Q and E frz,NQ .

Proof. From Lemma 4.15, it is sufficient to construct a local characteristic formula on E frz,NQ .

We remark that without loss of generality, P,Q can be choosed so that every binding (x)P
involves a different variable, and this is enough to build characteristic formulas for the set
N enriched with distinct names nx associated to all variables x occurring in P and Q. We
reason by induction on sd(P). If sd(P) = 0, then P has no guarded subterms, and the
conditions of Lemma 4.17 are fullfilled, which implies the existence of a local characteristic
formula for P .

Assume now sd(P) > 0, and, for all P ′ such that sd(P ′) < sd(P), and for all Q, there

exists a characteristic formula for P ′ on E frz,NQ . Consider a process Q. By Lemma 4.17, the

existence of a E frz,NQ -characteristic formula for P can be proved by establishing the existence

of a E frz,NQ -characteristic formula for each guarded subterm of P of the form cap.P ′ or (x)P ′.

Consider such a guarded subterm cap.P ′. We have sd(P ′) < sd(P), so by induction there

exists a formula FP,Q′ which is a E⇓Q′-characteristic formula for P ′ for each Q′ ∈ frozN (Q).

Moreover, by induction, we also have a formula FQ′,P ′ which is a characteristic formula for

Q′ on E⇓P ′ when sd(Q′) ≤ sdP ′) < sd(P). In the case sd(Q′) > sd(P ′), we define FQ′,P as

the formula Fsd(Q′) given in Lemma 4.3. This formula characterises Q′ on E⇓P ′ : Q′|=FQ′,P

by Lemma 4.3, and if P ′′ ∈ E⇓P ′ then sd(P ′′) ≤ sd(P ′) < sd(Q′), so P ′′ 6 |=Fsd(Q′). Hence the

requirements of Lemma 4.16 are fullfilled, and there exists a E frz,NQ -caracteristic formula for

cap.P ′.
Similarly, consider a subterm of the form (x)P ′, and write (x)P ′′ for its eta normal

form. As above, we have local characteristic formulas FP ′′{nx/x},Q′ and FQ′,P ′′{nx/x} by

induction and using Lemma 4.3 with a similar reasoning. Since (x)P ′′ is in normal form, all

requirements of Lemma 4.16 are satisfied, so that there exists a E frz,NQ -characteristic formula

for (x)P ′′, which is also a characteristic formula for (x)P ′ by Lemma 3.10.
Finally, we have characteristic formulas for all guarded subterms, and by Lemma 4.17,

we have a E frz,NQ -characteristic formula for P . ✷

Theorem 4.19 (Completeness of ≃int). In MA, =L ⊆ ≃int.

Proof. Let P,Q be two terms such that P 6≃int Q. By Lemma 4.18, there is a formula F

characterising P on E⇓Q. We have P |= F . We then have Q ∈ E⇓Q, and Q |= F implies

P ≃int Q. Hence, since by hypothesis P 6≃int Q, Q 6|=F , and P 6=LQ. ✷

Corollary 4.20. In MA, relations =L, ≃int and ∼ind coincide.

5. Characterizations of logical equivalences

In this section, we compare logical equivalence and standard equivalence relations on
processes, like behavioural equivalence and structural congruence. We give an axiomati-
zation of =L on MAs

IF, a subcalculus of MA in which image-finiteness is guaranteed by a

SEPARABILITY IN THE AMBIENT LOGIC ∗ 27

syntactical condition (Definition 5.2 below). We shall see that AL is very intensional, in
the sense that =L is ‘almost equal’ to ≡. More precisely, we show that logical equivalence
coincides with ≡E, the relation obtained by extending structural congruence with the eta
law (Definition 3.6). We establish the following chain of (dis)equalities, on MAs

IF:

≡ (≡E = =L = ≃int (≈ .

We then move to the study of a variant of MAs
IF in which communication is synchronous,

and show that logical equivalence coincides with ≡ on this calculus. We end this section
with a detailed discussion of the treatment of name restricition.

5.1. Extensionality and intensionality. We use the characterisation of =L as ≃int to
compare logical equivalence with barbed congruence (≈) and structural equivalence (≡).
We start by studying the difference between =L and ≈.

5.1.1. Non-extensionality.

Theorem 5.1. Relation =L is strictly included in ≈.

Proof. The inclusion follows from =L ⊆≃int and ≃int⊆≈ (the second inclusion is essentially
a consequence of the congruence of ≃int).

The strictness of the inclusion is proved by the following laws, that are valid for ≈ but
not for ≃int:

(1) inn. inn = inn | inn
(2) (x) (y) 0 = (x) 0 | (y) 0
(3) (x) {x} = 0. ✷

The third axiom is typical for behavioural equivalences in calculi where communication
is asynchronous. The first equality can be derived from a more general law, called the
distribution law in [22]: M . (P | M .P | . . . |M .P) = M .P | M .P | . . . |M .P (where M
appears the same number of times on both sides of the equality). A similar law is valid for
the input prefix, from which the second equality above is derived as an instance. Probably
the above are not the only laws that make =L finer than ≈, but a complete axiomatization
of ≈ over =L is out of the scope of this paper.

5.1.2. Intensionality. We now provide a precise account of the difference between =L and
≡, in the setting of the subcalculus MAs

IF, defined as below. We recall that a process is
finite if it does not use the replication operator.

Definition 5.2 (MAs
IF). The subcalculus MAs

IFis defined by the grammar:

P ::= 0
∣
∣ P | P

∣
∣ !P

∣
∣ n[P]

∣
∣ cap.P0

∣
∣ {n}

∣
∣ (x)P0

where P0 is a finite process.

In MAs
IF, we impose finiteness after any form of interaction; in contrast, processes

exhibiting an ‘infinite spatial structure’, such as !a[b[0]] are allowed.

Lemma 5.3. All processes of MAs
IF are image-finite.

28 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

Proof. MAs
IF is included in MAIF since the finiteness condition on P0 in Definition 5.2

implies that {P ′ : P0
〈cap〉
=⇒ P ′}/≃int

and {P ′ : P0{n/x} =⇒ P ′}/≃int
respectively are

finite sets. Any process in MAs
IF is thus in MAIF, and is hence image-finite in the sense of

Definition 3.26. ✷

MAs
IF strictly contains the finite calculus we considered for the completeness proof in

Section 3.4.2. Therefore, Theorem 3.33 does not apply, but Corollary 4.20, which holds for
the whole calculus, does. As MAIF, MAs

IF is image-finite, in the sense of Definition 3.26.
While in the former subcalculus this property is guaranteed at a semantical level, in MAs

IF it
follows from a syntactic restriction (we forbid replication in process P0 – see Definition 5.2).

We will see in Section 6 that MAs
IF is Turing complete.

We let normalised structural congruence, written ≡E, be the relation defined by the
rules of ≡ plus the eta law (see Definition 3.6).

Lemma 5.4. ≡E ⊆≅.

Proof. It is enough to prove that given P,Q such that P−→ηQ, we have P ≃int Q. We
reason by induction on P , following Lemma 4.8. In that lemma, the situations corresponding
to the operators of parallel composition, ambients and capability prefixes are easy because
of commutation properties of −→η. In the cases of 0 and of messages, there is no redex for
−→η.

So we only have to examine the clause for the input condition in ≃int. Let n be a fresh
name and write P ≡ (x) P ′, Q ≡ (x)Q′. We have to prove that P | {n} =⇒ ≃int Q′{n/x}
and Q | {n} =⇒ ≃int P ′{n/x}. The reduction P−→η Q can follow from two reasons: either
P ≡ (x)

(
{x} | (x) Q′

)
, or P ′−→η Q′. In the first case, the proof is straightforward, and in

the second case, the induction hypothesis allows us to conclude. ✷

The converse of this lemma is the difficult part of the characterisation of =L in MAs
IF.

This is proved by showing that two intensionally bisimilar finite processes have essentially
the same number of prefixes and messages. Using the separative power given by the logic,
this entails that ≅⊆≡E on MAs

IF. It has to be stressed that we rely here on the syntactical
finiteness condition defining MAs

IF, and that our approach does not apply to, e.g., MAIF.
We write messages(R) for the number of messages in R, and pref(R) for the number

of capabilities and abstractions in R.

Lemma 5.5. Let P,Q be two finite processes. Suppose P −→ P ′. Then

(1) messages(P) ≥ messages(P ′);
(2) pref(P) ≥ pref(P ′).

Proof. By induction on the derivation of P−→P ′. ✷

Lemma 5.6. Let P,Q be two finite processes. Suppose that P ≅ Q, and that both P and
Q are eta-normalised. Then messages(P) = messages(Q).

Proof. Suppose messages(P) > messages(Q). We prove that we derive a contradiction.
We proceed by a case analysis on the shape of P (i.e., the number of its operators)

• P = P1 | P2. Then, by definition of ≅, it must be Q ≡ Q1 | Q2 with Pi ≅ Qi. Now,
for some i, we should have messages(Pi) 6= messages(Qi), which is impossible, by the
induction on the shape.

SEPARABILITY IN THE AMBIENT LOGIC ∗ 29

• P = cap.P ′. Then, by definition of ≅, it must be Q ≡ cap.Q′ and Q′ 〈cap〉
=⇒ Q′′ ≅ P ′. It

will then be, by Lemma 5.5(1), messages(P) = messages(P ′) > messages(Q′′), which is
impossible, by the induction on the shape.
• P = (x) P ′. Then, by definition of ≅, it must be Q ≡ (x)Q′; moreover, for n fresh, there
must be Q′′ such that {n} | (x)Q′ =⇒ Q′′ ≅ P ′{n/x}.

If the reduction {n} | (x) Q′ =⇒ Q′′ contains at least one step, then we would have
messages(P ′{n/x}) = messages(P) > messages(Q′) ≥ messages(Q′′) and therefore, by
induction on the shape, we could not have Q′′ ≅ P ′{n/x}.

Therefore, suppose Q′′ = {n} | (x) Q′. Then Q′′ ≅ P ′{n/x} implies P ′{n/x} ≡ {n} |
(x) P ′′, for some (x) P ′′ with n fresh for P and Q. Hence, since n was chosen fresh,
the original process P must have been of the form (x) ({x} | (x) P ′′). This means that,
modulo ≡, P was not eta-normalised, thus contradicting an hypothesis of the lemma.
• If P = {n} then by definition of ≅ we should have Q ≡ {n}, which is impossible, since
the hypothesis is messages(P) > messages(Q). ✷

Lemma 5.7. Let P,Q be two finite processes. Suppose P ≅ Q, and that both P and Q are
eta-normalised. Then pref(P) = pref(Q).

Proof. Suppose pref(P) > pref(Q). We prove that we derive a contradiction. We proceed
by induction on the shape of P .

• If P = 0 then Q ≡ 0.
• P = P1 | P2. Then, by definition of ≅, it must be Q ≡ Q1 | Q2 with Pi ≅ Qi. Now, for
some i, we should have pref(Pi) 6= pref(Qi), which is impossible, by the induction on
the shape.

• P = cap.P ′. Then, by definition of ≅, it must be Q ≡ cap.Q′ and Q′ 〈cap〉
=⇒ Q′′ ≅ P ′.

Then
pref(P ′) = pref(P)− 1 > pref(Q)− 1 = pref(Q′) ≥ pref(Q′′)

Hence pref(P ′) > pref(Q′′), which is impossible by the induction on the shape.
• P = (x) P ′. Then, by definition of ≅, it must be Q ≡ (x) Q′; moreover, given n fresh,
there must be Q′′ such that {n} | (x)Q′ =⇒ Q′′ ≅ P ′{n/x}.

Moreover, by the previous lemma we know that messages(P) = messages(Q), and we
should also have messages(P ′{n/x}) = messages(Q′′)

The reduction {n} | (x) Q′ =⇒ Q′′ must contain at least one step, for otherwise we
could not have messages(P ′{n/x}) = messages(Q′′). For the same reason, during these
reductions only the message {n} may have been consumed (no other messages). Thus
{n} | (x)Q′ =⇒ Q′′ can be written as

{n} | (x)Q′ −→ Q′{n/x} =⇒ Q′′ ,

where pref(Q′) = pref(Q′{n/x}) and also ≥ pref(Q′′) (Lemma 5.5(2)).
Therefore we have pref(P ′{n/x}) = pref(P) − 1 > pref(Q) − 1 = pref(Q′) ≥

pref(Q′′). By the induction on the shape, this is in contradiction with Q′′ ≅ P ′{n/x}. ✷

Lemma 5.8. Let P,Q be two finite processes. Suppose P ≅ Q, with both P and Q eta-

normalised. If P
µ
−→ P ′, then there is Q′ such that Q

µ
−→ Q′ ≅ P ′. Similarly, if P −→ P ′,

then there is Q′ such that Q −→ Q′ ≅ P ′.

Proof. From Lemmas 5.7 and 5.6: if Q performed more than one action, then it would
consume one more prefix or message than P . ✷

30 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

Theorem 5.9. Let P,Q be processes of MAs
IF. Suppose P ≅ Q, with both P and Q eta-

normalised. Then P ≡ Q.

Proof. By induction on the shape of P .

• If P = 0 then also Q ≡ 0.
• Suppose P = P1 | P2. Then, by definition of ≅, Q ≡ Q1 | Q2 with Pi ≅ Qi. By induction,
Pi ≡ Qi. Hence also P ≡ Q.
• Suppose P = !P ′. Then, by Lemma 4.8, there are r and some (Qi)1≤i≤r such that

Q ≡ !Q1 | (!)Q2 | . . . | (!)Qr,

and P ′ ≅ Qi for all i. By induction, P ′ ≡ Qi for all i, so finally Q ≡ !Q1 ≡ P .

• P = cap.P ′. By definition of ≅, Q ≡ cap.Q′ and there is Q′′ such that Q′ 〈cap〉
=⇒ Q′′ ≅ P ′.

By construction of MAs
IF, P

′, Q′ are finite, so that we may apply Lemma 5.8. Then it
must be Q′ = Q′′, and therefore by induction Q′ ≡ P ′. We conclude that P ≡ Q.
• P = {n}, n[P ′]: straightforward.
• P = (x) P ′. By definition of ≅, we have Q ≡ (x)Q′, and again by construction of MAs

IF,
P ′, Q′ are finite. Since ≅ is a congruence, given n, {n} | P ≅ {n} | (x) Q′. We have
{n} | P −→ P ′{n/x}, hence by Lemma 5.8, {n} | (x) Q′ −→ Q′{n/x} ≅ P ′{n/x}. By
induction, P ′{n/x} ≡ Q′{n/x}; since this holds for any n, P ′ ≡ Q′. ✷

Corollary 5.10. Let P,Q be processes of MAs
IF. Then P =LQ iff P ≡E Q.

Proof. First, =L ⊆≃int by Theorem 3.33, and ≃int⊆≡E by Theorem 5.9. Conversely,
≡E⊆≃int by Lemma 5.4, and ≃int⊆ =L by Theorem 3.29. ✷

5.2. Synchronous communications. We now consider a variant of Mobile Ambients
where communication is synchronous. For this the production {η} for messages in the
grammar of MA in Table 2.1 is replaced by the production {η}.P . Communication is thus
synchronous: in {η}.P , the process P is blocked until the message {η} has been consumed.
Reduction rule Red-Com becomes:

{n}.Q | (x) P −→ Q | P{n/x}
Red-Com

In the remainder of this subsection, terms belonging to the synchronous version of the
calculus will be referred to simply as ‘processes’. Since our goal here is to study how the
result given by Corollary 5.10 changes when moving to a synchronous calculus, we focus
directly on MAs,s

IF , the set of all terms of the synchronous calculus in which processes guarded
by prefixes are finite (along the lines of Definition 5.2 that introduces MAs

IF). We shall see
that in MAs,s

IF , the eta law fails and the equivalence relation induced by the logic is precisely
structural congruence.

In order to show this, we have to port the results about (asynchronous) MA to the syn-
chronous case. The co-inductive characterisation in terms of ≃int (that is, Theorems 3.29
and 3.33) remains true, provided that in the definition of intensional bisimulation the com-
munication clauses are replaced by the following:

• If P
!n
−→ P ′, then there is Q′ such that Q

!n
=⇒ Q′ and P ′RQ′.

• If P
?n
−→ P ′ then there is Q′ such that Q

?n
=⇒ Q′ and P ′RQ′.

Accordingly, we have to change the definition of syntactical intensional bisimulation by
adapting the following clauses for communicating processes:

SEPARABILITY IN THE AMBIENT LOGIC ∗ 31

• If P ≡ (x) P ′ then there is Q′ such that Q ≡ (x) Q′ and for all n there is Q′′ such that
Q′{n/x} =⇒ Q′′ and P ′{n/x}RQ′′.
• If P ≡ {n}.P ′ then there is Q′ such that Q ≡ {n}.Q′ and Q′ =⇒ Q′′RP ′.

As shown in [21], formulas similar to those that are needed in the asynchronous case
can be derived for the synchronous calculus. In particular, we have:

Lemma 5.11 ([21]).

• For all A, there is a formula 〈〈?n〉〉. {| A |} such that for all P , P |=〈〈?n〉〉. {| A |} iff there
is P ′ such that P ≡ (x) P ′ and P ′{n/x}=⇒|=A.
• For all A, there is a formula 〈〈!n〉〉. {| A |} such that for all P , P |=〈〈!n〉〉. {| A |} iff there
is P ′ such that P ≡ {n}.P ′ and P ′=⇒|=A.

Using this result, the soundness and completeness proofs for ≃int with respect to =L

follow exactly the same scheme as in the asynchronous case (see Sections 3 and 4), except
that we do not need to reason on eta-normalised terms.

Theorem 5.12 (Soundness and completeness of ≃int). Given two processes P and Q of
synchronous Mobile Ambients, P ≃int Q iff P =LQ.

We now derive the counterpart of the properties we have established above for MAs
IF

about the number of messages and prefixes in a term.

Lemma 5.13. Suppose P −→ P ′, where P is a finite process. Then

(1) messages(P) ≥ messages(P ′);
(2) pref(P) ≥ pref(P ′).

Proof. By induction on the derivation of P−→P ′. ✷

Lemma 5.14. Let P,Q be two finite processes and suppose P ≅ Q. Then messages(P) =
messages(Q).

Proof. Suppose messages(P) > messages(Q). We prove that we derive a contradiction.
We proceed by a case analysis on the shape of P (ie, the number of its operators)

• P = P1 | P2. Then, by definition of ≅, it must be Q ≡ Q1 | Q2 with Pi ≅ Qi. Now,
for some i, we should have messages(Pi) 6= messages(Qi), which is impossible, by the
induction on the shape.

• P = cap.P ′. Then, by definition of ≅, it must be Q ≡ cap.Q′ and Q′ 〈cap〉
=⇒ Q′′ ≅ P ′. It

will then be, by Lemma 5.5(1), messages(P) = messages(P ′) > messages(Q′′), which is
impossible, by the induction on the shape.
• P = {n}.P ′. Then Q ≡ {n}.Q′ and P ′ ≅ Q′. But messages(P ′) > messages(Q′), which
by induction is impossible.
• P = (x)P ′. Then Q ≡ (x)Q′ and for all h fresh, Q′{h/x} ≅=⇒ Q′′ and P ′{h/x} ≅ Q′′ and
messages(P ′′) > messages(Q′′), so we can conclude by induction. ✷

Lemma 5.15. Let P,Q be two finite processes, and suppose P ≅ Q. Then pref(P) =
pref(Q).

Proof. Suppose pref(P) > pref(Q). We prove that we derive a contradiction. We proceed
by induction on the shape of P .

• If P = 0 then Q ≡ 0.

32 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

• P = P1 | P2. Then, by definition of ≅, it must be Q ≡ Q1 | Q2 with Pi ≅ Qi. Now, for
some i, it should be pref(Pi) 6= pref(Qi), which is impossible, by the induction on the
shape.

• P = cap.P ′. Then, by definition of ≅, it must be Q ≡ cap.Q′ and Q′ 〈cap〉
=⇒ Q′′ ≅ P ′.

Then
pref(P ′) = pref(P)− 1 > pref(Q)− 1 = pref(Q′) ≥ pref(Q′′)

Hence pref(P ′) > pref(Q′′), which is impossible by the induction on the shape.
• P = {n}.P ′. Similar to capability case.
• P = (x) P ′. Then Q ≡ (x)Q′ and there is Q′′ such that Q′{h/x} ≅=⇒ Q′′ and P ′{h/x} ≅
Q′′. There is no consumption of messages, hence pref(P ′{h/x}) > pref(Q′′), and we can
conclude using induction. ✷

Lemma 5.16. Let P,Q be two finite processes, and suppose P ≅ Q. If P
µ
−→ P ′, then

there is Q′ such that Q
µ
−→ Q′ ≅ P ′. Similarly, if P −→ P ′, then there is Q′ such that

Q −→ Q′ ≅ P ′.

Proof. From the two previous lemmas: if Q performed more than one action, then it would
consume one more prefix or message than P . ✷

Theorem 5.17. Let P,Q be two processes in MAs,s
IF, and suppose P ≅ Q. Then P ≡ Q.

Proof. By induction on the shape of P (almost exactly as in Theorem 5.9). ✷

Corollary 5.18. Let P,Q be processes of MAs,s
IF. Then P=LQ iff P ≡ Q.

5.3. Name restriction. In this section, we consider the variant of MA, noted here MAν ,
that includes name restriction (νn)P . We discuss, among previous results, which ones
remain valid, and which ones have to be amended.

Adding name restriction involves several modifications in the definition of the calculus
and of the logic. Name n is bound in (νn)P , and the definition of fn(P) is modified
accordingly. Regarding structural congruence, we add alpha conversion for ν, as well as the
following laws:

(νn)0 ≡ 0 (νn)(νm)P ≡ (νm)(νn)P (νn) (P | Q) ≡ P | (νn)Q if n 6∈ fn(P)

(νn)m[P] ≡ m[(νn)P] cap. (νn)P ≡ (νn) cap.P if n 6∈ fn(cap)

The last rule is not always present in the definition of structural congruence. It is not an
essential rule, but including it makes our some technical details simpler.

In the logic, additional connectives are introduced, as in [12], to handle restriction and
the associated notion of freshness of names: formulas can also be of the form nrA,A⊘n,
or Nn. A. Accordingly, the enriched notion of satisfaction, written |=ν , is given by:

− P |=νnrA iff P ≡ (νn)P ′ and P ′|=ν A for some P ′;
− P |=ν A⊘n if (νn)P |=ν A;
− P |=ν

Nn. A if there is n′ /∈ (fn(P) ∪ fn(A)) such that P |=ν A{n
′

/n}.

To illustrate this new setting, we consider the two following formulas:

free(n)
def
= ¬nr⊤ public

def
= Nn. ¬

(
nr free(n)

)
.

SEPARABILITY IN THE AMBIENT LOGIC ∗ 33

A process P satisfying free(n) cannot reveal n, which means that n necessarily occurs free
in P . In turn, if P satisfies public, then it cannot reveal a name n so as to exhibit free
occurrences of n, which means that P is structurally congruent to some P ′ ∈ MA.

Formula public hence provides a way of selecting processes belonging to MA among
the processes in MAν . We can indeed adapt any formula A we have used in the paper
into a formula A′ such that whenever P |=ν A′, then P ≡ P ′ for some P ′ in MA such that
P ′|=A; in particular, formulas of the form A1 ⊲ A2 are translated into formulas of the form
(B1 ∧ public) ⊲ B2.

In presence of name restriction, we can adapt rather easily several important results of
the paper as follows (for each item, we indicate the part of the paper we refer to):

• a new ‘intensional’ rule must be added to the definition of ≃int (Def. 3.2): if P ≡ (νn)P ′,
then there is Q′ such that Q ≡ (νn)Q′ and P ′ ≃int Q

′;
• with this definition, it is possible to establish a soundness result (≃int⊆ =L, Theo-
rem 3.29), and completeness for finite processes (processes without replication, Theo-
rem 3.33);
• characteristic formulas are derivable for processes of the form (νn1) . . . (νnk)P , where P
is a ‘public’ process in MAIF (Lemma 3.27): we rely on name revelation to get rid of
the topmost restrictions, and then translate the characteristic formula for P using the
approach sketched above;
• logical equivalence coincides with structural congruence enriched with eta conversion for
processes of the form (νn1) . . . (νnk)P , with P a public process in MAs

IF (Corollary 5.10).

The difficult point, that we leave for future work, is to analyse processes that can gen-
erate unboundedly many names, i.e., in which restriction occurs under replication. Char-
acteristic formulas seem much more difficult to obtain for such processes. We do not know
at present how to derive completeness in absence of an image finiteness hypothesis (in
particular, we do not see how a counterpart of Lemma 4.13 can be obtained).

6. (Un)decidability of logical equivalence

In this section we define the encoding of a Turing Machine in MAs
IF. The purpose of

this encoding is to establish that logical equivalence in undecidable on MAIF.
The definition of the encoding requires the introduction of some constructions that will

be given as (MAs
IF) contexts. To ease the reading of our definitions, we shall sometimes

work with parametrised contexts, which are context definitions that depend on some val-
ues (names, words, or movements of the head of the Turing Machine). Additionally, some
parametrised definitions shall be written foo(p);P : here, foo is the name of the defini-
tion, whereas p and P are parameters (P being a process); the notation emphasizes the
sequentiality between the process being introduced and P .

Remark 6.1. The results in this section improve and extend a preliminary version pre-
sented in [20]. By the time the writing of this paper was completed, Busi and Zavattaro [3]
have studied encodings of another universal machine, namely the Random Access Machine,
into a subset of MA. Their encodings are syntactically more coincise than the one below
of a Turing Machine. However, Busi and Zavattaro make use of combinations of operators
that are not licit in MAs

IF (i.e., their encodings are not encodings into MAs
IF). Also, while

longer, the encoding of Turing Machines makes use of components which accomplish simple
tasks and which interact with each other in simple manners. Correspondingly, each step

34 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

of the proof, which follows the reductions of the encoding of a Turing Machine, is rather
straightforward. For these reasons we maintain the schema of the original encoding in [20].

6.1. Ribbons. Digits and words. We associate to booleans true and false two names tt
and ff . We call these names digits, and range over digits with d, d′. A word will be the
result of a (possibly empty) concatenation of digits. The empty word shall be written ǫ.
We range over words with w,w′, w1, w2. Given a word w consisting in r digits (with r ≥ 1),
we shall sometimes write w1 . . . wr to refer to the digits of w. This should not be confused
with notation ff

n, that we will sometimes use to represent the word consisting in n times
digit ff (this should be clear from the context).

We start with the definition of the support of the Turing Machine: ribbons can be in
differents states (frozen, growing, work ribbon, old), and are defined as follows:

Cells and Words
cell(d){| |} := cell[d[0] | !open wo | {| |}]
word(w){| |} := cell(w1){| cell(w2){| . . . cell(wr){| |} . . . |} |} (w = w1w2 . . . wr)

Ribbon Extensor
deadextcode := !open coin. open newcell. in cell. coin[0]

| !newcell[cell(ff){| out ext |}]
sendstart := msg[out ext. !out cell | out ribbon left. start[in TM]]
ExtensorFrozen := ext[deadextcode | open coin. sendstart]
ExtensorAlive := ext[coin[0] | deadextcode | open coin. sendstart]
ExtensorDead := ext[deadextcode]

Ribbons
cleaninst := open cleaner. open runclean | runclean[deadcleancode]
deadcleancode := !open ff | !open tt | !open cell | !open wo
FrozenRibb(w) := ribbon left[cleaninst | word(w){| ExtensorFrozen |}]
GrowingRibb(w) := ribbon left[cleaninst | word(w){| ExtensorAlive |}]
WorkRibb(w1, w2){| |} := ribbon left[cleaninst]

| word(w1){| {| |} | word(w2){| ExtensorDead |} |}
OldRibb := ribbon left[deadcleancode | ExtensorDead]

All names used in the definitions above are supposed to be pairwise distinct. In par-
ticular, TM is the name we shall use for the ambient containing the Turing Machine (see
Definition 6.5). The ribbon is represented as a nesting of ambients named cell, each of
which contains an empty ambient named d, where d is the digit value of the cell: this cor-
responds to the definitions of cell(d) and word – the !open wo subterm is there to trigger
the computation of the head of the machine as soon as the head ‘points to’ (i.e., enters) the
current cell (see Section 6.2).

Ribbon extension is used to generate a sufficiently long nesting of cell ambients for the
machine to run. A frozen ribbon consists of a word w, containing at the end of the ribbon
a frozen ribbon extensor (definition of FrozenRibb – the cleaninst part will be useful
later on). The extensor is triggered by the presence of an ambient named coin (definitions
ExtensorFrozen and ExtensorAlive): when this happens, the loop programmed in the
definition of deadextcode can start, which can have the effect of adding new cells, whose

SEPARABILITY IN THE AMBIENT LOGIC ∗ 35

value is ff . Each time the extensor loops (state ExtensorAlive), the coin ambient can
be erased by process open coin. sendstart, which has the effect of stopping the extension
process, and sending an ambient msg out of the ribbon to instruct the machine to start
computation. When this happens, the extensor is in ExtensorDead state.

A ribbon in GrowingRibb state keeps extending until the extensor dies, at which point
it becomes a WorkRibb (WorkRibb has two parameters, w1 and w2, in order to reason about
the cell where the head of the machine currently is). Along this evolution, the cleaninst

code is always present. When the machine successfully terminates computation (we will
describe below how this happens), it generates an ambient named cleaner, which triggers
the cleaning of the machine: all ambients cell, tt,ff , wo, that intuitively constitute the “data
structures” of the machine, are removed. At this point, we obtain an OldRibb.

Some of the explanations we have just given are formalised by the following result,
which will be used to establish undecidability of =L.

Lemma 6.2 (Ribbon evolution).
For any word w and n ∈ N, we write Pn = GrowingRibb(w. (ff)n), where (ff)n stands

for the word written as n times the name ff. We have:

• Pn =⇒ Pn+1;
• Pn =⇒ R with

R = WorkRibb(ǫ, w. (ff)n){| msg[!out cell | out ribbon left. start[in TM]] |};
• for any term Q along the reduction paths from Pn to Pn+1 and from Pn to R, there exists
Q′ such that Q ≡ ribbon left[Q′].

Moreover, for any word w, we have:

WorkRibb(w, ǫ){| 0 |} | cleaner[in ribbon left] =⇒ OldRibb .

Proof. At any step, the extensor can only choose between creating a new ff cell or dying
and sending up through the ribbon an ambient msg. Note that when extending the ribbon
with a new ff cell, there are at some point two concurrent actions in cell and out ext: these
are in causal dependency, since the in cell can only happen once the out ext has taken place,
which ensures sequentiality of the execution. ✷

6.2. Turing Machine.

Definition 6.3 ((Ideal) Turing Machine). We introduce three symbols←, ↓ and→ for the
movements of the head of a Turing Machine.

We represent a Turing Machine as a quadruplet (Q, qstart, qA, δ) where Q is a set of
states, qstart is the initial state, qA is the accepting state, and δ : Q × {ff , tt} −→ Q ×
{ff , tt} × {←, ↓,→} is the evolution function.

Notation: we shall write

(w1, q, w2) ֌֌ (w′
1, q

′, w′
2)

to denote the fact that the Turing Machine in state q with the head on the cell of the last
letter of w1 (which will be referred to as “the head dividing the ribbon into words w1 and
w2”) evolves in one step of computation into the machine in state q′, dividing the ribbon
into words w′

1 and w′
2.

The remainder of this subsection is devoted to establishing the following claim:

36 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

Turing Machine Transitions
clear(d);P := wo[out head. open d. cl ack[in head]] | open cl ack.P
write(d);P := wo[out head. d[0] | wr ack[in head]] | open wr ack.P
become(mo);P := mo[out head. open head.P] | in mo

domove(mv);P :=







in cell.P if mv =←
P if mv =↓
out cell.P if mv =→

tcode(dr, qw, dw,mv) := clear(dr); write(dw);
become(mo); in TM . domove(mv); open qw

State
ff−→P + tt−→Q := coin[in ff . out ff .P] | coin[in tt. out tt.Q] | open coin
code(q) := !q[head[out TM .

(
ff−→tcode(ff , dff , qff ,mvff)
+ tt−→tcode(tt, dtt , qtt,mvtt)

)
]]

| !coin[in ff . out ff . tcode(ff , dff , qff ,mvff)]
| !coin[in tt. out tt. tcode(tt, dtt , qtt,mvtt)]

code(qA) := !qA[get out[0]]

Turing Machine Behavior after Recognition
getout :=

!open get out. out cell. get out[0]
| !open get out. out ribbon left.

(
cleaner[out TM . in ribbon left]

| coin[out TM . in ribbon left. in celllength(w). in ext]
| open start. in ribbon left. in cell. open qstart

)

Figure 1: Encoding Turing Machines in MAs
IF

Claim 6.4. Any Turing Machine computation may be encoded in MAs
IF.

To encode Turing Machines, we must describe how we simulate in MAs
IF the transitions

of the machine, and how some extra manipulations are performed after recognition of a
word (these are necessary to deduce the undecidability result proved below).

The encoding is given by the definitions collected in Figure 1. The overall shape of the
encoding can be described as follows:

Definition 6.5 (Turing Machine in Mobile Ambients). The encoding of a Turing Machine
is based on an ambient named TM , containing a persistent process named tmsoup:

tmsoup := code(q0) | . . . | code(qn) | getout | !open mo .

We define two configurations for the encoding of a Turing Machine. Before being active,
the machine is in starting state, defined by:

TMStart := TM [open start. in ribbon left. in cell. open qstart | tmsoup] .

Once the computation has started, the Turing Machine in state q is represented by the term

TM(q) := TM [open q | tmsoup] .

SEPARABILITY IN THE AMBIENT LOGIC ∗ 37

Lemma 6.6 (MAs
IF encoding). All terms used in the encoding of a Turing Machine belong

to MAs
IF.

Our Turing Machine encoding is somehow reminiscent of the one presented in [13]. We
should however remark that we work here in a language without name restriction, and with
a simpler encoding of choice (operator + above, to test the value of a cell).

According to the explanations given in Section 6.1, the machine reacts to the presence
of an ambient named start to enter the first cell of the ribbon and start computation
(definition TMStart).

The behaviour of the running machine is described by the definition of code(q): the
head of the machine enters the current cell, and tests its value by concurrently trying to
enter ambients named ff and tt. According to the ambient being present, the appropriate
machine transition is triggered (definition of tcode— dff , qff ,mvff stand for the new value,
new state, and movement of the head determined by the current state if the value read is
ff , and similarly for tt). The last two lines in the definition of code (processes starting with
!coin . . .) are there for garbage collection purposes: they “absorb” the branch of the choice
that has not been triggered.

Performing a transition involves erasing the current value of the cell, installing the new
value, getting back inside the Turing Machine (the current working ambient had to get out
of it to read the value of the cell), and triggering the movement of the machine (definition
of tcode). The corresponding definitions on top of Figure 1 should be self-explanatory, the
become(mo) part being necessary to synchronise with the !open mo inside ambient TM .
Finally, open qw starts the execution of the code corresponding to qw, the new state of the
machine — according to Definition 6.5, the code of all possible states of the machine is
present in replicated form in TM .

The code of the accepting state qA is peculiar: when the machine reaches this state, it
triggers process getout, which makes it exit the ribbon and start the cleaning process. As
explained above, the presence of an ambient named cleaner in ambient ribbon left triggers
process cleaninst of Section 6.1. The process on the last line of Figure 1 is there to install
the machine in the exact initial state once the word has been recognized and cleaning has
been performed. This is necessary to obtain a loop in the proof of Lemma 6.13 below.

We can remark that the encoding is parametric over a word w, whose length (denoted

length(w)) is used in the definition of getout (in that definition, in celllength(w) stands for
the concatenation of length(w) copies of the capability in cell). This aspect of our encoding
is however irrelevant since it is influent only after the end of the execution of the machine,
and not during the central part of the simulation.

We now formulate the evolution of the terms we have defined in order to simulate
Turing Machines. We first introduce a useful relation.

Definition 6.7 (deterministic evolution relation). We say that a process P deterministically
evolves to Q, written P ❀ Q, if and only if P−→Q and for any Q′ s.t. P −→Q′, either
Q′ 6−→ or Q ≡ Q′.

Notation: We shall write P ❀
k Q to say that P deterministically reduces to Q in k steps

(k ≥ 1). We write P ❀
+ Q when P ❀

k Q for some k.
Using❀, we can state some elementary facts about the macros involved in the execution

of the machine. The relation P ❀
+ Q captures the fact that P cannot avoid reducing to Q

except for some immediately blocking states. Such blocking states may only appear due to

38 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

the firing of the “wrong branch” in a choice encoding (ff−→· · ·+ tt−→ . . .). (Incidentally,
we may remark that a purely deterministic encoding of the Turing Machine could probably
be definable, but at the cost of more complex definitions and proofs.)

Lemma 6.8 (state evolution). For any terms P,Q, names d, d′ ∈ {ff, tt} and word w, we
set M = d[0] | !open wo | word(w){| ExtensorDead |}. We then have the following
deterministic transition sequences:

(1) head[d−→P + ¬d−→Q] | d[0] | !open wo | cell[M] | TM [tmsoup]

❀
3 head[P | coin[in ¬d. out ¬d.Q]] | d[0] | !open wo | cell[M] | TM [tmsoup] ;

(2) head[clear(d);P | coin[in d′.Q]] | d[0] | | !open wo | cell[M] | TM [tmsoup]

❀
5 head[P | coin[in d′.Q]] | !open wo | cell[M] | TM [tmsoup] ;

(3) head[write(d);P | coin[in d′.Q]] | !open wo | cell[M] | TM [tmsoup]

❀
4 head[P | coin[in d′.Q]] | d[0] | !open wo | cell[M] | TM [tmsoup] ;

(4) head[become(mo);P | coin[in d′.Q]] | d[0] | !open wo | cell[M] | TM [tmsoup]

❀
3 mo[P | coin[in d′.Q]] | d[0] | !open wo | cell[M] | TM [tmsoup] .

Moreover, the same results hold with a frozen (instead of dead) extensor in M , the only
condition being that ambient ext contains an inactive term.

Proof. By inspection of the possible reductions of the processes being considered. From
the second statement on, the ambient coin[in d′.Q] is frozen: it actually represents the
non-chosen branch in the encoding of the choice operator, that will be erased later, when
the head of the Turing Machine comes back inside ambient TM (see below). ✷

We can now merge the results above into a property regarding transitions of the Turing
Machine.
Lemma 6.9 (One step of Turing Machine simulation).

Let M be a Turing Machine, q one of its non accepting states, and w1, w2 two words,
with w2 6= ǫ. Suppose (w1, q, w2)֌֌(w′

1, q
′, w′

2). Then

WorkRibb(w1, w2){| TM(q) |} ❀
+ WorkRibb(w′

1, w
′
2){| TM(q

′) |} .

Proof. We divide the evolution of the term representing the Turing Machine into the fol-
lowing steps:

(1) From state q, the TM can trigger the q code by performing the corresponding open

operation, which has the effect of releasing an ambient named head. Moreover, this is
the only place where some reduction is possible, because first, Extensor is inactive and
second, in every ambient named cell, no reduction occurs. Therefore,

WorkRibb(w1, w2){| TM(q) |}
❀

2 WorkRibb(w1, w2){| TMNostate | head[ff−→· · ·+ tt−→ . . .] |}

where the notation TMNostate stands for the following configuration of the Turing
Machine ambient:

TM [code(q0) | . . . | code(qn) | tmsoup]

Note that this ambient cannot perform any reduction as long as it is not visited by a
mo or getout ambient.

SEPARABILITY IN THE AMBIENT LOGIC ∗ 39

(2) Using the previous fact, and considering that reductions can only take place at cell
level, we have

WorkRibb(w1, w2){| TMNostate | head[ff−→· · ·+ tt−→ . . .] |} ❀
15

WorkRibb(w1
1 . . . w

r−1
1 d,w2){| TMNostate

| mo[in TM . domove(mv). open q′ | coin[in ¬wr
1.P]] |}

where δ(q, wr
1) = (q′, d,mv) (i.e., the machine evolves from q to q′ when reading wr

1).
(3) The ambient mo comes back into the Turing Machine and is opened by the tmsoup

component. Then the head movement (if any) is performed, which activates an open q′

process, so that the Turing Machine gets into TM(q′) state.

WorkRibb(w1
1 . . . w

r−1
1 d,w2){| TMNostate

| mo[in TM . domove(mv). open q′ | coin[in ¬wr
1.P]] |}

❀
2(+1) WorkRibb(w′

1, w
′
2){| TM(q

′) |} .

Note that opening ambient mo triggers the absorbtion of the non-selected branch of
the choice (ambient coin) by a !coin[. . .] (from the code for the original state of the
machine).

The 2(+1) above comes from the fact that the head of the machine can also make no
movement in its transition from a state to another (case ↓). ✷

We obtain as a corollary of the Lemma above:

Proposition 6.10 (Turing Machine simulation). Given a Turing MachineM, for any word
w and n ∈ N, the Turing Machine M recognises the word w on the ribbon w.ffn iff there
exist two words w1 and w2 s.t.

WorkRibb(ǫ, w.ffn){| TM(qstart) |} ❀
+ WorkRibb(w1, w2){| TM(qA) |} ,

where the terms above are given by the encoding of M.

Let us finally describe what happens after the machine has reached the accepting state.

Lemma 6.11 (Acceptation). Let w1, w2 be two words. Then

WorkRibb(w1, w2){| TM(qA) |}
=⇒ OldRibb | TMStart | coin[in ribbon left. in celllength(w). in ext]

where w is the word used in the encoding of the machine.

Proof. We distinguish four steps:

(1) When the qA ambient has been opened, the ambient get out is liberated and is present
within TM :

WorkRibb(w1, w2){| TM(qA) |} =⇒ WorkRibb(w1, w2){| TMGetout |}

where TMGetout is the term

TM [get out[0] | code(q0) | . . . | code(qn) | tmsoup] .

(2) This allows the TM ambient to get a get out ‘token’, execute the branch containing the
out cell, and, doing this, liberate a new get out ambient:

WorkRibb(w1, w2){| TMGetout |} =⇒ WorkRibb(w1
1 . . . w

r−1
1 , wr

1.w2){| TMGetout |}

Note that the other subterm starting with open get out could also have been triggered,
leading to a blocked state. This is no harm for us, since we want to establish the

40 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

existence of an execution where the machine exits the ribbon. This way, TM progresses
outwards until it is directly inside ribbon left.

(3) Then TM gets out of ribbon left, choosing the other branch of open get out, which
leads to the following state:

WorkRibb(ǫ, w1.w2){| 0 |} | TM [cleaner[out TM . in ribbon left]

| coin[out TM . in ribbon left. in celllength(w). in ext]
| code(q0) | . . . | code(qn) | tmsoup]

(4) At this point, the ambient named TM may liberate an ambient cleaner that enters
ribbon left and starts the cleaning process. TM may also liberate the ambient coin so
that we exactly obtain the expected term. ✷

Remarks 6.12.

• As we already mentioned above, our encoding of the Turing Machine is at this point
dependent from the word w that we want it to recognize.
• reason here using =⇒ transitions instead of deterministic reduction ❀: indeed, we are
considering states where the machine has already recognized the word, and we only need
to prove that there exists some way back to its (exact) initial state. This will be enough
for the proof of undecidability in Section 6.3.

6.3. Undecidability of Logical Equivalence. We can now exploit the encoding we have
studied to establish undecidability of =L.

Lemma 6.13 (Loop lemma). Given a Turing Machine M and a word w, define the fol-
lowing terms, given from the encoding of M:

Q := !FrozenRibb(w) | !OldRibb | !open msg | !out cell | TMStart ,
P0 := Q | GrowingRibb(w) and P1 := Q | GrowingRibb(w.ff) .

Then P0 =⇒ P1. Conversely, P1 =⇒ P0 if and only if the word w may be recognized on
a finite (but sufficiently long) ribbon of the shape w.ffN , for some N ∈ N, by the Turing
Machine M.

Proof. The transition P0 =⇒ P1 follows from Lemma 6.2.
Let us then first assume that w can be recognized on a ribbon of the form w.ff N ,

that is, w followed by an arbitrary number of ff digits. Then from Lemma 6.2, we can
obtain the corresponding extension of the ribbon from state P1, i.e. exhibit a transition
P1 =⇒ Q | WorkRibb(w.ff N , ǫ){| 0 |} | start[in TM]. At this point, the ambient start
can enter TM and allow it to get into the work ribbon. Then, using the simulation result
(Proposition 6.10), we know that the Turing Machine reaches the acceptation state (this re-
sult is obtained by induction over the length of w). At this point, according to Lemma 6.11,
the work ribbon is transformed into an old ribbon (collected by the corresponding replicated
term in Q), the Turing Machine comes out of the ribbon, and waits for a start signal. The
liberated coin ambient may progress inside a frozen ribbon (containing word w by definition
of Q above) until it reaches the frozen extensor and wakes it up. We then exactly obtain
P0.

Now let us assume that w cannot be recognized on any ribbon. As Q is blocked (in
particular, TMStart is waiting for an ambient start to enter TM), the first reducts of P1

are of the form Q | ribbon left[R], where GrowingRibb(w.ff) =⇒ ribbon left[R]. If a

SEPARABILITY IN THE AMBIENT LOGIC ∗ 41

reduction chain from P1 to P0 can be found, then by Lemma 6.2 there exists an integer n
such that

P1 =⇒ Q | WorkRibb(w.ff n){| 0 |} | start[in TM]
︸ ︷︷ ︸

T

=⇒ P0 .

In term T the WorkRibb is blocked, so the only evolution can come from the machine
entering a ribbon. We distinguish three cases according to the kind of ribbon which is
entered by the machine:

(1) If it gets into an old ribbon, there can be no more reduction, as the TM is stuck on an
in cell action.

(2) If it gets into the work ribbon, according to Proposition 6.10, there is a unique way
to evolve, through simulation of the machine. At this point, the machine may have an
infinite computation on the finite ribbon, never reaching accepting state: this means
that it will not get out of the ribbon, which prevents the system to evolve into P0.
Alternatively, the machine may try to use more ribbon than what has been created
before evolution from GrowingRibb into WorkRibb, and the machine is stuck. So in any
case, state P0 cannot be reached.

(3) We reason similarly in the case where the machine enters a frozen ribbon.

Finally, we have that state P0 is unreachable if word w cannot be recognised by the machine
on a ribbon of the form w.ff N for some N , which concludes the proof. ✷

Theorem 6.14 (Undecidability of =L). =L is an undecidable relation on MA.

Proof. Let us first note that the decidability of =L over MAIF is a consequence of its
inductive characterisation ∼ind (Definition 4.9) together with the image finitess hypothesis
of MAIF.

Consider processes P0 and P1 from Lemma 6.13. We show that the problem of de-
ciding whether one can prove open n.P0 =L open n.P1 is equivalent to deciding whether
P0=⇒P1=⇒P0. This will be enough, by Lemma 6.13, to obtain the undecidability of =L.

Let us prove now the undecidability of =L on MA. Consider processes P0 and P1 of
Lemma 6.13. These processes are in MAs

IF. Using Corollary 4.20, the definition of ≃int,
and Theorem 5.9, we have:

open n.P0 =L open n.P1 iff open n.P0 ≃int open n.P1

iff P0 =⇒ ≃int P1 =⇒ ≃int P0

(from Theorem 5.9, =⇒ ≃int is =⇒ on MAs
IF).

The first equivalence follows from soundness and completeness (Theorems 3.29 and
4.19). The second is the definition of ≃int. Since on MAs

IF ≃int=≡, the last condition is
simply the loop condition, and undecidability follows from Lemma 6.13. ✷

7. Conclusions and future work

In this paper we have presented a number of characterisations of logical equivalence,
including a coinductive characterisation by means of intensional bisimilarity, ≃int, and an
inductive characterisation based on inversion results for ≃int. These characterisation results
are established on the MA calculus in which terms need not be image-finite, and with respect
to a finitary logic. We are not aware of other results of this kind. (Characterisation results

42 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

for a bisimilarity with respect to a modal logic in the literature rely either on an image-
finiteness hypothesis for the terms of the language, or on the presence of some infinitary
constructs in the syntax of the logic.)

We have compared logical equivalence with barbed congruence, showing that the latter
is strictly coarser, and with structural congruence, showing that the two relations are “al-
most the same” in the (Turing-complete) calculus MAs

IF(the two relations coincide on the
synchronous version of MAs

IF, whereas an additional eta-law has to be added to structural
congruence in the asynchronous calculus). A spin-off of this study is a general better under-
standing of behavioural equivalences in Ambient-like calculi. For instance, we have shown
that behavioural equivalences can be insensitive to stuttering phenomena originated by pro-
cesses that may repeatedly enter and exit an ambient. Finally, we have proved that logical
equivalence, although decidable on MAs

IF, it is not decidable on the whole MA calculus.

We discuss below a few possible extensions of our work. On the logic side, other logical
connectives could be added without changing our results, as long as formulas expressing
capabilities and replication can still be derived. We believe this holds in particular for the
‘somewhere’ modality [11], and for fresh quantification [17].

In our work, we have interpreted the ‘sometimes’ modality (✸A) in a weak sense, which
makes intensional bisimilarity a weak form of bisimilarity. We believe that under a strong
interpretation of the modality the result corresponding to Theorem 5.9 can be derived in a
much simpler way, especially because stuttering does not show up.

On the calculus side, a first variation could be the introduction of a general recursion
scheme instead of replication. This would make it possible to express recursion ‘in depth’,
and not only ‘in width’, as with replication. Our proofs do not obviously carry over to this
setting, mainly due to the fact that the sequential degree of a process may then be infinite,
and we would lack a measure to reason by induction.

Another interesting extension is the addition of name restriction (νn)P to the calcu-
lus. Including restriction naturally implies to add its logical counterpart, name revelation
(nrA, see [12]) to the logic. Our results can be extended to this setting on the finite calcu-
lus, and on infinite processes with only finitely many restricted names, but we do not know
how to extend them to richer calculi. For instance, the proof of completeness cannot be
directly adapted to the extension with name restriction in the general case. The possibility
of generating infinitely many fresh names breaks Lemma 4.12, intuitively because infinitely
many frozen subterms can appear as outcomes of a given term. For the same reason, we
think that our approach to obtain completeness in absence of an image-finiteness hypoth-
esis cannot be adapted to the π-calculus, where infinitely many names can be generated.
However, our results for the MAs

IF fragment, in particular Theorem 5.9 (=L =≡), still hold
in presence of name restriction.

In the paper we have considered only communications of basic names. Certain pre-
sentation of the MA calculus also include operators for communication of capabilities. We
believe that such communications could be added with mild modifications to the proofs.

References

[1] R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous π-calculus. Theoret-
ical Computer Science, 195:291–324, 1998.

[2] I. Boneva and J.-M. Talbot. When ambients cannot be opened. Theoretical Computer Science, 333(1-
2):127–169, 2005.

SEPARABILITY IN THE AMBIENT LOGIC ∗ 43

[3] N. Busi and G. Zavattaro. On the expressive power of movement and restriction in pure mobile ambients.
Theoretical Computer Science, 322(3):477–515, 2004.

[4] N. Busi and G. Zavattaro. Deciding Reachability in Mobile Ambients. In In Proc. of European Sympo-
sium on Programming (ESOP’05), volume 3444 of LNCS, pages 248–262. Springer Verlag, 2005.

[5] L. Caires. Behavioral and Spatial Observations in a Logic for the pi-Calculus. In Proc. of FOSSACS’04,
volume 2987, pages 72–89. Springer Verlag, 2004.

[6] L. Caires and E. Lozes. Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency.
In Proc. of CONCUR’04, volume 3170 of LNCS, pages 240–257. Springer Verlag, 2004.

[7] L. Caires and H. Torres Vieira. Extensionality of Spatial Observations in Distributed Systems. Electr.
Notes Theor. Comput. Sci., 175(3):131–149, 2007.

[8] C. Calcagno, L. Cardelli, and A. Gordon. Deciding Validity in a Spatial Logic for Trees. In Proc. of
TLDI’03, pages 62–73. ACM Press, 2003.

[9] L. Cardelli. Describing Semistructured Data. SIGMOD Record, Database Principles Column, 30(4),
2001.

[10] L. Cardelli and G. Ghelli. A Query Language Based on the Ambient Logic. In Proc. of ESOP’01, volume
2028 of LNCS, pages 1–22. Springer Verlag, 2001. invited paper.

[11] L. Cardelli and A. Gordon. Anytime, Anywhere, Modal Logics for Mobile Ambients. In Proc. of
POPL’00, pages 365–377. ACM Press, 2000.

[12] L. Cardelli and A. Gordon. Logical Properties of Name Restriction. In Proc. of TLCA’01, volume 2044
of LNCS. Springer Verlag, 2001.

[13] L. Cardelli and A.D. Gordon. Mobile ambients. In Proc. FoSSaCS ’98, volume 1378 of Lecture Notes
in Computer Science, pages 140–155. Springer Verlag, 1998.

[14] L. Cardelli and A.D. Gordon. Anytime, anywhere: Modal logics for mobile ambients. In Proc. 27th
POPL. ACM Press, 2000.

[15] M. Dam. Relevance Logic and Concurrent Composition. In Proc. of LICS’88, pages 178–185. IEEE,
1988.

[16] A. Dawar, P. Gardner, and G. Ghelli. Adjunct elimination through games in Static Ambient Logic. In
Proc. of the 24th Foundations of Software Technology and Theoretical Computer Science (FSTTCS),
volume 3328, pages 211–223. Springer Verlag, 2004.

[17] M. Gabbay and A.M. Pitts. A New Approach to Abstract Syntax with Variable Binding. Formal Aspects
of Computing, 13(3-5):341–363, 2002.

[18] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal of the ACM,
32:137–161, 1985.

[19] D. Hirschkoff. An Extensional Spatial Logic for Mobile Processes. In Proc. of CONCUR’04, volume
3170 of LNCS, pages 325–339. Springer Verlag, 2004.

[20] D. Hirschkoff, E. Lozes, and D. Sangiorgi. Separability, Expressiveness and Decidability in the Ambient
Logic. In 17th IEEE Symposium on Logic in Computer Science, pages 423–432. IEEE Computer Society,
2002.

[21] D. Hirschkoff, E. Lozes, and D. Sangiorgi. On the expressiveness of the ambient logic. Logical Methods
in Computer Science, 2(2), 2006.

[22] D. Hirschkoff and D. Pous. A distribution law for ccs and a new congruence result for the pi-calculus.
In Proc. of FoSSaCS’07, volume 4423 of Lecture Notes in Computer Science, pages 228–242, 2007.

[23] D. J. Howe. Proving congruence of bisimulation in functional programming languages. Information and
Computation, 124(2):103–112, 1996.

[24] F. Levi and D. Sangiorgi. Controlling interference in ambients. Short version appeared in Proc. 27th
POPL, ACM Press, 2000.

[25] F. Levi and D. Sangiorgi. Mobile Safe Ambients. ACM Trans. Program. Lang. Syst., 25(1):1–69, 2003.
Short version appeared in Proc. 27th POPL, ACM Press.

[26] E. Lozes. Elimination of spatial connectives in static spatial logics. Theoretical Computer Science,
330(3):475–499, 2005.

[27] S. Maffeis and I. Phillips. On the Computational Strength of Pure Ambient Calculi. Theoretical Com-
puter Science, 330(3):501–551, 2005.

[28] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University Press, 1999.
[29] R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor, Proc. 19th ICALP, volume 623

of Lecture Notes in Computer Science, pages 685–695. Springer Verlag, 1992.

44 D. HIRSCHKOF, É. LOZES, AND D. SANGIORGI

[30] D. Sangiorgi. Extensionality and Intensionality of the Ambient Logic. In Proc. of 28th POPL, pages
4–17. ACM Press, 2001.

[31] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge University Press,
2001.

[32] S. Dal Zilio. Structural Congruence for Ambients is Decidable. In Proc. of ASIAN’00, volume 1961 of
LNCS. Springer Verlag, 2000.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	1. Introduction
	2. Background
	2.1. Syntax of Mobile Ambients
	2.2. Operational Semantics
	2.3. Ambient Logic

	3. Intensional bisimilarity
	3.1. Definitions
	3.2. Congruence
	3.3. Expressiveness results
	3.4. Soundness, and Completeness for Finite Processes

	4. Completeness of bisMOD in the full calculus
	4.1. An inductive characterisation of bisMOD
	4.2. Frozen subterms
	4.3. Local characteristic formulas and completeness

	5. Characterizations of logical equivalences
	5.1. Extensionality and intensionality
	5.2. Synchronous communications
	5.3. Name restriction

	6. (Un)decidability of logical equivalence
	6.1. Ribbons
	6.2. Turing Machine
	6.3. Undecidability of Logical Equivalence

	7. Conclusions and future work
	References

