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Impact of Memory Voltage Scaling on Accuracy
and Resilience of Deep Learning Based Edge

Devices
Benoı̂t W. Denkinger, Flavio Ponzina, Soumya S. Basu, Andrea Bonetti, Szabolcs Balási,

Martino Ruggiero, Miguel Peón-Quirós, Davide Rossi, Andreas Burg, David Atienza

Abstract—Energy consumption is a significant obstacle to
integrate deep learning into edge devices. Two common tech-
niques to curve it are quantization, which reduces the size
of the memories (static energy) and the number of accesses
(dynamic energy), and voltage scaling. However, static random
access memories (SRAMs) are prone to failures when operating
at sub-nominal voltages, hence potentially introducing errors
in computations. In this paper we first analyze the resilience
of artificial intelligence (AI) based methods for edge devices—
in particular convolutional neural networks (CNNs)—to SRAM
errors when operating at reduced voltages. Then, we compare the
relative energy savings introduced by quantization and voltage
scaling, both separately and together. Our experiments with an
industrial use case confirm that CNNs are quite resilient to bit
errors in the model, particularly for fixed-point implementations
(5.7% accuracy loss with an error rate of 0.0065 errors per
bit). Quantization alone can lead to savings of up to 61.3% in
the dynamic energy consumption of the memory subsystem, with
an additional reduction of up to 11.0% introduced by voltage
scaling; all at the price of a 13.6% loss in accuracy.

Index Terms—Fault-tolerance, neural nets, energy-aware, yield
analysis.

I. INTRODUCTION

Deploying artificial intelligence (AI) capabilities on edge
devices is important to increase their autonomy, reduce latency
and solve privacy issues. However, devices at the edge face
important constraints in terms of performance and energy.
AI tasks place high demands both on performance and en-
ergy consumption, particularly in the case of deep learning
algorithms such as convolutional neural networks (CNNs) for
object identification and classification. Therefore, finding new
ways of reducing energy consumption during inference is vital
for the successful deployment of AI on edge devices.

CNNs have shown high resilience to imprecision [1]. In par-
ticular, fixed-point quantization is an optimization technique
that exploits this resilience to reduce the size of the operands
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and of the arithmetic operations from a classic 32-bit floating
point format to a more compact fixed-point representation.
Previous works have shown that value widths of 16, 8, 4
or even less bits retain sufficient accuracy for most practical
cases. The advantage of quantization in the context of this
work is that it reduces both the memory footprint of the
networks, which reduces the static energy consumption linked
to leakage current, and the number of memory accesses, which
in turn reduces the dynamic energy consumption. For example,
an 8-bit fixed-point quantization reduces the memory footprint
of a CNN by a factor of 4 compared to the 32-bit floating point
version, while also reducing the number of memory accesses
by a similar factor—because CNNs process values mostly
consecutively and the processor can access four consecutive
values with a single 32-bit memory read or write.

Voltage scaling is another method to reduce energy con-
sumption, at the expense of reduced frequency. However,
although logic elements tolerate well reductions in operating
voltage, static random access memories (SRAMs) are more
sensitive and start experiencing errors sooner. The more volt-
age scaling is applied, the more errors appear in SRAMs.

Process variations across SRAM bitcells and chips make
each individual bitcell vulnerable at a different voltage level.
For a given size and voltage, all the chips have (statistically)
the same number of errors, but their concrete distribution
along memory cells is random. Therefore, their effect at the
application level is both potentially relevant and unpredictable,
as some parts of the generally error-resilient CNN models (and
of the intermediate results) may be more susceptible to errors
than others. To explore the interaction of chip variability and
CNN resilience, we perform simulations over a complete set
of populations consisting of hundreds of chips. Then, instead
of analyzing the resulting average accuracy, we perform a
detailed yield analysis that uncovers the trade-offs between
energy consumption, desired accuracy and chip yield [2]. As
a result, the main contributions of this paper are the following:

• An analysis of the resiliency of CNNs to SRAM errors
produced when working at sub-nominal voltages.

• An assessment of the dynamic energy savings in the
memory subsystem of an edge device produced by quan-
tization and voltage scaling.

• A method to determine the yield of a set of manufactured
devices given a target energy budget and CNN accuracy.

The rest of this paper is organized as follows. First,
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in Section II we review the existing literature on related
resilience and accuracy exploration techniques. Then, in
Section III we explain our methodology to evaluate the re-
silience of CNNs against SRAM errors. Next, in Section IV
we present our case study and analyze the results obtained in
Section V. Finally, Section VI summarizes our conclusions.

II. BACKGROUND

A. Convolutional neural networks

In this work we consider CNNs, a specialized type of
deep neural network (DNN) that expects data with specific
temporal or spatial structure as input, such as time-series
or images. These constraints allow the encoding of certain
specific properties into the network architecture, making CNNs
particularly suitable for computer vision tasks [3].

However, the exceptional performance of CNNs comes
at the cost of high computational complexity and memory
requirements, which makes their deployment and real-time
inference on embedded edge devices a challenging task.
CNNs, and DNNs in general, perform millions to billions
of Multiply-Accumulate (MAC) operations and memory ac-
cesses. However, as a memory access costs more energy
than a MAC operation, reducing the amount of energy per
access is an effective way of reducing the overall energy
consumption. For example, in the PULPissimo system, a
RISC-V microcontroller for ultra-low power IoT applications,
SRAMs can consume up to 71% of the total energy when
running a binarized neural network [4]. Therefore, memory
subsystem optimizations are key to achieve energy-efficient
deep learning on embedded devices.

B. CNN resilience

CNNs are known for their robustness against noise. On the
one hand, weight quantization [5], which can be seen as a type
of noise, has only a small impact on accuracy while reducing
both the number of memory accesses and the memory size. On
the other hand, aggressive voltage scaling, which can lead to
additional energy savings [6], introduces errors in the normal
operation of SRAMs. Thus, in this work we explore as well
the resilience of CNNs against this new type of errors.

The topic of CNN resilience against memory errors is
currently attracting attention in the field of edge devices
system design. For example, preliminary results on the impact
of relaxed programming conditions with resistive memories
on the accuracy of binarized neural networks (BNNs) are
reported in [7]. The authors of [8] have proposed a framework
to test the resilience of different DNN architectures with
quantization under a certain bit error rate. In comparison with
these works, here we explore the resilience of quantized non-
binary CNNs—as our test case requires a higher accuracy than
possible with BNNs—against memory errors introduced by
voltage scaling and quantization with the goal of improving
energy efficiency in a concrete industrial use case. Addition-
ally, we conduct a yield analysis to model the behavior of a
population of chips with errors in concrete memory cells.

TABLE I
BIT-ERROR PROBABILITY FOR A COMMERCIAL 6T-SRAM

MANUFACTURED ON A 40nm CMOS PROCESS AND OPERATED AT
DECREASING (SUB-NOMINAL) VOLTAGES [10, TABLE 3].

Voltage (V) P(bit error) Voltage (V) P(bit error)

0.85 (nominal) 0 0.65 0.0007
0.75 1.3× 10−5 0.60 0.0022
0.70 0.0001 0.55 0.0065

III. METHODOLOGY

A. Yield analysis considering error-resilience

The bit-flip errors of an SRAM operated below the critical
supply voltage are stochastically distributed within the bitcell
array because of their large dependence on cell-to-cell process
variations [9]. Thus, even if the probability of a bit-flip error
per bitcell is defined for a voltage point, the positions of bit-flip
errors as well as their impact on the application are different
for each fabricated die. In fact, the potential degradation on
the application does not only depend on the number of bit-
flip errors in an SRAM, but also on their position within the
the bitcell array. For example, errors on the most-significant
bits (MSBs) are more likely to impact the quality of service
(QoS) compared to errors appearing on the least-significant
bits (LSBs). Given the different bit-flip error pattern in a
population of fabricated memories, it is crucial to evaluate
the error resilience of the considered benchmarks for each of
the produced dies [2]. Moreover, it is mandatory to assess
the measured benchmark quality for a population of dies
with a yield analysis [2], as other methods based on either
averaging or on the worst measured quality do not capture the
characteristics of a population of dies or are too pessimistic,
respectively.

The yield analysis on the error resilience of applica-
tions with faulty memories is enabled by an evaluation pro-
cess divided in three stages, as shown in Fig. 1. First, the
Model preparation phase generates the information about bit-
flip errors for a population of dies (i.e., number and position
of each bit-flip error in the die) from a fault model that uses
bit-flip error statistics from silicon measurements as input.
In this work, we refer to the information on the bit-flip
errors for each fabricated memory as error mask. Second,
during the Full system emulation phase, two nested loops
are used to evaluate the error resilience of a benchmark CNN
across different dies where the outer loop iterates through
the error masks (one for each die), while the inner loop
iterates over different input data for the CNN and evaluates the
output quality of each case. Third, the Analysis phase is the
assessment on the error resilience of the CNN. It is conducted
on the cumulative distribution function (CDF) of the measured
quality for yield analysis.

B. Simulation with SRAM errors injection

The increasing requirements for low-power operation in
modern applications have driven the necessity for modelling
memories working at low voltage supplies. In that regard,
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Fig. 1. Emulation platform and flow for quality of service (QoS) and performance assessment [2].

[10] presents a characterization study on the bit error rate
for a 6T SRAM manufactured on a 40 nm CMOS process
across different (sub-nominal) voltage levels. We base our
experiments on their measurements, as reproduced in Table I.

Our error injection simulation process uses an instrumenta-
tion mechanism based on C++ templates. This allows to easily
simulate the memory subsystem, injecting errors in specific
bit cells and counting the number of read/write accesses to
get at the end an estimation of the energy requirements. In
particular, we introduce a memory class that forces “stuck-at-
0” and “stuck-at-1” bit masks in its words as needed. Then,
we use a set of wrapper classes for variables of different sizes,
corresponding to the data widths used in the different CNN
implementations. These wrapper classes provide overloaded
assignment, copy and cast operators. In this way, the same
code basis of the final system can be used with minor
changes for experimentation on a server farm to simulate
thousands of chips working at different voltage levels. Despite
the instrumentation and the different architectures involved,
the number of memory accesses measured during simulation
corresponds within a close margin to the number of memory
accesses measured in the final platform using the standard perf
tool.

Given a memory size and voltage level, the number of errors
present in each mask is computed by multiplying the number
of bits in the SRAM by the error probability given in Table I.
The exact positions of the errors in the mask are randomly
calculated using a uniform distribution.

To assess the accuracy of the different CNN implemen-
tations, we first compute the accuracy of the CNN on our
dataset without error injection. This situation corresponds to
running the application at nominal voltage. Then, we run the
CNN at a given sub-nominal voltage level and measure the
resulting accuracy. Subsequently, for each voltage level, we
repeat this step for 1000 different error masks, thus simulating
a whole population of manufactured chips at different voltage
levels. The impact of different error masks—even with the
same number of errors—on accuracy depends on the specific
error locations, as shown in Section V.

C. Model and data placement

To exhaustively study the resilience of CNNs, we initially
considered three different scenarios: 1) All the application data
are loaded in the voltage-scaled SRAM. 2) Only the model
parameters (weights, biases) are loaded in the voltage-scaled
SRAM, whereas the buffers used by the internal layers are
stored in a safe SRAM (working at nominal voltage). 3) The
model is stored in the safe SRAM, while the buffers are stored
in the voltage-scaled SRAM.

Our initial experiments have shown that CNNs accuracy
drops dramatically even for relatively small numbers of errors
in the buffers. In contrast, CNNs are significantly more re-
silient to errors in the model itself. However, these findings
are in contrast with the results shown in [8], where the
activation buffers are more resilient to error than the model.
The explanation is that the studied industrial implementation
(cf. Section IV) stores values in the activation buffers using an
integer and a decimal part, without minimizing the number of
bits devoted to the representation of the integers. In particular,
half of the representation is used to represent the decimal part
and the other half is used to represent the sign bit and the
integer part. In [8], on the other hand, the integer part is
reduced to the minimum number of bits required to run the
inference. As a consequence, larger errors might arise in our
experiments because errors in the MSBs of the integer part
have a strong influence, particularly for activations with small
absolute values. In contrast, the model weights lack an explicit
integer part while stored in memory. Therefore, in the rest of
this work we consider only the second scenario.

IV. EXPERIMENTAL SETUP FOR THE TARGET INDUSTRIAL
CASE STUDY

A. Description of the CNN architecture

In this work, we consider an industrial application for
capsule recognition in an AI-enabled coffee machine. The
goal is to perform real-time image classification with a target
recognition time lower than 100ms. The desired accuracy
is 95%, with a minimum acceptable accuracy of 90%. The
machine recognizes the capsule when the user inserts it and
suggests different options based on the capsule type. The used
CNN (Fig. 2) is similar to the AlexNet network, namely, each
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Fig. 2. Architecture of the CNN used in our industrial case study.

TABLE II
NUMERIC REPRESENTATIONS AND THEIR CORRESPONDING MEMORY

CONSUMPTION AND ACCESSES FOR THE COMPLETE CNN.

Number of bits Memory Size1 read/write
Sign Int. Dec. (MiB) accesses

FP 32 – N/A – 4.0 1.06× 108

FXP 8 16 1 8 7 1.6 5.54× 107

FXP 4 32 1 28 3 2.6 6.95× 107

FXP 4 8 1 4 3 0.8 4.07× 107

convolutional layer is followed by a Rectified Linear Unit
(ReLU) and a max pooling layer. However, the implementation
is optimized specifically for our application. Hence, the last
fully-connected layers classify the images into 15 classes.

B. Description of the classifier

To achieve real-time classification, we developed an opti-
mized C/C++ inference engine. We implemented two versions:
a 32-bit floating point version (FP 32) and a customizable
fixed-point version (FXP i j). We derived several fixed-point
implementations with varying numbers of bits to store the
model parameters (i) and the intermediate buffers or compu-
tations (j). For example, in FXP 8 16 the model weights are
stored on 8 bits and the computations are done (and stored)
on 16 bits. All the fixed-point versions use a 2’s complement
representation. The model parameters are fully decimal, that
is, weighti ∈ (−1,+1). We tried to developed a special
version of the FXP 8 16 to increase the resilience of the CNN
where the two upper bits of the integer part in the buffers
are masked and replaced by the value of the sign bit. The
underlying observation is that the intermediate results in our
case study take values in the range (−64,+64). The additional
two MSBs are not needed and, when subject to bit flips at
reduced voltages, can cause large changes in the absolute
value of the data. This masking process is feasible with simple
bit operations. However, initial experiments have shown that
it behaves similarly to the original FXP 8 16 version. The

1Total memory size of the model and the buffers.

TABLE III
ENERGY CONSUMPTION PER ACCESS FOR A 16KiB SRAM BUILT ON A
40nm CMOS PROCESS AT DIFFERENT VOLTAGE LEVELS (pJ/access).

850mV 750mV 700mV 650mV 600mV

Read 9.447 7.572 6.766 6.047 5.416
Write 5.868 4.703 4.202 3.756 3.364

explanation is that even if activations may theoretically assume
values in the range (−64,+64), in our industrial use case,
most of them are very close to zero: hence, to fully protect the
integer part from large errors, more than two MSBs should be
masked to effectively increase the resilience of the model. To
verify this hypothesis, we conducted additional experiments in
which we protected all the integer bits from possible errors. At
the lowest voltage (i.e., 600mV), the accuracy drop was lower
than 6%, while the unprotected version was affected by more
than a 23%. As protecting the complete integer part would
require more advanced techniques, a better solution may be to
consider non-symmetric fixed-point representations with fewer
bits in the integer part, as suggested in [8].

The memory footprint of the different implementations and
their respective number of memory accesses are reported in
Table II. Quantization has an immediate effect on the CNN
footprint, which translates into reductions of both the static
and dynamic energy consumption of the system. For example,
FP 32 requires 1.6MiB to store the model (weights and
biases) and 2.4MiB for the buffers, which represents a total
of 4.0MiB. In comparison, FP 4 8 requires only 0.2MiB
for the model and 0.6MiB for the buffers, hence reducing
memory footprint by a factor of 5. Moreover, it performs 2.6×
less memory accesses than the FP 32 version, thus reducing
considerably the dynamic energy. Consequently, quantization
is normally advisable for edge devices.

To compensate the accuracy degradation caused by quan-
tization (i.e., fixed-point representation), we introduce an ad-
ditional training step that maintains two sets of parameters
during training: a quantized version and a full precision one,
as proposed in [11].

V. EXPERIMENTAL RESULTS

We conduct our analysis considering that the model is
stored in an unreliable (voltage-scaled) SRAM whereas the
buffers are stored in a reliable memory. As mentioned before,
our preliminary analyses showed that, if the buffers are also
stored in the voltage-scaled memory, the accuracy of the
CNN degrades very quickly as the number of errors increases.
Therefore, we carefully evaluate the impact of this growing
number of errors in the final application output quality.

The first result of our analysis is that the floating point
representation is very sensible to errors. In addition to changes
in the magnitude of the fractional and exponent parts, as
well as on the bit sign, the IEEE-754 representation imposes
specific rules on the format of valid numbers. Therefore,
certain bit flips may alter the representation in such a way
that it is not valid anymore, being interpreted instead as a Not-
a-Number (NaN) value. NaNs do not only affect the current
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TABLE IV
CNN ACCURACY AND MEMORY SUBSYSTEM DYNAMIC ENERGY CONSUMPTION AT DIFFERENT VOLTAGE LEVELS. 850mV REPRESENTS THE MAXIMUM

ACCURACY AT NOMINAL VOLTAGE.

850mV 750mV 700mV 650mV 600mV
Accuracy Energy Accuracy Energy Accuracy Energy Accuracy Energy Accuracy Energy

(%) (µJ) (%) (µJ) (%) (µJ) (%) (µJ) (%) (µJ)

FP 32 99.8 976.4 33.8 889.2 – 851.6 – 818.4 – 789.0
FXP 8 16 99.8 511.9 99.8 482.9 99.4 470.4 95.3 459.3 76.6 449.6
FXP 4 32 95.0 634.3 95.0 615.0 94.9 606.7 93.7 599.3 89.6 592.9
FXP 4 8 92.7 378.3 92.7 359.0 92.7 350.8 90.9 343.4 86.2 336.9

computation, but they also propagate to the following ones.
In order to avoid this situation, we evaluated the detection of
NaNs and substituted them with a known value, specifically
0, to limit their impact, but without success.

A. Analysis of accuracy and energy consumption

In order to determine the dynamic energy consumption
of the SRAM with the different numeric representations
and working at varying voltage levels, we use the values
presented in Table III, which were measured for a 16KiB
SRAM; we use multiple banks to build bigger memories as
needed. Table IV shows the average accuracy and dynamic
energy consumption of the SRAM for the different numeric
representations (quantizations) and voltage levels considering
1000-chip populations. In this work, we omit the static energy
consumption produced by leakage current. The reason is that
the voltage levels that we consider are enough to produce
significant energy savings in the SRAMs, but not to make
leakage the dominant factor in energy consumption. A pre-
liminary estimation places the contribution of leakage in the
range of 2% to 5% for most cases.

Clearly, quantization has the biggest impact on energy con-
sumption, mainly because it reduces the number of memory
accesses proportionally to the reduction in memory footprint
(see Table II). In particular, using FXP 8 16 instead of
FP 32 reduces the dynamic energy consumption by 47.6% at
nominal voltage level with virtually the same accuracy. For a
slight accuracy loss of 7.1%, FXP 4 8 can achieve an energy
reduction of 61.3%.

Voltage scaling provides additional reductions in energy
consumption at the expense of additional accuracy loses,
which may be moderate in some cases. For example, applying
voltage scaling after quantization saves an additional 8.1%
of dynamic energy at 700mV for FXP 8 16 and 7.3% for
FXP 4 8, with no significant accuracy loss. In addition, if
energy consumption is optimized further, then large accuracy
losses are observed. In this context, the FXP 4 8 version with
memory operating at 600mV for the model is the best case,
with a 61.3% reduction coming from the quantization and
another 10.9% reduction thanks to voltage scaling. However,
these savings come with an impact on accuracy of 13.6%. The
aforementioned savings are additional to the energy saved by
the system processors operating themselves at lower voltage
points, a factor that is not taken into account in our numbers.

B. Yield analysis

As explained in Section III, the accuracy numbers reported
in Table IV, which are an average for all the chips in the
studied populations, do not reflect the real-world objectives
of system design and manufacturing with a high yield of
chips that achieve a guaranteed minimum quality. Inside a
population, some of the chips will have very poor quality
performance, but most devices may be usable for a given
quality criterion. Yield is strongly related to the cost per chip
as a higher yield leads to lower costs per chip and vice-versa.
Fig. 3 shows the yield at different voltages for the different
implementations, that is, the percentage of chips that would
meet a specific QoS at each voltage level. In this case, the
yield analysis confirms the poor resilience of the floating point
(FP 32) version: Fig. 3a shows that only ≈ 14% of the chips
would meet a QoS of 90% at this voltage. Therefore, voltage
scaling is not an option if a floating point representation
is needed. With respect to the fixed point representations,
while the FXP 8 16 versions are the best for the two highest
voltages compared to the FXP 4 8/32 versions, the inverse
holds for the lowest voltages. The reason is that, in general,
smaller model representations with just the required numbers
of bits for the integer part lead to better resilience in presence
of voltage scaling.

Figure 3 shows also that using only the average accuracy
to evaluate a population of chips is not enough. For example,
FXP 4 8 has an average accuracy of 86.2% when working
at 600mV. However, a complete yield analysis unveils that
less than 12% of the chips can achieve an accuracy higher
than 90.0% at that voltage level. Also, Table IV shows that
FXP 8 16 working at 650mV achieves similar average accu-
racy than FXP 4 32. However, Fig. 3c shows quite different
yields. The yield analysis allows the designer to determine
the number of chips that will meet a certain level of accuracy
with a maximum energy consumption. Conversely, it enables
classifying the chips according to different energy efficiency
(minimum voltage levels) for a desired minimum accuracy.

Using the yield information, Table V allows us to observe
that 100% of the chips will be able to meet the desired accu-
racy of 95% for this industrial case working at nominal voltage
in all numeric representations except for FXP 4 8; indeed,
that specific configuration cannot meet the requirements in any
case. Then, operating at 750mV, 100% of the chips will still
be able to meet that requirement using FXP 8 16, whereas
only 86% will meet it using FXP 4 32 (only 11% of the
chips will be able to reach 95% accuracy at this voltage level
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Fig. 3. Yield-accuracy trade-off for a thousand chips at varying voltages. Activations in “safe” SRAM; CNN model in voltage-scaled SRAM.

TABLE V
PERCENTAGE OF CHIPS (YIELD) THAT CAN MEET THE DESIRED

ACCURACY OF 95% FOR THIS INDUSTRIAL CASE.

850mV 750mV 700mV 650mV 600mV

FP 32 100.0 11.2 0.0 0.0 0.0
FXP 8 16 100.0 100.0 99.5 66.3 0.2
FXP 4 32 100.0 86.2 48.7 16.4 2.0
FXP 4 8 0.0 0.0 0.0 0.0 0.0

using floating point). At 700mV, more than 99% of the chips
will still meet the requirement using FXP 8 16, but only 48%
will meet it using FXP 4 32. Finally, at 650mV, only 68%
of the chips will achieve 95% accuracy with FXP 8 16 and
16% using FXP 4 32. Less than 2% of the chips will be able
to meet 95% accuracy at 600mV, with any version.

VI. CONCLUSIONS

In this paper, we have explored the impact of on-chip
memory (i.e., SRAM) voltage scaling on the precision and
resilience of edge devices relying on CNNs. Our experiments
show that the CNN used in our industrial case is quite resilient
against errors on the model, while the intermediate buffers,
which hold the activations, are more critical. Although our
experiments were limited to a specific application, we believe
that our results can be generalized to similar CNNs based on
the AlexNet architecture.

We have exploited this information to explore, with an
accurate SRAM error-injection framework, the accuracy loss
that the CNN experiences after the introduction of quantization

and SRAM voltage scaling (only for the model) in the context
of an industrial application with the goal of reducing energy
consumption in the memory subsystem. Our results show
that quantization is the most efficient method, with energy
savings up to 61.3% for accuracy losses as small as 7.1%.
Voltage scaling can be used to achieve further reductions on
energy consumption, albeit with a higher impact on accuracy.
Additionally, our experiments have shown that floating-point
representations should be avoided in sub-nominal voltage
contexts. Moreover, our experiments agree with previous work,
showing that minimizing the number of bits used by the integer
part should minimize the magnitude of noise introduced in
the model, therefore increasing its robustness. In that line, an
interesting experiment is exploring how error injection affects
the CNN accuracy if it is taken into account during the training
step of the model.

Finally, we have shown how to perform yield analysis to
evaluate the impact of voltage scaling at system-level on a real
industrial application. Our results indicate that it is crucial to
characterize precisely the information about the percentage of
chips that can achieve acceptable accuracy when subject to
SRAM errors. This yield analysis enables a realistic trade-off
between yield and QoS. In our experiments, we have shown
how to perform a cross energy-accuracy-yield analysis for
commercial CNN-based edge devices.
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