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ABSTRACT
Sharing images on Social Network (SN) platforms is one of themost widespread behaviors which
may cause privacy-intrusive and illegal content to be widely distributed. Clustering the images
shared through SN platforms according to the acquisition cameras embedded in smartphones
is regarded as a significant task in forensic investigations of cybercrimes. The Sensor Pattern
Noise (SPN) caused by camera sensor imperfections due to the manufacturing process has been
proved to be an effective and robust camera fingerprint that can be used for several tasks, such as
digital evidence analysis, smartphone fingerprinting and user profile linking as well. Clustering
the images uploaded by users on their profiles is a way of fingerprinting the camera sources and
it is considered a challenging task since users may upload different types of images, i.e., the
images taken by users’ smartphones (taken images) and single images from different sources,
cropped images, or generic images from the Web (shared images). The shared images make
a perturbation in the clustering task, as they do not usually present sufficient characteristics of
SPN of their related sources. Moreover, they are not directly referable to the user’s device so
they have to be detected and removed from the clustering process. In this paper, we propose a
user profiles’ image clustering method without prior knowledge about the type and number of
the camera sources. The hierarchical graph-based method clusters both types of images, taken
images and shared images. The strengths of our method include overcoming large-scale image
datasets, the presence of shared images that perturb the clustering process and the loss of image
details caused by the process of content compression on SN platforms. The method is evaluated
on the VISION dataset, which is a public benchmark including images from 35 smartphones.
The dataset is perturbed by 3000 images, simulating the shared images from different sources
except for users’ smartphones. Experimental results confirm the robustness of the proposed
method against perturbed datasets and its effectiveness in the image clustering.

1. Introduction
In recent years, different Social Networks (SNs) have revolutionized the Internet and our society by providing dif-

ferent types of interaction, for instance by sending texts and sharing images and videos. Many SNs provide their own
dedicated applications for major mobile devices (e.g. smartphones). This influences user habits regarding multimedia
content on SNs, (Norouzizadeh Dezfouli et al., 2016). In particular, this has led users to take more digital images
and share them across various SNs, (Liu et al., 2012), making it a challenging task to control image production and
propagation and to use such images as a form of digital evidence.

Images shared by SN users can be considered as complementary clues used to detect evidence in digital investiga-
tions, e.g., identity theft, online sexual harassment, piracy, cyber stalking and cyber terrorism, (Huang et al., 2018). In
tracing the history of an image, identifying the source which captured the image is of major interest and the task is more
challenging when the original images and smartphones are not available. In practice, it cannot always be assumed that
prior information about the original image is available. Important clues on the camera source can be easily found in
Exchangeable Image File Format (EXIF) data, (Cox et al., 2002). However, since this information can be simply mod-
ified or can be removed by online SN platforms (due to user’s privacy), it cannot always be applied to digital evidence
analysis and digital investigations. Hence, blind analysis has to be applied to investigate the right source of an image.
The blind analysis has attracted a growing interest of researchers during the last years. Particularly, blind techniques
exploit traces left by different processing steps in source manufacturing and the image acquisition and storage phases.

The Sensor Pattern Noise (SPN), due to camera sensor imperfections, is considered as a unique characteristic to
fingerprint a source camera and it remains as residual noised in the images (Lukas et al., 2006). Regarding the SPN,
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different techniques such as SPN-based image clustering, (Lin and Li, 2017) and user profile linking, (Bertini et al.,
2015) have been presented in digital investigations.

In most real-life cases in digital investigations e.g., Internet child pornography, a large number of images on a set
of user profiles are collected, but sources by which these images are taken are not available. Moreover, this set of
images might be perturbed by images that may not directly referable to the user’s device. Clustering the collected
images based on the residual noised extracted from the corresponding images, into an unknown number of groups can
be a way to associate different crime scenes. It can provide the investigators by more clues to link the evidence to the
seized hardware that are owned by the suspects, in the future.

In data analysis, an outlier is an object that differs significantly from other objects in a dataset, (Grubbs, 1969).
Typically, outliers are a minority of objects that are inconsistent with the pattern presented by the majority of objects
in the same dataset, (Taha and Hadi, 2019). Cluster analysis and outlier detection are strongly coupled tasks. The
obtained clusters can be simply destroyed by a few outliers. Outliers are defined by the concept of the cluster and they
are recognized as the objects which are not assigned to any cluster. Most of the existing clustering methods, generally
and also specifically presented for the application of SPN-based image clustering, assume that all the objects (images in
our case) should be assigned to a cluster label, meaning that there are no phases for outlier detection in the clustering
methods. This is not always true, especially for the unsupervised clustering. The outliers unavoidably degrade the
clustering effectiveness. For instance, only few outliers can destroy the clusters computed from k-means algorithm
and generate bizarre distributions of Gaussian mixture model, (Liu et al., 2018). Consequently, the clustering should
be provided with an outlier detection phase.

In this paper, we propose a user profiles’ image clustering method that does not need prior knowledge about the
type and number of the camera sources. We cluster both types of images uploaded buy users on SN platforms, i.e.,
the images taken by users’ smartphones (taken images) and images from different sources, cropped images, or images
from the Web, such that they cannot be used in fingerprinting their sources (shared images). The proposed method
detects and removes the shared images (i.e., the outliers) and then clusters the remaining images into an unknown
number of clusters according to the number of cameras which leads to fingerprinting the users’ smartphones.

Given a set of taken images and shared images uploaded by users on SN platforms, the main contribution of this
paper is as follows:

• we apply outlier detection to detect and remove shared images that do not present sufficient residual noises to
fingerprint their right sources.

• we cluster taken images into an unknown number of groups, each of them including RN extracted from images
coming from the same source.

• we investigate if the number of shared images is increased, how it affects the effectiveness of clustering of taken
images.

The method clusters the residual noises based on the combination of hierarchical andMarkov clustering algorithms
and an adaptive threshold, which is updated according to the quality of the resulted clusters in each iteration of the
algorithm. This makes no need to compute full-pairwise correlation matrix in the clustering. The method is evaluated
on the VISION dataset (Shullani et al., 2017), which is a public benchmark including images from 35 smartphones. The
dataset is perturbed by 3000 images, simulating the shared images from different sources except for users’ smartphones.
Experimental results confirm the robustness of the proposed method against perturbed datasets and its effectiveness in
the image clustering. We show that the proposed method is stable against the number of the shared images, the loss
of image details caused by the process of image compression applied by SN platforms, that degrades the quality of the
SPN, and it is scalable in the number of images.

The rest of the paper is organized as follows. In Section 2, some related clusteringworks are discussed. In Section 3,
the proposed method is explained. Section 4 introduces the datasets, evaluation measures and the results of parameter
setting and the proposed clustering method on different SN datasets. In Section 5, significance and limitations of the
proposed method are discussed. Finally, in Section 6, conclusions is presented.

2. Related works
Generally speaking, any inherent traces left in the image by the processing components, either hardware or software,

of the image acquisition pipeline, such as defective pixels (Kurosawa et al., 1999; Geradts et al., 2001), color filter array
(CFA) interpolation artifacts (Bayram et al., 2005; Swaminathan et al., 2007), JPEG compression artifacts (Sorrell,
2009; Alles et al., 2009) lens aberration (Choi et al., 2006; Van et al., 2007) or the combination of several image
Rahimeh Rouhi et al.: Preprint submitted to Elsevier Page 2 of 16
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intrinsic characteristics (Kharrazi et al., 2005; Çeliktutan et al., 2008) could be applied to associate the images to their
source camera. Apart from the above-mentioned techniques, the methods that attract the most attention may be those
based on SPN (Lukas et al., 2006; Chen et al., 2008; Filler et al., 2008; Goljan et al., 2009; Li, 2010a; Wu et al., 2012),
which mainly consists of the photo-response non-uniformity (PRNU) noise (Lukas et al., 2006) arising primarily from
the manufacturing imperfections and the inhomogeneity of silicon wafers. The uniqueness to individual camera and
stability against environmental conditions make SPN a feasible fingerprint for identifying and linking source cameras.

Many works have been done on SPN-based image clustering. As a pioneering work, (Bloy, 2008) presented a
clustering algorithm, considering the residual noises as singleton clusters and hierarchically merging the similar clus-
ters. The algorithm is based on the idea that the more images are clustered, the better the quality of SPNs can be
obtained. As a drawback, the algorithm produces the threshold based on a quadratic model, which does not generalize
well across various source cameras. In (Li, 2010b), Markov random fields are used to assign a class label to an image
iteratively, according to the consensus of a small set of SPNs, called membership committee. This raises an issue on
how to choose a suitable committee, in particular for the datasets with different cluster cardinalities, i.e., asymmetric
datasets. In (Caldelli et al., 2010), the authors developed a faster algorithm by proposing a new enhancer applied to
the extracted SPNs. The algorithm merges the clusters hierarchically, and a silhouette coefficient is calculated for each
cluster. The silhouette coefficient estimates the separation among clusters as well as the cohesion within each cluster.
The average of the silhouette coefficients related to the produced clusters in each iteration is considered as a merit of
the clustering which shows its quality. In (Villalba et al., 2016), a similar clustering algorithm was proposed. The
main difference is that the evolutionary process of the cluster formation is used in the calculation of the coefficient.
The main problem of the hierarchical algorithms is that they are sensitive to noise and outliers as wrong assignments
may propagate the error to the following iterations in the clustering. Also, their computational complexities are high
especially for high dimensional residual noises because all the cluster pairs have to be checked for a merging.

The graph based algorithms have been applied successfully to SPN-based image clustering. In (Liu et al., 2010), a
method based on k-nearest neighbor technique was proposed, where the clustering is regarded as a graph partitioning
problem. Each image is considered as a node and the correlation values between the residual noises are considered as
the weights of the edges. Next, the nodes are partitioned into disjointed sets by using spectral analysis. Besides the
need for the user to provide the number of clusters, a major problem of this method is that its quality is dependent on
the random initialization. In (Amerini et al., 2014), the problems were addressed by using the normalized cut graph
partitioning algorithm, (Shi and Malik, 2000), which resulted better clustering results without providing the number
of clusters as an input parameter. In (Marra et al., 2016), the clustering is performed based on correlation clustering,
which formulates the graph partitioning problem as constrained energy minimization. The issue of this algorithm is
that it needs a parameter set by the user according to preliminary analyses on an appropriate training set. The issue
was handled in (Marra et al., 2017) by consensus clustering applied to all the cluster partitions obtained from corre-
lation clustering, to extract a unique solution. Generally, the average correlations between SPNs of one camera may
remarkably differ from that of other cameras, which makes the clustering more difficult. To tackle the issue, in (Li and
Lin, 2017), shared nearest neighbors, (Ertöz et al., 2003), are applied to the full-pairwise correlation matrix, to find
clusters with different sizes and densities. A common undesirable trait of the algorithms mentioned above is their need
for full-pairwise correlation matrix, which may prevent their use for large-scale datasets in practical applications.

Only a few studies considered the scalability aspect of SPN-based image clustering. In (Lin and Li, 2017), large-
scale clustering was handled by partitioning the dataset into small batches, which could fit in RAM efficiently, and
applying a coarse-to-fine clustering method. An adaptive threshold was proposed for merging the obtained clusters
based on the quality of the clusters iteratively updated during the clustering. The authors of (Phan et al., 2018) used
the similar partitioning approach and exploited linear dependencies among SPNs in their intrinsic vector subspaces. It
uses a training phase to generate an adaptive threshold for merging the obtained clusters. However, the training may
lead to over-fitting in some datasets. Also, compared with the threshold proposed in (Lin and Li, 2017), it tends to
be too radical for clusters with large size, which is a critical point in real-life applications. These scalable clustering
algorithms were only tested on native images, not compressed by SN platforms, and their robustness on images com-
pressed on Social Networks (SNs) is still in doubt.

Outlier detection, also known as anomaly detection, recognizes the objects deviated from the others and identifies
these objects as outliers. In most of the existing works, unsupervised outlier detection was studied, in such a way that
each object is given a score based on some criteria, and the objects with large scores are considered as the outlier
candidates, (Liu et al., 2018). Some representative methods include density based Local Outlier Factor (LOF), (Bre-
unig et al., 2000), Connectivity-based Outlier Factor (COF), (Tang et al., 2002), Local Distance-based Outlier Factor
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(LODF), (Zhang et al., 2009), Frequent Pattern-based outlier detection (Fp-outlier), (He et al., 2005), ensemble-based
isolation Forest (iForest), (Liu et al., 2008), Oversampling Principal Component Analysis (OPCA), (Lee et al., 2012),
and cluster-based Text Outliers using Non-negative Matrix Factorization (TONMF), (Kannan et al., 2017). Recently,
some methods based on deep learning were proposed, such as deep one-class SVM, (Ruff et al., 2018) and Gener-
ative Adversarial Networks (GAN)-based methods, (Li et al., 2018), learning a non-linear transformation to project
the original data into hidden space, for more effective recognition. These methods are supervised and train the model
only with accurate samples and predict the label of new samples whether they are outliers or not. Hence, the training
phase is crucial and challenging. Although clustering and outlier detection are mostly a coupled task in the real-life
applications, there are few works presented a unified framework for cluster analysis and outlier detection. For example,
a developed version of k-means algorithm was proposed in (Chawla and Gionis, 2013), called k-means--, which detects
outliers and groups the remaining objects into k clusters, where the objects with large distance from the nearest centroid
are considered as outliers during the clustering process. Langrangian Relaxation (LP), presented in (Ott et al., 2014),
formulates the clustering task with outliers as an integer programming problem, which requires the cluster creation
costs as the input parameter. (Charikar et al., 2001) proposed a bi-criteria approximation algorithm for the facility
location with outliers problem. Reference (Chen, 2008) proposed a constant factor approximation algorithm for the
k-medoids clustering with outliers.
Gisolf et al., (Gisolf et al., 2014) introduced a high speed common source identification on a ‘standard’ desktop com-
puter to tackle high computational cost in the comparison done to find out which images originate from the same
source in the clustering. They demonstrated that by applying several time-saving methods – grayscale conversion,
digestion, quantization and the modified NCC formula – one can analyze a large database in forensically relevant time,
without resorting to large and expensive computer clusters. They focused on the optimization of the time needed per
comparison.

Although some pioneering works introduced new approaches for joining clustering and outlier detection phases,
none of these algorithms, except k-means--, are applicable to large-scale datasets. However, the spherical structure
assumption of k-means-- and the original feature space limit its capability for clustering complex data. Liu et al. (Liu
et al., 2018) introduced a Clustering with Outlier Removal (COR) method, which partitions an entire dataset into
several clusters and one outlier cluster, separately. The COR method transforms the original feature space into the
partition space, where according to Holoentropy, the COR is designed to provide simultaneous consensus clustering
and outlier detection. To the best of our knowledge, only the work presented in (Phan et al., 2018) considered the outlier
detection, based on Density-Based Spatial Clustering with Applications with Noise (DBSCAN) algorithm, (Ester et al.,
1996), and evaluated their method robustness against the images which come from different sources and do not present
sufficient characteristics of their sources. However, their method was not evaluated in such a case that the number
of outliers exceeds the number of the other images. When dataset is perturbed by a large number of images shared
form other sources except users’ smartphones, an effective and efficient clustering algorithm is needed for detection
and removal of these images, i.e., shared images and taken images, such that the clustering of the the images taken by
user’s smartphones is not affected negatively.

3. Proposed method
We present a hierarchical graph based clustering method to detect and remove the shared images, performed in

the first steps of the clustering, and cluster the remaining images, i.e., the taken images based on their acquisition
smartphones. The flowchart of the proposed method is presented in Figure 1.
3.1. Preparation

Camera sensor imperfections remain stable as the residual noises in the images. Each residual noise is the difference
between the image content and its denoised version acquired by a de-noising filter d(). The residual noise of an image
I is extracted as follows, (Lukas et al., 2006):

RN = I − d(I) (1)
by averaging the residual noises extracted from n images taken by a given smartphone, the SPN, i.e., the camera
fingerprint, can be approximated by:

SPN = 1
n

n
∑

j=1
RNj (2)
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Figure 1: Flowchart of the proposed method.

Based on (1) and (2), it can be seen that the quality of the extracted residual noises and SPN is dependent on d() and
n. Block-Matching and 3D (BM3D) de-noising filter introduced by (Dabov et al., 2007) is an accurate way to extract
the residual noises with better qualities. Through BM3D, non-unique artifacts are removed by using zero-meaning all
columns and rows, and Wiener filtering in the Fourier domain, (Chen et al., 2008), (Lin and Li, 2016; Chierchia et al.,
2010).

The extracted residual noises are re-sized to a specific resolution. It is needed for computation of similarities
between the residual noises. In order to reduce the use of RAM and to make the algorithm scalable, we follow the
approach presented in (Lin and Li, 2017). Let N be the total number of residual noises in the dataset. The pre-
processed residual noises are randomly partitioned into t batches, i.e., B = {b1, b2, ..., bt}, where t = ⌈

N
q ⌉ and q

is the batch size. The parameter q is determined regarding the available size of RAM. For each batch, a correlation
matrix  is created, with each element (i, j) being NCC similarity between any two SPNs in the batch, calculated
by (3). The Normalized Cross Correlation (NCC) similarity between any two camera fingerprints fi = [x1, ..., xl] and
fj = [y1, ..., yl] is calculated as follows:

(i, j) =
∑l
n=1(xn − f i)(yn − f j)

√

∑l
n=1(xn − f i)2

∑l
n=1(yn − f j)2

(3)

where f i and f j represent the means of the two fingerprints, respectively. Generally, the correlations between the
fingerprints from the same camera are higher than those from different cameras (Fahad et al., 2014).
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3.2. Shared images removal based on DBSCAN
Outlier detection is a pre-clustering step that is usually performed in many density based clustering algorithms.

Through a density-based approach, the clusters of arbitrary shapes can be found. For instance, it can even find a
cluster completely surrounded by (but not connected to) a different cluster. DBSCAN is a density-based clustering
non-parametric algorithm proposed in (Ester et al., 1996). DBSCAN does not require to be provided with the number
of clusters in the data a priori, unlike k-means, k-medoids and hierarchical clustering. Giving some objects, DBSCAN
groups together the objects and marks these which lie alone in low-density regions as the ouliers. It finds the object’s
neighbors by density # on an n-dimensional sphere with radius �. The parameter # is defined as the minimum number
(a threshold) of the objects huddled together for a region to be considered dense, and � is a parameter specifying the
radius of the neighborhood. A cluster can be defined as the maximal set of density connected objects in the space.
DBSCAN is a strong and effective method when the distribution of values in the feature space can not be assumed.
Hence, it can handle the process of clustering the high dimensional residual noises specified by a large feature vector
and detect outliers. DBSCAN is robust to outliers.

We apply DBSCAN to the clustering just before the Markov clustering is performed and for the first iteration of the
processing of each batch, see Figure 1. Once the batch is purified by removing the discovered outliers, it is passed to
the following stages to cluster the remained residual noises into unknown number of clusters, each of them including
residual noises coming from the same smartphone. It is worth mentioning that the larger the size is considered for each
batch the better the effectiveness of the outlier detection is concluded, as the residual noises are compared in a larger
scale.
3.3. Hierarchical clustering

The clustering for each batch starts by considering each residual noise as a singleton cluster. It is performed in
an agglomerative hierarchical way by iteratively merging the similar clusters. At the end of each iteration of the
hierarchical clustering, the camera fingerprints corresponding to the merged clusters are updated according to (2).
Then, the obtained clusters from all the batches are grouped, and they are hierarchically partitioned and clustered
until no new cluster is found, see Figure 1. The hierarchical clustering has some drawbacks. A wrong assignment
may propagate the error to the following iterations in the clustering. Moreover, its computational burden is high as it
has to check all the pairs of clusters for merging, (Shirkhorshidi et al., 2014). In our proposed method, to handle the
mentioned drawbacks, we combine the hierarchical algorithm with the Markov clustering algorithm. We also embed
a cluster merging step based on an adaptive threshold to achieve precise and fast clustering.
3.4. Graph based clustering

Markov clustering is a fast and scalable graph based unsupervised learning algorithm, proposed in (Van Dongen,
2008). It has successfully been applied to different fields of science. It considers the objects as the vertices of a graph,
e.g., Q, and groups them regarding the weights of the edges, i.e., the similarities between the objects (Mesa, 2012).
The Markov matrix corresponding to the graphQ is defined by normalizing all the columns of the graph adjacency
matrix. A random walk is simulated over the vertices of the graph to increase and decrease the flow in strong and
weak currents in Q, respectively, (Varia, 2013). The random walk can be modeled as a Markov chain on the graph
Q. Starting from a vertex, a random walk is more likely to arrive at the vertices within the same cluster than those
in different clusters. The vertices of Q are considered as a set of states S = {s1, s2, ..., sn}, and the graph edges are
associated with the transition probabilities in = [p(i, j)] ∈ ℝn×n, where each element at index (i, j) is the transition
probability from vertex i to vertex j and

n
∑

i=1
p(i, j) = 1, 0 ≤ p(i, j) ≤ 1 (4)

By applying expansion and inflation operators to  alternatively, the clusters can be considered from the resulting
transition matrix at the converged state. The expansion operator performed based on matrix multiplication simulates
a random walk on the graph Q by:

exp = e (5)
where e is the expansion parameter. The jtℎ column of exp can be interpreted as the probability distribution of the
jtℎ of random walk. Subsequently, the inflation operator is performed on each element of the matrixexp as follows:
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inf (i, j) =
exp(i, j)�

∑n
k=1exp(k, j)�

(6)

By the inflation operator, the elements of the matrix exp are raised to the power of the inflation parameter �, and
then the columns are normalized. In each column, the elements which have very small values (less than a predefined
value &) are removed, and the remaining elements are re-scaled, to make the sum of each column equal to 1. This is
called pruning which is defined as follows:

pru(i, j) =

{

0, inf (i, j) < &
inf (i, j), otherwise (7)

The pruning decreases the number of non-zero elements ininf , which subsequently reduces the memory usage and
accelerates the clustering, (Satuluri, 2012). Global chaos  shows the rate of the changes in the probability values
related to each of the two consecutive iterations. The algorithm stops once the global chaos approximately is zero.
The value of  is calculated according to the maximum value of chaos denoted as j on every column j of pru,(Bustamam et al., 2012).

j =
max

i=1,2,..,n
pru(i, j)

∑n
i=1pru(i, j)2

(8)

 = max
j=1,2,..,n

j (9)
The details of the Markov clustering as the graph based clustering algorithm applied to the proposed method are
presented in Algorithm 1.

Algorithm 1: Markov clustering algorithm.
input: Pairwise correlation matrix,
output: Probabilities matrix, 
- expansion parameter: e
- inflation parameter: �
- global chaos: 
- prune parameter: &
- threshold for global chaos: �
- add self-loops to the graph , =  + 
- create the diagonal degree matrix of , 
- create Markov matrix,  = −1

while  > � do
- expansion on , based on (5)
- inflation on exp, based on (6)- pruning on inf , based on (7)- update  based on (8) and (9)
- =pru

return 

The Markov clustering receives the adjacency matrix , containing the similarities of the fingerprints, computed
by (3), in one batch, as an input. It produces the probability transition matrix , such that each entry of the matrix
represents the degree of the similarities between a pair of residual noises in the batch. The addition of self-loops to the
input matrix  prevents the dependency of the flow distribution on the length of the random walk, which ensures the
presence of at least one non-zero entry per column, (Satuluri, 2012). Considering two clusters ci and cj corresponding
Rahimeh Rouhi et al.: Preprint submitted to Elsevier Page 7 of 16
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to the vertices vi and vj in Q, if they share the same or similar fingerprint characteristics of a camera, the element
(i, j) is set to a non-zero value. Otherwise, it means the clusters are from different cameras and (i, j) is set to
0. In every iteration of the hierarchical clustering, the Markov clustering is used to each batch, see Figure 1. By
applying nearest neighboring to the columns of the obtained probability transition matrix, small cluster granularities
are generated. These representative and precise clusters are considered as the candidate clusters, which are more likely
to be from the same cameras. The candidate clusters are iteratively merged to discover larger clusters. This makes no
need to compute full-pairwise correlation matrix.
3.5. Cluster merging

The matrix of a batch may contain many sparse columns, i.e., the columns which are populated with many zero
values. The reason could be partitioning the residual noises into batches randomly. So, only the clusters corresponding
to non-sparse columns are kept, and the remaining clusters are passed to the next iterations to get a better chance for a
merging, as the clusters are being evolved. In the implementation, we consider a column as non-sparse if the number of
its non-zero elements is less than 20. For each non-sparse column corresponding to the cluster ci, its nearest neighborcluster, i.e., cj is found based on the highest probability value existing in the column. Then, the clusters ci and cj areselected as the candidate clusters for a merging. Usually, the residual noises from the same model of smartphones
present high correlations, and correspondingly high probabilities in  are produced. Accordingly, it is probable
that they are selected as the candidate clusters. Therefore, to make the proposed method more precise, in the cluster
merging, in addition to using the candidate clusters, we use an adaptive threshold. The adaptive threshold is updated
based on the quality of the obtained clusters in each iteration of the hierarchical clustering. It exploits the idea that
the more images from a given smartphone are precisely clustered, the better the quality of SPN can be estimated,
(Bloy, 2008). As the cluster size grows, the inter-camera and intra-camera correlation distributions are normally more
separable. Therefore, adaptively increasing the threshold can effectively prevent wrong merging of clusters, especially
those from the same model of smartphones. The adaptive threshold  is defined as follows, (Lin and Li, 2017):

 = max(�,
 
√

ncincj�
2
ci
�2cj

√

[(nci − 1)�2ci + 1][(ncj − 1)�2cj + 1]
) (10)

the parameter � is a minimum threshold working as a trust boundary of  . The terms nci and ncj shows the number
of the residual noises in the two clusters ci and cj , respectively, and  is a predefined scaling factor. The quality of
the cluster ci, that is �ci , is defined as the mean of the correlation values between all the pairs of residual noises in
the cluster. Given two candidate clusters ci and cj , if the correlation between the corresponding fingerprints fi and
fj , which is calculated by (3), is greater than the adaptive threshold, i.e., (fi, fj) >  , the clusters are merged.
Otherwise, they are not merged and passed to the next iteration of the algorithm.
3.6. Post-processing

As the final phase of the proposedmethod, post-processing is applied to the resulted clusters. The method generates
both fine and coarse clusters. While coarse clusters include a notable number of residual noises sharing the same camera
fingerprints characteristics, the fine clusters include few residual noises which do not share sufficient similarities with
the obtained camera fingerprints through the clustering. Due to the nature of the noise-like camera fingerprints, (Lin
and Li, 2017), and particularly the low resolution of the uploaded images on SNs, the presence of the fine clusters are
almost unavoidable. For the datasets with a variety of images coming from the same or different smartphone models
and brands, merging the fine clusters into the coarse ones may cause a drop in the quality of the clustering. Accordingly,
to present a more precise clustering tool for shared image analysis, we remove the fine clusters and preserve the coarse
ones. To distinguish the coarse clusters from the fine ones, we introduce a size-based score �i specified for each clusteras follows:

�i =
|ci|.|C|
N

(11)

whereN is the number of RNs, and ci is the itℎ cluster in the resulted set of clusters, i.e., C , from the proposed method.
If �i ≤ 1, the cluster ci is considered as a fine cluster, and it is excluded from C . Otherwise, we keep it as a coarse
cluster. Given the explanations above, the algorithm of the proposed method is presented in Algorithms 2.
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Algorithm 2: Proposed clustering algorithm.
input: pre-processed RNs
output: list of clusters, shared images CO and C taken images
- number of RNs,N
- scaling factor,  in (10)
- minimum threshold, � in (10)
- size of batches, q
- clustering initialization, Cold = {}
- considering a set of single clusters corresponding to the RNs, Cnew = {c1, c2, ..., cN}
- initializing a set of camera fingerprints with the residual noises corresponding to the clusters, F = {f1, f2, ..., fN}
- partitioning initialization, Bold = {}
- t = ⌈

N
q ⌉

- randomly partition Cnew into t batches with size q, Bnew = {b1, b2, ..., bt}- parameter for determining first iteration to apply DBSCAN, flag = 1
while |Bnew| ≠ |Bold | do

for k = 1 ∶ t do
while |Cnew| ≠ |Cold | do

- compute correlation matrix  by (3)
if flag then

- apply DBSCAN to
- put the found shared images in the cluster CO- extract the correlation matrix of normal RNs, i.e., N- = N

- apply Markov clustering to and generate the probability transition matrix  by Algorithm 1
- put non-sparse column’s indices in the list L
for i = 1 ∶ |L| do

- find the nearest cluster cj to the cluster ci from the list L
- compute the adaptive threshold  by (10)
if (fi, fj ) >  then

- merge clusters ci and cj
else

- continue
- put the obtained clusters in Cnew- update the camera fingerprints in F for the merged clusters by (2)
- Cold = Cnew

- consider all the obtained clusters from batches as a new cluster Cnew- Bold = Bnew-N = |Cnew|
- update t, t = ⌈

N
q ⌉

- partition the clusters in Cnew into t batches with size q, and form Bnew- flag = 0
- post-processing
- C = Cnew
return CO and C

To summarize, the proposed clustering method starts with randomly partitioning the dataset into small batches.
For each batch, the pairwise correlation matrix is calculated. DBSCAN is applied to each correlation matrix to detect
outliers and each batch is purified. Then, Markov clustering algorithm is applied to the correlation matrix of the
remaining RNs. By using the probability matrix, as the output of the Markov clustering, and nearest neighboring,
the candidate clusters to be merged are selected, and subsequently an adaptive threshold is computed, for merging the
clusters. The fingerprint for the merged clusters is updated through (2) and similar process is hierarchically performed
on the merged clusters. The clustering stops once no new cluster is found. The resulted clusters are scored based on
their sizes, and the coarse clusters, i.e., the clusters with a notable number of RNs sharing the same SPN characteristics,
are stored as the final result.
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4. Experiments and results
To validate the proposed method, we apply the VISION image dataset, (Shullani et al., 2017). After removing dark

and saturated images which are not applicable to the clustering task, we have 7480 Native images taken by 35 smart-
phones. The images were uploaded and downlowded on the main SNs platforms such as WhatsApp (W), Facebook
High Resolution (FH) and Facebook Low Resolution correspondingly we call them NA, W, FH, and FL. To see
how the proposed method performs on the images coming from the identical models of smartphones, that represents a
challenging task, we consider the subsets N

1 ⊆ N, W
1 ⊆ W, FH

1 ⊆ FH and FL
1 ⊆ FL, each of them includes

2250 images from 11 smartphones, two iPhone 4S, two iPhone 5, three iPhone 5c, two iPhone 6, and two Samsung
Galaxy S III models.
4.1. Experimental measures

The proposed algorithm is evaluated by different measures such as Precision rate  , Recall rate  also known as
True Positive Rate (TPR), F1-measure (1), Rand Index (RI), Adjusted Rand Index (ARI), Purity, False Positive Rate
(FPR). Computing True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN), different
measures can be obtained by (12) - (21):

 =
|TP|

|TP| + |FP| (12)

 =
|TP|

|TP| + |FN| (13)

1 = 2 ⋅  ⋅
 +

(14)

RI = |TP| + |TN|
|TP| + |FP| + |TN| + |FN| (15)

where |.| shows the number of the pairs in the corresponding set defined in i-iv. The value of RI varies between 0
and 1, respectively showing no agreement and full agreement between the clustering results and the ground truth. For
two random clusters, the average of RI is a non-zero value. To get rid of this bias, ARI was proposed in (Hubert and
Arabie, 1985):

ARI = RI − RI
1 − RI

(16)

Also, we use Purity and FPR in the evaluations as follows:

Purity =

∑

|C|
i=1

|ĉi|
|ci|

|C|
(17)

where |C| is the number of the obtained classes, ĉi denotes the number of residual noises with the dominant class label
in the cluster ci, and |ci| is the total number of residual noises in ci.

FPR =
|FP|

|FP| + |TN| (18)

In addition, in clustering, the ratio of the number of the obtained clusters that is nℎ over the number of ground truth
clusters denoted by ng is calculated as follows:

C =
nℎ
ng

(19)
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Table 1
Values of different parameters for proposed method.

Notation Value Description
q 1500 batch size for partitioning dataset
� 0.95 minimum threshold for a dense region in DBSCAN
# 20 threshold for neighborhood of each residual noise in DBSCAN
e 2 expansion parameter in (5)
� 1 inflation parameter in (6)
& 0.005 prune parameter in (7)
 2 initial value of global chaos in (9) and Algorithm 1
� 0.3 threshold for global chaos in (9)

 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.15 scaling factor in (10) for NA
1 ,NA

2 and NA

0.09 scaling factor in (10) for W
1 ,W

2 and W

0.07 scaling factor in (10) for FH
1 ,FH

2 and FH

0.03 scaling factor in (10) for FL
1 ,FL

2 and FL

� 0.004 minimum threshold for neighborhood in (10)

We calculate U for the clustering as well:

U =
nu
N

(20)

where nu is the number of unclustered RNs. Also, for the shared images detection, O is defined as follows:

O =
nd
no

(21)

where nd and no are the number of the detected and ground truth shared images, respectively. We evaluate the method
by all the mentioned measures in (12) - (21). For the datasets covering a variety of smartphone models and brands,
it is difficult to achieve the best values for all the mentioned measures. For example, merging the residual noises of
different cameras into the same cluster increases FPR, which can propagate the error to the following iterations in the
clustering. As a result,  and Purity decrease, although increases, (Lin and Li, 2017). We prefer to have the clusters
with high values of  , Purity, a low value of FPR, and accurate values of C .
4.2. Experimental setting

Regarding the memory constraint, we choose the resolution of 1024 × 1024, for re-sizing all the residual noises.
We need to set the parameters of the proposed method with the values which results in the best quality of shared
images detection and subsequently the clustering. For example, for the parameters � and #, for the applied DBSCAN
algorithm, we consider different ranges for � and #, which are respectively [0.991, 0.993, 0.995, 0.997, 0.999] and
[10, 15, 20, 25, 30]. We perform the parameter setting on the sample dataset NA

0 ⊆ NA, including 3500 images, 100
images from each of 35 smartphones are considered. The dataset NA

0 is perturbed by 500 shared images. We evaluate
the clustering, which is performed by selecting different values of the parameters, based on different measures defined
by (12) - (21). From Figure 2, it can be seen if the values of � and # are set with 0.995 and 20, respectively, the best
effectiveness for both clustering the taken images and detecting the shared images can be obtained. Setting � with the
values smaller than 0.995 results in the appropriate removal of residual noises of the shared images. Similar setting
process was done for other parameters. The parameters and their values are listed in Table 1.
4.3. Experimental results

Table 2 presents the results of the proposed method on the datasets NA, W, FH and FL in terms of both
clustering quality and outlier detection. The algorithm removed successfully the outliers with O > 90% and also
cluster the remained residual noises with high quality of different measures. We have set the number of outliers to 3000.
To compare the results of DBSCAN algorithm, we have applied another outlier detection method which is Distance
to K-Nearest Neighbor (DKNN), (Haque, 2019). Comparing the Tables 2 and 3, it can be seen that DBSCAN is more
reliable in the detecting the shared images. In the literature of the outlier detection, e.g., in (Taha and Hadi, 2019), it
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: DBSCAN parameters � and # affect shared images detection and clustering on NA
0 , perturbed by 500 shared

images, (a) Precision, (b) Recall, (c) F1-Measure, (d) Adjusted Rand Index, (e) Purity, (f) False Positive Rate, (g) number
of obtained clusters, (h) number of discovered shared images, and (i) number of unclustered images.

Table 2
Results (%) of the hierarchical graph based clustering method based on DBSCAN outlier detection, on different datasets
perturbed by 3000 shared images.

Dataset   1 ARI Purity FPR C O U

NA 0.996 0.754 0.858 0.854 0.996 0.000 37/35 2836/3000 595/10480
W 0.907 0.613 0.732 0.725 0.970 0.001 30/35 2686/3000 783/10480
FH 0.981 0.601 0.738 0.732 0.989 0.000 30/35 2834/3000 407/10480
FL 0.796 0.301 0.433 0.423 0.876 0.002 14/35 2608/3000 569/10480

has been mentioned that the number of outlier samples is much less than the number of other samples. However, in user
profile image analysis, it cannot always be true as users may share more single, cropped or filtered images than those
applicable to camera fingerprinting. So, in this challenging case, stability of the clustering algorithm is important. To
test the stability, we increase the number of shared images gradually and perform clustering. We apply the datasets
NA
1 , W

1 , FH
1 and FL

1 . The datasets are perturbed by images from the Web to simulate the shared images. The
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(a) (b)

(c) (d)

Figure 3: The hierarchical graph based clustering method is robust against the number of shared images in different
datasets.: (a) NA

1 , (b) W
1 , (c) FH

1 and (d) FL
1 .

Table 3
Results (%) of the hierarchical graph based clustering method based on DKNN outlier detection, on different datasets
perturbed by 3000 shared images.

Dataset   1 ARI Purity FPR C O U

NA 0.941 0.638 0.760 0.755 0.984 0.001 29/35 3000/3000 434/10480
W 0.885 0.575 0.697 0.690 0.949 0.002 27/35 3000/3000 745/10480
FH 0.994 0.467 0.635 0.628 0.992 0.000 26/35 3000/3000 913/10480
FL 0.700 0.281 0.382 0.375 0.790 0.005 12/35 3000/3000 1020/10480

Table 4
Results (%) of running time (seconds) of the proposed method for different datasets.

Dataset I/O Outlier removal Correlation Clustering Total

NA 7078 26 351 577 8032
W 4512 30 397 658 5597
FH 7548 25 402 803 8778
FL 6837 23 402 732 7994

shared images are increasingly added with the order 10%, 20%, 30%, ..., 150% of the 2250 images in the datasets. The
results of the clustering on the perturbed datasets are shown in Figure 3. The clustering is not affected, meaning that
it is stable against the shared images even for the increase of 150% of the taken images by user’s smartphones. The
fine fluctuations in the graphs are related to the random selection of residual noises to fill in each batch in the batch
partitioning step of the proposed method, see Figure 1.

Table 4 depicts the running time of the implementation of the proposed method on different datasets in terms of
I/O, outlier removal, correlation computation and clustering phases, separately.
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5. Discussion
Clustering the uploaded images by users on SN platforms is a challenging task as users may upload images from

different sources. In this paper, we have categorized the uploaded images into two groups of taken images and shared
images. By taken images, we mean images that contribute to fingerprinting their camera sources, while by shared im-
ages, we mean the images that are not directly referable to the user’s device and do not present sufficient characteristics
of sources and are not directly referable to the user’s device. Besides, in the clustering of the images from a variety of
smartphone models and brands, it is difficult to achieve the best values for all the mentioned measures in Section 4.1.
For example, merging the residual noises of different cameras into the same cluster increases FPR, which can propa-
gate the error to the following iterations in the clustering. As a result,  and Purity decrease, although  increases
(Lin and Li, 2017). We aimed to have the clusters with high values of  , Purity, a low value of FPR, and an accurate
value ofC ,U andO, since for this type of investigation, it is usually preferred to have the most accurate number
of clusters with high values of precision and purity. Table 2 shows a recall of 0.754 for the native dataset compared
to 0.301 for the FL dataset, meaning that the higher quality of the images we have, the better results of the clustering
we get. Whereas the results from W and FH prove that the method is also robust regarding the process of image
compression applied by SN platforms, that degrades the quality of the SPN. While, most of the running time of the
proposed method is spent for I/O, for loading residual noises into RAM, see Table 4. This implies that the more capac-
ity of RAM is provided, the faster implementation of the clustering is resulted. In this paper we presented an accurate
analysis on how the shared images influence the clustering of the taken images and fingerprinting the smartphones of
users in such a way that the number of shared images exceeds the number of taken images, while to the best of our
knowledge, has not been before investigated by the state-of-the-art woks. Through the proposed clustering method, it
is not needed to compute all the elements of full-pairwise correlation matrix. That is because of the Markov clustering
that introduces candidate clusters for a merging. In doing so, only the correlation of the more similar residual noises
are computed. Also, the adaptive threshold which is computed for the merging of the candidate clusters prevents from
merging the clusters including images from the identical models of smartphones resulting in high values of  , Purity
and accurate values ofC , see Table 2.

6. Conclusions
Clustering the images uploaded by users on their profiles is a way of fingerprinting the camera sources and it

is considered a challenging task since users may upload different types of images, i.e., the images taken by their
smartphones (taken images) and a variety images like single images from different sources, cropped images, or images
from the Web (shared images). In this paper, we propose a user profiles’ image clustering method without prior
knowledge about the type and number of the camera sources. The shared images make a perturbation in the clustering
task, so they have to be detected and removed from the clustering process. We have applied Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) technique to remove the shared images. The proposed method
exploits hierarchical and graph based clustering algorithms, and an adaptive threshold to cluster the images. Through
the clustering, Markov clustering introduces representative clusters, with a higher probability of coming from the
same camera, for merging. This accelerates the clustering as there is no need to compute the full pairwise correlation
matrix. The adaptive threshold for merging the representative clusters is updated during the hierarchical algorithm
that prevents merging the images from the identical models of smartphones. The proposed method is scalable and
applicable to large scale datasets as it partitions datasets into batches. Experimental results confirm the robustness of
the method against perturbed datasets and its effectiveness in the image clustering. It has been shown that the method
is stable against the shared images even for the increase of 150% of the taken images.
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