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A B S T R A C T   

Coffee quality is determined by several factors and, in the chemometric domain, the multi-block data analysis 
methods are valuable to study multiple information describing the same samples. In this industrial study, the 
Common Dimension (ComDim) multi-block method was applied to evaluate metabolite fingerprints, near- 
infrared spectra, sensory properties, and quality parameters of coffee blends of different cup and roasting pro
files and to search relationships between these multiple data blocks. Data fusion-based Principal Component 
Analysis was not effective in exploiting multiple data blocks like ComDim. However, when a multi-block was 
applied to explore the data sets, it was possible to demonstrate relationships between the methods and tech
niques investigated and the importance of each block or criterion involved in the industrial quality control of 
coffee. Coffee blends were distinguished based on their qualities and metabolite composition. Blends with high 
cup quality and lower roasting degrees were generally differentiated from those with opposite characteristics.   

1. Introduction 

The advances in the analytical instrument areas and the beginning of 
chemometric tools for extracting information from complex data sets 
have reached all areas of science and are also present and in continuous 
progress in the field of food science and technology. Concerning the 
analytical evaluation of foods, coffee is a complex chemical matrix that 
deserves extensive studies and explorations. In industrial quality con
trol, coffee is evaluated by several factors, including chemical, physical 
and sensory determinations (Baqueta, Coqueiro, Março, & Valderrama, 
2020; Baqueta, Coqueiro, & Valderrama, 2019; Craig, Botelho, Oliveira, 
& Franca, 2018; Ribeiro, Ferreira, & Salva, 2011). Although the com
bination of these criteria is often used to guarantee the quality and 
identity of coffee, the importance of these various criteria and their re
lationships has not been investigated in the industrial context. 

The chemical composition of coffee dictates its flavor and aroma, 
meaning its cup profile, and consequently its price during trading and 
export (Farah, Monteiro, Calado, Franca, & Trugo, 2006; Franca, Men
donça, & Oliveira, 2005; Ribeiro et al., 2011). In Brazil, for example, 

Coffea arabica L. (Arabica) is classified by cup quality in different cate
gories, including hard, rioysh, and rio, while Coffea canephora (var. 
Robusta) is classified from excellent to abnormal (Brazil, 2003). How
ever, in the country, many companies combine beans of different cup 
qualities to produce their commercial coffees, which increases the 
complexity of the coffee composition for analytical purposes. Blends are 
not only made to create new flavor profiles and meet demand according 
to consumer preferences but also to standardize quality and adjust the 
final coffee price (Craig et al., 2018; Dias et al., 2018). 

In the literature, some analytical approaches have been proposed to 
evaluate coffee blends, either to determine and predict their chemical 
composition (Assis, Pereira, Amador, Augusti, de Oliveira, & Sena, 
2019; Jumhawan, Putri, Yusianto, & T., & Fukusaki, E., 2016; Souard, 
Delporte, Stoffelen, Thévenot, Noret, Dauvergne, & Stévigny, 2018) or 
to identify and quantify adulterations (Bertone, Venturello, Giraudo, 
Pellegrino, & Geobaldo, 2016; Combes, Joët, & Lashermes, 2018; Wer
melinger, D’Ambrosio, Klopprogge, & Yeretzian, 2011). However, to 
date, no study has been carried out to characterize the quality and 
composition of coffee blends with different cup and roasting profiles, a 
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subject that deserves attention. 
Currently, the demand of the modern industry has propagated 

several claims and arguments to develop fast, simple, robust, and eco- 
friendly analytical methods with industrial application in the coffee 
market (Assis et al., 2019; Baqueta et al., 2020, 2019; Barbin, Felicio, 
Sun, Nixdorf, & Hirooka, 2014; Correia et al., 2018; Craig et al., 2018; 
dos Santos, Alvarenga, & Boffo, 2020; Milani, Rossini, Catelani, Pezza, 
Toci, & Pezza, 2020). These solutions include instrumental techniques 
such as proton Nuclear Magnetic Resonance (1H NMR) spectroscopy and 
Near-Infrared (NIR) spectroscopy (including portable and bench-top 
NIR equipment), which have achieved popularity for solving problems 
related to the coffee analytical evaluation (Barbin et al., 2014; Consonni, 
Polla, & Cagliani, 2018; Correia et al., 2018; Monteiro et al., 2018; Toci 
et al., 2018). 1H NMR and NIR spectroscopy are complementary tech
niques, where 1H NMR provides metabolite fingerprints and comple
ments the molecular information obtained with NIR spectroscopy. 
However, NIR equipment is relatively cheaper, simpler, automated, and 
less “information-heavy” than 1H NMR, especially when it is a portable 
NIR, making it more accessible for laboratory studies and routine 
analysis. 

Multiple product measurements, as in assessing coffee quality, have 
become easier today and, in the chemometric domain, multi-block data 
analysis methods are valuable for integrating and studying multiple 
information describing the same samples, extracting interesting features 
of multiple data blocks, in an exploratory way (Cariou, Jouan-Rimbaud 
Bouveresse, Qannari, & Rutledge, 2019; El Ghaziri, Cariou, Rutledge, & 
Qannari, 2016; Mishra et al., 2020). Common Component and Specific 
Weights Analysis (CCSWA), whose algorithm is currently called Com
Dim (for Common Dimension), is an exploratory tool that belongs to the 
family of multi-block methods (Bouveresse, Pinto, Schmidtke, Locquet, 
& Rutledge, 2011; Cariou et al., 2019; El Ghaziri et al., 2016; Qannari, 
Wakeling, Courcoux, & MacFie, 2000). Its main idea is to replace several 
separate multivariate exploratory analyses in each matrix (e.g. principal 
component analysis - PCA), or a data fusion followed by PCA, with a 
single multi-block data analysis applied to all of them, with the advan
tage to bring the ‘saliences’ of each block indicating the importance of 
each one and its variability in each dimension (Bouveresse et al., 2011; 
Mishra et al., 2020). In the literature, ComDim has been applied to 
characterize complex samples in several ways (Bouveresse et al., 2011; 
Loudiyi, Rutledge, & Aït-Kaddour, 2018; Martin et al., 2015; Ríos-Reina, 
Callejón, Savorani, Amigo, & Cocchi, 2019; Rosa et al., 2017). However, 
the potential of multi-block methods is little explored due to the lack of 
experience of many analysts (Mishra et al., 2020). Therefore, further 
investigations need to be done to explore the capacity of ComDim, 
especially in the context of the quality of coffee that would be interesting 
for industrial application. 

In view of the main factors involved in the coffee quality control in 
an industrial context, this case study hypothesized that a ComDim 
exploratory analysis could integrate and evaluate metabolite finger
prints (obtained with 1H NMR), NIR spectra, sensory properties, and 
quality parameters of coffee blends of different cup and roasting profiles, 
to explore their qualities and composition. Moreover, using the ComDim 
multi-block method, it was tried to establish relationships between 
multiple data blocks and understand the importance of each technique 
and method of analysis used in the coffee industry. Finally, the ability of 
the ComDim method was compared to a multivariate exploratory 
analysis using data fusion-based PCA. 

2. Materials and methods 

2.1. Sampling and industrial processing 

The samples of this study were provided by a coffee producer 
cooperative from Paraná State (Brazil). The coffee cherries were from 
the 2016/2017 and 2017/2018 crops and were obtained by dry process. 
The green beans were mechanically dried (CIA Lilla, Brazil) to a 

moisture content of 12% and dehusked using a coffee hulling machine 
(CIA Lilla, Brazil). Further details on the green coffee processing by this 
cooperative can be found in the literature (Baqueta et al., 2017). Pre- 
processed green coffees showed known differences in cup quality 
based on the Brazilian classification (Brazil, 2003). The samples of green 
Arabica coffee were previously classified by the cup as hard, rioysh, and 
rio, while Robusta was classified as excellent. A simplified description of 
how the raw beans were processed is provided below. 

In the industry, four blends (from different batches of around 225 kg 
each) were routinely manufactured with different roasting profiles and 
based on the previous classification of green coffees. The beans were 
roasted in an industrial Lilla roaster, model OPUS 40 (CIA Lilla, Brazil). 
The hard/rioysh blend with a medium-dark roasting degree was roasted 
at 240 ◦C for 15 min (coffee blend 1), hard/rioysh blend with a dark 
roasting degree was roasted at 260 ◦C for 15 min (coffee blend 2), 
rioysh/rio blend with a medium-dark roasting degree was roasted at 
255 ◦C for 15 min (coffee blend 3) and hard/Robusta blend with a light 
roasting degree was roasted at 210 ◦C for 20 min (coffee blend 4). The 
roasted beans were then ground in an industrial Lilla grinding roller, 
model Orion (CIA Lilla, Brazil) with fine adjustment. 

During sample collection, performed at random to include inter- and 
intra-batch variations in manufactured coffee blends, the same process 
conditions mentioned above were followed. A total of forty-eight 
genuine samples (0.5 kg per sample) were collected and considered in 
this study, representing the industrial process where tons of coffee were 
being produced. From these, fifteen samples were collected for coffee 
blend 1, fifteen were from coffee blend 2, and fifteen were from coffee 
blend 3. From coffee blend 4, which is a superior coffee, three samples 
were collected due to the lowest production in the sector. All samples 
have the purity and quality seals of the Brazilian Coffee Industry Asso
ciation (ABIC). Coffee blend 1 has the traditional seal, coffee blends 2 
and 3 have the extra strong seal, and coffee blend 4 has the premium 
seal. 

It is worth mentioning that coffee blends are real samples, manu
factured over several days and represent the inherent complexity and 
real variations in coffee processing. In addition, the analyses made on 
the samples are described below. All measurements (physicals, chemi
cal, and sensorial) were made with a single analysis, and realized in the 
routine analysis of the coffee industry. 

2.2. Traditional analyses in the coffee industry 

Four quality parameters (granulometry, color, infusion time, and 
moisture content) were evaluated in all coffee blend samples (n = 48) as 
is usually done in the industry, using methods described previously in 
the literature for the same samples (Baqueta et al., 2020). Briefly, 
granulometry was measured using 100 g of each sample on a vibrating 
platform (Bertel, Caieiras, Brazil) for 10 min and 2 mm in amplitude. 
Color measurement was performed on a Minolta colorimeter (Chroma 
Meter CR-410, Japan) with standard D65 lighting and normal colori
metric viewing angle. The colorimeter was calibrated to provide results 
similar to those of the Agtron Roast Color Classification System. The 
color was expressed in parameters developed by the Commission Inter
nationale de Eclairage (CIE): luminosity (L*), green–red component (a* 
coordinate), and blue-yellow component (b* coordinate). To evaluate 
the infusion time, coffee powders (100 g) were extracted with filtered 
water (1000 mL) at 92 ◦C by percolation with Melitta 103 filter papers 
(Guaíba, Brazil). The infusion time parameter, which means the coffee 
extraction time, was measured from the beginning to the end of the 
beverage extraction. The moisture content was determined in 3 g of 
roasted and ground coffee samples using an Infrared Moisture Analyzer 
(Gehaka IV2000) in “auto-dry” mode at 105 ◦C. 

The professional cupping was also applied as is usually done in the 
Brazilian industry, using a method previously described for the same 
samples (Baqueta et al., 2019) and according to technical recommen
dations/standards from ABIC (ABIC, 2018). Due to the participation of 
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cuppers, this work was authorized by the Research Ethics Committee of 
UTFPR – Paraná – Brazil, under protocol number 2.810.398. 

Each coffee beverage (n = 48) was prepared for the cupping pro
cedure: the coffee powders (100 g) were extracted with filtered water 
(1000 mL) at 92 ◦C by percolation with Melitta 103 filter papers 
(Guaíba, Brazil). The beverages were evaluated by two professional 
cuppers who work commercially at the coffee cooperative and have 
more than 20 years of experience in coffee cupping. The professional 
cuppers were men from 50 to 55 years old, hired by the coffee industry 
to evaluate coffee beverages. The cuppers tasted coffee beverages two to 
four times and evaluated nine specific sensory properties, including 
powder fragrance, drink aroma, acidity, bitterness, flavor, body, 
astringency, residual flavor, and overall quality (ABIC, 2018). The final 
notes were given using a scale presented in our previous study (Baqueta 
et al., 2019), where 0 represents an “unpleasant coffee” and 10 an 
“excellent coffee“. 

2.3. Spectral techniques 

In addition to the traditional methods described above, the coffee 
blend samples were investigated by two instrumental techniques: 
portable NIR spectroscopy and a 1H NMR-based metabolomics 
approach. These techniques were included to complement the charac
terization of the samples, obtaining more specific information on the 
metabolite composition of coffees with 1H NMR and exploring the po
tential of portable NIR to monitor coffee quality in a faster and more 
accessible way. 

2.3.1. Portable NIR spectroscopy 
To avoid the need for previous pretreatments, coffee powders (n =

48) contained in the packages were analyzed directly using a portable 
NIR spectrometer (microNIR™ 1700) from JDSU Uniphase Corporation 
with a glass cuvette in reflectance mode. The reflectance spectra of each 
sample were recorded from 906 to 1676 nm (32 scans, step of 6.20 nm). 
The blank was evaluated using a standard NIR reflectance (Spec
tralon™) with a diffuse reflection coefficient of 99%, while a dark 
reference (zero–to simulate non-reflection) was obtained with the lamp 
off. The NIR spectra were recorded from an aliquot of approximately 1 g 
of each sample of ground coffee. 

2.3.2. 1H NMR-based metabolomics 
The coffee samples (n = 48) were analyzed using a 1H NMR-based 

metabolomic approach. For this procedure, all reagents were pur
chased from Sigma Aldrich, except deuterated solvents (H2O-d2 and 3- 
(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt–TMSP purchased 
from Eurisotop. The aqueous extracts were obtained by simulating the 
conditions used to prepare the coffee beverage: one hundred milligrams 
of the ground and roasted coffee were extracted using 1.5 mL of phos
phate buffer (90 mM, pH 6.0) in H2O-d2 containing 0.01% of TMSP as 
standard, for 1 h in a preheated bath maintained at a fixed temperature 
of 90 ◦C. 1H NMR spectra were recorded at 298 K using a Varian 14.4 T 
NMR instrument (600.13 MHz operating at 1H frequency) equipped with 
a high-field triple resonance probe, using H2O-d2 for the internal lock. 
Relaxation delay of 2.0 s observed pulse of 5.80 µs, and the sum of 256 
scans were acquired for each sample. The acquisition time was 16 min 
and the spectral width of 16.00 ppm. A presaturation sequence was used 
to suppress the residual water signal at 4.83 ppm (power = 22 Hz, 
presaturation delay = 2 s). 

2.4. Preliminary data processing and first evaluation 

Before performing multi-block data analysis, information on quality 
parameters and sensory properties were evaluated by simple descriptive 
statistics, such as average and range, using Microsoft Excel 2013, to give 
an idea of the variation of these results for each coffee blend. 

For 1H NMR spectra, free induction decays (FIDs) were Fourier 

transformed, and the resulting spectra were phased, baseline-corrected, 
and calibrated for TMSP at 0.00 ppm. The spectral intensities were 
reduced to integrated regions of equal width (0.04 ppm) corresponding 
to the region of 0.00 to 12.00 ppm with scaling on the standard at 0.00 
ppm using the NMR MestReNova software (Mestrelab Research, Spain). 
The regions from 5.00 to 4.50 ppm were excluded from the analysis due 
to residual water signals. Binning was performed using MestReNova 
software, normalized to the standard and each bin was the average sum 
of 0.04 ppm intervals. First, the 1H NMR data were analyzed visually to 
identify differences between the spectra of the four coffee blends and to 
identify their metabolites. The identification of metabolites in 1H NMR 
fingerprints was based on the chemical shifts, coupling constants, and 
comparison with data from the available literature on coffee (Toci et al., 
2018; Wei, Furihata, Miyakawa, & Tanokura, 2014). 

For portable NIR spectroscopy, the reflectance spectra were trans
formed into absorbance and pre-processed by multiplicative scatter 
correction (Geladi, MacDougall, & Martens, 1985) and Savitzky–Golay 
smoothing (Savitzky & Golay, 1964) with a 5-point window and first- 
order polynomial. This data pre-processing performed through Matlab 
software version R2007b (The MathWorks Inc., Natick, USA) was used. 

Additionally, the data sets were concatenated in a matrix (with the 
same pre-processing described below in Section 2.5. Multi-block data 
analysis) to identify possible outliers and assess the overall quality of the 
data. Possible outliers were assessed using a test of leverage against Q 
residuals. While leverage represents how far a sample is from the data 
center, Q residuals represent non-modeled residuals. The samples can 
certainly be considered outliers when they simultaneously show high 
leverage and high Q residuals (Dias et al., 2018). On the other hand, PCA 
was carried out to explore the concatenated matrix. More information 
about the PCA can be found in the literature (Ferreira, 2015). 

2.5. Multi-block data analysis 

The main idea of this work is to use ComDim multi-block data 
analysis for the simultaneous study of multiple sets of matrices with 
different variables that describe the coffee blend samples. In multi-block 
methods, multivariate data transformation techniques are specific to 
highlight the contributions of different data blocks (Mishra et al., 2020). 
The ComDim procedure begins by organizing the data into blocks, where 
each block contains data related to a technique or method used, 
resulting in four data blocks investigated in this study. The first block 
contained the information of the 1H NMR spectra (chemical shifts), the 
second of the NIR spectra (absorbance), the third of the quality pa
rameters (granulometry, infusion time, moisture content, and L*, a*, 
and b*), and the fourth of the sensory property notes (powder fragrance, 
drink aroma, acidity, bitterness, flavor, body, astringency, residual fla
vor, and overall quality) determined in each sample. 

The quality parameters were auto-scaled, while the sensory proper
ties, NIR, and 1H NMR spectra were normalized by the standard devia
tion. After concatenation, each block was normalized by its Frobenius’ 
norm so that they all have the same total variance (Bouveresse et al., 
2011; El Ghaziri et al., 2016; Mishra et al., 2020). 

The ComDim algorithm used in this study was developed and coded 
for the Matlab software and the SAISIR Toolbox can be downloaded for 
free at http://www.chimiometrie.fr/saisirdownload.html (Cordella & 
Bertrand, 2014). Details about the algorithm are presented point by 
point in the literature (Bouveresse et al., 2011; Cariou et al., 2019; El 
Ghaziri et al., 2016; Qannari et al., 2000). In general, for many multi
variate data analysis techniques, as in PCA, a weighted sum of the 
‘variable variance-covariance’ matrix is usually calculated. In the 
ComDim-based method, however, the main intention is to calculate a 
weighted sum of the ‘sample variance-covariance’ matrix of each block, 
and then extract its first principal component standardized as the first 
‘Common Dimension’ (CD) or ‘Common Component’ (CC). The algo
rithm extracts the global and local components from multiple blocks of 
data sequentially and then iteratively calculates the weight or ‘salience’ 
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of each block for the calculated CC. ‘Salience’ indicates the importance 
of each block in the construction of the CC, and it is then possible to 
calculate a percentage of the variability extracted by each dimension or 
CC. After calculating the first CC, each original data block matrix is 
deflated, and the procedure is repeated for calculating the second CC, 
and so on. Thus, each CC is the first PC of a weighted sum of the ‘sample 
variance-covariance’ of deflated matrices (Bouveresse et al., 2011; 
Cariou et al., 2019; El Ghaziri et al., 2016; Qannari et al., 2000). The 
ComDim analysis provides informative graphs showing similarities and 
differences between the samples through scores, the importance of each 
block and its relationships through saliences, and the origins of variables 
responsible for the similarities and differences observed in the samples 
through loadings. As well as the clustering of samples reveals similarities 
between the samples and the clustering of variables indicates inter- 
variable relationships, in the ComDim method, similar salience pro
portions indicate inter-block relationships (Bouveresse et al., 2011; 
Cariou et al., 2019; El Ghaziri et al., 2016; Rosa et al., 2017). 

3. Results and discussion 

3.1. Quality parameters evaluation 

The individual results of the four quality parameters determined in 
each sample are available in Table S1 as Supplementary Material and a 
simple descriptive statistic, including average and range for each coffee 
blend, are presented in Table S2. In general, the samples presented 
granulometry from 0.60 to 0.85 mm (from 80.95% to 93.27% in 100 g of 
sample), infusion time ranged from 3.28 to 5.23 min, and moisture 
content from 3.10 to 5.50%. For the roasting degree, evaluated by lu
minosity parameter (L*), the samples of coffee blend 1 had an average of 
51.80, while samples of blend 2 had an average of 42.20. The samples of 
coffee blend 3 had an average luminosity of 46.01, and blend 4 an 
average of 58.64. This shows that the coffee blends have a well-defined 
roasting degree considering the average values and generally follow a 
pattern. This was expected because the industry uses different roasting 
profiles for each coffee blend, but maintains a pattern of grinding, 
moisture, and infusion time. The average results for the four quality 
parameters are within the identity and quality standard of the industry 
that supplied the samples (Baqueta et al., 2020) and following ABIC 
technical recommendations for commercial coffees (ABIC, 2018). 

3.2. Coffee beverage evaluation 

Regarding professional cupping, the result of each sensory property 
for each sample is presented in Table S3 in the Supplementary Material. 
The simple descriptive statistic, including the average and range of each 
coffee blend, are presented in Table S4. The final notes differed exten
sively for coffee blends 1, 2, and 3 compared to blend 4. Coffee blend 4 
received the highest notes for all analyzed attributes with overall quality 
equal to 7.00, followed by coffee blend 1 (6.05), 2 (5.81), and 3 (5.04). 
The sensory quality of coffee blends is within the technical recommen
dations of ABIC for different categories (ABIC, 2018): traditional or extra 
strong coffees must have an overall quality from 4.5 to 5.9 (coffee blends 
1, 2, and 3) and premium from 6.0 to 7.2 (coffee blend 4). 

Fig. S1 annexed on Supplementary Material shows the average re
sults of specific sensory properties for each coffee blend and its profiles. 
Most of the properties analyzed received very close notes to each other, 
which justified the overlapping data. Also, it was observed that the notes 
attributed to the overall quality of the coffee blends were related to the 
initial profile of the cup and the degrees of roasting. Blend 3 (rioysh / rio 
medium-dark) with low cup quality and blend 2 (hard-rioysh dark roast) 
with the high roasting grade received lower notes, while blends 1 and 4 
with better cup quality and lighter roasting degrees (mixtures 1 and 4) 
received higher notes. This indicates or suggests that the final note of 
coffee blends is highly dependent on the cup profile of the raw coffee 
before blending and the roasting conditions to which they are subjected. 

However, lower cup quality does not mean absolutely that coffee is not 
of quality, but that it has lower points in professional cupping. Besides, 
this often does not reflect the preference of coffee consumers (Giacalone, 
Fosgaard, Steen, & Münchow, 2016). 

3.3. Qualitative evaluation of 1H NMR and NIR spectra 

Before performing the chemometric analysis, the spectral data were 
examined visually. Fig. 1 shows a representative 1H NMR fingerprint for 
each studied coffee blend ranging from 0.00 to 9.50 ppm. Fig. 2A and B 
show the 1H NMR spectra of a representative sample with attribution of 
the identified metabolites. Fig. S2 showed in the Supplementary Mate
rial shows the 1H NMR fingerprints of all samples plotted with Matlab 
software and used in the ComDim analysis. 

In general, 1H NMR fingerprints showed a complex resonance 
pattern, since there are many different compounds present in the coffee 
blend extracts. At the first glance, the four 1H NMR fingerprints looked 
extremely similar. Based on previous investigations of coffee metabo
lites (Toci et al., 2018; Wei et al., 2014) and detailed analyses of 
chemical shifts and patterns, it was possible to attribute the major me
tabolites present in the coffee blends. The signals at δ 3.29, 3.49, 3.89, 
and 7.85 were attributed to caffeine; at δ 4.41, 8.04, 8.57, and 8.81 to N- 
methylpiridinium; at δ 4.45, 8.12, 8.84, and 9.13 to trigonelline; at δ 
8.49 to formate; at δ 1.33, and 4.15 to lactate; at δ 1.96 to acetate; at δ 
3.33, 3.65, and 4.09 to myo-inositol; at δ 1.88, 1.99, 2.15, 3.55, 4.03, and 
4.14 to quinic acids; at δ 2.53 to γ-quinide; at δ 3.21 to choline; and the 
regions at δ 0.82–0.99 to lipids; and δ 6.28–7.66 to chlorogenic acids 
(CGAs). However, as it is not possible to determine qualitative differ
ences in the metabolite content of coffee blends by visual inspection, the 
1H NMR fingerprints were subsequently explored by ComDim analysis. 

Fig. 3 shows the NIR spectra of all samples. Observing the changes in 
the NIR spectra, it can be seen that all samples showed absorption bands 
at all wavelengths; however, a higher absorption at the third (900–1000 
nm), second (1100–1200 nm), and first (1400–1500 nm) overtones can 
be observed. Although some molecular vibrations can be attributed to 
the NIR spectra, the complex composition of coffee makes it difficult to 
indicate which compounds are responsible for the absorption bands 
(Barbin et al., 2014). In general, absorption bands can be attributed to 
most components found in coffee, such as caffeine, lipids, sucrose, and 
other carbohydrates, proteins, trigonelline, chlorogenic acids, and 
phenols (Barbin et al., 2014; Ribeiro et al., 2011). The absorption bands 
around 900–1000 nm can be attributed to lipid vibrations (Barbin et al., 
2014) and also to phenolic compounds (Correia et al., 2018; Monteiro 
et al., 2018), which are products of the thermal process degradation of 
CGAs (Farah et al., 2006; Franca et al., 2005). The absorptions on 
1100–1200 nm can be attributed to vibrations of caffeine, lipids, and 
carbohydrates (Barbin et al., 2014). Other carbohydrate vibrations can 
also be observed in the region from 1400 to 1500 nm (Barbin et al., 
2014). For the region from 1400 to 1676 nm, the absorption bands can 
be attributed to chlorogenic acids, phenols, alcohols, water, and lipids in 
coffee (Barbin et al., 2014; Correia et al., 2018; Ribeiro et al., 2011). 
However, as the changes along the NIR spectra are not visible, the 
application of chemometrics is again necessary to determine possible 
differences between coffee blend profiles. 

3.4. Outlier identification and data fusion evaluation by PCA 

Possible outliers were investigated among the samples. According to 
Fig. S3A presented in the Supplementary Material, no sample presented 
simultaneously high leverage and high Q residuals, indicating that po
tential outliers were not identified in the samples. Also in Supplemen
tary Material, Fig. S3B shows PCA scores plot obtained in a 
concatenated matrix using the same pre-processing data applied in the 
multi-block data analysis. The first two principal components (PCs) 
explained the major variation observed in the data structure (>98%, 
96.12% in PC1, and 2.02% in PC2). Based on the PCA scores distribution 
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in PC1, there is no clear differentiation of the coffee blends because all 
samples presented positive scores. On the other hand, PCA scores in PC2 
demonstrated that all samples from coffee blend 4 presented positive 
scores and were distinguished from other coffee samples. There is also 
some separation between the samples of blend 1 that generally pre
sented positive scores, while the samples of coffee blends 2 and 3 pre
sented generally negative scores. However, the PCA does not make it 
possible to explore the importance of each data block to characterize the 
samples and explore their inter-block relationships, which makes it 
unfavorable compared to the ComDim, which performs data analysis 
simultaneously, providing the importance of each data set in a multi- 
block study. 

3.5. ComDim-based method 

The main idea of this study was to verify the ability of the ComDim 
analysis to explore the multiple data blocks that describe coffee blends 
and understand the importance of each technique/method, and its re
lationships in the industrial context. For this, 1H NMR fingerprints 
(block 1), NIR spectra (block 2), quality parameters (block 3), and 
professional cupping results (block 4), were considered. 

Fig. 4 shows the results obtained with the ComDim analysis, where 
the informative graphics show the saliences (Fig. 4A), scores (Fig. 4B), 
and loadings (Fig. 4C). In the ComDim procedure, the scores, saliences, 
and loadings are calculated for each CC or common dimension. Five CCs 
were computed on this ComDim analysis and considered sufficient to 
take into account all sources of variation in the four data blocks 
(Fig. 4A). No significant information was observed in more than five 
CCs. From CC2 to CC5 a little variability was observed, which reinforce 
the no need for more CCs in the model. In general, in common di
mensions from CC2 to CC4, the greatest salience was only for quality 
parameters (block 3) while in CC5 the greatest salience was only for 1H 
NMR spectroscopy. As the main idea is to verify relationships among the 
data blocks (i.e. similar salience proportions indicating inter-block re
lationships), the results of these CCs were not interesting because it does 
not show similar saliencies (importance) in the 4 blocks simultaneously. 
The quality parameters were of great importance in CC2, CC3, and CC4, 
probably associated with the degree of roasting (color parameters – L*, 
a*, and b*) well-defined for each coffee blend, as previously mentioned. 

In the exploratory analysis ComDim, the first CC (CC1) showed the 

searched results, demonstrating natural clusters of samples, the impor
tance of each block, and the relationships between the information ob
tained from the portable NIR, the 1H NMR fingerprints, the sensory 
properties and the quality parameters of coffee blends. With a ComDim 
analysis applied to the blocks, it was possible to demonstrate the 
importance of each criterion involved in the industrial quality control of 
coffee and to distinguish profiles of coffee blends and their character
istics. Therefore, only the scores and loadings referring to the projection 
in CC1 were discussed below. 

For CC1 (Fig. 4A), saliences show that all blocks of data contribute to 
the dispersion behavior of the samples, showing importance in this 
decreasing order: portable NIR (block 2), sensory properties (block 4), 
1H NMR spectroscopy (block 1), and quality parameters (block 3). 
Portable NIR spectroscopy was the main block to distinguish the quali
ties of coffee blends, as it showed the greatest salience; however, the 
sensory properties, the fingerprints of the metabolites obtained with 1H 
NMR, and the quality parameters also showed importance, indicating 
that the information contained in the blocks are complementary and can 
have an interesting synergistic effect. The quality parameters (block 3) 
showed less contribution compared to the other blocks, showing that 
only the parameters color (L*, a*, and b*) and moisture content were 
relevant in the ComDim analysis, while granulometry and infusion time 
were not significantly related. This suggests that granulometry and 
infusion time parameters are not very important to differentiate the 
coffee blends. However, it is possible to establish a relationship between 
the coffee roasting degree and the information obtained by other tech
niques and methods. 

The scores of ComDim (Fig. 4B) were evaluated to highlight possible 
clusters according to their characteristics and it was observed that the 
coffee blend samples were differentiated based on their qualities and 
metabolic composition. Coffee blends with high cup quality and low 
degrees of roasting (blend 1 – samples from 1 to 15, and blend 4 – 
samples from 46 to 48) were generally differentiated from those with 
opposite characteristics: lower cup quality and a high degree of roasting 
(blend 2 – samples from 16 to 30, and blend 3 – samples from 31 to 45). 
Samples of coffee blend 1 and 4 had generally negative scores, while 
samples of coffee blend 2 and 3 had more positive scores. Furthermore, 
these clusters were more consistent than when compared to the PCA 
scores, since it is possible to see a clearer marginal separation between 
the samples, even with a dispersion not completely ‘condensed’ between 

Fig. 1. 1H NMR fingerprints. Coffee blend 1, hard/rioysh medium-dark roast (A); Coffee blend 2, hard/rioysh dark roast (B); Coffee blend 3, rioysh/rio medium-dark 
roast (C); and Coffee blend 4, hard/Robusta light roast (D). 
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the groups. This shows that the specific data transformations in the 
multi-block methods are indeed interesting to highlight the contribu
tions of the different blocks in the visualization of the data, which is 
generally not done by the PCA. 

Despite the interesting differentiation, a detailed observation of the 
scores (Fig. 4B) shows that some samples of coffee blend 3 (rioysh/rio 
medium-dark roast), and mainly 1 (hard/rioysh medium-dark roast) and 
2 (hard/rioysh dark roast), presented positive and negative scores. The 
samples of blend 1 and 2 belong to the same blend, but with different 
degrees of roasting. At the same time, samples from both blends (1, 2, 
and 3) are manufactured with rioysh coffee in common. As this study is 
carried out with real samples, these results provide two interesting ob
servations. The first, in the case of coffee blends 1 and 2, which are 
similar but roasted under different conditions, the results show that if 
the roasting profile is not strictly followed by the professional roasters, 
the final blend profile can be compromised, leading to ambiguity in the 
final characteristics of the coffee blend, which is undesirable and very 
worrying in an industrial situation. The second point is about the pres
ence of rioysh coffee in both blends. Since ComDim analysis is an 

exploratory technique and is therefore unsupervised, it is possible to 
infer that the clusters formed reflects the true data structure and is not 
the result of inadequate data manipulation. In other words, this in
dicates that, despite the characteristics resulting from the roasting, the 
coffee blends can still bring chemical information from the initial cup 
profiles of coffees before blending, directly influencing the variation of 
the CC1 scores. 

Regarding the loadings in Fig. 4C, which are used to display the 
variables that highlight the relationships among the data blocks, the 
coffee samples from blends 1 and 4 were related with 1H NMR resonance 
signals located on the negative side, NIR absorbance in the range 
1400–1676 nm, color parameters (L*, a*, and b*), and with all sensory 
properties (powder fragrance, drink aroma, acidity, bitterness, flavor, 
astringency, residual flavor, and overall quality), except with body 
sensory property. In contrast, coffee samples from blends 2 and 3 
exhibited an opposite trend. These samples were related to 1H NMR 
resonance signals on the positive side, NIR absorbance in the 906 to1400 
nm range, moisture content, and body sensory property. The identifi
cation of these variables within each data block and their importance to 

Fig. 2. Representative 1H NMR spectra of coffee blends with resonance signals assigned: A shows the range of 0.0 to 10.0 ppm and B shows the expansion of the 
range of 1.8 to 4.4 ppm. 
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differentiate coffee blends are discussed in detail below. 
Regarding the contribution of the metabolites, pointed out by the 

chemical shifts in ComDim analysis (1H NMR loadings in Fig. 4C), it was 
feasible to highlight possible markers to characterize coffee blends. The 
1H NMR loadings in Fig. 4C were expanded and shown in Fig. 5 with the 
assignment of resonance signal. From this plot (Fig. 5), the highlighted 
metabolites responsible for the differentiation of coffee blend samples 
were characterized by trigonelline (δ 4.45, 8.12, 8.84, and 9.13), 
formate (δ 8.49), caffeine (δ 3.29, 3.49, 3.89, and 7.85), chlorogenic 
acids (δ 5.37, 5.45, 6.31, 6.41, 6.88, 7.05, 7.13, and 7.61), choline (δ 
3.21), lactate (δ 1.33), citrate and/or malate (δ 2.69), lipids (δ 0.84, 
0.93, and 1.00), N-methylpyridinium (δ 4.41, 8.04, 8.57, and 8.81), 
quinic acids (δ 1.89, 2.01, 2.08, and 4.17) and myo-inositol (δ 3.33, 3.65, 
and 4.09). Among these metabolites, trigonelline, formate, caffeine, 
chlorogenic acids, choline, lactate, citrate/malate, and lipids were found 
to be markers for coffee blends with high cup quality and low degrees of 
roasting (coffee blends 1 and 4), while N-methylpyridinium, quinic 
acids, myo-inositol, and lipids were found as markers of blends with 
opposite characteristics: lower cup quality and high degrees of roasting 
(coffee blends 2 and 3). 

Regarding the loadings for portable NIR spectroscopy (Fig. 4B), 
indicated by the ComDim analysis, coffee blend samples with high cup 
quality and lower roasting degrees (coffee blends 1 and 4) were differ
entiated by strong absorptions in the region from 1400 to 1650 nm. The 
signals in this region can be attributed to carbohydrates, CGAs, and 
phenols vibrations, as well as signals of O – H first overtone from R–OH, 
and N – H first overtone from R–NH that can be related to lipids, pro
teins, caffeine, and water present in coffee (Barbin et al., 2014; Correia 
et al., 2018). On the other hand, coffee blend samples with lower cup 
quality and a high roasting degree (coffee blends 2 and 3) were char
acterized by strong absorptions in the region between 906 and 1400 nm, 
with two maximum vibrations, ranging from 1150 to 1200 nm and from 
1200 to 1400 nm. The region of 900–1200 nm can be attributed to 
phenolic compounds and lipids in coffee (Correia et al., 2018; Monteiro 
et al., 2018; Ribeiro et al., 2011). This region also corresponds to the 
C–H third overtone, O – H first overtone from R–OH, N – H first 
overtone from R–NH, C – H third overtone from HC=CH, C – H second 
overtone from C=CH, C – H third and second overtones from CH3, and 
C–H third and second overtones from CH2 (Barbin et al., 2014; Correia 
et al., 2018). The region between 1200 and 1400 nm can be attributed to 
caffeine, proteins, lipids, and carbohydrate vibrations, as well as other 
chemical assignments commons in coffee composition, such as the sec
ond overtone of C–H, the second overtone of C–H from CH2, the first 
overtone of C–H combination bands from CH3, and first overtone of 

O–H from ArOH, CH2, and CH3 (Barbin et al., 2014; Ribeiro et al., 
2011). 

Regarding the loadings for professional cupping (Fig. 4C), the 
ComDim analysis pointed out the powder fragrance, drink aroma, 
acidity, bitterness, flavor, astringency, residual flavor, and overall 
quality as the main sensory properties responsible for differentiating the 
coffee blends 1 and 4, while body sensory property was exclusively 
related to the coffee blends 2 and 3. When examining the average and 
range of sensory properties in Table S4 combined with the sensorial 
profile of coffee blends in Fig. S1 (both annexed in the Supplementary 
Material), most of the analyzed properties received notes very close to 
each other and overlap, except for overall quality (a synthesis of all 
properties) and body. Therefore, this indicates that, besides the overall 
quality, the beverage body is an important sensory marker to differen
tiate the final quality of coffee blends. 

In an attempt to establish a relationship between the sensory prop
erties and metabolite composition of coffee blends, which was supported 
by molecular information from portable NIR, the ComDim analysis 
demonstrated that quinic acids, myo-inositol, and mainly N-methylpyr
idinium and lipids were related to the property of the body, while 
trigonelline, formate, caffeine, chlorogenic acids, choline, lactate, cit
rate, and lipids were related to powder fragrance, drink aroma, acidity, 
bitterness, flavor, astringency, residual flavor, and overall quality. The 
relationship of metabolites with sensory properties is possible because 
greater and similar saliences proportions were found for the metabolic 
composition and sensory property data blocks, as well as for the NIR 
spectra (see Fig. 4A in CC1). As mentioned earlier, ComDim has the 
ability to reveal the relationships between data blocks when the sa
liences or “weights” of the data blocks are close. Previous studies (Craig 
et al., 2018; Farah et al., 2006; Franca et al., 2005; Ribeiro et al., 2011) 
have shown that among the sensory properties of the coffee beverage, 
the body is related to metabolites such as lipids and proteins. On the 
other hand, the overall quality is a combination of all sensory properties 
determined in cup quality evaluation (Ribeiro et al., 2011) and, there
fore, it is expected that many metabolites are important for various at
tributes (powder fragrance, drink aroma, acidity, bitterness, flavor, 
astringency, and residual flavor) as well as for overall quality than when 
compared with just body sensory property. Thus, these relationships 
found between sensory properties and metabolic composition are 
consistent with these previous studies (Craig et al., 2018; Farah et al., 
2006; Franca et al., 2005; Ribeiro et al., 2011). 

The results obtained confirm the potential of the ComDim analysis to 
study multiple data blocks in the same samples and extract interesting 
information from the coffee blend profiles. In view of these results, 

Fig. 3. NIR spectra of all roasted and ground coffee blends.  
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Fig. 4. ComDim results. (A) – saliences of the CC 1 to 5: where NIR = near-infrared spectroscopy; NMR = 1H nuclear magnetic resonance, Q = quality parameters; S 
= sensory properties; (B) Scores of the CC 1: (●) Coffee blend 1; (■) Coffee blend 2; (▾) Coffee blend 3; (*) Coffee blend 4; (C) Loadings of the CC 1, where G =
granulometry; M = moisture content; I = infusion time; L = luminosity (quality parameters); PF = powder fragrance, DA = drink aroma, AC = acidity, BI =
bitterness, FL = flavor; BO = body; AS = astringency; RF = residual flavor; OQ = overall quality (sensory properties). 
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spectral techniques, especially the portable NIR, offer a good alternative 
for monitoring product quality in the modern coffee industry. The main 
implication of this study for the industry is that the results obtained 
provide a way for evaluating and understanding the importance of the 
various methods and techniques typically used to evaluate coffee quality 
during its industrial production, demonstrating the potential of ComDim 
analysis to evaluate multiple data blocks originated from coffee samples. 

4. Conclusions 

This work was the first study that evaluated coffee blends and their 
characteristics with a multi-block data analysis using a ComDim-based 
method in a comprehensive and realistic industrial perspective. The 
techniques and methods used in the industry represented the multiple 
blocks of investigated data. A data-fusion based PCA was also performed 
but was not effective in illustrating feasible results as ComDim. With a 
ComDim exploratory analysis applied to all data blocks, it was possible 
to demonstrate relationships between the information obtained from 
portable NIR, 1H NMR fingerprints, sensory properties, and the coffee 
roast degree, highlighting the importance of each block or criterion 
involved in the industrial quality control of coffee. The results showed 
that the coffee blends were differentiated based on their qualities and 
metabolite composition. Coffee blends with high cup quality and lower 
roasting degree were generally differentiated from those with opposite 
characteristics: lower cup quality and high roasting degree. Therefore, 
the results achieved confirm the ability, applicability, reliability and 
feasibility of multi-block data analysis in the field of coffee science. 
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Food Research, 8(2), 68. https://doi.org/10.3895/rebrapa.v8n2.6887. 

Barbin, D. F., Felicio, A. L.d. S. M., Sun, D.-W., Nixdorf, S. L., & Hirooka, E. Y. (2014). 
Application of infrared spectral techniques on quality and compositional attributes 
of coffee: An overview. Food Research International, 61, 23–32. https://doi.org/ 
10.1016/j.foodres.2014.01.005. 

Fig. 5. 1H NMR loadings expanded in ComDim analysis (block 1), i.e. zoom on 1H NMR loadings from Fig. 4C. Resonance signals of the main coffee metabolites 
highlighted by ComDim and located in negative side: trigonelline (δ 4.45, 8.12, 8.84, and 9.13), formate (δ 8.49), caffeine (δ 3.29, 3.49, 3.89, and 7.85), chlorogenic 
acids (δ 5.37, 5.45, 6.31, 6.41, 6.88, 7.05, 7.13, and 7.61), choline (δ 3.21), lactate (δ 1.33), citrate (δ 2.69), and lipids (δ 0.84); in positive side: N-methylpyridinium 
(δ 4.41, 8.04, 8.57, and 8.81); quinic acids (δ 1.89, 2.01, 2.08, and 4.17), myo-inositol (δ 3.33, 3.65, and 4.09), and lipids (δ 0.93 and 1.00). 

M. Rocha Baqueta et al.                                                                                                                                                                                                                      

https://doi.org/10.1016/j.foodchem.2021.129618
https://doi.org/10.1016/j.foodchem.2021.129618
https://doi.org/10.1007/s12161-019-01503-w
https://doi.org/10.1111/1750-3841.14617
https://doi.org/10.3895/rebrapa.v8n2.6887
https://doi.org/10.1016/j.foodres.2014.01.005
https://doi.org/10.1016/j.foodres.2014.01.005


Food Chemistry 355 (2021) 129618

10

Bertone, E., Venturello, A., Giraudo, A., Pellegrino, G., & Geobaldo, F. (2016). 
Simultaneous determination by NIR spectroscopy of the roasting degree and 
Arabica/Robusta ratio in roasted and ground coffee. Food Control, 59, 683–689. 
https://doi.org/10.1016/j.foodcont.2015.06.055. 

Bouveresse, D.-J.-R., Pinto, R. C., Schmidtke, L. M., Locquet, N., & Rutledge, D. N. 
(2011). Identification of significant factors by an extension of ANOVA-PCA based on 
multi-block analysis. Chemometrics and Intelligent Laboratory Systems, 106(2), 
173–182. https://doi.org/10.1016/j.chemolab.2010.05.005. 

Brazil. (2003). Instrução Normativa no 8, de 11 de junho de 2003. 
Cariou, V., Jouan-Rimbaud Bouveresse, D., Qannari, E. M., & Rutledge, D. N. (2019). 

ComDim Methods for the Analysis of Multiblock Data in a Data Fusion Perspective. 
In Data Handling in Science and Technology (Vol. 31). 10.1016/B978-0-444-63984- 
4.00007-7. 
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