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Abstract

The quest for binary and dual supermassive black holes (SMBHs) at the dawn of the multi-messenger era is compelling.
Detecting dual active galactic nuclei (AGN) – active SMBHs at projected separations larger than several parsecs – and
binary AGN – probing the scale where SMBHs are bound in a Keplerian binary – is an observational challenge. The study
of AGN pairs (either dual or binary) also represents an overarching theoretical problem in cosmology and astrophysics.
The AGN triggering calls for detailed knowledge of the hydrodynamical conditions of gas in the imminent surroundings
of the SMBHs and, at the same time, their duality calls for detailed knowledge on how galaxies assemble through major
and minor mergers and grow fed by matter along the filaments of the cosmic web. This review describes the techniques
used across the electromagnetic spectrum to detect dual and binary AGN candidates and proposes new avenues for
their search. The current observational status is compared with the state-of-the-art numerical simulations and models
for formation of dual and binary AGN. Binary SMBHs are among the loudest sources of gravitational waves (GWs) in
the Universe. The search for a background of GWs at nHz frequencies from inspiralling SMBHs at low redshifts, and
the direct detection of signals from their coalescence by the Laser Interferometer Space Antenna in the next decade,
make this a theme of major interest for multi-messenger astrophysics. This review discusses the future facilities and
observational strategies that are likely to significantly advance this fascinating field.

Keywords: Galaxies: active, Galaxies: interactions, Galaxies: nuclei, quasars: supermassive black holes, gravitational
waves
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Introduction
Supermassive black holes (SMBHs) with mass of ∼106–
109 M� are ubiquitous in ellipticals, in the bulges of disk
galaxies and in at least a fraction of dwarf galaxies. The
tight correlation between the black hole mass and the bulge
stellar velocity dispersion (Ferrarese and Merritt, 2000;
Gebhardt et al., 2000; Kormendy and Ho, 2013) suggests
that SMBHs are likely to affect the evolution of the host
galaxy over cosmological time-scales. In contemporary as-
trophysics, a large variety of physical phenomena concur to
establish the close connection between the formation and
evolution of galaxies and of their central SMBHs (Silk and
Rees, 1998; Di Matteo et al., 2005). Galaxy mergers may
be a way through which SMBHs form by direct collapse of
gas at the center of protogalaxies (Begelman et al., 2006;
Mayer et al., 2010; Mayer and Bonoli, 2019). Furthermore,
there is growing evidence that major mergers trigger the
most luminous AGN (e.g., Treister et al. 2012; Fan et al.
2016; Goulding et al. 2018), although this result is still de-
bated. Numerical simulations show that galaxy collisions
are conducive to episodes of major gas inflows that feed the
central SMBH, thus powering accretion and nuclear activ-
ity (e.g., Di Matteo et al. 2005). Models of structure for-
mation can reproduce the observed large-scale properties
of quasars (e.g., their environment and clustering cluster-
ing) if their bright and short-lived active phases are most
likely triggered by mergers (see Kauffmann and Haehnelt
2000; Alexander and Hickox 2012 and references therein).
However, not all nuclear activity is triggered by galaxy
collisions as SMBH growth can occur also through secular
processes (Martin et al., 2018; Ricarte et al., 2019) with
mergers triggering an initial rapid growth phase (McAlpine
et al., 2018). In the last decade, quasar pairs at sub-Mpc
(projected) separations have raised interest as these sys-
tems could possibly trace regions of systematic large-scale
overdensities of galaxies (e.g., Hennawi et al. 2006, 2010;
Sandrinelli et al. 2014; Eftekharzadeh et al. 2017; San-
drinelli et al. 2018b; Lusso et al. 2018).

The connection between AGN triggering and galaxy
mergers is not clear yet. To discuss this connection, in
this paper we define dual AGN those interacting galaxy
systems containing two active nuclei powered by accretion
onto SMBHs that are nested inside their host but that are
not mutually gravitationally bound. If only one SMBH in
active, we refer to this system as offset AGN. Similarly,
binary AGN at sub-pc separations are defined as active
SMBHs which are gravitationally bound, forming a Kep-
lerian binary.1 The (projected) separation ranges between
∼ 1 pc and ∼ 100 kpc in dual AGN, while it lies in the
pc–sub-pc range in binary systems (pc-scale binaries could
fall into either category depending on the parameters of
the system).

1Hereafter, the separations between observed AGN and galaxy
pairs are meant as projected if not stated otherwise.

A number of studies in different wavebands show evi-
dence for a higher fraction of dual AGN in galaxies with a
close companion, suggesting that galaxy interactions play
a role in the AGN triggering process (e.g. Ellison et al.,
2011; Koss et al., 2012; Silverman et al., 2011; Satya-
pal et al., 2014; Kocevski et al., 2015; Koss et al., 2018).
However, there are investigations revealing no enhanced
AGN activity in mergers compared to a matched control
sample of inactive galaxies (e.g. Cisternas et al., 2011;
Mechtley et al., 2016). These conflicting results may be
a consequence of different sample selection criteria (such
as merger stage of interacting galaxies and/or AGN lumi-
nosity) and observational biases (e.g., nuclear obscuration
and AGN variability). In light of these uncertainties, the
detection and characterisation of dual and binary SMBHs
is fundamental if we want to understand the formation and
accretion history of SMBHs across cosmic ages.

A further issue which makes the study of dual and bi-
nary AGN one of the forefront topics in modern astro-
physics is that these systems are the natural precursors
of coalescing binary SMBHs, which are strong emitters of
low-frequency gravitational waves (GWs). Detecting the
GW signal from the inspiral, merger and ringdown of bi-
nary black holes with LISA, the ESA’s Laser Interferom-
eter Space Antenna (Amaro-Seoane et al., 2017), will let
us unveil the rich population of SMBHs of ∼104−7 M�
forming in the collision of galaxy halos, out to redshifts
as large as z ∼ 20 (Colpi et al., 2019). Note that LISA
will detect the “light” SMBHs at the low-mass end of their
mass distribution. Thus, LISA will unveil the origin of
the first quasars, carrying exquisite measurements of the
black hole masses and spins, and providing the first census
of this yet unexplored population of sources. Soon, Pulsar
Timing Array (PTA) experiments at nHz frequencies will
detect the cosmic GW background radiation from inspi-
raling SMBH binaries (SMBHBs) of ∼109 M� at z ∼ 1
(Kelley et al., 2019a). Discovering binary massive black
holes over such a wide range of masses will shed light on
the deep link between SMBHs and galaxies, their growth,
evolution and assembly.

This review, far from being exhaustive on the topic
of multiple AGN systems, surveys the main results
that emerged during a workshop organized at the
Lorentz Center in Leiden “The Quest for Multiple
Supermassive Black Holes: A Multi-Messenger View”
(https://www.lorentzcenter.nl). The Workshop was
dedicated to multi-messenger studies of multiple SMBHs,
with emphasis on the best strategies for their detections
with current and upcoming observatories, and to the most
updated and comprehensive numerical simulations and
theories on the pairing and merging of SMBHs. As such,
this review may guide the community to answer to the
most compelling questions posed during the meeting:
1) Can state-of-the art simulations of interacting galaxies
provide key indicators that will let us discover dual, ob-
scured AGN systems?
2) How can we unveil the missing population of 10–100 pc
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dual black holes?
3) Which observational strategies should we envisage in
order to demonstrate the existence of the binary SMBHs
at separations close to and below a milli-parsec?
4) Is there a population of transient AGN that may
be candidate counterparts of inspiralling or/and merging
SMBHs, and how can this population be unambiguously
identified?

The review is organized in two main bodies describing
the systems depending on their separation: Sect. I is fo-
cused on AGN and multiplets with kpc-to-pc scale separa-
tion, while Sect. II on gravitationally bound SMBHs with
sub-pc separations. Within each section we describe the
datasets already available, the observational results and
the predictions resulting from models and state-of-the art
numerical simulations. We then discuss the most effective
ways to define, observe, analyse and interpret the wealth
of data collected in different wavebands.

Finally, in Sect. III, we present first the techniques and
strategy developments in this field, describing the future
electromagnetic observing facilities and numerical set-up.
Then, we explore the low-frequency GW Universe, the
new window which will provide a complementary view of
SMBHs by detecting the GW signal from those black holes
coalescing in binaries. Measuring the BH masses and spins
across cosmic ages will let us uncover their nature, growth
and yet unknown origin.

For the calculations presented in this review, a concor-
dance cosmology with H0 = 70 km s−1 Mpc−1, ΩM = 0.3
and ΩΛ = 0.7 (Wright, 2006) has been adopted, and mag-
nitudes are in the AB system; when literature results are
reported, we refer to the original papers for the corre-
spondingly adopted cosmology.

Part I

AGN pairs and multiplets
with kpc-to-pc scale
spatial separations
The triggering of AGN activity in galaxy mergers has been
extensively studied both from an observational and a theo-
retical point of view. The varied observational and numer-
ical techniques adopted thus far are highly complementary,
since different bands and/or numerical setups and recipes
have inherently distinct limitations.

Different methods have been proposed to identify good
candidates of dual and binary AGN. Most of the AGN can-
didates and pairs with pc-to-kpc separations have been
identified either through extensive optical, radio, mid-
infrared and hard X-ray surveys, and through pointed
observations mainly in the high-energy domain; all these
technique will be discussed in the following sections. Nev-

ertheless, dual AGN systems are rare, and most of their
detection has been serendipitous.

A challenge in this kind of studies is the need for a sta-
tistically significant sample of dual and multiple AGN cov-
ering a wide dynamical range in spatial separations, from
pc- to kpc-scale separation. While a number of AGN pair
candidates and merging galaxies have been discovered over
the past several years, only a handful of these have even-
tually been confirmed, usually through intense and obser-
vationally costly multiband follow-ups. An example is the
increasing availability of SDSS optical spectral data where
dual AGN are identified through doubled-peaked O[III]
line, but only about 2 per cent of these candidates are fi-
nally confirmed with multi-wavelength follow-up. This is
due to the fact that this signature (i.e., the presence of
a doubled-peaked profile) is not unique, indicating other
possible effects originated nearby a single AGN (e.g., mat-
ter outflows).

Similar arguments can be applied to observations at
other frequencies: if not sensitive enough, it might be chal-
lenging to distinguish AGN from star formation processes
in radio-emitting regions using only radio data; besides,
only about 10 per cent of AGN are radio emitting. Fur-
thermore, the detection of X-ray emission associated with
a source is not per se an indication of the presence of an
active nucleus, since also star-forming galaxies and weakly
accreting black holes (e.g., LINERs, low-ionization nuclear
emission-line regions, and AGN with inefficient disks) can
produce some level of X-ray emission. Finally, mid-IR all-
sky surveys can detect a number of obscured systems and
then complement the optical search of AGN. Overall, the
best observing strategy requires the search for good can-
didates to be then confirmed through appropriate follow-
up programs, and each wavelength is pursuing its own
quest in this direction, contributing to the final detec-
tion/confirmation.
On the numerical side, there are two main avenues of re-
search: cosmological and isolated simulations of mergers.
Galaxy mergers and systems of multiple AGN can be pro-
duced through cosmological simulations. This research
provides important counterpart to observations, allowing
the measure of the dual AGN fraction with respect to sin-
gle AGN. A variety of hydrodynamic cosmological simula-
tions exists; however, only a few are able to produce AGN
pairs with separations down to kpc scales, since combin-
ing large volumes with relatively high resolution is com-
putationally very expensive. On the other hand, idealized
merger simulations are able to resolve sub-kpc scales, that
is fundamental to follow the dynamics of SMBHs. Nev-
ertheless, simulations of isolated galaxy mergers cannot
provide any prediction on the fraction of AGN pairs out of
the total number of AGN, although it is possible to com-
pute an “activity-dual time” normalized to the time when
at least one BH is active.
In this chapter, we review the current observational con-
straints on the existence of merger-triggered single and
dual AGN (i.e. AGN pairs that are not gravitationally
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bound) observed at different wavelengths (Sect. 1). In
each section we will describe the best strategy adopted in
a given band to select good candidates and follow-up ob-
servations to confirm or disprove them. We will also show
that a multi-wavelength approach is the only viable way to
improve the detection rate of dual AGN systems. We then
summarize our most up-to-date theoretical understanding
of this process (Sect. 2) describing mergers in larger but
coarser cosmological simulations and mergers between ide-
alised, isolated galaxies from higher-resolution simulations.
We also review the physical processes that may produce
SMBH pairs stalling at 1–100 pc spatial separations, pos-
sibly detectable as tight dual AGN. The predictions from
both these sets of simulations, such as the dual AGN frac-
tion, nuclear environment (e.g., gas reservoir) and system
properties (e.g., BH mass ratio, separation) will then be
compared with the available and planned observations.

1. Observations of dual AGN

The detection of spatially-resolved dual AGN at pro-
jected separation of a few tens of kpcs, in optical and mid-
infrared surveys, mostly from the Sloan Digital Sky Survey
(SDSS, York et al. 2000; Abazajian et al. 2009), the Bary-
onic Oscillation Spectroscopic Survey (BOSS, Ahn et al.
2012), and theWide-field Infrared Survey Explorer (WISE,
Wright et al. 2010), reinforces the idea that gas-rich merg-
ers may trigger the active nuclear phase in both galaxies
(e.g., Myers et al. 2008; Foreman et al. 2009; Satyapal
et al. 2014, 2017; Weston et al. 2017). Bright AGN pairs
with separations less than a few hundreds of kpc observed
at similar redshifts are ideal probes of both the small-
scale ( <∼ 100 kpc) structure of the intergalactic medium
(e.g., Rorai et al. 2017) and the large-scale (order of Mpc)
rich environment where mergers are more likely to happen
(e.g., Djorgovski et al. 2007; Liu et al. 2011; Farina et al.
2013; Deane et al. 2014; Hennawi et al. 2015; Lusso et al.
2018).

One method of detecting/observing dual AGN con-
sists of time-expensive follow-up observations of previously
identified candidates, selected through wide-field surveys
or large catalogues. Another method relies on using the
data from survey fields (e.g., SDSS in optical, GOALS
in mid-IR, COSMOS and Chandra Deep Field-North and
South in X-rays) to select dual AGN candidates and de-
fine also their properties. These two approaches are highly
complementary, as discussed in the following. We present
in this section the photometric and spectroscopic surveys
and integral-field spectroscopy outcomes and their success
in identifying the closest candidates for dual and multi-
ple AGN. These candidates should then be confirmed by
pointed follow-up observations. We also show the inves-
tigations carried out through optical, X-ray, mid-infrared,
and radio techniques used to detect and characterize spa-
tially resolved and unresolved dual AGN systems with kpc-
to pc-scale separation.

1.1. Optical surveys of dual AGN at sub-kpc/kpc separa-
tion: the search for candidates

In the optical, the photometric and spectroscopic SDSS
and BOSS surveys are vast databases that have been ex-
plored to search for pair candidates (e.g., Hennawi et al.
2006, 2010; Myers et al. 2008; Shen and Loeb 2010; San-
drinelli et al. 2014, 2018b; Lusso et al. 2018; Lena et al.
2018). Yet, one of the main limitations of such surveys in
the search for pair candidates is mostly due to the fiber
collision limit : fibers cannot be placed closer than 55′′
for SDSS and 62′′ for BOSS. For a target located at z =
0.008−0.7 (or a luminosity distance DL ≈ 35−4300 Mpc),
the SDSS fiber encompasses between 0.5 and 21 kpc (given
the fiber size of 3′′ and a 2′′ in SDSS and BOSS, respec-
tively). For the galaxies which do not fall within a single
fiber, this limit implies a minimum physical distance be-
tween pairs of about 500 kpc at z ' 2. One way to over-
come the fiber collision limit is through overlapping plates
(e.g., Blanton et al. 2003). However, only ∼ 30 per cent
and ∼ 40 per cent of the sky observed by SDSS and BOSS,
respectively, is covered by such overlap.

Another possibility to select suitable close pair candi-
dates, also at higher redshifts, is to mine the photometric
quasar catalogues such as the XDQSO (Bovy et al. 2011,
2012; DiPompeo et al. 2015), which can then be followed
up spectroscopically (e.g., see Hennawi et al. 2006; My-
ers et al. 2008; Hennawi et al. 2010; Eftekharzadeh et al.
2017 for details). To build the XDQSO catalogue, Bovy
et al. (2011) segregate quasars from stars selected from the
photometric SDSS/BOSS catalogues of 106 sources with
r < 22 using machine learning algorithms. This work
uncovered ∼300 quasar pairs with projected separations
R⊥ < 1Mpc. Only 60 of them have similar redshifts (with
redshift differences around 5,000–10,000 km/s at z ∼ 2).
The probability to find a quasar pair against pairs of stars
is (QSO pairs)/(star pairs)∼ 10−4, with a success rate of
pair confirmation of ∼25 per cent. We refer to Findlay
et al. (2018) for the most updated release of pair candi-
dates at large separation with spectroscopic follow-up and
for further statistical details on the chance probability of
finding a quasar pair over the single quasar population
(see also, e.g., Kayo and Oguri 2012; Eftekharzadeh et al.
2019). One should note, however, that these rare quasar
pairs at kpc-scale projected separation are biased towards
being very blue (i.e., SDSS selected). Thus these surveys
miss interacting, much closer dust-obscured nuclei hosted
in dual AGN.

In the following subsections, we will discuss spectropho-
tometric and spatial techniques to identify dual AGN can-
didates. These observational methods are not mutually
exclusive but can be ideally used in combination to im-
prove the selection of dual AGN candidates and possibly
their further confirmation.
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1.1.1. Optical spectroscopy of unresolved dual AGN candi-
dates: double-peaked narrow-line emitters

Once two AGN become closer than the spatial resolu-
tion of the imaging data, it is nearly impossible to identify
them as independent sources. Depending on the redshift
of the source, for ground-based observatories this already
happens at kpc scales. Spectroscopy can overcome this
limitation by detecting several kinematic components in
velocity space through emission lines produced by AGN
ionization, e.g., so-called double-peaked emitters. This
technique is based on the assumption that each AGN in
a pair carries its own Narrow Line Region (NLR) – the
clouds at a scale of ∼1 kpc from the AGN core, which
trace the systemic velocity of the AGN as they move in
their common gravitational potential. The identification
of double-peaked emitters is only limited by the spectral
resolution of the spectrograph with respect to the width
and flux ratio of the emission lines. The same technique
has been applied to the BLR as observational evidence of
sub-pc SMBHBs systems; this is extensively discussed in
Sect. 4.2.2.

SDSS has provided the largest database of extra-galactic
spectra and has been commonly used for the identifica-
tion of double-peaked narrow-line emitters. In particu-
lar, the [OIII] λλ4960, 5007 emission lines have been in-
vestigated for signatures of double peaks, since these are
expected to be the brightest rest-frame optical emission
lines in case of AGN photoionization (Rosario et al., 2010).
Other high-ionization lines, such as [NeV] λ3426 or [NeIII]
λ3869, can be be used in a similar way in the higher-
redshift sources. High-ionization double-peaked emission
lines have been identified serendipitously in individual
sources (Gerke et al., 2007; Xu and Komossa, 2009; Bar-
rows et al., 2012; Benítez et al., 2013) or through system-
atic studies of large spectroscopic databases such as SDSS
(Wang et al., 2009; Smith et al., 2010; Liu et al., 2010b;
Pilyugin et al., 2012; Ge et al., 2012; Barrows et al., 2013;
Lyu and Liu, 2016), LAMOST (Shi et al., 2014) or DEEP2
and AGES (Comerford et al., 2013). Those systematic
studies revealed that roughly one per cent of the AGN
population exhibit double peaks in the forbidden high-
ionization lines. However, not all double-peaked emitters
are really dual AGN, due to the complex internal kinemat-
ics of the NLR in luminous AGN. AGN-driven outflows
(e.g., King and Pounds 2015), compact rotating gas disks
(e.g., Villforth and Hamann 2015) or illumination of inter-
acting companion galaxies (e.g., Xu and Komossa 2009;
Sun et al. 2016) may lead to similar signatures in the line
profiles without having a dual AGN origin.2 Furthermore,
single-peaked AGN in SDSS may turn out to be intrinsi-
cally double-peaked AGN when higher spectral resolution
observations are employed (e.g. Woo et al., 2014). Hence,
neither the parent sample of double-peaked narrow-line

2A further potential challenge in ground-based spectroscopic
searches is the seeing, which may project the emission-lines of a single
AGN onto its companion galaxy, thus mimicking an active pair.

emitters based on SDSS is complete nor does their number
count directly relate to the dual AGN fractions, without
further observations.

1.1.2. From candidates to detection: follow-up studies for
the closest, sub-kpc pairs, and the power of integral-
field spectroscopy

As specified above, a wide range of phenomena might
concur in producing the shape of the continuum and the
profile of the spectral lines. The underlying stellar popula-
tion is distributed in a combination of morpho-kinematical
features such as bulges, disks, bars, and tidal streams; neu-
tral and ionised gas experiences a combination of virial
(e.g., rotation in the plane of the galaxy) and non-virial
kinematics (i.e. inflows and outflows powered by AGN
and/or star formation activity). As a result, it is clear
that the detection of double-peaked [OIII] emission lines
remains, in the great majority of cases, the starting point
for a deeper investigation.

Probing the activity level of galactic nuclei is nontrivial,
especially in the case of obscured AGN pairs, and the task
requires the examination of multi-wavelength evidence, of-
ten from both the spectroscopic and imaging side (e.g. Ko-
mossa et al., 2003; Mazzarella et al., 2012; Liu et al., 2013;
Gabányi et al., 2016; Lena et al., 2018).

Within the optical-to-IR realm, a valuable tool in the in-
vestigation of galaxies is integral-field spectroscopy (IFS),
a technique providing, simultaneously, imaging and spa-
tially resolved spectroscopy (e.g., Lena 2015). With a sin-
gle observation one can obtain a two-dimensional view of
the gaseous and stellar kinematics, of the emission-line flux
distributions, and of the emission line ratios, a diagnostic
for the dominant ionisation mechanism (AGN, star for-
mation, shocks) at play at different locations within the
galaxy (Baldwin et al., 1981). Indeed, IFS has been used
by a number of authors to follow-up dual AGN candidates
(e.g. McGurk et al., 2011; Fu et al., 2012; McGurk et al.,
2015), to gain further insights on confirmed dual AGN (e.g.
Kosec et al., 2017), and to produce serendipitous discov-
eries (e.g. Husemann et al., 2018). Thanks to the recent
availability of IFS surveys, such as SDSS MaNGA (Bundy
et al., 2015), IFS data have also been used as a starting
point for the identification of new dual candidates (Ellison
et al., 2017). They represent a particularly promising av-
enue for discovery and characterization of closer, sub-kpc
separation AGN pairs.

The work presented by Fu et al. (2012) is illustrative:
the authors performed high-resolution imaging plus optical
and NIR IFS for a sample of approximately 100 double-
peaked AGN selected from SDSS-DR7 (Abazajian et al.,
2009). Imaging was performed to achieve a spatial reso-
lution of approximately 0.1′′; towards this goal they used
archival Hubble Space Telescope images, H-band and K′-
band images obtained with OSIRIS (Larkin et al., 2006)
and NIRC2 on the Keck telescope (see also Rosario et al.
2011; Fu et al. 2011; McGurk et al. 2011; McGurk et al.
2015; Liu et al. 2018b for similar experiments). NIR
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Figure 1: Top: candidate dual AGN where the double-peaked emission lines are due to the relative orbital motion of two galaxies. Bottom:
single AGN with extended narrow-line region producing a double-peaked emission-line profile. From left to right: SDSS [OIII]λ5007 emission
line profile with the two-component fit overplotted, high-resolution broad-band image, emission-line–free continuum from the IFS data,
emission-line intensity map, velocity map, and velocity dispersion map. SDSS object designations are labeled in the first column. The filter
for the broad-band images are labeled, and the scale bar indicates a transverse separation of 5 kpc. Blue and red contours on the high-
resolution image of the single AGN indicate the kinematically-resolved blue-shifted and red-shifted components. Contours in the third and
fourth column are from the broad-band images in the second column, which have been spatially aligned with the datacubes. The measured
emission line is labeled in the fourth column. N is up and E is to the left; major tickmarks are spaced in 1′′. Adapted from figure 1 and figure
4 of Fu et al. (2012).

IFS data assisted by adaptive optics were obtained with
the OSIRIS integral field unit (Larkin et al., 2006; Wiz-
inowich et al., 2006); for the majority of the targets, seeing-
limited IFS in the optical and NIR was obtained with the
2.2m Hawaii Telescope instrument SNIFS (Aldering et al.,
2002; Lantz et al., 2004) at a spatial resolution of approx-
imately 1.2′′. The combination of high-resolution imaging
and spatially-resolved spectroscopy allowed the authors to
distinguish between candidates where the double-peaked
emission-lines arise from the relative orbital motion of two
galaxies (possibly both active), and single AGN mimicking
the spectral signatures of potential dual AGN, for exam-
ple because of emission from an extended narrow-emission
line regions (both examples are shown in Fig. 1). They
showed that, for 98 per cent of their targets, the double-
peaked emission lines could be explained as the result of
gas kinematics within a single AGN, with only 2 per cent of
the double-peaked profiles being produced by the relative
velocity of merging systems. Still, a conclusive result on
the nature of the four dual AGN candidates selected with
this investigation could not be achieved, as the scenario of
a single AGN illuminating gas in two merging galaxies re-
mained a viable option. As it is often the case, high-spatial
resolution X-ray or radio observations were invoked to dis-
sipate the residual ambiguities (see Sect. 1.2 and future
perspectives in Sect. 5.2).

To summarise, IFS is a powerful technique which allows
a clear view of the kinematics and ionisation mechanisms
at play within a galaxy. It brings with it the strengths
inherent to the optical and NIR wavelength range (that is
medium/high spatial and spectral resolution); however, it

Figure 2: Chandra image of NGC 6240 and its pair of accreting
SMBHs. In this colour-coded image, red represents soft X-rays,
and blue hard X-rays. [Image credit: NASA/CXC; Komossa et al.
(2003)].

also bears its limitations (mostly the effects of dust obscu-
ration, and the fact that not every AGN displays optical
signatures). Moreover, the drastic reduction in the number
of candidates that this technique allows to achieve comes
at the cost of using a wealth of data which often are not
publicly available and that can be obtained only through
the access to highly competitive facilities.

1.2. X-ray observations of dual AGN
The high penetrative power of hard X-rays provides a

unique and often ultimate tool in the hunt for multiple
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active nuclei in a galaxy, being less affected by contami-
nation from stellar processes and absorption, though still
limited by spatial resolution. Indeed, it was X-ray imag-
ing spectroscopy which led to the identification of the first
pair of accreting SMBHs in the galaxy NGC6240 (see the
next section). A large (above ∼ 1042 erg s−1) point-like
luminosity is more likely ascribed to an AGN that to a
starburst and/or emission from low-mass X-ray binaries
(see e.g., Fragos et al. 2013; Lehmer et al. 2016).

However, often both a nuclear and an extended com-
ponent can contribute to the X-ray spectrum of a dual
system, requiring a high spatial resolution and a low back-
ground to properly disentangle the contribution of a weak
AGN emission from a diffuse component. In the end, X-ray
observations represent an efficient way to detect accretion-
powered processes in low-to-moderate obscured sources.
Although heavy obscuration prevents us from providing a
complete census of the AGN population, deep exposures,
coupled with hard X-ray coverage, may mitigate this issue.

The best angular resolution currently available in the X-
ray band is that of Chandra, of the order of one arcsec for
on-axis observations. This translates into ≈20 pc as the
minimal angular scale probed at z = 0.001, which becomes
≈1.8 kpc at z = 0.1 and ≈8 kpc at z = 1. From these num-
bers it appears clear that at present X-rays can reasonably
probe only dual AGN at kpc-scale separations, and this
will hold true until the launch of a mission with a Chan-
dra-like resolution but with the support of a much larger
effective area (e.g., AXIS , a NASA probe-class mission,
and Lynx , a NASA large mission, currently under study,
see Sect. 5.2). Needless to say that many of the Chandra
observations suffer from low photon-counting statistics, en-
abling the detection/characterization of sources only in
nearby galaxies. Despite this, Chandra provided X-ray
images of remarkable detail and quality for the first time,
thanks to the very low intrinsic background and sharp
Point Spread Function (PSF). Limited photon statistics
for more distant sources can be overcome by increasing the
exposure time. Alternatively, XMM-Newton can overcome
the issue of photon statistics due to its much higher effec-
tive area, but its on-axis PSF FWHM (≈6′′, i.e. about six
times larger than Chandra) limits the study of dual AGN
to even larger-separation systems than Chandra.

Besides using X-ray imaging spectroscopy for the discov-
ery of AGN pairs, one method of detecting/observing dual
AGN in X-rays consists of follow-up observations of previ-
ously identified multiple AGN systems (e.g., pre-selected in
optical band, see previous Sect. 1.1). This technique is pre-
sented in Sect. 1.2.1. Another method relies on using sur-
vey fields (e.g., COSMOS, the Chandra Deep Field North
and South), taking advantage of the plethora of multi-
wavelength data typically available in such fields, needed
to select dual AGN candidates and define their proper-
ties; this technique is further discussed in Sect. 1.2.2 and
Sect. 1.2.3. The advantage of the first method is clearly
the possibility of targeting the system with a “proper” in-
strumental set-up, chosen to maximize the possibility of

detecting/separating the AGN on the one side and defin-
ing their properties on the other side. If the search for
dual AGN is pursued using the second method - where
this investigation is essentially one of the multiple science
goals that an X-ray survey can fulfill - the entire field of
view can be used to reveal dual AGN, although the de-
crease in sensitivity and the broadening of the PSF at
off-axis positions can limit their effectiveness. The latter
approach can benefit from the typically already available
spectroscopy in X-ray survey fields, which is of the order
of 54–65 per cent in e.g. COSMOS-Legacy and CDF-S
(Marchesi et al., 2016; Luo et al., 2017). Candidate dual
AGN can be selected using photometric redshifts in all the
cases where multi-band accurate photometry, coupled with
proper galaxy (or galaxy+AGN) templates, is available.
This technique, although simple, can be used at zeroth
order also to identify large-scale structures to which dual
AGN may belong. Clearly, spectroscopic follow-up obser-
vations are needed to finally confirm that the two AGN
have comparable redshifts, hence being a “certified” pair.

1.2.1. Discovery and follow-up observations of dual AGN
and candidates

The first spatially resolved SMBH pair was identified in
X-rays, and was based on a dedicated Chandra observa-
tion which targeted the nearby ultraluminous IR galaxy
(ULIRG) NGC 6240. Chandra imaging spectroscopy has
revealed that both galaxy cores emit luminous point-like
X-rays (Fig. 2), and show similar X-ray spectra which are
flat, heavily absorbed, both exhibiting a strong neutral
iron line (Komossa et al., 2003; Nardini, 2017). These are
the tell-tale signs of heavily obscured AGN. The nuclei
are at ∼ 1 kpc separation and are likely both Compton
thick (i.e., with absorption column density along the line
of sight NH

>∼ 1024 cm−2). Recently, Kollatschny et al.
(2019), using VLT/MUSE data at a resolution of 75 milli-
arcsec, have reported the discovery of a third nucleus in
this galaxy: the Southern component appears to host two
distinct nuclei, separated by 198 pc only. The lack of a
radio counterpart for the newly detected nucleus suggests
that it could be not active; furthermore, no 12CO(2-1)
emission at its position is detected by ALMA (Treister
et al., 2020), in stark contrast with the two previously
known nuclei.

In X-ray targeted observations, new dual AGN have
been discovered serendipitously. The clearest cases are
those for which both double nuclei show emission up to
highest energies, above 10 keV: Mrk 739, a kpc-scale
separation (3.4 kpc) at high (≈ 0.7) Eddington ratio
(Koss et al., 2011), selected in the hard-X ray domain by
Swift/BAT and followed-up with the highest spatial reso-
lution available (Chandra); the ultra-luminous IR galaxy
Mrk 463 (3.8 kpc separation; see Bianchi et al. 2008),
for which NuSTAR broad-band analysis has recently con-
firmed the presence of Compton-thin obscuration in both
nuclei (Yamada et al., 2018); Mrk 273, in the C-GOALS
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Figure 3: Left panel: Absorption properties of a samples of dual systems observed in X-rays but selected in different ways (optical, IR, X-rays)
presented in De Rosa et al. (2018). The upper panel shows the values of the absorption column density averaged in 3 ranges of projected
galaxy separations: 0–20, 20–60 and 60–100 kpc, while the lower panel reports the fraction of AGN in dual/multiple systems with NH above
1022 cm−2 as a function of the projected separation. Blue lines represent the average value as obtained for the large sample investigated in De
Rosa et al. (2018) (61 sources) when 90 per cent errors on NH are taken into account. Magenta lines represent the Swift/BAT average values
and 1σ error as reported in Ricci et al. (2015) in the same bin of 2–10 keV luminosity. Right panel: Fraction of Compton-thick AGN versus
merger stage as investigated in Ricci et al. (2017). These authors analysed a sample of infrared-selected local luminous and ultraluminous
infrared galaxies in different merger stages and followed them up in the X-ray band with NuSTAR (up to ∼40 keV). The empty blue diamonds
represent the values for the four merger stages separately, while the filled black diamonds are the values for early and late mergers. The
red continuous line represents the intrinsic fraction of Compton-thick AGN measured by Swift/BAT (Ricci et al., 2015) with associated 1σ
uncertainty.

IR-selected sample, at 1 kpc separation: also in this
case both nuclei are heavily obscured, one likely in the
Compton-thick regime according to broad-band Chandra
and NuSTAR observations (Iwasawa et al., 2018).

In the search and detection of dual AGN at kpc-
scale separation with XMM-Newton we can mention
IRAS 20210+1121, hosting a pair of Type 2 AGN at 11 kpc
separation (Piconcelli et al., 2010), the early-stage merg-
ing system ESO 509-IG066 (d=10.5 kpc, Guainazzi et al.
2005) whose double nuclei are both mildly obscured and
with a possible variable absorption column density (Kosec
et al., 2017), and Arp 299, where the presence and full
characterization of two AGN in the companion galaxies
IC 694 and NGC 3690 (separation of 4.6 kpc) was possible
thanks to the combination of Chandra and XMM-Newton
data (Ballo et al., 2004). As said, at pc scale separa-
tion, X-ray observations have the limitation due to the
PSF. The presence of two active, heavily obscured nuclei
in the spiral galaxy NGC 3393 (at ∼150 pc separation;
Fabbiano et al., 2011), has been questioned by Koss et al.
(2015) using deeper Chandra data combined with adap-
tive optics near-IR data and radio interferometric obser-
vations, resulting in a totally different interpretation (i.e.,
a strongly obscured AGN with a two-sided jet). This result
shows that even X-ray observations alone are sometimes
not conclusive (see, e.g., the recent results by Hou et al.

2019 on an [OIII]-selected AGN candidate pair sample,
but see also Comerford et al. 2015, where the invaluable
strength of X-rays to pinpoint and characterize the AGN
emission in [OIII]-selected dual AGN is fully exploited) or
can be misinterpreted if multi-wavelength data of compa-
rable/higher resolution and quality are not available. We
also note that sophisticated analysis techniques may some-
times help in identifying dual AGN (Foord et al., 2019) at
relatively close separations.

One peculiarity of many of the dual systems mentioned
so far is that some members of these systems show no (or
very weak) explicit AGN evidence in their optical/near-
infrared spectra. A rather common property of these
AGN pairs is that they are heavily dust-enshrouded, with
strong indications of being also heavily obscured in the X-
rays. Investigating a sample of infrared-bright AGN (the
GOALS sample, see more details about sample properties
below), Ricci et al. (2017) found the fraction of Compton-
thick AGN hosted in late-merger galaxies is higher than in
local hard X-ray selected AGN (65+12

−13 vs 27 ± 4 per cent,
see right panel in Fig. 3). More generally, all AGN of their
sample in late-merger galaxies are characterized to have
NH ≥ 1023 cm−2. Further evidence for high absorption,
with column densities above 1023 cm−2, in an IR (WISE)-
selected sample of interacting/merging galaxies has been
presented by Pfeifle et al. (2019b) (see Sect. 1.3).
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Similar results have been recently found by De Rosa
et al. (2018), where four Seyfert-Seyfert AGN systems at
low redshift (z < 0.08), selected from SDSS, have been
followed-up by XMM-Newton. They find that the X-ray
emission of three out of the eight AGN is consistent with
being absorbed by Compton-thick material, and further
three AGN are in the Compton-thin regime. De Rosa et al.
(2018) also compared the absorption properties in their
dual AGN with those in larger samples observed in X-ray
but selected in different ways (optical, IR and hard X-
rays). They found that the fraction of obscured (NH ≥
1022 cm−2) AGN is in the range of 64–90 per cent up to
large-scale separations (∼ 100 kpc, see left panel in Fig. 3),
i.e. higher than in isolated AGN observed by BAT (43–49
per cent; Ricci et al., 2015).

This behaviour is in agreement with prediction of nu-
merical simulations of isolated black holes (e.g., Capelo
et al. 2017; Blecha et al. 2018; see discussion in Sect. 2.2).
In particular, numerical simulations of AGN in galaxy
mergers show an increase of NH as the distance decreases.
This effect is due to merger dynamics; the median value
of NH was about 3×1023 cm−2, in good agreement with
the value found in the large collection of dual systems pre-
sented by De Rosa et al. (2018). However, these numerical
simulations only probe absorption on relatively large scales
(above ∼ 50 pc, then absorption from the torus on typical
pc-scale is not considered), therefore the NH value should
be considered as a lower limit.

It is, however, worth mentioning also the recent Chan-
dra observations of eight radio-selected dual AGN in the
Stripe 82 field (∼ 4− 9 kpc separations, Gross et al. 2019)
and seven optically selected dual AGN targeted in X-rays
as part of a complete optical sample of dual systems with
small transverse separations (15–27 kpc, Green et al. 2011;
see also Green et al. 2010). Of these quasars, only one ob-
ject is obscured in X-rays; this result is probably due to
the original selection from the SDSS, being biased towards
systems with low intrinsic extinction. Furthermore, recent
studies of X-ray properties of an SDSS-selected sample of
galaxy pairs, where only one member of the pair exhibits
spectroscopic signatures of AGN activity, indicate a non-
negligible fraction of X-ray unobscured AGN (Guainazzi et
al., in prep.). Intriguingly, galaxy pairs hosting only one
active member show a similar absorption fraction with re-
spect to isolated AGN, i.e. much lower with respect to
AGN in dual systems (as shown in Fig. 3, left panel).

1.2.2. Searching for dual AGN in X-ray survey fields
Regarding surveys, Silverman et al. (2011) selected kine-

matic pairs (galaxies) in the zCOSMOS field (i.e., through
the optical spectroscopy carried out in COSMOS), and
the X-ray coverage was used to probe the fraction of such
galaxies showing nuclear activity, likely triggered by close
galaxy encounters. This fraction seems to increase at sepa-
rations below 75 kpc (projected distance) and line-of-sight
velocity offsets less than 500 km s−1. This result is not
dissimilar to what has been found using SDSS data by

other groups (Satyapal et al. 2014; Ellison et al. 2011, and
references therein)

It is worth mentioning the case of the X-ray COSMOS
source CID-42 at z=0.36 that was found to host two com-
pact nuclei at close separation (≈0.5 arcsec, corresponding
to about 2.5 kpc; see Civano et al. 2010). Optical spec-
troscopy indicates the presence of a large ≈1200 km s−1

velocity offset between the narrow and broad components
of the Hβ emission line (see also Comerford et al. 2009).
The X-ray spectra show an absorbing feature (with an in-
verted P-Cygni profile) at the energy corresponding to iron
line, variable in energy and intensity on year-timescale, in-
dicative of a high-velocity inflow (v/c≈0.02-0.14; Civano
et al. 2010; Lanzuisi et al. 2013). Two scenarios may ex-
plain these results: either a GW recoiling black hole (e.g.,
Peres 1962; Campanelli et al. 2007; Blecha et al. 2011) or a
dual AGN system, where one of the two is recoiling because
of slingshot (i.e., a 3-body BH scattering) effect. No firm
conclusion can be drawn even after follow-up observations,
although high-resolution X-ray data (Civano et al., 2012)
have shown that most of the X-ray emission is coming from
only one nucleus (the South-Eastern one), the other being
most likely a star-forming region, thus potentially favour-
ing the first hypothesis. JVLA 3-GHz data have found
that the emission is associated with the nucleus emitting
in X-rays; the radio spectrum, built up using also broad-
band literature data, is suggestive of a Type 1, radio-quiet
flat-spectrum nucleus (Novak et al., 2015). Overall, the
current observational picture in the radio band is still con-
sistent with the recoiling black hole hypothesis but cannot
rule out the presence of an obscured and radio-quiet SMBH
in the North-Western component.

The study of the triggering mechanism in dual AGN
systems requires complete samples, unbiased towards ob-
scuration as much as possible (as discussed in the pre-
vious subsection). In this regard, the fraction of dual
AGN has been estimated by Koss et al. (2012) in a sam-
ple of local (z < 0.05), moderate-luminosity AGN selected
from the all-sky hard-X ray Swift/BAT survey. At scales
<100 kpc, the dual AGN frequency is 10 per cent, where
small-separation (< 30 kpc) systems appear to be more
common among the most luminous AGN, and 50 per cent
of the AGN with a very close (<15 kpc) companion are
dual. The fact that the X-ray luminosity of both AGN in-
creases strongly with decreasing galaxy separation further
suggests that merging (as shown by signs of disruption in
the host galaxies by Koss et al. 2010, and of galaxy inter-
actions from morphological studies, Cotini et al. 2013) is
probably the key in powering both active nuclei. In this
regard, X-rays provide better insight into the nuclear ac-
tivity, whereas extinction and dilution by star formation
strongly limit the search for accretion-related activity in
the optical band.

It worth mentioning that in the study of a large sample
of galaxy pairs selected in the mid-IR, the fraction of AGN,
relative to a mass-, redshift- and environment-matched
control sample, increases with decreasing projected sepa-
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ration (Ellison et al., 2011; Satyapal et al., 2014, see discus-
sion in Sect. 1.3). This evidence further suggests the role
of (close) galaxy encounters in driving gas towards the in-
ner regions of AGN, thus efficiently fueling both AGN. As
an example, see the case of the dual AGN system Mrk 739
as detected with Chandra (Koss et al., 2011).

Recently, Koss et al. (2018) have preformed follow-
up high-resolution infrared observations of hard-X-ray-
selected black holes from Swift/BAT. Their study shows
that obscured luminous SMBHs (with Lbol above 2×1044

erg s−1) show a significant excess of late-stage nuclear
mergers (17.6 per cent) compared to a sample of inactive
galaxies (1.1 per cent). The link between mergers and ob-
scuration was also found in the COSMOS field by Lanzuisi
et al. (2018) using Chandra and HST data; in particular,
they found that the fraction of Compton-thick AGN in
mergers/interacting systems increases with luminosity and
redshift.

1.2.3. C-GOALS: X-ray follow-up of IR-bright galaxies
Iwasawa et al. (2011) presented the X-ray properties

of the GOALS sample (Armus et al., 2009), based on
the X-ray Chandra data on the high infrared-luminosity
complete sample (C-GOALS). Whilst the whole GOALS
sample consists of ∼ 200 far-IR selected nearby LIRGs,
they focused on a complete sample of 44 systems with log
log(Lir/L�) > 11.73 in erg s−1.

The Lir of the 44 systems range from 11.73 to 12.57 with
a median log(Lir/L�) = 12.0. Given the selection method,
they were not a priori known to be galaxy mergers, but the
frequency of galaxy mergers turned out to be high. The
number of systems in which clearly separated galaxy nuclei
or galaxies are seen is 26. However, the unresolved galaxies
all show tidal features hinting that they also underwent a
recent galaxy merger. All these LIRGs are dusty objects
and sometimes near-IR imaging was needed to reveal close
pairs (with the nuclear separations smaller than 1 kpc).

The projected nuclear separation spans from 0 to 65 kpc
(Kim et al., 2013), with a median value of 1.6 kpc. When
limited to the 26 resolved systems, the median separation
is 6.7 kpc. Out of the 44 systems, 43 X-ray detections were
recorded. The AGN fraction is 37 per cent when only the
X-ray diagnostics were applied (X-ray colour and Fe Kα
emission line), but this value increases to 48 per cent when
supplemented by the mid-IR line diagnostics (e.g., [Ne v]
λ14.3µm, Petric et al. 2011). This AGN fraction is higher
than that found in the lower-IR luminosity GOALS sample
(Torres-Albà et al., 2018). Among the detected AGN, 9 are
Compton-thick AGN. The AGN frequencies in three cate-
gories of nuclear separation are found as follows: 1) unre-
solved and < 1 kpc: 2/4 and 11/18; 2) 1–10 kpc: 7/15; and
3) > 10 kpc: 2/7. As already discussed above, there might
be a possible tendency of increasing AGN occurrence at
smaller separations in the widened GOALS sample (Ricci
et al., 2017). Double AGN within a single galaxy are rare:
in this category we have only NGC 6240 (Komossa et al.,

2003) and Mrk 273 (Iwasawa et al., 2018), both with sub-
kpc nuclear separations. The X-ray luminosity of AGN
(as observed) spans from logL2−10keV = 40.8 to 43.1 in
units of erg/s, with a median value of 41.65, which are
relatively low for these IR-luminous systems. Absorption
correction ranges from a factor of ∼ 2 for a moderately
absorbed source to ∼ 30 for a Compton-thick AGN, and
the average absorption correction is about 1 dex. When
further applying the standard bolometric correction (10–
20, e.g., Marconi et al. 2004; Lusso et al. 2012), the AGN
bolometric luminosity would be estimated to be of the or-
der of 1044 erg/s, i.e. less than 10 per cent of the total
bolometric luminosity of ULIRGs.

1.2.4. High-z X-ray observations of multiple AGN systems
The situation at z > 1 has been poorly investigated

thus far, since detecting distant, possibly obscured AGN
is challenging for Chandra observations of moderate depth.
In this context, we may mention the triple quasar system
at z=2.05 LBQS 1429-0053 (aka QQ1429-008; Djorgovski
et al. 2007), for which a ≈ 21 ks Chandra pointing al-
lowed the clear detection of the two brightest members of
the system. Although complete samples of dual quasars at
high redshift are not easy to construct (see Hennawi et al.
2010; Findlay et al. 2018) and their complete follow-up in
X-rays would probably require very large projects (of the
order of several-Ms exposures), the few X-ray observations
thus far available have allowed to check whether and how
quasars in the golden quasar epoch are influenced by the
surrounding environment (i.e., the presence of compan-
ions). In this regard, recently Vignali et al. (2018) have
selected two systems of dual quasars at z=3.0–3.3 drawn
from the Hennawi et al. (2010) sample, hence from the
SDSS-DR6, at separations of 6–8′′ (43–65 kpc), provid-
ing a first-order source characterization for both quasars
of each pair thanks to two Chandra 65 ks observations.
All of these quasars have intrinsically high rest-frame 2–
10 keV luminosities (2 × 1044 − 5 × 1045 erg s−1), with
signs of obscuration in those quasars showing indications
for broad absorption lines (BAL) in their optical spectra
(hence being classified either as mini-BAL or BALQSOs).
In particular, one of these four quasars has an order of
magnitude higher optical luminosity than the median value
of SDSS quasars at z=3.3; the possibility that this is due
by chance (and, thus, not because of the presence of a
companion) has been estimated to be of the order of 3 per
cent. In the same work, Vignali et al. (2018) found X-
ray emission from both quasar members of a pair at z=5.0
(projected separation of 21′′, corresponding to 136 kpc),
for which XMM-Newton archival data (≈ 80 ks) allowed
the authors to detect the two components separately, find-
ing unobscured X-ray emission, consistent with their op-
tical classification. To our knowledge, this represents the
highest-distance quasar pair ever detected in X-rays.

Still focusing on the quest of multiple AGN systems at
high redshift, an astonishing and very recent field of re-
search is given by the discovery of enormous (∼> 200 kpc)
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Lyα nebulae (ELANe) around <∼ 10 per cent of radio-
quiet quasars (e.g., Hennawi et al. 2015, following Hennawi
and Prochaska 2013; see also Cantalupo et al. 2014; Cai
et al. 2017). Up to now, all of them show the presence of
multiple companion AGN. Additional recent detections of
ELANe at high redshift (Fumagalli et al., 2017; Arrigoni
Battaia et al., 2018, 2019) indicate that these structures
are almost ubiquitous found around luminous high-redshift
quasars (mostly thanks to VLT/MUSE, Keck/KCWI, and
the ongoing statistical surveys targeting quasars; this will
be extensively discussed in Sect. 5.3). For comparison, we
note that other less extended and lower-luminosity nebulae
(Borisova et al., 2016) and Lyα blobs (LABs) reported in
literature do not contain multiple AGN. Among ELANe,
the Jackpot Nebula at z = 2 was recently observed with
Chandra (140 ks pointing; Vignali et al., in prep.). This
nebula comprises an extended (≈310 kpc) Lyα emission
region, four AGN in the inner ≈200 kpc plus three addi-
tional AGN on larger scales, identified by Chandra, likely
at similar redshift, a factor ≈20 overdensity of Lyα emit-
ters, and several submm galaxies probably at the same
redshift. The Chandra detection of extended emission at
the 5.4σ level in the inner region further supports the inter-
pretation of the field as hosting a protocluster with a very
high incidence of AGN (Vignali et al., in prep.). ELANe
could help identify high-density regions at high-redshifts,
such as prototclusters, where enhanced multiple AGN ac-
tivity can be favored by halo assembly bias or by physical
interactions in a dense galaxy environment.

1.3. AGN dual detection in near- and mid-infrared
It has been known since the publication of the IRAS

Catalog of Bright Galaxies that most LIRGs and ULIRGs
are interacting/mergers. Later on it was proven that the
fraction of LIRGs/ULIRGs hosting an AGN is higher than
for non-IR bright galaxies; in fact, at the highest luminos-
ity (Lir > 1012 L�), nearly all objects appear in advanced
mergers powered by both AGN and circumnuclear star-
bursts, which are fueled by an enormous concentration of
molecular gas that has been funneled into the merger nu-
cleus (Sanders et al., 1988; Sanders and Mirabel, 1996).
Mateos et al. (2017) found that the majority of luminous,
rapidly accreting SMBHs at z ≤1 reside in highly ob-
scured nuclear environments; most of these sources are so
deeply enshrouded that they have so far escaped detection
in <10 keV X-ray wide-area surveys.

WISE (Wright et al., 2010) all-sky mid-IR data proved
to be extraordinarily fruitful in the characterization of
mid-infrared properties of AGN, showing the power of
mid-IR colours as AGN diagnostic tools (e.g., Jarrett
et al. 2011; Stern et al. 2012; Mateos et al. 2012; Rovi-
los et al. 2014; Satyapal et al. 2018). The hot dust sur-
rounding AGN produces a strong mid-infrared continuum,
whose emission can be easily disentangled from that re-
lated to stellar processes via SED-fitting techniques in
both obscured and unobscured AGN. Through a large mid-
infrared study of AGN in mergers and galaxy pairs se-

lected by matching SDSS and WISE data, Satyapal et al.
(2014) found that there is an enhanced fraction of IR-
selected AGN with respect to optically selected AGN in
advanced mergers. They also found that the fraction of
obscured AGN increases with the merger stage, with the
most obscured AGN becoming more prevalent in the most
advanced mergers, where also star formation rates are the
highest (Ellison et al., 2015). There are additional obser-
vational works presenting the close link between mid-IR
selection of AGN and mergers (Donley et al., 2007; Urrutia
et al., 2008; Veilleux et al., 2009; Assef et al., 2013; Glik-
man et al., 2015; Fan et al., 2016; Goulding et al., 2018),
highlighting the fact that a large number of objects are
missed by optical classification because of heavy extinc-
tion and calling for a synergic approach in AGN selection
involving different wavelengths.

In a similar context, Weston et al. (2017) investigated
the connection between merging/interacting galaxies and
dusty obscured AGN using SDSS and WISE data at
z <∼ 0.08. The analysis showed a clear link between the
presence of major mergers/interactions and red [3.4] – [4.6]
colour, at least at high (> 1010 M�) stellar masses; non-
merging galaxies in a similar mass range are less likely
to have such red mid-IR colour. Thanks to optical spec-
troscopy diagnostics (e.g., BPT diagram, Baldwin et al.
1981), they found that one-quarter of Seyferts show red-
der [3.4] – [4.6] colours than ∼99 per cent of non-Seyferts.
From their sample, AGN are five times more likely to be
obscured when hosted by a merging galaxy.

Findings in line with these were recently reported by
Pfeifle et al. (2019b) and Satyapal et al. (2017) for sam-
ples of mid-IR selected AGN with signatures of ongoing
interactions. In particular, these authors analysed Chan-
dra and XMM-Newton and near-IR (Large Binocular tele-
scope, LBT) data of a sample of advanced mergers with
nuclear separations below 10 kpc, which were pre-selected
through mid-IR colours using WISE. The combined X-
ray, near-infrared, and mid-infrared data were able to dis-
cover the presence of dual/multiple AGN systems. Satya-
pal et al. (2017) detected the presence of the AGN in a
least four out of the six mergers, with four systems possibly
hosting dual AGN. Pfeifle et al. (2019b) detected at least
one nuclear X-ray source in all 15 mergers analysed in their
work; eight of these systems exhibit two sources suggestive
of dual (or triple) AGN. The high spatial resolution X-ray,
near-IR, and optical spectroscopic diagnostics allowed the
discovery of the triplet system SDSS J084905.51+111447.2
at z = 0.077 (Pfeifle et al., 2019a). It is worth noting that
none of these analysed systems show evidence for AGN in
their optical spectra, probably due to the large extinction.
Support to this interpretation comes from the measured
large nuclear obscuration revealed in X-rays (NH above
1024 cm−2). The absorbed 2–10 keV luminosity in all these
systems is much lower than the mid-IR luminosity (see
Fig. 4). These findings suggest that the pre-selection in
the mid-IR provides an efficient way to detect dual AGN
in late-mergers, although data at these wavelengths are
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Figure 4: 2–10 keV observed luminosity vs mid-IR (12 µm) luminos-
ity for the mergers included in the program described in Sect. 1.3
(i.e., X-ray follow-ups of WISE-selected mergers). The plot also in-
cludes the sources already confirmed as dual AGN in the literature.
The samples of hard X-ray selected AGN with the Swift/BAT sur-
vey are also shown; for these AGN, a direct measurement of the
absorbing column density NH is possible (Ricci et al., 2015, 2017).
The dual AGN candidates derived from the WISE selection are the
most heavily absorbed. Dotted lines represent the effect of different
absorption column densities on the unabsorbed best-fit linear rela-
tion from the Swift/BAT sample (dashed line). Adapted from Pfeifle
et al. (2019b).

limited in terms of angular resolution and may require in-
formation at other frequencies (e.g., in X-rays) to eventu-
ally provide conclusive results on the presence of nuclear
activity. A significant step forward in terms of angular
resolution, hence in the process of confirmation and char-
acterization of close systems, will be provided by the mis-
sion James Webb Space Telescope, JWST (see Sect. 5.4
for more details on future mid-IR observations). In this
regard, Imanishi and Saito (2014) used high spatial res-
olution K- and L′- band observations to search for dual
AGN in kpc-scale merging systems, previously identified
in the optical as double-peaked; they found dual AGN in
four systems among the 29 analyzed. This result can be
interpreted assuming that the active phase is not simulta-
neous in the two merging galaxies.

1.4. Dual AGN in the radio waveband

One of the advantages of observations in radio bands
is that the propagation of radio waves is not affected by
dust obscuration. Therefore, radio surveys are an essential
element of multi-wavelength studies. At centimetre wave-
lengths, the radio continuum emission from extragalactic
sources is dominated by non-thermal (synchrotron) emis-
sion from either AGN or star-forming activity. In the for-
mer case, the radio emission originates from ultrarelativis-
tic electrons spiralling around the magnetic field lines in
the vicinity of SMBHs. In the case of “normal” galaxies
without AGN, the origin of radio emission is partly by rel-
ativistic electrons accelerated by supernova remnants and

travelling through the magnetic field of the galaxy, or free-
free emission from HII regions (for a comprehensive review
of radio emission from galaxies, see Condon, 1992).

Distinguishing between AGN and star formation re-
lated radio-emitting regions requires observations with suf-
ficiently high angular resolution. While the radio emission
from AGN is compact and localised to the innermost cen-
tral part of the host galaxy, star-forming activity is dis-
tributed over much larger volumes.

Connected-element radio interferometers, with maxi-
mum baselines of tens of km such as the Karl G. Jan-
sky Very Large Array3 (VLA) or the Australia Telescope
Compact Array4 (ATCA) routinely provide angular reso-
lutions of 1–10 arcsec at cm wavelengths. The electronic
Multi-Element Remotely-Linked Interferometre Network5

(eMERLIN) in the UK, with maximum baselines of a few
hundred km, provides angular resolutions as small as 40
and 150 milliarcsecond (mas) at 6 and 20 cm, respectively.

Such angular scales allow to detect and characterize
not only the compact sources corresponding to the AGN
themselves, but also extended emission in their surround-
ings, such as radio jets or jet-driven outflows. Further-
more, multi-frequency observations give useful spectral in-
formation to discern them: AGN typically show flat spec-
tra, with a few exceptions (O’Dea, 1998), while jet-driven
structures present steeper profiles. This makes radio ob-
servations with arcsec resolution a powerful tool to confirm
the nature of multiple AGN systems (e.g., Müller-Sánchez
et al. 2015); this is particularly important given that gas
photoionization from one AGN can create a spurious sig-
nature of a second AGN in optical data, as described in
Sect. 1.1. The highest angular resolution in radio astron-
omy is offered by very long baseline interferometry (VLBI).

By this technique, the radio telescopes do not need to
be physically connected, so the distance between them
can reach thousands of km. The mas angular resolution
achievable by VLBI at cm wavelengths makes it possible
to identify very compact radio sources and indicates that
the brightness temperature of the detected source exceeds
∼106 K. Compact continuum radio sources with such high
brightness temperatures are often associated with AGN,
being the brightness temperature of star-forming galaxies
. 105 K for frequencies above ∼ 1GHz (Condon, 1992).
Star-forming activity, gamma-ray bursts, radio supernovae
or their complexes can occasionally reach this limit. How-
ever, transient events are rather rare at radio wavelengths
– only ∼50 supernovae have been detected at radio fre-
quencies after ∼30 years of observations (Lien et al., 2011)
– and the luminosity of star formation quickly drops be-
low detection limits when the redshift of the host galaxy
is larger than ≈0.1. Therefore, based on luminosity and
brightness temperature arguments, if a radio source is de-
tected with VLBI in an extragalactic object at redshift

3http://www.vla.nrao.edu/
4https://www.narrabri.atnf.csiro.au/
5http://www.e-merlin.ac.uk/
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z ≈ 0.1 or beyond, it is certain that the emission is AGN-
related (Middelberg et al., 2013) – with the single excep-
tion of hyperluminous IR galaxies at high redshift, some of
which have exceptionally high star-formation rates and can
be partly powered by hyperluminous nuclear starbursts.
For these reasons, VLBI is a powerful tool to separate
AGN from star-forming galaxies above relatively low red-
shifts (z ∼> 0.1). In other words, while connected-element
interferometers are sensitive to both starburst-related and
AGN radio emission spatially blended in the same source,
VLBI with its longer baselines acts as an efficient spatial
filter for very compact non-thermal AGN radio emission at
z ∼> 0.1. It is therefore a unique observing tool to confirm
the existence of jetted (radio) AGN.6

In the context of dual AGN, the typical mas-scale angu-
lar resolution achievable with VLBI networks at cm wave-
lengths allows us to directly resolve pairs with projected
linear separation as small as about a pc in the local Uni-
verse and ∼ 10 pc at any redshift. The technique is thus
ideally suited for observing kpc-scale dual AGN (e.g. An
et al., 2018). However, a severe limitation of its applica-
bility is that only a minority of AGN, less than 10 per cent
of the population, are strong (i.e. at least mJy-level) ra-
dio emitters (e.g. Ivezić et al., 2002). Therefore, based on
VLBI observations alone, it is only possible to prove un-
ambiguously the AGN nature of a candidate dual source
if both companions are radio AGN. However, it must be
also remarked that some of the AGN classified as “radio-
quiet” do show compact radio emission that can be de-
tected with sensitive VLBI observations (e.g. Herrera Ruiz
et al., 2016).

Because of their narrow (typically arcsec-scale) fields
of view, the use of VLBI networks as “blind” survey in-
struments is also limited, unless wide-field observing and
multi-phase-centre correlation techniques are employed
(e.g. Chi et al., 2013; Herrera Ruiz et al., 2017). A more
typical application of VLBI is to study individual objects
or small samples of dual AGN candidates that are selected
based on independent indications of duality. It comes as
no surprise that kpc-scale dual AGN cases confirmed with
VLBI observations are still rare. A systematic study of the
most luminous radio AGN in the multi-frequency VLBI
archive (Burke-Spolaor, 2011) has produced a single case
of a double flat-spectrum core, the nearby radio galaxy
0402+379 (z = 0.055), with two nuclei separated by just
7.3 pc (see Fig. 5, Rodriguez et al. 2006).

Based on the analysis of VLBA (the network of ten radio
antennae located across the United States) data spanning
12 yr, recently Bansal et al. (2017) claimed the detection
of relative motion of the companion AGN. If this is due to
orbital motion, and assuming a circular orbit, the authors
could derive an orbital period of about 3× 104 yr. While
the VLBI technique is capable to detect positional changes

6In some cases, however, multiple knots in a radio jet can mimic
two AGN.

Figure 5: Radio VLBA image contours of the system 0402+379 at
8 GHz. Components C1 and C2 correspond to the two radio nuclei
at projected separation of 7.3 pc. From Rodriguez et al. 2006.

of compact components on sub-mas scales, over the cur-
rently available time baselines of several decades, only a
minor part of an assumed orbit can be sampled in a binary
with pc-scale separation. Consequently, the derivation of
the orbital parameters is challenging.

There are practical difficulties in deciding which sources
can be regarded as reliably “confirmed” dual AGN. Ide-
ally, at least two different methods, based on observing at
multiple wavebands, would be desirable. In this regard,
radio observations also have their role (although with the
already mentioned disadvantage that only a small fraction
of AGN are expected to be strong radio emitters). Care
must also be taken when conducting only low-resolution or
single-frequency measurements, since the observed proper-
ties could be reconciled with several different explanations.

For example, based on VLA observations, the quasar
J1023+3243 (z = 0.127), showing double-peaked nar-
row optical emission lines, was found to be a compelling
case for a dual AGN through radio observations (Müller-
Sánchez et al., 2015). Conversely, higher-resolution VLBI
observations, filtering out extended non-AGN emission,
failed to reveal even a single compact radio AGN in
J1023+3243 (Gabányi et al., 2016). This is consistent with
the fact that arcsec-resolution radio imaging alone is not
decisive in confirming AGN duality, as described above.

There are also cases when the interpretation of VLBI ob-
servations is not straightforward. The quasar J1425+3231
(z = 0.478) was found as a kpc-separation dual AGN
candidate based on double-peaked narrow [OIII] emission
lines in its optical spectrum (Peng et al., 2011). Follow-up
VLBI observations of this radio source revealed two com-
pact components separated by 2.6 kpc (Frey et al., 2012),
one of them with a flat and another with a steep radio
spectrum. While both components must be AGN-related
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synchrotron sources, they are not necessarily associated
with AGN cores. Indeed, sensitive intermediate-resolution
(∼ 50 − 200mas) e-MERLIN radio images later made it
clear that the steep-spectrum feature is not an AGN core
but instead a hot spot in a kpc-scale lobe. Therefore,
this quasar is apparently not a dual AGN system, and the
double-peaked optical emission lines are likely related to a
jet-induced symmetric outflow from the vicinity of a single
central SMBH (Gabányi et al., 2017).

An example of the debated interpretation of VLBI re-
sults is the case of J1502+1115 (z = 0.390). Multi-
frequency VLA observations by Fu et al. (2011) showed
that two radio components could be detected at the core
positions separated by 7.4 kpc previously revealed by op-
tical and near-infared measurements. Deane et al. (2014)
reported the surprising result that, based upon their high-
resolution VLBI observations, one of the two radio AGN
contains two flat-spectrum components separated by just
0.14 kpc and interpreted this as J1502+1115 being a triple
radio AGN system. The picture with a close-pair binary
was also supported by the helical pattern of the large-scale
radio jet. The scenario was, however, challenged by Wro-
bel et al. (2014) who argued that the closely-separated
radio components are instead double hot spots energized
by a single SMBH in a compact symmetric object. Sen-
sitive high-resolution multi-frequency VLBI observations
would be needed to give a final answer to this debate.

Probably the most spectacular example of a confirmed
dual radio bright AGN is 3C 75 (z = 0.023). The dou-
ble nuclei of the source were first mapped in the radio
by Owen et al. (1985) using the VLA. Later, observations
conducted at various wavebands from X-rays to radio re-
vealed that the source is indeed a pair of radio-emitting
AGN separated by ∼ 8 kpc (Hudson et al., 2006, and ref-
erences therein). The radio interferometric images of the
jets of the two AGN provide a unique opportunity to study
their interaction with each other, and with the intracluster
medium.

2. Theory on dual AGN systems: cosmological and
isolated simulations of mergers

In this section, we extensively discuss cosmological
(Sect. 2.1) and idealized (Sect. 2.2) merger simulations
on the formation of dual AGN. We also describe phys-
ical processes occurring in circumnuclear disks (CNDs;
Sect. 2.3) surrounding BH pairs and discuss their pairing
at sub-kpc-scale separations. Whereas large-scale cos-
mological simulations (e.g., modelling of gas inflows from
filaments on evolving galactic halos) enable direct com-
parisons with surveys, idealized merger simulations, which
typically reach a much higher numerical resolution, allow
to follow in greater detail the dynamics and growth of the
SMBHs, and to study systematically the evolution of their
parameters (e.g., mass, spin, and merger times).

2.1. Cosmological Simulations

In the last few years, several cosmological hydrodynamic
simulations have been carried on with the aim at produc-
ing large samples of simulated galaxies (e.g., Magneticum:
Hirschmann et al. 2014; Horizon-AGN: Dubois et al. 2014;
Illustris: Vogelsberger et al. 2014; EAGLE: Schaye et al.
2015; MassiveBlack-II: Khandai et al. 2015; BlueTides:
Feng et al. 2016; MUFASA: Davé et al. 2016; Romu-
lus: Tremmel et al. 2017; IllustrisTNG: Springel et al.
2018), including more and more detailed physical pro-
cesses introduced at sub-grid level, e.g. star formation
(e.g. Springel and Hernquist, 2002; Schaye and Dalla Vec-
chia, 2008), stellar evolution, supernova feedback, chemi-
cal enrichment (e.g. Tornatore et al., 2003, 2007; Pillepich
et al., 2018), magnetic fields (e.g. Pakmor et al., 2011;
Pakmor and Springel, 2013), growth of SMBHs and their
associated AGN feedback (e.g. Springel et al., 2005; Fab-
jan et al., 2010; Dubois et al., 2012; Rosas-Guevara et al.,
2015; Steinborn et al., 2015; Weinberger et al., 2017). The
overall properties of the simulated galaxy samples, i.e. the
stellar mass function, the star formation main sequence,
the mass-size relation, and the mass-metallicity relation,
do in general agree surprisingly well with observations,
given the fact that they are produced self-consistently (e.g.
Hirschmann et al., 2014; Steinborn et al., 2015; Remus
et al., 2017; Dolag et al., 2017; Weinberger et al., 2018).

Simulations including SMBHs do also reproduce the ob-
served BH mass function as well as observed scaling rela-
tions between BHs and their host galaxies relatively well,
including the relation between the BH mass M• and the
stellar mass M∗ or the M•-σ relation (e.g. Sijacki et al.,
2015; Hirschmann et al., 2014; Steinborn et al., 2015;
Volonteri et al., 2016; Weinberger et al., 2018). In these
simulations, the BH growth is commonly modelled using
the Bondi formalism to compute the accretion rate, limited
to a maximum value of x · ṀEdd, where x is customarily
set to x = 1 (Springel et al., 2005):

Ṁ• = max

(
4παG2M2

• 〈ρ∞〉
(〈v〉2 + 〈cs〉2)3/2

, x · ṀEdd

)
, (1)

where 〈ρ∞〉, 〈cs〉, and 〈v〉 are the mean density, the mean
sound speed, and the mean velocity of the accreted gas rel-
ative to that of the BH, respectively. The empirical boost
factor α has been introduced by Springel et al. (2005) to
compensate for the fact that the resolution is too low to
properly apply the Bondi model. This parameter was orig-
inally set equal to α = 100, but it has been modified later-
on such to account for the dependence on the gas pressure
(Vogelsberger et al., 2013), on its angular momentum con-
tent (Rosas-Guevara et al., 2015; Tremmel et al., 2017), or
on the gas temperature (Steinborn et al., 2015).

However, despite the variety of existing hydrodynamic
cosmological simulations, only a few of the currently used
BH models are capable of producing AGN pairs with sep-
arations down to kpc scales within a cosmological sim-
ulation. One reason is that very large volumes are re-
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quired at relatively high resolutions, making such simula-
tions computationally very expensive. Another reason is
that most of the currently used BH models are not capable
of tracing BHs down to the resolution limit during a galaxy
merger. Specifically, in most cosmological simulations BHs
are pinned to the gravitational potential minimum (Blecha
et al., 2016; Springel et al., 2005) to avoid that the BHs
become artificially dislocated from the galaxy centre. Con-
sequently, during a galaxy merger, the two central BHs
merge instantaneously as soon as the two merging galax-
ies are identified as only one galaxy by the halo finder.
Since this occurs relatively early during the merger, it is
not possible to directly trace the dynamics and growth of
two BHs during the merger. Making predictions about the
number density of SMBH pairs using such simulations is
only possible indirectly, for example using models like in
Kelley et al. (2017) and in Salcido et al. (2016), making
predictions about GWs from SMBH mergers adding delay
times in post-processing.

However, some authors developed methods to avoid that
the BHs have to be pinned to the potential minimum.
In the cosmological zoom-in simulations from Bellovary
et al. (2010), for example, dark matter (DM) particle
masses are set similar to the gas particle masses in the
high-resolution region. Okamoto et al. (2008) artificially
drag the BHs along the local density gradients. Dubois
et al. (2012) include dynamical friction from unresolved
gas, while Hirschmann et al. (2014), Tremmel et al. (2015),
and Pfister et al. (2019b) use a similar approach by ac-
counting for a dynamical friction force, from stars and
DM, caused by small- and large-scale perturbations of the
surrounding particles (see, e.g., Tremmel et al. 2015 and
references therein for a detailed description). Due to these
perturbations BHs are, equivalently to stars, decelerated
in the direction of their motion (Chandrasekhar, 1943):

∆~v = δ~v(∆t)− η~v∆t. (2)

Following Chandrasekhar (1943), and assuming thatM• is
much larger than the masses of the surrounding particles,
mi, the dynamical friction coefficient η is given by

η = 4πmiM•G
2 ~v•
v3
•

ln

(
D0 < v2 >

GM•

)∫ v•

0

N(vi)dvi, (3)

where D0 is the average distance between the BH and the
surrounding particles, ~v• is the velocity of the BH, ~vi are
the velocities of the neighboring particles, < v2 > is the
mean square of these velocities, and N(vi) is the according
velocity distribution. Note that only particles with v < v•
are considered in this formula. Such a friction term, how-
ever, is only required when the resolution is too low to
model dynamical friction self-consistently within the sim-
ulation (Beckmann et al., 2018). Alternatively, in the EA-
GLE simulations, BHs are positioned in correspondence
to the potential minimum only below a mass threshold
M• < 100mgas, where mgas is the initial mass of gas parti-
cles (Rosas-Guevara et al., 2019). BH mergers are gener-

M∗ > 1010M� M∗ > 1011M�

z = 0 z = 2 z = 0 z = 2

Horizon-AGN 0.1 2 0.9 11
Magneticum - 0.19 - 1.7

Table 1: Fraction of dual AGN (per cent) with respect to the to-
tal number of galaxies above the given mass threshold and at the
given redshift, for the Magneticum simulation and the Horizon-AGN
simulation.

ally allowed when the separation and the relative velocity
between the two BHs decrease below certain thresholds.

2.1.1. Fraction of AGN pairs
Due to the large size of the simulations required to pro-

duce AGN pairs, there is either lack of available snapshots
or poor spatial resolution, or too small simulated volumes
to produce AGN pairs within the same time step. Stein-
born et al. (2016) use a simulation with a very large volume
of (128 Mpc/h)3 and a spatial resolution of roughly 2 kpc.
However, the simulation, which is taken from the Mag-
neticum Pathfinder simulation set, ran only down to z = 2.
The Horizon-AGN simulation (Volonteri et al., 2016) has
a smaller simulation volume of (100 Mpc/h)3 and a spa-
tial resolution of 1 kpc, but it ran down to z = 0. The
Romulus simulation (Tremmel et al., 2017, 2018) also ran
down to z = 0. Its spatial resolution is about four times
higher than in the Magneticum simulation and twice that
in the Horizon-AGN simulation. However, the simulation
volume is relatively small with (25 Mpc/h)3. To compen-
sate for the small volume, Tremmel et al. (2017) do not
use single snapshots, but all galaxy mergers across cosmic
time.

In order to compare different simulations, we need to
adopt the same selection criteria, in particular the same
spatial separations between two AGN (typically < 10 kpc)
and the same galaxy and AGN luminosity threshold. Of-
ten, AGN are simply selected through their bolometric
luminosity, and a typical threshold is Lbol > 1043 erg s−1.
When comparing simulations with observations, one has to
be aware of the fact that such a selection does not include
any obscuration effects. In addition, simulations make dif-
ferent assumptions on the modelling of the galaxies and
their SMBHs, leading to very different predictions. State-
of-the-art simulations of galaxy mergers are still in their
infancy in tracking the dynamics and growth of SMBHs
realistically, and it is still challenging to reproduce the ob-
served properties of AGN and SMBHs as a function of
redshift.

To demonstrate this, Table 1 shows a comparison of the
dual AGN fractions in the Magneticum simulation run by
Steinborn et al. (2016) and the Horizon-AGN simulation
by Volonteri et al. (2016). At z = 2, the Horizon-AGN
simulation (Volonteri et al., 2016) predicts a dual AGN
fraction of 2 per cent (11 per cent) with respect to all
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galaxies above M∗ > 1010M� (M∗ > 1011M�).
The Magneticum simulation run predicts much lower

dual AGN fractions: 0.19 per cent and 1.7 per cent for
galaxies above M∗ > 1010M� and M∗ > 1011M�, respec-
tively. There might be several reasons for these discrep-
ancies, most of them being related to selection criteria, as
specified above, for dual AGN (such as the threshold for
BH mass, galaxy mass, AGN luminosity, and Eddington
ratio). A minor effect is the slightly different definition of
dual AGN. For the Magneticum simulation result we in-
clude only AGN pairs with proper separations < 30 kpc,
whereas Volonteri et al. (2016) include also AGN pairs
with larger separations. However, only a very small frac-
tion of their dual AGN have separations above 30 kpc,
making this point negligible. More importantly, Horizon-
AGN selects dual AGN using a threshold for galaxy mass,
whereas Magneticum uses a threshold on BH mass (equal
for both AGN, M• > 107M�); assuming the same crite-
ria on BH mass in Horizon-AGN, the dual AGN fraction
is closer to the one reported in Magneticum (0.6 per cent
at z = 2). Also, imposing the same BH mass threshold
as in the Magneticum simulation will select systems with
mass ratio close to one, that will increase the paucity of
the selected dual AGN systems. The number density of
AGN in general is much larger in the Horizon-AGN sim-
ulation than in the Magneticum simulation. Specifically,
the faint luminosity end of the luminosity function from
the Horizon-AGN simulation is over-predicted, compared
to observations from Hopkins et al. (2007). In contrast,
the Magneticum simulation under-predicts the number of
luminous AGN, but agrees with Hopkins et al. (2007) at
the low-luminosity end. Since faint AGN are the major-
ity of all AGN, this leads to a much larger number den-
sity of AGN and, thus, also of dual AGN. One reason for
these differences might be the differences in the AGN feed-
back model. In particular, the model from Steinborn et al.
(2015), which is used in the Magneticum simulation run,
suppresses BH growth much earlier than in the feedback
model used in the Horizon-AGN simulation. Particularly
at z = 2, this leads to a larger fraction of quiescent galax-
ies with respect to star-forming galaxies. Assuming that
AGN activity and star formation activity are driven by the
same mechanisms, this implies a generally smaller fraction
of AGN. However, since observations also predict very dif-
ferent AGN luminosity functions (e.g. Lacy et al., 2015),
it is still unclear which simulations give better predictions.
Thus, any predictions of dual AGN fractions with respect
to the overall galaxy sample, from simulations as well as
from observations, have to be taken with great caution.

Next, we compare the redshift evolution of the dual
AGN fraction and the fraction of BH pairs with only one
active BH of the Magneticum simulation run presented in
Steinborn et al. (2016) with Horizon-AGN and with the
largest EAGLE simulation run (Fig. 6). The datapoints
from Rosas-Guevara et al. (2019, EAGLE) are shown as
cyan (one AGN) and orange (dual AGN) filled circles and
the Magneticum simulation results are represented by dark

Figure 6: Fraction of dual AGN (red, orange, and yellow datapoints)
and BH pairs with only one AGN (dark blue, cyan, and light blue dat-
apoints) with respect to the total number of AGN, for Magneticum
(red and dark blue diamonds), EAGLE (orange and cyan circles,
taken from Rosas-Guevara et al. 2019), and Horizon-AGN (yellow
and light blue squares). For all simulations we include only AGN
pairs with Lbol > 1043 erg s−1and a proper separation < 30 kpc,
while for Magneticum and Horizon-AGN we also apply a BH mass
cut of M• > 107M� for one BH.

blue (one AGN) and red (dual AGN) diamonds. The data-
points for Horizon-AGN are shown in light blue (one AGN)
and yellow (dual AGN). To be able to compare the two
simulations, we again adopt the same selection criterion
for the Magneticum simulation like in Rosas-Guevara et al.
(2019), which is a proper separation of < 30 kpc. For Mag-
neticum and Horizon-AGN, we apply the same BH mass
cut of M• > 107M�. While the dual AGN fractions pre-
dicted by the simulations agree very well with each other,
the fraction of BH pairs with one AGN is generally increas-
ing in the EAGLE and Horizon-AGN simulations, whereas
in the Magneticum simulation it is decreasing, at least
above z ∼ 3. For z . 3.5 the Magneticum simulation
has a significantly larger fraction of such pairs than the
EAGLE simulation, but similar to Horizon-AGN.

We stress here the importance of the exact definitions
of both numerator and denominator in defining these frac-
tions and their redshift evolution. As noted above, impos-
ing a galaxy mass cut is not the same as imposing a BH
mass cut, since the choice, when coupled with a luminosity
threshold, impacts the Eddington ratio distribution of the
selected population. For instance, in the case of Horizon-
AGN at z = 2, the dual AGN fraction is 0.8 per cent tak-
ing only a Lbol > 1043 erg s−1threshold and it is basically
constant with redshift; the fraction becomes 2.4 per cent
if applying also a galaxy mass cut of M∗ > 1010M� and
it increases strongly from low to high redshift. Applying
the luminosity cut and a BH mass cut of M• > 107M� to
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both BHs in the pair the fraction at z = 2 is 0.6 per cent
and it decreases somewhat at z > 2, finally when applying
the same BH mass cut to one AGN only the fraction at
z = 2 is 1.3 per cent and it increases weakly from z = 0 to
z = 4 (see fig. 6).

Furthermore, when comparing with observations, it is
imperative to adopt the same approach. For instance, ap-
plying the same luminosity threshold to the sample, as
done in these examples, differs from selecting all AGN
above a luminosity threshold and then looking at which
of these have a companion that can be somewhat fainter.
While it is understandable that the choice of definition
is sometimes forced by the parent sample properties, one
needs to check carefully whether the same definitions are
used, before performing a comparison.

However, predictions have to be taken with caution. For
instance, to avoid spurious scattering, the Magneticum
simulation uses two masses, a “real” mass and a “dynam-
ical mass”. The “real” mass is used to calculate gas ac-
cretion and feedback, whereas the “dynamical mass” is
used for gravity as long as the BH mass is not large
enough to avoid wandering caused by numerical noise (see
Hirschmann et al. 2014 and Steinborn et al. 2015 for de-
tails). In that way they have a relatively smooth tran-
sition between the galaxy without and, then, with a BH
hole, which would otherwise cause too much AGN feedback
right after seeding the BH. However, since the “real” mass
is different from the “dynamical mass”, which determines
the motion of gas near the BH, for these BHs it is uncer-
tain whether they would also be active if their mass had
been larger and exerted a stronger feedback (see Steinborn
et al. 2016). Higher redshifts, where many BHs are seeded,
should be affected more than lower redshifts. This could
explain the difference between EAGLE and Magneticum
in Fig. 6.

In contrast to Volonteri et al. (2016), Steinborn et al.
(2016), and Rosas-Guevara et al. (2019), Tremmel et al.
(2018) concentrate on haloes with Milky Way-like masses
at z = 0. They find that multiple SMBHs within 10 kpc
from the galaxy centre are very common in such low-mass
haloes: on average, they host 5.1 ± 3.1 SMBHs, indepen-
dent of the merger history and morphology. This implies
that SMBH pairs and multiplets might be common (for
early predictions giving similar numbers for Milky Way-
size galaxies, see Volonteri and Perna, 2005; Bellovary
et al., 2010). However, AGN activity and, in particular,
dual AGN activity is very rare in these haloes since off-
center BHs tend to avoid the gaseous disk. One expla-
nation for the large amount of BH pairs and multiplets
(Tremmel et al., 2018) is that SMBHs often spend a long
time getting to the centre (Tremmel et al., 2017). The
results from Tremmel et al. (2018) are very different from
those of Steinborn et al. (2016), who find only 35 BH pairs
in total. One reason might be the different redshifts, which
would imply that the number of offset SMBHs must in-
crease strongly between z = 2 and z = 0, probably due to
mergers. Furthermore, Tremmel et al. (2018) and Stein-

born et al. (2016) use different mass ranges due to the
different resolutions and simulation volumes. More likely,
however, the discrepancies originate from the different res-
olutions, seeding criteria and the slightly different dynami-
cal descriptions of SMBHs. This, as widely discussed here,
demonstrates again that current cosmological simulations
have to be taken with caution when making predictions
for the amount of SMBH pairs and thus, for the fraction
of dual AGN.

2.1.2. Conditions for the formation of dual AGN
Although cosmological simulations are not able to make

reliable predictions for the fraction of AGN pairs, they are
very useful for making predictions about general trends re-
garding dual AGN, for example in comparison either to in-
active SMBH pairs or to SMBH pairs with only one active
BH. In particular, Steinborn et al. (2016) and Volonteri
et al. (2016) agree in the following points, both being in
agreement with simulations of isolated mergers (Sect. 2.2):

• The probability for dual AGN activity increases with
decreasing distance between the BHs.

• The BH mass ratio of dual AGN is close to unity.

Cosmological simulations do not only produce AGN
pairs self-consistently in a cosmological context, but they
also contain more information than observations. Most
importantly, the time evolution can give insights into the
formation and trigger mechanisms of dual AGN. In par-
ticular, Steinborn et al. (2016) conclude:

• Dual AGN do, on average, require a larger gas reser-
voir than single AGN. They are not only driven by
internal gas of the host galaxy, but also by gas which
has recently been accreted by the galaxy, for example
from cold gas filaments or clumpy accretion.

• Only when both SMBHs have similar BH masses, they
are both able to be active. As soon as one BH is
significantly more massive than its counterpart, its
gravitational potential accumulates and heats the gas
even in the vicinity of the smaller BH, suppressing its
accretion which could otherwise be accreted by the
less massive BH.

Both these conclusions agree with those obtained from
idealized simulation (see Sect. 2.2 on BH activity) and with
observing data that reveal a more obscured environment in
dual AGN with respect to isolated systems (see Sect. 1.2).

Although the specific dynamical description of BHs, as
well as the underlying AGN models used in cosmologi-
cal simulations have to be refined, current state-of-the-art
cosmological simulations already have important implica-
tions for the interpretation of observations as well as of
simulations of isolated mergers. In particular, dual AGN
activity is not simply a tracer of galaxy mergers, since
many inactive BH pairs and multiplets with kpc-scale sep-
arations exist, which are not necessarily linked to a recent
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merger (Tremmel et al., 2018). Furthermore, the results
from Steinborn et al. (2016) suggest that having a closer
look onto the detailed morphology as well as onto the en-
vironment of galaxies which host dual AGN might give
further insights into their driving mechanisms. Since the
accretion of gas onto the galaxy seems to play a major role
(Steinborn et al., 2016), it will be particularly interesting
to have a look at how the gas is accreted by the galaxy
and how it is driven towards the centre.

2.2. Isolated Mergers

The dynamics of isolated galaxy mergers have been pre-
sented in a plethora of studies, from the early works of,
e.g., Holmberg (1941) and Toomre and Toomre (1972), to
the extensive research in the 1990’s (e.g. Barnes and Hern-
quist, 1991; Barnes, 1992; Barnes and Hernquist, 1996)
and 2000’s (e.g. Cox et al., 2008). Only in the past two
decades did merger simulations start to include the dynam-
ics and/or growth of massive BHs (e.g. Di Matteo et al.,
2005; Hopkins et al., 2006; Younger et al., 2008; Johansson
et al., 2009; Hopkins and Quataert, 2010; Callegari et al.,
2009, 2011; Van Wassenhove et al., 2012, 2014; Hayward
et al., 2014; Colpi, 2014; Capelo et al., 2015; Volonteri
et al., 2015a,b; Gabor et al., 2016; Capelo et al., 2017;
Pfister et al., 2017; Khan et al., 2018). In this subsection,
we limit our discussion to the few studies that focused on
the theoretical predictions of observational signatures of
single or double AGN activity.

2.2.1. Link between merger dynamics and AGN fuelling
As an illustrative case, we discuss the dynamical evo-

lution of one of the mergers presented in Capelo et al.
(2015), in which the initial mass ratio between the two
galaxies as well as between the two BHs is 1:4, the merger
is coplanar (i.e. both disk planes lie on the merger orbital
plane), and the internal angular momenta of the two disks
are both aligned with the merger angular momentum (1:4
coplanar, prograde–prograde merger; Run 07 in the orig-
inal paper). The simulation starts when the two galaxies
are on a parabolic orbit and separated by ∼70 kpc, cor-
responding to the sum of the two galaxy virial radii. Six
snapshots highlighting the main phases of the merger are
shown in Fig. 7: the first panel shows a very early stage,
before the first encounter, whereas in the second panel
the tidal perturbations onto the two galaxies are clearly
visible after the first pericentre. The fourth panel shows
the extremely close second pericentre, when the two galax-
ies actually pass through each other, drastically changing
their own morphologies, with the by far larger effect being
observable on the gas component of the secondary galaxy
(as shown at the second apocentre in the fifth panel). The
sixth panel shows the galactic remnant ∼1.5 Gyr after the
beginning of the run, when the galaxy merger has termi-
nated.

The simulation (as well as the other runs in Capelo et al.,
2015) has a high mass and spatial resolution (3.3 × 103

M� and 10 pc for stellar particles, 4.6×103 M� and 20 pc
for gas) and has been designed to save a full output of
the run with an extremely high cadence, allowing for a
detailed analysis of the impact of the merger on the stel-
lar and gaseous components of the two systems. Fig. 8
presents a direct comparison between the BH separation
(upper panels), the evolution of the BH mass, and the
dynamical properties of the gas in the primary (left-hand
panels) and secondary (right-hand panels) host galaxies.
The accretion rates onto both the primary and secondary
BH (second row of panels) evolve from an initial stage
of relatively low values with small fluctuations (stochas-
tic phase, as dubbed in Capelo et al., 2015) to a second
bursting phase (merger phase), starting immediately after
the huge perturbation occurring at the second pericentre
(see Fig. 7) and lasting until the merger completion. The
accretion burst is correlated with strong variations in the
gas angular momentum (see the third row of panels in
Fig. 8). This is especially true for the secondary galaxy,
where a clear angular momentum loss is observable along
with a 90-degree re-orientation of the gas angular momen-
tum. The end of the merger phase shows a second orbital
flip in the secondary, after which the run enters the rem-
nant phase, in which the separation between the two BHs
is poorly resolved and the two objects accrete from the
same gas reservoir.

The main physical process responsible for the violent
evolution of the gas angular momentum and, as a conse-
quence, of the burst of accretion onto the secondary BH
is ram-pressure, as discussed in Capelo and Dotti (2017;
see also Barnes 2002 and Blumenthal and Barnes 2018
for similar larger-scale results) and shown in Fig. 9. The
four columns refer to four different times centred around
the beginning of the merger phase, from immediately be-
fore to immediately after the second pericentre. It can be
noted that the distribution of stars belonging to the sec-
ondary galaxy is tidally perturbed, being elongated in the
radial direction toward the primary galaxy, and develops
clear tidal tails after the interaction (bottom row). The
evolution of the gas component is, however, very different,
as shown in the top and middle rows. A strong hydrody-
namical interaction is observable as soon as the two gas
components interact, creating a clear shock front in the
secondary gas and braking it (second column). Such decel-
eration of the gas (with respect to the stellar component of
its host) is even more visible at the pericentre, and results
in the gas being dynamically decoupled from the stars.
A fraction of the gas unbinds from the secondary galaxy
and gets accreted by the primary galaxy (upper-rightmost
panel), but the majority of the gas remains bound to the
secondary, with a significantly smaller angular momentum,
forming a dense nuclear disk that is counter-rotating with
respect to the stars.

As discussed in Capelo and Dotti (2017), such strong
perturbation depends on the dynamical properties of the
encounter, and a complete flip of the gas orbital plane is
not expected to be ubiquitous. In addition to this process,
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Figure 7: Stellar (red) and gas (blue) density snapshots (viewed face-on) at representative times of a 1:4 coplanar, prograde–prograde merger
(first described in Capelo et al. 2015; Run 07): (1) 0.196, (2) 0.391, (3) 0.880, (4) 0.973 (second pericentric passage), (5) 1.055, and (6)
1.561 Gyr. The primary (secondary) galaxy starts the parabolic orbit on the left (right) of the first snapshot, moving right (left) wards. In
order to make the gas more visible, gas density was overemphasized with respect to stellar density. Each image’s size is 70× 70 kpc. Adapted
from Capelo et al. (2015).

the above-mentioned tidal torques can lead to deviations
from axisymmetry in the stellar components, further sup-
porting the gas inflow (e.g. Hernquist, 1989; Barnes and
Hernquist, 1991, 1996; Mihos and Hernquist, 1996). These
early works, in fact, showed that the role of hydrodynam-
ical torques is negligible (see, e.g., Fig. 10), possibly due
to a combination of lower resolution and the less accu-
rate treatment of hydrodynamics in earlier versions of the
smoothed particle hydrodynamic (SPH) methods. The dif-
ferent relative importance of ram pressure with respect to
tidal torques in driving nuclear activity will depend on the
different galaxy mass ratios, impact parameters, etc., and
a broad parametric study aiming at quantifying the rela-
tive impact of the two processes has not been presented to
date.

2.2.2. Dual AGN properties and occurrence
Since merger-driven tidal torques and ram-pressure

shocks efficiently funnel gas into the central regions of
the merging galaxies, where the BHs lie, we expect some
level of dual-AGN activity associated with galaxy mergers.

This, however, is difficult to quantify, given the extreme
complexity of such systems, wherein one needs to take into
account many physical processes (e.g., DM, stellar, and gas
dynamics; star formation and stellar feedback; radiative
cooling; BH accretion and feedback; etc.). High-resolution
numerical simulations are therefore needed to study this
process, in order to understand how, when, and why and
to predict when two BHs may accrete at the same time. In
this respect, suites of high-resolution isolated merger sim-
ulations are particularly useful, as one can appreciate the
importance of any given BH, merger, or galactic property
by varying one parameter at the time.

Different numerical investigations have been performed
to test the effects of galaxy morphology (disk versus ellipti-
cal; e.g. Van Wassenhove et al., 2012), bulge-to-disk stellar
mass ratio (Blecha et al., 2013, 2018), orbital configura-
tion, BH mass, and BH feedback efficiency (Capelo et al.,
2017), and primary-to-secondary-galaxy and gas-to-stellar
mass ratios (all of the above references). They all agree on
dual AGN activity being more efficiently promoted during
the last stages of galaxy mergers, when the two BHs are
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Figure 8: Temporal evolution of several quantities of the primary (left-hand panels) and secondary (right-hand panels) galaxy of a 1:4 coplanar,
prograde–prograde merger (see also Fig. 7). In all panels, the vertical, dotted, black lines show the separation between the stochastic, the
merger, and the remnant stage. First panel: separation between the two BHs. Second panel: BH accretion rate (solid line) and BH Eddington
accretion rate (dotted line). Third panel: magnitude of the gas specific angular momentum l in 10 concentric shells of 100-pc thickness around
the local centre of mass near the BH, in the inner kpc; l grows monotonically with radius at the beginning and at the end of the run. Fourth
panel: same as the third panel, but for the polar angle of the specific angular momentum vector. Adapted from Capelo et al. (2015).

separated by less than 1–10 kpc. This last stage is, how-
ever, shorter than the initial galaxy pairing phase, when
the average BH luminosities are lower and most often not
simultaneous. To compute the chances of observing an
AGN pair, one has to consider all of the above-mentioned
effects. Moreover, these chances strongly depend on the
observational window that is used to search for AGN pairs,
as detailed in the following.

In order to have a more meaningful comparison with ob-
servations, Capelo et al. (2017) used the results of their set
of simulations to predict hard X-ray luminosities. This ob-
servational band is way less affected than the optical one
by obscuration (e.g. Koss et al., 2010). Indeed, Capelo
et al. (2017) checked for the effect of obscuration on re-
solvable scales (>100 pc, i.e. neglecting any effects from
nuclear tori), and found it to be negligible for high-redshift
(z = 3) galaxies and moderate for local galaxies, produc-
ing a change in the dual-activity time-scales by a factor of
∼2. They also computed projected (rather than 3D) BH
separations and relative velocities, to make the comparison

with observations more direct.7
The link between simulated merger history and dual-

AGN activity is shown in Fig. 11 for one major merger
of the suite of Capelo et al. (2017) – the 1:2 coplanar,
prograde–prograde merger with 30 per cent disk gas frac-
tion and 0.1 per cent BH feedback efficiency (Run 02 in
the original paper). In the left-hand panels, we show the
time the two BHs spend above a given projected separation
(top panel) and velocity difference (bottom panel), assum-
ing several 2–10 keV luminosity thresholds, from 2× 1041

to 2 × 1043 erg s−1 (from top to bottom). In the low-
luminosity cases, the BHs are both active for a signifi-
cant fraction of the encounter and, as a consequence, the
curves simply follow the orbital history of the BHs. In the
high-luminosity cases, dual activity occurs only during the
merger stage, at low (projected) separations. The solid line

7The usage of projected quantities is crucial, as dual-AGN time-
scales can differ by factors of up to ∼4 at a given separation/relative
velocity.
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Figure 9: Detailed evolution of a 1:4 coplanar, prograde–prograde merger (see also Fig. 7 and Fig. 8) at times close to the second pericentric
passage (from left to right: 0.948, 0.963, 0.978, and 1.002 Gyr). Top row: positions of the gas particles of both galaxies, with the gas originally
within 3 kpc from the secondary galaxy’s centre marked in green. Middle row: density map of the gas originally within 3 kpc from the centre
of the secondary. Bottom row: same as the middle row, but for the stars. The colour bar shows the (logarithmic) density scale in units of
2.2 × 105 M� kpc−3 for the middle and bottom rows. Adapted from Capelo and Dotti (2017).

corresponds to the case when L2−10 keV = 1042.3 erg s−1,
which is typically used as the threshold to define an AGN
(Silverman et al., 2011). This luminosity case is further
exemplified in the right-hand panels of Fig. 11, where the
dual-AGN time is shown as a function of luminosity ra-
tio, projected separation, and projected velocity difference,
and in which the higher-density time-clouds are related to
the apocentric passages, where the residence time is longer.

We stress that the quoted relative velocities in Capelo
et al. (2017) should be considered as a broad estimate more
than an actual prediction of the velocity shift measurable
through optical spectroscopy, as these were obtained by
projecting the 3D relative velocity between the two BHs
along the line of sight. Such assumption does not take
into account the size and dynamics of the NLRs. These
effects were considered by Blecha et al. (2013) through a

post-processing analysis of a merger simulation suite, who
found that only a minority of double-peaked NLR were
directly linked to the relative motion of massive BHs.

Simulations of isolated galaxy mergers (see also recent
studies by Solanes et al. 2019 and Yang et al. 2019) cannot
provide any prediction on the fraction of AGN pairs out
of the total number of AGN (for that, large-scale cosmo-
logical simulations are needed; see Sect. 2.1). However, it
is possible to compute the dual-activity time, normalised
by the activity time (defined as the time when at least one
BH is active), and compare this quantity to observed frac-
tions of dual AGN systems out of interacting systems in
which at least one system is known to host an AGN. This
is shown in Fig. 12, where such normalised dual-activity
time for all the mergers in the suite of Capelo et al. (2017)
is compared to data from the all-sky Swift-BAT survey
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Figure 10: Specific torques acting on the gas at the centre of the face-
on disk in a gas-rich equal-mass merger between two disk galaxies,
as a function of time (with the units of length, mass, and time being
roughly 40 kpc, 2.2 × 1011 M�, and 250 Myr, respectively). In this
relatively low-resolution simulation, the gravitational torques exerted
on the gas by the rest of the system (open circles) are much stronger
than those due to hydrodynamic forces (star symbols), as opposed
to the high-resolution case described in Figs 7–9. From Barnes and
Hernquist (1991).

(Koss et al., 2012). Remarkably, both major and minor
simulated mergers are consistent (to within a factor of ∼2
in time) with the observations.

Moreover, it is also possible to compute the dual-activity
time, divided by the total merger time, and compare it to
cosmological simulations which provide the fraction of dual
AGN out of the total number of BH pairs. In this case,
when comparing, for example, major-merger dual-activity
times of isolated mergers (Capelo et al., 2017) to the cos-
mological run by Steinborn et al. (2016; see Sect. 2.1),
they are within a factor of ∼2 from each other.

Although less direct than the X-ray based selections,
infrared studies of dual AGN activity allow to build signif-
icantly larger samples, as current X-ray surveys are mostly
comparatively shallower. However, mid-IR bands can be
contaminated by star formation, often enhanced in merg-
ers, and particular care has to be taken in characteriz-
ing the IR (dual-)AGN selection criteria (Hainline et al.,
2016).

Blecha et al. (2018) performed eight hydrodynamic sim-
ulations of isolated mergers with resolution and gas frac-
tion comparable to the ones discussed above, and a mass
ratio of 1:2 (as the case shown in Fig. 11), except for two
runs exploring the extreme cases 1:1 and 1:5, varying the
bulge-to-total stellar mass ratio in the range 0–0.2 (slightly
lower with respect to the 0.22 mass ratio in the two runs
mentioned above). They coupled the galaxy evolution to
dust radiative transfer in post processing, to quantify the
mid-IR observability of (single and) dual AGN. The post-
processing analysis misses the contribution of structures on
unresolved scales (similarly to the case in Capelo et al.,
2017), but we stress that the input SED for the AGN they
used includes a mid-IR contribution by a sub-resolution
dusty torus.

Figure 13 shows the optical to IR SEDs of a major
(mass ratio 1:2), gas-rich (Mgas/M?,disc = 0.3, for both

galaxies) merger involving two massive bulge-less galaxies
(Run A1A0 in Blecha et al., 2018), for the cases in which
the contribution from the AGN SED was included (solid
line) or not (dotted line). The emission in the upper panel
(corresponding to the first time at which the separation
between the two BHs drops below 10 kpc) is clearly dom-
inated by star formation, and the AGN contribution is
negligible. A clear increase in the IR emission due to the
AGN contribution and the reddening of the mid-IR colours
are evident immediately after the final pairing of the BHs
(lower panel). We stress that our discussion applies to
low-redshift (z < 0.5) mergers, where the optical/near-IR
peak of star formation has a limited impact on the W1
and W2 WISE bands (see Sect. 1.3 and Blecha et al. 2018
for a discussion about the limitations of the IR selection
at higher redshifts).

Blecha and collaborators used their results to provide
an a-priori estimate of the completeness and purity of
AGN samples selected with different IR colour criteria.
As shown in Fig. 14 for the run discussed above, a single-
colour criterion either misses a significant fraction of AGN
(when the W1-W2 threshold is too high), or it is contami-
nated by star formation (for lower W1-W2 thresholds). A
two-colour selection criterion such as the one proposed by
Jarrett et al. (2011) performs better, but does not max-
imise completeness and purity at the same time. The re-
sults of the different runs have then been used to engineer
a new simulation-informed criterion, shown with the blue
solid line in Fig. 14.

The analysis performed by Blecha et al. (2018) suggests
that mid-IR selection can be very effective at identifying
AGN hosts in mergers (see also Sect. 1.3). Using the same
simulations, they estimated the expected fraction of dual
AGN in each merger stage, based on the fraction of time at
each separation when both BHs are simultaneously active,
and found that up to ∼80 per cent of the mergers with a
projected separation <3 kpc could host a pair of accreting
BHs, making the mid-IR-based samples of dual-AGN can-
didates the ideal ballpark for X-ray follow-ups and the per-
fect targets for future sub-kpc imaging and spectroscopy
with the JWST (see Sect. 5.4 for more details on future
mid-IR observations).

In conclusion, we are still far from a detailed picture
of the connection between mergers and (dual) AGN activ-
ity. AGN obscuration and variability on scales shorter and
smaller than the typical temporal and spatial resolution of
idealised merger simulations cannot be taken into account.
This, together with the fact that dust obscuration from
the torus in the vicinity of the BHs is also not currently
resolved, likely leads to an over-estimate of the X-ray dual-
AGN time, possibly resulting in an uncertain one-to-one
association between mid-IR-selected double AGN and de-
tected X-ray pairs. Moreover, these results may be sen-
sitive to which numerical method is employed (e.g. Hay-
ward et al., 2014; Gabor et al., 2016) and to the specific
implementation of BH dynamics (e.g. Lupi et al., 2015a,b;
Biernacki et al., 2017), accretion (e.g. Debuhr et al., 2010;
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Figure 11: Dual-activity time for a 1:2 coplanar, prograde–prograde merger (first described in Capelo et al. 2015; Run 02). Left-hand panels:
time above a given projected separation r (top panel) and velocity difference v (bottom panel) between the two BHs, for several 2–10 keV
luminosity thresholds [1041.3 (dash-triple-dot), 1041.8 (dash-dot), 1042.3 (solid), 1042.8 (dash), and 1043.3 (dot) erg s−1]. The squares indicate
the time regardless of any r or v filter (i.e. r = v = 0), whereas the circles indicate r = 1 and 10 kpc, and 150 km s−1. Right-hand panels:
time as a function of projected separation and velocity difference (bottom panel), and bolometric-luminosity ratio between the two BHs (top
panel), for the luminosity threshold L2−10 keV = 1042.3 erg s−1. Each side is divided in 30 bins (∆ log10(r [kpc]) = 0.1, ∆v = 20 km s−1, and
∆ log10(Lbol,1/Lbol,2) = 0.2). Adapted from Capelo et al. (2017).

Hopkins and Quataert, 2011), and feedback (e.g. Newton
and Kay, 2013). Finer resolution and improved subgrid
recipes will be helpful to gain a better understanding of
these complex systems.

2.2.3. Stalling BH pairs as tight dual AGN
The above mentioned studies (e.g. Capelo et al., 2017;

Blecha et al., 2018) have performed a detailed analysis of
only one particular type of merger (with gas rich, though
non-clumpy, massive disk galaxies). Even though a sys-
tematic study expanding upon this region of parameters
has not been done, it is interesting to note that the dynam-
ics and possible detection of BHs can vary significantly if
one studies different types of galaxies, e.g., if there is little
(or much more) gas, or if the structure of the galaxy is
significantly different.

In particular, some processes can produce BH pair
stalling at sub-kpc separations, and such stalling BH pairs

could be detectable as tight dual AGN. Such processes
are more numerous in gas-rich environments (e.g. Fiacconi
et al., 2013; Tamburello et al., 2017; Souza Lima et al.,
2017), contrary to previous expectations that gas-rich me-
dia would be more conducive to fast decay and binary for-
mation (e.g. Mayer, 2013). Additionally, low-mass/dwarf
galaxies offer a special environment where slow orbit de-
caying or even stalling can occur, albeit for reasons differ-
ent from those playing a role in normal galaxies. Below
we list some of the regimes that are relevant. In each
of these regimes, a quantity of interest, which has clear
observational implications, is the characteristic residency
time-scale in the stalling phase, namely the typical time-
scale the two BHs will spend at a separation of 10–100 pc.
In all these regimes, a stalled BH pair would arise when
the final separation of the two BHs is too large for a bound
binary to form for a wide range of BH masses. Note that
a long characteristic residency time, for example signifi-
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Figure 12: Dual-activity time above a given projected separation
(1 kpc – squares – and 10 kpc – diamonds) divided by the activity
time above the same threshold, assuming a bolometric luminosity
threshold of 1043 erg s−1, for all the mergers in the suite of Capelo
et al. (2017). The merger number in the x-axis is the same as in
Tables 1–2 of Capelo et al. (2017). The colours refer to the initial
mass ratio: 1:1 – black, 1:2 – blue, 1:4 – cyan, 1:6 – green, and 1:10
– red. The horizontal lines show the observed fraction of dual AGN
systems out of interacting systems (in which at least one system has
an AGN) by Koss et al. (2012), for their full sample of Swift-BAT
AGN pairs (black, dot), their major pairs (blue, dash), and their
minor pairs (red, dash-dot) with projected separation 1–100 kpc.
Major mergers with 0.1 per cent BH feedback efficiency (squares of
Runs 01–06, and C4) should be compared to the blue, dashed line,
whereas minor mergers (squares of Runs 07–10) should be compared
to the red, dash-dotted line. Adapted from Capelo et al. (2017).

cantly longer than the orbital time, implies a higher prob-
ability to observe a dual AGN source, if both BHs are
accreting, and/or an offset AGN, if only one is accreting.

(a) Inefficient SMBH decay in minor mergers. If the
secondary galaxy is tidally disrupted far from the centre
of the primary, it can deliver a stalling BH at a few hun-
dred pc separations that will hardly decay efficiently af-
terwards (e.g. Callegari et al., 2009; Capelo et al., 2015).
The observability of dual AGN from tens of pc to >1 kpc
separations in major as well as minor mergers (down to
1:10 mass ratios) has been studied thoroughly in Capelo
et al. (2017). The general trend, at all separations, was
found to be that the dual activity time is much shorter in
1:10 mergers than in nearly equal mass mergers, by more
than an order of magnitude (see Fig. 12 and figures 6–7 of
the original paper). We note that, for separations above
1 kpc, the results of Capelo et al. (2017) are in agreement
with the observational findings of Koss et al. (2012), that
the fraction of dual AGN increases with decreasing separa-
tion and increasing mass ratio. Still, even at the smallest
separations considered (20–40 pc), not yet probed in ob-
servational samples, the dual activity time of 1:10 mergers
is always the smallest. The fraction of dual AGN in the
latter minor mergers is thus predicted to be down to a few
per cent relative to a single AGN sample. Whether this is
true also for even smaller separations and/or in the other

  

  

Figure 13: Optical to IR SED of a 1:2 gas-rich merger in Blecha
et al. (2018), the first time at which the separation between the two
BHs drops below 10 kpc (upper panel), and immediately after the
final pairing of the two BHs (lower panel). The solid line refers to the
fiducial analysis, whereas the dotted line shows the SED obtained ne-
glecting the input from any AGN activity. The shaded areas indicate
the four WISE bands. Adapted from Blecha et al. (2018).

Figure 14: Time evolution of the same merger shown in Fig. 13 in
the WISE colour-colour space. The thick coloured line refers to the
fiducial analysis, whereas the thinner black line refers to the analy-
sis not including any AGN component. The circles, triangles, and
squares pinpoint the beginning of the run, the time of BH merger,
and the end of the run, respectively. The horizontal lines refer to the
commonly used thresholds for AGN selection (W1-W2 > 0.5 and
W1-W2 > 0.8). The gray dashed line refers to the two-colour se-
lection criterion proposed in Jarrett et al. (2011), whereas the blue
solid line indicates the selection criterion proposed by Blecha et al.
(2018). Adapted from Blecha et al. (2018).

regimes discussed here is yet to be explored. When in-
terpreting the mapping between galaxy mass ratio in the
merger and BH mass ratio, we recall that, despite low dual
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activity time, one BH can accrete proportionally more or
less than the other, depending on the initial mass ratio,
resulting in an increase (decrease) of the BH mass ratio in
minor (major) mergers (Capelo et al., 2015).

(b) Stochastic SMBH decay in clumpy galaxies. If the
BH pair is evolving in a clumpy galaxy such as the mas-
sive star-forming galaxies detected at z ∼ 1–3 (Förster
Schreiber et al., 2011; Tacconi et al., 2013; Wisnioski et al.,
2015), scattering from giant clouds/stellar clusters can
cause a random walk of the orbit of the BHs, leading to
stalling. Here the stalling of SMBHs can happen at sep-
arations as large as a kpc, but typically of the order of a
few hundred pc. Tamburello et al. (2017) considered the
decay of two massive BHs that are already embedded in
a gas-rich massive galactic disk subject to fragmentation
into massive star-forming clumps. They considered also
the effect of BH accretion and feedback, as well as star
formation and feedback from supernova explosions. They
explored a large suite of simulations, with galactic hosts
having different masses and gas fractions, and choosing
different eccentricities for the orbit of the secondary BH
(the mass ratio of the two BHs was fixed to 5:1, which
should be statistically representative, as the same mass
ratio is most typical for halo/galaxy mergers). The main
result is that the lighter BH, with mass in the range 107 to
4× 107 M�, experiences repeated gravitational scattering
by the most massive clumps as well as by strong spiral den-
sity waves. This often results in its ejection from the disk
plane, slowing down its orbital decay by at least an order of
magnitude, as dynamical friction is suppressed in the low-
density envelope around the disk midplane. The suppres-
sion of orbital decay is exacerbated when AGN feedback
is included, as both dynamical friction and disk torques
are weaker even when the secondary BH is still in the disk
plane, due to local heating of the gaseous background. In
this case, since it sinks more slowly, the secondary can be
ejected when it is further away from the primary. The sec-
ondary, following an ejection, can still wander at separa-
tions larger than 1 kpc for Gyr time-scales. Without con-
sidering eventual subsequent dynamical perturbations, at
face value this would imply a complete abortion of the co-
alescence process. However, since Tamburello et al. (2017)
used galaxy models that lack an extended bulge/spheroid
component, dynamical friction was underestimated away
from the galactic disk plane. By computing analytically
the extra drag resulting from a Hernquist (1990) spheroid
with realistic structural parameters, it was found that, if
no more ejections occur, wandering secondaries should co-
alesce on time-scales of order 1 Gyr. This is still a very
long time-scale, comparable to, if not longer than, the typ-
ical merging time-scales of galaxies at z ∼ 2, opening the
possibility that triplets and their mutual dynamical inter-
actions (Bonetti et al., 2018) might be crucial to ascertain
the final BH pair/binary state, and hence the predictions
for dual AGN activity.

(c) Inefficient decay/pairing of IMBHs/MBHs in merg-
ing dwarf galaxies. The number of candidate central
BHs in dwarf galaxies (e.g. Greene and Ho, 2004, 2007;
Reines et al., 2013; Moran et al., 2014; Lemons et al.,
2015; Baldassare et al., 2015) is increasing, owing to multi-
wavelength surveys such as the Chandra COSMOS Legacy
Survey (e.g. Mezcua et al., 2018). These candidates are
in the mass range 104–106 M�, hence bridging to the
mass window that is often referred to as intermediate-mass
BHs (IMBHs). The interest towards these lightweight cen-
tral BHs is motivated by the fact that, as pointed out in
Sect. 7.1, their mass is the ideal target mass for LISA
(Amaro-Seoane et al., 2017; Barack et al., 2019).

Here the effect of the DM distribution is important,
at odds with more massive galactic hosts, because dwarf
galaxies are DM-dominated at nearly all radii. A novel nu-
merical study finds that the pairing of IMBHs in merging
dwarfs is affected significantly by the DM mass distribu-
tion inside the hosts, and can be rather inefficient (Tamfal
et al., 2018). In the latter work, it appears that only in the
ideal case in which the DM profile is a cuspy CDM pro-
file (e.g. Navarro et al., 1996) does the BH decay continue
unimpeded (until the resolution limit is reached; see Biava
et al. 2019 for an analytical study of the later stages of
the merger). Instead, when the DM density profile is flat-
ter, either because of the nature of the DM particle [e.g.,
self-interacting DM (SIDM) or fuzzy DM as opposed to
CDM], or because baryonic-feedback effects alter the mass
distribution of both baryons and dark matter, dynamical
friction becomes very inefficient already at ∼100 pc sep-
aration and results in stalling of the BH pairing process
before a bound binary can form. Stalling at such sep-
aration is found to persist for several Gyr, although we
caution that the stalling and inspiral time-scales could be
affected by the presence of gas, which was not included in
the collisionless simulations by Tamfal et al. (2018). Al-
beit with lower resolution, a statistical study of SMBH dy-
namics in galaxies with SIDM halos, assuming a large self-
interaction cross-section that produces kpc-scale constant
density cores, versus galaxies in CDM halos, has shown a
similar trend of BH pairing suppression (Di Cintio et al.,
2017). Namely, most SMBHs end up wandering at few
hundred pc to few kpc separations in low-mass galaxies.
The dynamics of a sinking perturber, such as a BH bi-
nary, in a shallow/cored mass distribution is expected to
end up with stalling for two reasons: a lower density, and a
non-Maxwellian velocity distribution with many dark mat-
ter particles on N-horn periodic orbits (Cole et al., 2012;
Petts et al., 2015, 2016), the latter being orbits such that
lumps move faster than the BHs, accelerating them rather
than dragging them. A similar stalling result was shown
also in the cosmological zoom-in simulations presented in
Bellovary et al. (2019), in which about half of the massive
BHs in dwarf galaxies are found wandering within a few
kpc of the centre of the galaxy.
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2.3. From kpc- to pc-scale separations: SMBH pairs in cir-
cumnuclear disks

As already discussed, there are very few observations of
SMBH pair candidates on 1–100 pc scale, e.g NGC 3393
(see Sect. 1.2.1; Fabbiano et al. 2011) or 0402+379 (see
Sect. 1.4 and Fig. 5). In Sect. 2.2.3, we have shown that,
while state-of-the-art galaxy merger simulations do pro-
vide a wealth of information on the dynamics of BH pairs
down to 10–100 pc separations, their resolution is not suf-
ficient to capture the complex multi-phase structure of the
interstellar medium (ISM) on nuclear scales, and its effect
on the evolution of SMBH pairs. In this sub-section, we
review physical processes that arise on these, intermediate
spatial scales and discuss how they affect the rate of grav-
itational pairing of SMBHs, that occurs at separations of
∼1 pc.

The multi-phase ISM on these scales consists of cold
star-forming clouds and clumps embedded in a warm-hot
diffuse medium, spanning decades in density as well as in
temperature (see, e.g., Downes and Solomon 1998). The
hot medium is likely the result of powerful stellar and su-
pernova feedback, as many of these gas-rich nuclei host
starbursts or have features typical of post-starburst envi-
ronments. In particular, dense multi-phase CNDs of gas
and stars, with sizes of a few hundred to a few tens of pc,
dominate the mass distribution of resolved galactic nuclei
at low and intermediate redshift in merger remnants as
well as in the central regions of Seyfert galaxies (Medling
et al., 2014; Izumi et al., 2016), which are structurally typ-
ical late-type spiral galaxies. A common feature of these
CNDs in observations is that, while they show clear evi-
dence of rotation in their gas and stellar kinematics, the
velocity dispersion of both gas and stars is almost compa-
rable to rotation, akin to the high-redshift clumpy galax-
ies discussed in the previous section [paragraph (b)]. The
dense clumpy phase comprises a large fraction of the mass
in CNDs, while the diffuse phase dominates in terms of
volume, providing significant pressure support (Downes &
Solomon 1998). The picture that emerges is that of a thick
turbulent rotationally supported CND, very different from
the larger scale thin, kinematically cold disk that dom-
inates the mass distribution of late-type galaxies at kpc
scales. Since clouds and clumps of atomic and molecular
gas have masses of ∼ 103–106 M� and sizes of 1–10 pc,
an appropriate numerical hydrodynamical model requires
a mass resolution much higher than that in galaxy merg-
ers, and a spatial resolution of order pc or better. For this
reason, small-scale simulations that model specifically BH
pairs embedded in CNDs about a hundred pc in size have
been carried out by a number of authors.

The clumpiness of the ISM, due to the presence of cold
clouds, is an important factor for the late stage of BH
pair decay, at 10 pc separations and below, near the phase
in which a bound binary forms. Fiacconi et al. (2013)
performed the first study of BH pairs in clumpy CNDs,
documenting the dramatic effect of gravitational scatter-
ing by clumps and spiral density waves that we already

illustrated for the case of clumpy high-redshift galaxies
in the previous section. They considered BHs right in the
LISA window (105–107 M�). They also found that in some
cases the decay can be accelerated due to the capture of
a massive gas cloud (of mass >106 M�) by the secondary.
They proposed the general notion that orbital decay is a
stochastic process in a clumpy CND, with orbital decay
time-scales down to ∼1 pc separations ranging from a few
Myr to as much as 100 Myr. The shortest time-scales agree
with previous results for smooth CNDs (see Escala et al.,
2005; Dotti et al., 2006, 2007; Mayer, 2013). Statistically,
though, a larger fraction of the simulations resulted in long
time-scales, in line with the same findings of Tamburello
et al. (2017), especially for BHs on eccentric orbits.

Early CND simulations were quite idealized, missing
feedback mechanisms which should play a major role in
CNDs, such as to generate the warm-hot diffuse phase,
as these are often hosting a starburst or at least elevated
star formation activity (Medling et al., 2015). del Valle
et al. (2015) and Souza Lima et al. (2017) recently carried
out similar studies but included a much richer inventory
of physical processes. del Valle et al. (2015) included star
formation and a weak form of supernova feedback, whereas
Souza Lima et al. (2017) employed a popular effective sub-
grid model of supernova feedback, the blast-wave feedback
(Stinson et al., 2006), which has been shown to produce
galaxies with realistic structural properties in galaxy for-
mation simulations (Guedes et al., 2011; Munshi et al.,
2013; Tollet et al., 2016; Sokołowska et al., 2017). Souza
Lima et al. (2017) also added BH accretion and AGN feed-
back, using the same method implemented in Tamburello
et al. (2017), confirming the stochastic orbital-decay pic-
ture and the prevalence of suppressed orbital decay with
time-scales in the range 50–100 Myr, whereas del Valle
et al. (2015) found the suppression of binary formation to
be a weaker effect in their simulations. Differences in the
implementation of feedback, and the fact that the former
consider eccentric orbits while the latter explore mostly
circular orbits, might be at the origin of the discrepant
conclusions. Long binary-formation time-scales were also
found in a complementary multi-scale study modelling all
stages of the BH pair evolution in a realistic major galaxy
merger (Roškar et al., 2015). The latter work also ad-
dressed the formation of the CND after the merger, but
was restricted to evolve only one initial condition for the
galaxy merger, due to the high computational burden in-
troduced.

Finally, Souza Lima et al. (2017) uncovered another pro-
cess that tends to suppress the BH decay and binary for-
mation, this time caused by AGN feedback; this is the
wake evacuation effect, by which the secondary BH carves
a hole in the outer, lower-density region of the CND, as
it launches a hot pressurized bubble resulting from AGN
feedback. The result is that dynamical friction and disk
torques are suppressed as the CND–BH dynamical cou-
pling is temporarily stifled by the presence of a large cavity.
Hence, the secondary BH decays more slowly even before a
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strong interaction with a clump or spiral wave occurs, often
resulting in an ejection when it is still far from the center.
As a result, in the runs with both a clumpy ISM and AGN
feedback, the outcome is an even longer delay, of order of
1 Gyr (although we caution that different implementations
of feedback could produce different results and should be
investigated). The latter, however, should be regarded as
an upper limit in the absence of an extended massive stel-
lar spheroid (for the same argument, see Tamburello et al.
2017 in the case of high-redshift galactic disks). When
dynamical friction by an extended spheroid (with realistic
parameters) is added, Souza Lima et al. (2017) obtained
a decay time-scale (to fraction of pc separation, namely
close to the resolution limit) of order a few 108 yr. This is
still almost two orders of magnitude longer than the decay
time-scale in a smooth CND with no feedback processes
included (see, e.g. Mayer, 2013). These effects are only
some of those that are possible in a complex multi-phase
CND. For example, recently Park and Bogdanović (2017)
have shown that radiation pressure can also produce an ex-
tra drag pulling opposite to the dynamical friction wake,
which again slows down the orbital decay.

Part II

Gravitationally bound
SMBH binaries with
sub-parsec separations
As discussed in the previous section, the multi-wavelength
searches for SMBH systems with kpc separations, corre-
sponding to early stages of galactic mergers, have so far
successfully identified a number of multiple, dual and off-
set AGN. Gravitationally bound SMBHs (SMBH Binary,
SMBHBs) are representative of the later stages of galactic
mergers in which the two SMBHs (with separation ranging
from pc down to sub-pc scales) forms a Keplerian binary.

As we describe in the remainder of this section, the key
characteristic of gravitationally bound SMBHBs is that
they are observationally elusive. At the time of this writ-
ing a few hundred SMBHB candidates have been described
in the literature but their nature as true binaries is incon-
clusive and remains to be tested through continued multi-
wavelength monitoring. For this reason, most of what is
known about the formation, rate of evolution, physical
properties, and expected observational signatures associ-
ated with gravitationally bound binaries hinges on theo-
retical arguments. In the remainder of this section, we
follow this line of argument and first present expectations
based on theoretical models and simulations of SMBHBs
and then describe observational evidence for SMBHB can-
didates obtained with different observational techniques.

3. Theoretical background

A gravitationally bound binary forms at the point when
the amount of gas and stars enclosed within its orbit be-
comes smaller than the total mass of the two black holes.
For a wide range of host properties and SMBH masses this
happens at orbital separations . 10 pc (Mayer et al., 2007;
Dotti et al., 2007; Khan et al., 2012a). Begelman et al.
(1980) first described the subsequent series of physical pro-
cesses that could remove energy and angular momentum
from an SMBHB and allow it to spiral in. In this picture,
after the SMBHB hardens, scattering events with stars in
the nucleus drive angular momentum loss and slowly bring
the SMBHB to separations of ∼1 pc. At separations of or-
der of 10−2 or 10−3 pc, GW emission becomes efficient
and the binary evolves to coalescence in . a few×108 yrs.
The exact rate of binary orbital evolution depends on the
nature of gravitational interactions that it experiences and
is still an area of active research. In what follows, we dis-
cuss the most important mechanisms that lead to SMBHB
orbital evolution.

3.1. Interactions with stars and other SMBHs

It was not immediately clear whether SMBHB could
transit between stellar scattering events and efficient emis-
sion of GWs within a Hubble Time. Three-body stellar
scattering requires a supply of stars within a certain re-
gion of phase space (the so-called loss-cone), which may
be depleted before the binary enters the GW-dominated
regime. This possible slow-down in the orbital evolution
of the parsec-scale SMBHBs, caused by inefficient interac-
tions with stars (Milosavljević and Merritt, 2001), is of-
ten referred to as the last parsec problem. If the binary
evolution is not efficient in this stage, a significant frac-
tion of SMBHBs in the universe should reside at orbital
separations of ∼ 1 pc and would not yet be strong GW
emitters. However, the loss-cone may be replenished (Yu
et al., 2005), e.g., in galaxies with non-spherical poten-
tials. Several theoretical studies report that the binary
evolution due to stellar scatterings continues unhindered to
much smaller scales, when the stellar distribution possesses
anisotropies (Yu, 2002; Merritt and Poon, 2004; Berczik
et al., 2006; Preto et al., 2011; Khan et al., 2011, 2012b,
2013; Vasiliev et al., 2014; Holley-Bockelmann and Khan,
2015; Vasiliev et al., 2015; Mirza et al., 2017).

In fact, mechanisms beyond three-body interactions
with stars may also play a critical role. For instance, if
stellar scattering were ineffective, and the binaries stalled,
then a third (or fourth, etc.) merger with another SMBH,
as a result of subsequent galaxy mergers, eventually tends
to promote merger for a fraction of such stalled bina-
ries (Volonteri et al., 2003; Hoffman and Loeb, 2007;
Bonetti et al., 2018; Ryu et al., 2018). More specifically,
a third SMBH “intruder” may end forming a hierarchical
triplet, i.e. a triple system where the hierarchy of orbital
separation defines an inner and an outer binary, the latter
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consisting of the intruder and the centre of mass of the for-
mer. These systems may undergo Kozai-Lidov oscillations
if the intruder is on a highly inclined orbit with respect
to the inner binary (Blaes et al., 2002). These oscillations
increase the eccentricity of the inner binary accelerating
its orbital decay driven by GW emission, and eventually
driving it to coalescence. By performing rather extensive
analyses, including the SMBH merger sequence and the
dynamical evolution of triplets in a spherical galaxy po-
tential, Ryu et al. (2018) and Bonetti et al. (2018) find
that a fraction of at least 20-30 percent of those SMB-
HBs that would otherwise stall are led to coalesce within
a characteristic timescale of 300 Myrs.

3.2. Interactions with gas
The existence of gas in the central regions of the post-

merger galaxy has also been proposed as a solution to the
final parsec problem (Escala et al., 2005). The gas can not
only catalyze the binary evolution, but also provide bright
electromagnetic (EM) counterparts, significantly enhanc-
ing the chances of detecting the binary from its EM spec-
trum (Armitage and Natarajan, 2002). Thus, SMBHBs in
predominantly gaseous environments are particularly in-
teresting for this review and, in particular, for the binary
signatures discussed below. The interaction of a binary
with a circumbinary disk has been the topic of a num-
ber of theoretical studies (see e.g. Armitage and Natara-
jan, 2005; MacFadyen and Milosavljević, 2008; Bogdanović
et al., 2008; Cuadra et al., 2009a; Haiman et al., 2009;
Hayasaki, 2009; Bogdanović et al., 2011; Roedig et al.,
2012; Shi et al., 2012; Noble et al., 2012; Kocsis et al.,
2012a,b; D’Orazio et al., 2013; Farris et al., 2014; Rafikov,
2016; Bowen et al., 2018, 2019, for recent investigations).
The phenomenology has been found to depend on the black
hole mass ratio q ≡M2/M1 and can be broadly divided in
three mass ratio regimes: I) q � 1, II) 10−4 ∼< q ∼< 0.05,
and III) 0.1 ∼< q ≤ 1.

• In the limit of small mass ratio (q � 1), significant
work has been done to understand the linear inter-
actions between the binary and the disk. This so-
called Type I planetary migration is facilitated by
linear spiral density waves launched at resonant disk
locations (e.g. Goldreich and Tremaine, 1980). The
rate and even the direction (inward or outward) of
Type I migration is sensitive to thermodynamics (e.g.
Paardekooper and Mellema, 2006).

• The second regime (10−4 ∼< q ∼< 0.05) has also been
widely explored. The secondary opens a narrow an-
nular gap in the disk, resulting in so-called Type II
migration (e.g. Ward, 1997). The interaction is non-
linear, generally causing inward migration on a time-
scale comparable to the viscous time-scale of the disk8

8The time scale on which the angular momentum is transported
outward through the disk.

near the binary (e.g. Lin and Papaloizou, 1986). De-
viations from this time-scale, however, can be signifi-
cant, especially when the mass of the smaller BH ex-
ceeds that of the nearby disk, so that the disk cannot
absorb the secondary’s angular momentum, causing
the migration to slow down (e.g. Syer and Clarke,
1995; Ivanov et al., 1999). Additionally, contrary to
the simplistic view in which the secondary divides the
disk into an inner and outer region and becomes, effec-
tively, a particle accreting in lock-step with the back-
ground gas (e.g. Armitage, 2007), the gas has been
shown to be able to flow across the gap on horsehoe
orbits (e.g. Duffell et al., 2014; Dürmann and Kley,
2017).

• The range of 0.1 ∼< q ≤ 1 is numerically much more
challenging because both black holes as well as the
origin need to be on the coordinate grid, and the
gas flows become much more violently disturbed by
the binary. In this range, however, relatively little
analogous work has been done regarding the rate and
the direction of migration. There are several simula-
tions in the literature of q ∼ 1 binaries, including the
compact GRMHD regime near merger. For example,
Bowen et al. (2018, 2019) simulated the full 3D GR
magnetized mini-disks coupled to circumbinary accre-
tion in a SMBHB approaching merger, and character-
ized the gas dynamics in this regime. However, the
impact of gas on the binary orbit is not evaluated (and
is likely insignificant at this late GW-driven stage).
MacFadyen and Milosavljević (2008), D’Orazio et al.
(2013) and Miranda et al. (2017) used 2D grid-based
hydrodynamical simulations to study SMBHBs em-
bedded in thin α disks (Shakura and Sunyaev, 1973).
However, these simulations excluded the innermost
region surrounding the binary, by imposing an inner
boundary condition, neglecting potentially important
gas dynamics and torque contributions from inside the
excised region. Farris et al. (2014), on the other hand,
included the innermost region in their simulated do-
main, but their study did not focus on the binary-disk
interaction, and did not present measurements of the
gas torques from that region. Studies by Cuadra et al.
(2009b) and Roedig et al. (2012) followed the inter-
action between SMBHBs with q = 1/3 and a self-
gravitating circumbinary disk, using 3D SPH simula-
tion, and generally found gas disk torques to be strong
enough to drive a sub-pc binary into the GW-driven
regime in a Hubble time (except perhaps the most
massive systems).

However, recent work (Tang et al., 2017; Muñoz et al.,
2019; Moody et al., 2019) has called this conclusion
into question, because in the quasi-steady state and
the much higher spatial resolutions reached in these
works, the torques appear dominated by gas very close
to the individual BHs, and cause outward, rather than
inward-migration (see discussion presented below in
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this section Open Questions related to theory of SMB-
HBs with subparsec separations.

The 0.1 ∼< q ≤ 1 regime is of particular interest to SMB-
HBs, as such systems may be naturally favored by the
binary formation process (see Sect. 2.2.3) and could re-
sult in two AGN of comparable luminosity and the loud-
est GW sources. Fig. 15 illustrates the geometry of the
circumbinary region for SMBHBs in this mass ratio range.
Hydrodynamic simulations of prograde binaries (rotating
in the same sense as the circumbinary disk) indicate that
in unequal mass binaries, the binary expels the gas from
the central region, creating a low-density cavity. Addi-
tionally, accretion occurs preferentially onto the smaller
of the two SMBHs, which orbits closer to the inner edge
of the circumbinary disk (Artymowicz and Lubow, 1994;
Günther and Kley, 2002; Hayasaki et al., 2007a; Roedig
et al., 2011; Farris et al., 2014). The proximity to the cir-
cumbinary disk and a smaller velocity relative to it (when
compared to the primary SMBH) allow the secondary to
capture more gas and result in a higher accretion rate.
This phenomenon of “accretion inversion” is of practical
interest because it implies that the AGN powered by the
lower mass SMBH may appear more luminous than the
primary counterpart.

As the binary orbit decays, the inner rim of the cir-
cumbinary disk follows it inward until the timescale for
orbital decay by gravitational radiation becomes shorter
than the viscous timescale of the disk (Armitage and
Natarajan, 2005). At that point, the rapid loss of orbital
energy and angular momentum through gravitational radi-
ation can cause the binary to detach from the circumbinary
disk and to accelerate towards coalescence; this phase is
known as “decoupling”. The evolution differs for retrograde
binaries, which due to the cancellation or orbital angular
momentum do not open a low density cavity in the disk,
and for the same reason tend to shrink faster (Roedig and
Sesana, 2014).

3.3. Open questions related to theory of SMBHBs with sub-
parsec separations

Thermodynamic properties of the circumbinary disk
(which define the viscous time-scale) are also expected to
play an important role in the binary evolution. These
are uncertain, since they are still prohibitively computa-
tionally expensive to model from first principles and are
not constrained by observations. More specifically, the
thermodynamics of the disk is determined by the binary
dynamics as well as the presence of magnetic field and
radiative heating/cooling of the gas. While the role of
magnetic fields in circumbinary disks has been explored
in some simulations (Giacomazzo et al., 2012; Shi et al.,
2012; Noble et al., 2012; Farris et al., 2012; Gold et al.,
2014; Kelly et al., 2017), a fully consistent calculation of
radiative processes is still beyond computational reach.

On top of this, significant uncertainties related to the
SMBHB orbital evolution timescales still remain. In par-

ticular, a recent study which resolved the minidisks and
gas flows around the individual BHs at much higher res-
olution (Tang et al., 2017) found that the torques are
even stronger and are dominated by the gas very close to
the BHs (near or even inside their tidal truncation radii,
RH ≈ 0.3q1/3a, where q is the mass ratio and a is the
semi-major axis of the binary; gas can formally be bound
to individual BHs inside this radius).

The net torque arises from a small asymmetry in the
shape of the gas distribution near the edges of the mini-
disks ahead and behind the BHs. Tang et al. (2017) found
that for a disk density corresponding to an accretion rate
normalized to 0.3 times the Eddington value, the binary in-
spiral time is ≈ 3×106 years, independent of BH mass and
binary separation. However, given the dependence of this
result on the small asymmetry in the gas distribution near
the BHs, one has to keep in mind that 3D effects, radiation
pressure, winds, etc. are likely to modify this timescale sig-
nificantly. Likewise, apart from additional physical effects,
the subtlety of the torques also make them susceptible to
numerical issues. For example, Tang et al. (2017) found
that the numerical sink speed affects the torques, and the
torques turn positive (causing outspiral) for rapid sinks.
Muñoz et al. (2019) found a positive torque with a simi-
lar setup, resulting in widening, rather than shrinking of
the SMBHB orbit. Recent work by Moody et al. (2019)
has also found positive torques, even with an apparently
slower sink prescription.

The next generation of simulations involving circumbi-
nary disks must be improved, also adding the effect of ra-
diation and feedback and increasing the number of orbits
considered for the evolution of the system. In addition, a
more realistic cosmological setting may provide more phys-
ically motivated conditions for these (so far local) simula-
tions and help to put them in a broader context of a galaxy
merger (see Sect. 2.1). Similarly, the simulations of binary-
stellar interactions should be also improved, expanding to
realistic timescales and galactic environments.

Observations of the orbital properties of SMBHBs are
key to constraining and understanding binary evolution.
This is because the frequency of binaries as a function
of their orbital separation is directly related to the rate
at which binaries evolve towards coalescence. Theoretical
models predict that the exchange of angular momentum
with the ambient medium is likely to result in SMBHB
orbits with eccentricities ∼> 0.1, with the exact value de-
pending on whether gravitationally bound SMBHs evolve
in mostly stellar or gas-rich environments (Roedig et al.,
2011; Sesana et al., 2011b; Holley-Bockelmann and Khan,
2015). Known semi-major axes and eccentricity distribu-
tions would therefore provide a direct test for a large body
of theoretical models.

The key characteristic of gravitationally bound SMB-
HBs is that they are observationally elusive and expected
to be intrinsically rare. While the frequency of binaries is
uncertain and dependent on their unknown rate of evolu-
tion on small scales (see Sect. 2.1), theorists estimate that
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Figure 3. Snapshots of surface density Σ during quasi-steady state after t ≈ 460tbin ≈ 1.5tvis. Surface density is normalized by the maximum value at t = 0 and
plotted on a logarithmic scale. For each snapshot, we plot both the inner ±6a (top panel in each pair), and the inner ±1.5a (bottom panel in each pair). Mass ratios
are, from left to right and top to bottom, q = 0.026, 0.053, 0.11, 0.25, 0.43, 0.67, 0.82, and 1.0. Orbital motion is in the counterclockwise direction. Green arrows
represent fluid velocity.
(A color version of this figure is available in the online journal.)
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In each of our simulations, we evolve for ∼1.5tvis(2a). We
find that this is sufficient in order to reach a quasi-steady
state in the inner region of the disk, as reflected in relatively
steady density profiles that we achieve after t ! tvis. The mass
ratios and time averaged accretion rates for each simulation
are summarized in Table 1. Time averaged accretion rates are
normalized by the time averaged accretion rate onto a single
BH, Ṁ0. We note that although the normalized accretion rate
tends toward unity for small q as expected, it remains greater
than unity for all cases considered. We caution that while these
accretion rates remain steady over hundreds of orbits, we expect
them to slowly relax to unity over much longer timescales as
the outer regions of the disk relax to their quasi-equilibrium
state. Thus, Table 1 should not be interpreted as evidence for
binaries causing an enhancement in accretion. Rather, it should
be interpreted as evidence that binaries are unable to fully clear a
cavity and significantly suppress accretion, contrary to previous

Table 1
Summary of Mass Ratios and Average Accretion Rates

Mass Ratio q 〈Ṁ〉/〈Ṁ0〉
0.026 1.06
0.053 1.56
0.11 1.76
0.25 1.68
0.43 1.62
0.67 1.60
0.82 1.58
1.0 1.55

arguments (Milosavljević & Phinney 2005). We note that such
arguments may underestimate the role that non-axisymmetric
accretion streams play in allowing gas to penetrate into the
cavity. Furthermore, binary torques may be responsible for
moving gas near the inner disk edge onto more eccentric orbits,
causing them to be captured by one of the BHs, thus increasing
the accretion rate relative to that of a single BH.

Snapshots from each simulation are shown in Figure 3. In
each case, a low density cavity is maintained surrounding the

5

Figure 15: Illustration of the geometry of circumbinary region after the binary has created a low density region in the disk. Left: Simulations
indicate that SMBHBs in this evolutionary phase can accrete by capturing gas from the inner rim of the circumbinary disk and can maintain
mini-disks bound to individual holes. Adapted from Bogdanović (2015). Right: Snapshot of gas surface density from a 2D hydrodynamic
simulation of a circumbinary disk around an SMBHB with mass ratio 1:4. Orbital motion is in the counterclockwise direction. Superposed
green arrows trace the fluid velocity. Adapted from Farris et al. (2014).

a fraction < 10−3 of AGN at redshift z < 0.7 may host
detectable SMBHBs (Volonteri et al., 2009). Similar frac-
tions have been found with different approaches (Sesana
et al., 2012a; Kelley et al., 2019b; Krolik et al., 2019) This
result has two important implications: (a) any observa-
tional search for SMBHBs must involve a large sample of
AGN, making the archival data from large surveys of AGN
an attractive starting point and (b) the observational tech-
nique used in the search must be able to distinguish sig-
natures of binaries from those of AGN powered by single
SMBHs.

4. Observational evidence for SMBH binaries with
sub-parsec separations.

Observational techniques used to search for SMBHBs
systems have so far largely relied on direct imaging,
photometry, and spectroscopic measurements (see Bog-
danović, 2015; Komossa and Zensus, 2016, for a review).
They have recently been complemented by observations
with PTAs. We summarize the outcomes of these dif-
ferent observational approaches in this section and note
that in all cases SMBHBs have been challenging to iden-
tify because of their small angular separation on the sky
(spatially unresolved in most cases), as well as the un-
certainties related to the uniqueness of their observational
signatures.

4.1. Radio imaging searches for SMBHBs with the VLBI
As described in Sect. 1.4, radio-emitting binaries can be

imaged to redshift z ∼ 0.1 on pc scale with VLBI, and 10-
pc scale separations are resolvable practically at any red-
shift. We have already mentioned the well-known example
of an SMBHB system with pc-separation, discovered and
studied with VLBI in the nearby radio galaxy 0402+379
(see Fig. 5, Rodriguez et al. 2006). Recently, Kharb et al.
(2017) reported on a sub-pc separation candidate binary
system in the Seyfert galaxy NGC7674 (z = 0.0289).

Since the assumed two cores were only detected at a single
frequency, the radio spectral indices that would provide
the strongest proof of their optically thick nature, could
not be derived.

It is worth mentioning again that low-
resolution data should be taken with care.
For example, SDSS J113126.08−020459.2 and
SDSS J110851.04+065901.4, two double-peaked [O III]
emitting AGN (see Sect. 1.1) identified as candidate kpc-
scale pairs AGN using optical and near-IR observations
(Liu et al., 2010b,a), were observed with the European
VLBI Network. Those observations yielded a detection of
only one AGN in the source SDSS J113126.08−020459.2,
and none in the case of SDSS J110851.04+065901.4
(Bondi et al., 2016). Another interesting example is
J1536+0441 which was originally proposed as a tight
(∼ 0.1 pc separation) binary SMBH by interpreting
its unusual optical emission line systems (Boroson and
Lauer, 2009). Soon after, radio observations with the
VLA instead found two components separated by 5.1 kpc
(Wrobel and Laor, 2009) whose compact AGN nature
was proven by high-resolution VLBI imaging (Bondi and
Pérez-Torres, 2010).

Burke-Spolaor (2011) systematically analysed archival
multi-frequency VLBI data available for the most lumi-
nous radio AGN known – more than 3000 objects – and
found only a single case with double flat-spectrum cores.
This previously known object, the nearby radio galaxy
0402+379 (z = 0.055), has two nuclei separated by just
7.3 pc (see Fig. 5, Rodriguez et al. 2006).

The superior angular resolution is not the only bene-
fit radio interferometric observations offer for studying bi-
nary AGN. The presence of a binary companion can be
imprinted on the the symmetric pair of relativistic jets
emanating from the vicinity of one of the SMBHs. In this
model, the SMBH that is producing the jet has periodi-
cally changing velocity (due to the orbital motion in the
binary) which may lead to an observable modulation on an
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otherwise straight jet (e.g. Gower et al., 1982; Kaastra and
Roos, 1992; Roos et al., 1993; Hardee et al., 1994). Such
periodic perturbations may result in rotationally symmet-
ric helical S-shaped radio structures (e.g. Begelman et al.,
1980; Roos, 1988; Lobanov and Roland, 2005; Kun et al.,
2014; Deane et al., 2014).

The presence of precessing jets does however does not
necessarily indicate modulation caused by binary SMBHs.
For example, precessing jets can also form due to tilted ac-
cretion disks in single AGN (Liska et al., 2018). Internal
plasma instabilities in the jet, or the interaction of a jet
with the ambient medium could also produce “wiggling”
jets. Therefore semi-periodic patterns in radio jets alone
cannot be considered a definitive observational evidence
of SMBHBs. However, in cases where multiple indications
are available, the precessing jet model could constrain the
SMBH masses, separation and orbital period. Jet studies
are often invoked for tight binary candidates that are radio
sources but not directly resolvable with interferometers, to
seek indirect supportive evidence for binarity (Kun et al.,
2015; Mohan et al., 2016; Mooley et al., 2018). These tar-
gets are selected e.g., on the basis of their periodic optical
variability; this will be discussed in detail in Sect. 4.3.

From SMBHB candidates separated well below the reso-
lution limits of radio interferometers, an extensively stud-
ied example is the blazar OJ 287. Its quasi-periodic optical
light curve shows double peaks about every 12 yr (Sillan-
paa et al., 1988); see also the recent review by Dey et al.
(2019). These variations have been explained in the con-
text of a number of different binary SMBH scenarios. The
best-explored of these requires an SMBHB on an eccentric
orbit with a semi-major axis of about 0.05 pc (Valtonen,
2007) crossing the accretion disk of the primary (Valtonen
et al., 2008) twice during each orbit.

However, connecting the radio morphology to the de-
tected periodicities in the optical light curve is not
straightforward. The complex VLBI jet of OJ 287 has
been described with a helical model (Valtonen and Piha-
joki, 2013) in a way that is consistent with the binary
orbital motion. Most recently, Britzen et al. (2018) pre-
sented an extensive study of the jet emission of OJ 287
at cm wavelengths, combining VLBI and single-dish ra-
dio data, and found that precession of an accretion disk
around a single SMBH can explain the observed periodic
behaviour of the jet morphology and radio flux density
changes (but not the optical long-term lightcurve and po-
larimetry; Dey et al. 2019). A binary is still likely needed
in that model for explaining the disk precession itself.

In addition, Agudo et al. (2012), who studied the jet
at higher resolution at mm wavelengths, detected erratic,
wobbling movement of the jet. It was explained by variable
accretion leading to fluctuating plasma injection to the jet.
The most recent modelling of OJ 287 in the context of the
SMBHB model of Valtonen and collaborators is based on
4.5 order post-Newtonian dynamics. It requires a binary
of mass ratio q ' 0.01, a massive primary of 1.8×1010M�,
and an eccentric orbit of the secondary with ε = 0.7 (re-

view by Dey et al. 2019). The orbit is subject to General
Relativity (GR) precession of the pericenter of ∆φ = 39
deg/orbit. Independent supporting evidence for a large
mass of the primary SMBH comes from optical imaging
and scaling arguments (Wright et al., 1998; Valtonen et al.,
2012).

Another remarkable example is the BL Lac object
PG 1553+113 at z=0.5, extensively monitored in radio,
which shows evidence of a possible quasi-periodic trend
in gamma-ray emission (at energies above 100 GeV), with
main peaks occurring over a period of 2.18 years (observer
frame, corresponding to 1.5 year in the source frame) and
strengthened by correlated oscillations observed in radio
and optical fluxes (Ackermann et al., 2015; Tavani et al.,
2018). The periodicity has been interpreted as an SMB-
HBs system with a total mass of ∼ 108 M� and a millipar-
sec separation. Jet nutation from the misalignment of the
rotation SMBH spins or Magnetohydrodynamic (MHD)-
kinetic tearing instabilities in the jet of the more massive
BH due to the stress of the smaller BH at the periastron
could be the source of the periodicity (see Tavani et al.
2018; Cavaliere et al. 2017, and references therein).

On larger scales, far away from the central engine, the
jets/lobes may provide indications of past merging events.
X-shaped (or winged) radio sources are radio galaxies
where, besides the usual pair of lobes, a second pair of low-
surface brightness radio-emitting wings can be detected
(Leahy and Parma, 1992). Merritt and Ekers (2002) pro-
posed that a rapid change in the direction of the BH spin
(spin-flip) in a merger event can lead to the formation of
these structures. Roberts et al. (2015b) used the existing
data on X-shaped radio galaxies to estimate the GW back-
ground. They found that most sources in the sample are
likely not associated with spin axis flips but the X-shaped
structures are rather due to backflows or axis drifts. The
number of genuine X-shaped radio sources is at most ∼20
per cent (Roberts et al., 2015a) of the initial sample of
candidates selected by Cheung (2007), and only a fraction
of these could be caused by merger-induced spin flips (see
also Liu et al. 2003 for theoretical considerations).

The inferred rate for major galaxy mergers results in
SMBH coalescence is much lower in comparison, and less
than 0.13 per Gyr per radio galaxy host. This suggests
that most of X-shaped radio sources cannot be produced as
a consequence of SMBHB mergers. Recently, Saripalli and
Roberts (2018) presented a detailed morphological study of
more than 80 X-shaped radio galaxies. The data suggest
that phenomena related to the central SMBH spin axis
cause most of the morphologies seen. While binary black
holes are a strong contender in causing axis changes, other
(disk-related) explanations are not excluded.

4.2. Spectroscopic searches for SMBHBs
4.2.1. Broad emission-line velocity shifts as signatures of

sub-pc SMBHBs
Another approach to searching for SMBHBs is to make

analogy to spectroscopic binary stars (Komberg, 1968;
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Begelman et al., 1980) and look for the radial velocity
signature of orbital motion in the emission lines of AGN
and quasars (Gaskell, 1983). This scenario corresponds to
a physical picture where one or both of the SMBHs is ac-
tive (e.g., Hayasaki et al., 2007b; Cuadra et al., 2009b, as
described in Sect. 3), but their broad-line regions (BLRs)
are distinct and suffer at most mild truncation due to their
membership in the binary (however, see the next para-
graph for a detailed discussion of the effect of BLR trun-
cation).

This can occur at a limited range in SMBHB separa-
tion. At close separations comparable to or smaller than
the BLR size, the BLRs become substantially truncated
(Roedig et al., 2014; Runnoe et al., 2015) and eventu-
ally merge (Krolik et al., 2019). At wide separations, the
broad-line velocity offset or acceleration due to orbital mo-
tion will be imperceptible (e.g., Eracleous et al., 2012; Shen
and Loeb, 2010; Popović, 2012, and see discussion below).

Thus, the assumption is that the BLR is not dissimi-
lar to that of a normal AGN: it is a flattened distribu-
tion of clouds originating in the outer parts of the accre-
tion disk, at ∼ 103 rg (rg = GM/c2 and M is the SMBH
mass), gravitationally bound to its SMBH with a predom-
inantly Keplerian velocity field (e.g., Wills and Browne,
1986; Koratkar and Gaskell, 1991; Peterson and Wandel,
2000; Denney et al., 2010; Grier et al., 2013). A disk-like
emission-line profiles are seen in AGN at lower luminosity,
while in Seyfert 1 galaxies an additional narrower compo-
nent (FWHM ∼ 1000−2000 km s−1) is observed, probably
due to a non disk BLR gas, usually moving at lower ve-
locities (Storchi-Bergmann et al., 2017). The hypothesis
is then that bulk orbital motion of the SMBH and BLR is
observable as a time-dependent velocity shift in the broad
lines of some AGN relative to the narrow emission lines
that are emitted from larger size scales in the host galaxy.

There are limits on the type and properties of SMBHBs
likely to be uncovered by spectroscopic searches. Pflueger
et al. (2018) studied this question using an analytic model
to determine the likelihood for detection of SMBHBs by
ongoing spectroscopic surveys. The model combines the
parameterized rate of orbital evolution of SMBHBs in cir-
cumbinary disks with the selection effects of spectroscopic
surveys and returns a multivariate likelihood for SMBHB
detection. Based on this model, they find that spectro-
scopic searches with yearly cadences of observations are in
principle sensitive to binaries with orbital separations less
than a few × 104 rg (where rg is now defined in terms of
the binary mass), and for every one SMBHB in this range,
there should be over 200 more gravitationally bound sys-
tems with similar properties, at larger separations. Fur-
thermore, if spectra of all SMBHBs in this separation
range exhibit the AGN-like emission lines utilized by spec-
troscopic searches, the projection factors imply five unde-
tected binaries for each observed 108M� SMBHB with
mass ratio 0.3 and orbital separation 104 rg (and more if
some fraction of SMBHBs is inactive). Assuming a binary
mass of 107 − 108 M�, these orbital separations translate

to ∼ 0.01−0.1 pc and orbital periods of order a few tens of
years to few centuries. Notably, observational monitoring
campaigns cannot hope to observe many cycles of radial
velocity curves from such systems, so the signature of a
binary will rather be a monotonic increase or decrease in
the observed velocity of an emission line.
Velocity shifts in double-peaked emitters. In the physical

model of an SMBHB embedded in a gaseous disk, either
one or both SMBHs can be active. Quasars with double-
peaked broad emission lines (Eracleous and Halpern, 1994;
Eracleous et al., 2009) have been hypothesized as the ob-
servational consequence of the latter scenario (Gaskell,
1983, 1984, 1988; Popović, 2012); see Fig. 16. This hy-
pothesis has been tested and is no longer favored based on
a number of theoretical and observational results. First,
the velocity separated peaks observed in the broad lines
of these systems are not considered to be the signature of
an SMBHB (Chen et al., 1989). From Kepler’s laws, the
orbital velocity should not exceed the dispersion of the
gas around a single BH (e.g., Eracleous et al., 1997), so
velocity splitting of the line profile is seen in only a very
small fraction of orbital configurations (Shen and Loeb,
2010). Second, reverberation mapping campaigns for in-
dividual double-peaked emitters (e.g., 3C 390.3, Dietrich
et al., 1998; O’Brien et al., 1998) show that both shoul-
ders of the broad line respond to changes in the photoion-
izing continuum at the same time. Such a straightforward
response is not expected for a system with two central
sources and two BLRs. Finally, the long-term radial ve-
locity curves of the broad lines are inconsistent with the
SMBHB hypothesis (e.g., see Fig. 17 taken from Eracleous
et al. 1997 and see also Gezari et al. 2007; Lewis et al. 2010;
Liu et al. 2016a).

Although double-peaked broad lines are now thought to
originate in the outer regions of the BLR disk (e.g., Era-
cleous and Halpern, 1994; Storchi-Bergmann et al., 2017),
the body of work testing the SMBHB hypothesis for this
class of objects raises important points relevant for ongo-
ing searches. First, quasar variability can mimic the signal
of an SMBHB on many timescales (Eracleous et al., 1997;
Halpern and Eracleous, 2000). Thus, additional work in
the area of time-domain spectroscopy of AGN is needed
to identify unique signatures of orbital motion in an AGN.
Second, in the interest of testing the nature of binary can-
didates, the exercise of ruling out a class of objects may
be possible sooner than confirming a binary. As an exam-
ple, Eracleous et al. (1997) and, more recently, Liu et al.
(2016a) have demonstrated for many double-peaked emit-
ters that unphysically large black hole masses are required
to explain the radial velocity curves in the context of the
SMBHB hypothesis. Finally, as already pointed out for
double-peaked NLR emission lines (see Sect. 1.1.1), also in
this case it should be noted that the gas may be character-
ized by complex kinematics (i.e., inflows and outflows pow-
ered by AGN and/or star formation activity) that could
produce the observed double-peaked profiles without nec-
essarily requiring the presence of a pair of nuclei.
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Figure 16: Left panel: Hβ emission-line profile emitted from the SMBHB system when both black holes have the BLR, while in the inset
the line profile when only one component has the BLR is shown. Adapted from Popović (2012). Right panel: Hα emission line (once the
continuum spectrum is removed; solid black line) fitted by the disk model (solid green line). There are additionally two relatively broad peaks,
reproduced using two Gaussian profiles (blue and red line), while the cyan dash-dotted line is the Gaussian fit to the narrow Hα component.
The black dash-dotted lines are the Gaussian fits to [NII]λ6548, 6583 lines, with fixed FWHM given by fitting [OIII] λ4959, 5007. The dashed
green line shows the disk model line with outer radius 8000 rg , and the same inner radius and inclination as the best-fit solid green line. The
black solid line in the lower panel shows the residuals. From Tang and Grindlay (2009).

Figure 17: The radial velocity curve for one shoulder of the broad Hα
emission line in the double-peaked emitter 3C 390.3. This family of
AGN was considered as the observational consequence of an SMBHB
embedded in a gaseous disk with both black holes active and having
distinct BLRs. The dashed line shows the expected behavior of the
velocity offset of the peak in this scenario based on the data prior to
1988. As described in Sect. 4.2.1, this is one among several lines of
reasoning used to disfavor the SMBHB hypothesis for double-peaked
emitters. Filled and open points differentiate between error bars
calculated using error in the mean and rms dispersion, respectively.
Adapted from Eracleous et al. (1997).

Velocity shifts in single-peaked emitters. The “single-line
spectroscopic binary” case is still a viable avenue to search
for SMBHBs among AGN with single-peaked broad emis-
sion lines. The first candidate SMBHBs were identified
based on their velocity-offset broad emission line profiles
in single-epoch spectra, starting with 3C 227 and 3C 668
(Gaskell, 1983, 1984). Time-domain spectroscopic follow-
up can then reveal the signal of orbital motion in the ve-
locity shift of broad emission lines between two or more
epochs of observation. Recent investigations adopting this
approach have monitored both AGN with velocity offset
lines and also apparently normal AGN with broad lines

located at their systemic velocity, corresponding to SMB-
HBs viewed in conjunction.

There are of order 102 SMBHB candidates identified
via velocity offsets between broad Hβ (see, e.g., Fig. 18)
and the host galaxy redshift that have been selected
from SDSS quasar catalogs (Tsalmantza et al., 2011; Er-
acleous et al., 2012; Liu et al., 2014b). Spectroscopic
monitoring of these candidates has been used to mea-
sure or limit subsequent shifts of the broad lines (De-
carli et al., 2013) and place limits on the properties of
the candidates (Liu et al., 2014b; Runnoe et al., 2015;
Guo et al., 2019). Runnoe et al. (2017) presented ra-
dial velocity curves for the Eracleous et al. (2012) can-
didates probing timescales up to 12 years in the rest frame
with 3–4 spectra per object. They identified 3 candi-
dates (SDSS J093844.45+005715.7, J095036.75+512838.1,
J161911.24+501109.2) for sub-parsec separation SMBHBs
which show the monotonic changes in their radial velocity
curves (Fig. 19) that are expected for SMBHBs with peri-
ods of decades to hundreds of years. They also adapt the
methodology developed for the double peaked emitters of
placing limits on the masses and separations of the hypo-
thetical SMBHBs, but the limits they obtained were not
yet restrictive.

Searches for SMBHBs among regular AGN (i.e. corre-
sponding to SMBHBs seen in conjunction) have been con-
ducted based on Mg ii λ2798 (Ju et al., 2013; Wang et al.,
2017) and Hβ (Shen et al., 2013). Using the distribution of
observed accelerations measured for the 521 AGN in SDSS
DR7 with multiple quality spectra and z < 0.9, Shen et al.
(2013) placed limits on the properties of SMBHBs among
the quasar population. If the accelerations are attributable
entirely to SMBHBs, they infer that most of the quasars
in their sample must be in binaries, the inactive black hole
must usually be more massive, and that the separation is
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Figure 18: SMBHB candidates identified through optical Hβ offset. Left panel : these candidates were selected on the basis of the presence
of broad Hβ emission lines that are velocity shifted relative to the narrow [O iii] λλ4959, 5007 emission lines. The dashed line marks the rest
wavelength of Hβ, and the dotted lines mark ±5, 000 and 10,000 km s−1 relative to the dashed line. Thus, the broad Hβ peaks are offset by
a few ×1000 km s−1. This may be the observational consequence of a scenario where one of the BHs in a SMBHB is active and its orbital
motion induces a periodic radial velocity shift in the broad Hβ emission line relative to the narrow lines in the spectrum. Such a system
would likely have a sub-pc separation corresponding to a period of the order of decades to hundreds years. Adapted from Eracleous et al.
(2012). Right Panel : example of the cross-correlation analysis applied to measure the velocity shift of the broad Hβ between two epochs.
The broad Hβ in the SDSS spectrum is shown in black, while the follow-up observation is in red. The spectral range of the cross-correlation
analysis is marked by the dotted vertical lines. Negative values of the cross-correlation analysis mean that the emission line in the follow-up
spectrum needs to be blue-shifted to match the SDSS spectrum. From Liu et al. (2014b).

at most a few times the radius of the BLR (which they
estimate to be 0.01 − 0.1 pc using the radius-luminosity
relationship, e.g., Bentz et al., 2009).

Motivated by the described advances in observational
searches for sub-parsec SMBHBs, Nguyen and Bogdanović
(2016) have developed a semi-analytic model to describe
spectral emission-line signatures of these systems. Based
on this study, they find that the modeled profiles show dis-
tinct statistical properties as a function of the semimajor
axis, mass ratio, eccentricity of the binary, and the de-
gree of alignment of the triple disk system (including two
mini-disks and a circumbinary disk). This suggests that
the broad emission-line profiles from SMBHB systems can
in principle be used to infer the distribution of these pa-
rameters and as such merit further investigation. Nguyen
et al. (2019a,b) also find that their modeled profile shapes
are more compatible with the observed sample of SMBHB
candidates (drawn from the observations reported in Er-
acleous et al., 2012; Runnoe et al., 2015, 2017) than with
their control sample of regular AGN. Furthermore, they
report that if the observed sample of SMBHBs is made
up of genuine binaries, it must include compact systems
(with orbital separations log(a/M) ≈ 4.20 ± 0.42) with
comparable masses and misaligned mini-disks. If the con-
sidered SMBHB candidates are true binaries, this result
would suggest that there is a physical process that allows
initially unequal mass systems to evolve toward compara-
ble mass ratios or point to some, yet unspecified, selection
bias. Similarly, if upheld for confirmed SMBHBs, this find-
ing would indicate the presence of a physical mechanism
that maintains misalignment of the mini-disks (or causes

them to be warped) down to sub-parsec binary separa-
tions.

However, if the Hβ velocity shifts are the result of
long-term quasar variability, then close, massive binaries
are disfavored. Regular quasar spectral variability is the
source of the biggest caveat to finding SMBHBs via this
approach. On short timescales of months, normal quasars
can produce velocity shifts comparable to what is seen
in SMBHB candidate samples (Barth et al., 2015). The
long-term spectroscopic variability of regular quasars has
not been well characterized, therefore this remains a criti-
cal uncertainty for finding SMBHBs with the radial veloc-
ity technique. The baseline measurement of the spectro-
scopic variability for a control sample of regular AGN on
long timescales is the promise of archival data and upcom-
ing spectroscopic surveys (see Sect. 6.1). Because regular
quasar variability can easily masquerade as the signal of
orbital motion on timescales much shorter than the orbital
period which is expected to be long, it is extremely impor-
tant to conduct as many supporting tests as possible.

4.2.2. Peculiar broad emission-line ratios as signatures of
sub-pc SMBHBs

Close SMBHBs (with a semimajor axis ∼< 0.1 pc) have
also been proposed to significantly alter the luminosity ra-
tios between different pairs of broad emission lines (BELs
produced in the BLR) by Montuori et al. (2011). They
considered the scenario described in Sect. 3, in which a
binary is orbiting in the low-density gap region within a
denser circumbinary disk. They further followed the com-
mon assumption that the secondary SMBH is more likely
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Figure 19: Radial velocity curves candidate SMBHBs at sub-parsec separation from Runnoe et al. (2017). Spectroscopic searches for SMBHBs
are sensitive to systems with periods of the order of tens to hundreds of years. Thus, the expected signal of the binary is a monotonic increase
or decrease of the radial velocity measurement over the duration of the monitoring campaign. These are strong candidates in the sense that
they display this signal and the SMBHB hypothesis cannot be ruled out based on current analyses.

to be active, being closer to the circumbinary disk inner
edge and having a lower relative velocity with respect to
the outer gas (Artymowicz and Lubow, 1994; Günther and
Kley, 2002; Hayasaki et al., 2007a; Roedig et al., 2011;
Farris et al., 2014). As a first test, they assumed that the
binary is wide enough to neglect any contribution of the
outer circumbinary disk to the brightest BELs at optical-
UV rest-frame wavelengths.

Within this simple framework, Montuori et al. (2011)
analyzed the tidal truncation that the primary exerts onto
the secondary mini-disk, limiting the extent of the BLR.
Whenever the gas responsible for the emission of a given
Broad Emission Line (BEL) lies outside the secondary
Roche lobe radius, it is ejected toward the circumbinary
disk, decreasing the gas density in the vicinity of the active
SMBH and therefore decreasing the BEL luminosity. This
can result in an anomalous luminosity ratio between lines
that are produced by gas with different spatial distribu-
tions, and is therefore expected to be more effective when
comparing the observed fluxes of lines with significantly
different ionization potentials.

Montuori et al. (2011) checked the effect of binaries
of different masses, luminosities, and separations on two
specific line ratios: FMgII/FHβ and FMgII/FCIV. They
computed the BEL flux under the assumptions of the “lo-
cally optimally emitting clouds” model (e.g. Baldwin et al.,
1995). Each cloud is then assumed to emit a line luminos-
ity depending on the incoming AGN continuum flux and
the local gas density, based on a grid of models computed
using the photoionization code cloudy (Ferland et al.,
1998).9

The FMgII/FHβ ratio has the advantage of being mea-
sured in large optical surveys (such as SDSS, see Sect. 1.1)
within the redshift range 0.4 ∼< z ∼< 0.8, allowing for a
cross search for shifted/asymmetric BELs and peculiar
FMgII/FHβ values. On the other hand, the expected num-
ber of SMBHBs observable at low redshift is at most of
the order of a few (Volonteri et al., 2009). The analysis

9For a detailed description of the procedure, we point the reader
to Sect. 3 of Montuori et al. (2011).

of the dependence of this ratio on the binary parameters
demonstrated that peculiar values are expected only in an
extremely limited range of the parameter space, due to
the similar ionization potential of the two elements, thus
strongly limiting the utility of the FMgII/FHβ ratio.10

The FMgII/FCIV line ratio can instead probe the AGN
population observed in large optical surveys at z ∼> 2, al-
lowing for the SMBHB search during the cosmic high noon,
when most of the galaxies and SMBHs where at the peak
of their growth. This second ratio is more affected by the
tidal effect of the primary, since the two lines are prefer-
entially emitted in spatially distinct regions.

Indeed, the FMgII/FCIV ratio was found to be reduced
by up to an order of magnitude for close binaries, with re-
spect to the ∼0.3–0.4 ratio expected for unperturbed BELs
around isolated SMBHs. It must be noticed, however, that
the FMgII/FCIV ratio is not expected to keep decreasing in-
definitely as the binary and the circumbinary disk shrink:
at semimajor axes < 0.01 pc the inner edge of the cir-
cumbinary disk is close enough to the active secondary
to emit efficiently the MgII BEL. This second effect has
been described with a simple analytical model by Montuori
et al. (2012). Since the structure of the circumbinary disk
can in principle differ significantly from that of isolated
BLRs, Montuori et al. (2012) decided to take advantage of
the numerical simulations of SMBHB–circumbinary disk
systems presented in Sesana et al. (2012b). The simula-
tion results were post-processed with the code cloudy to
constrain the relative contribution of the gas within the
gap and in the outer disk.

The results of the numerical analysis were in remarkable
agreement with the simple analytical predictions: an or-
der of magnitude reduction in FMgII/FCIV is possible for
semimajor axes ∼ (0.01− 0.2)(fEdd/0.1)1/2 pc, for a mass
of the secondary SMBH between 107 and 109 M�, and a

10A different and less constraining strategy in the redshift range
0.4 ∼< z ∼< 0.8 is to search for Type I (i.e., unobscured) AGN having
all the observable broad lines peculiarly faint and broad, as observed
for example in the SMBHB candidate 4C+22.15, independently se-
lected because of the shifted BELs (Decarli et al., 2010).
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binary mass ratio q = 0.3.11 These separations correspond
to orbital periods in the range ∼(20-200)(fEdd/0.1)3/4 yr,
making the search for other SMBHB signatures such as
BEL velocity variations and continuum variability stud-
ies possible but, due to the long monitoring required, ex-
tremely challenging.12

Sub-parsec separations: optical-X-ray synergies. A special
case – and a clear indication of the invaluable power of
synergies at different wavelengths – is that of MCG+11-11-
032, a Seyfert 2 galaxy at z=0.036, originally selected from
the SDSS spectrum showing a double-peaked emission-
line profile in [OIII]. Its Swift/BAT 123-month light curve
presents almost regular peaks and dips every ∼25 months,
while the Swift/XRT spectrum shows two narrow emission
lines at rest-frame energies of ∼6.16 keV and ∼6.56 keV
(Severgnini et al., 2018), interpreted as a double-peaked
iron Kα emission-line profile and possibly ascribed to a
circumbinary accretion disk linked to two sub-pc scale
SMBHs (see Sect. 3). These results make the binary
SMBH hypothesis highly plausible. Intriguingly, there is
also a remarkable agreement between the putative SMBH
pair orbital velocity derived from the Swift/BAT light
curve and the velocity offset derived from the rest-frame
energies of the two X-ray lines. Further support to this pic-
ture has recently come from a careful time-domain anal-
ysis of the Swift/BAT data (Serafinelli et al., in prep.).
While firmly establishing with present and future facilities
the presence of a sub-pc SMBH in this system will remain
quite challenging, this kind of investigation reflects the ca-
pability of X-ray and optical data in unveiling SMBH pair
candidates also in obscured sources and the potentialities
of all-sky X-ray monitorings in this uncharted territory.

4.3. Photometric searches for sub-pc SMBHBs
Another proposed method to search for compact active

SMBHBs is to identify quasars with photometric variabil-
ity. One generic conclusion of the hydrodynamic simula-
tions, discussed in Sect. 3, is that the net accretion rate
onto the SMBHs is significant and can produce quasar-like
luminosities (D’Orazio et al., 2013; Farris et al., 2014; Shi
and Krolik, 2015; Ragusa et al., 2016). Additionally, the
mass accretion rate onto the SMBHs is modulated period-
ically (Hayasaki et al., 2007b; MacFadyen and Milosavlje-
vić, 2008; Roedig et al., 2012; D’Orazio et al., 2013; Farris
et al., 2014; Shi and Krolik, 2015), which may be translated
into periodic modulation of the brightness of the source.

11fEdd here corresponds to the bolometric luminosity of the accre-
tion process normalized to the Eddington limit of the secondary.

12All the above-mentioned estimates assume circular orbits. At
fixed semimajor axis, an eccentric binary could have a different trun-
cation radius, depending on the ability of the material within the
secondary Roche lobe to readjust on the orbital period time-scale.
We stress, however, that due to the existence of a limiting orbital ec-
centricity ecrit ≈ 0.7 for binaries co-rotating with the circumbinary
disk (Roedig et al., 2011), the upper limit of the semimajor axes
quoted above increases by a factor 2–3 at most.

While periodic modulations in the accretion rate ap-
pear inevitable, relativistic Doppler boost can also cause
an SMBHB to exhibit periodic variability. For example, a
very unequal binary (q ∼< 0.04) may accrete steadily. How-
ever, if the binary is sufficiently compact, such that orbital
velocities exceed v/c ∼> few per cent, we expect periodic
modulations from special relativity alone (D’Orazio et al.,
2015). More specifically, if the optical luminosity arises in
gas bound to the moving BHs (e.g., in the mini-disks seen
in hydrodynamical simulations), the binary appears blue-
shifted (and brighter for typical values of optical spectral
indices), when the more luminous SMBH (typically the less
massive SMBH) is moving towards the observer, and vice
versa. We note that this scenario is expected to produce
smooth quasi-sinusoidal variability, whereas in the case of
periodic accretion the periodicity may be more “bursty”.

The advent of the modern time domain surveys, which
systematically scan large areas of the sky, has allowed sta-
tistical searches for periodic variability in large samples
of quasars. More specifically, Graham et al. (2015) ana-
lyzed 245,000 spectroscopically confirmed quasars from the
Catalina Real-time Transient Survey (CRTS) and identi-
fied 111 candidates. Charisi et al. (2016) analyzed a sam-
ple of 35,000 spectroscopically confirmed quasars from the
Palomar Transient Factory (PTF) and identified 33 can-
didates with significant periodicity.

The two samples are somewhat complementary; the can-
didates from CRTS are relatively bright and have peri-
ods of ∼ 2 − 6.5 yr, whereas the PTF candidates have
fainter magnitudes (and higher redshifts) and periods of
∼ 150 − 800 days, owing to the higher photometric pre-
cision and higher cadence of the survey. Accounting for
selection effects in the CRTS sample (candidates were se-
lected preferentially at the brightest end of the sample),
the occurrence rate of SMBHB candidates would be simi-
lar in both samples, ∼ 1/1000. Additionally, Charisi et al.
(2016) examined the candidates as a population and found
a preference for low-mass ratio binaries (q = 0.01) in both
samples (although this may be a selection effect, since both
searches were sensitive to sinusoidal periodicity).

Several other individual candidates have recently ap-
peared in the literature, either from the analysis of smaller
samples or from serendipitous discoveries. For instance,
Liu et al. (2015) reported one candidate with period
of ∼ 550 days and a separation of 0.006 pc, from the
PanSTARRS Medium Deep Survey. However, follow-up
observations revealed that the periodicity of this candi-
date is not persistent (Liu et al., 2016b). Zheng et al.
(2016) identified an additional candidate in CRTS with
two periodic components in the variability (∼ 741 days
and ∼ 1500 days) with the characteristic frequency ratio
1:2. This candidate was included in the sample of Graham
et al. (2015), but was not identified as periodic. Additional
candidates have emerged from the analysis of historical
long-baseline light curves of bright AGN (Li et al., 2016;
Bon et al., 2016) and the analysis of blazar light curves
from the Fermi gamma-ray telescope (Sandrinelli et al.,
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2016, 2018a). Furthermore, Dorn-Wallenstein et al. (2017)
claimed the detection of a periodic AGN in PTF, which
was subsequently disputed by Barth and Stern (2018), who
highlight the importance of interpreting correctly the null
hypothesis simulation tests and and performing carefully
the calculation of the false alarm probability.

The controversial nature of the above candidates illus-
trates that identifying quasars with periodic variability
is challenging, mainly because the periods are relatively
long compared to the available baselines and the under-
lying variability of quasars is stochastic. This was also
clearly demonstrated in the case of PG 1302-102 – the first
(and brightest) candidate that emerged from the time do-
main surveys – the statistical significance of which remains
controversial. Charisi et al. (2015) showed that the peri-
odogram peak of PG 1302-102 is statistically significant
at the 1 per cent level compared to a Damped Random
Walk (DRW) model, but not significant compared with
red noise variability.13 D’Orazio et al. (2015) showed that
a sinusoidal model is preferred compared to pure DRW
noise, whereas Vaughan et al. (2016), with a similar anal-
ysis, reached the opposite conclusion. The main difference
between the two is the choice of the DRW parameters. Liu
et al. (2018a) added more recent data from the ASAS-SN
(Shappee et al., 2014; Kochanek et al., 2017) survey and
suggested that the significance of the periodicity decreases,
even though a sinusoidal model is still preferred compared
to a DRW model.

Vaughan et al. (2016) also suggested that the incomplete
knowledge of the underlying variability can lead to false
detections and therefore the above samples are likely con-
taminated by false positives. This was also suggested by
Sesana et al. (2018), who calculated the GW background
from the inferred population of binaries identified as peri-
odic quasars. They found that, in order for the population
to be consistent with the current upper limit from PTAs,
the masses or the mass ratios of the binaries have to be
unusually low. Therefore, as noted by Liu et al. (2016b), it
is crucial to continue monitoring the candidates, in order
to test the persistence of the periodicity and distinguish
the genuine SMBHBs from the false detections.

An alternative approach is to search for independent
lines of evidence for the binary nature of the candidates.
These include: 1)Multiple periodic components in the opti-
cal variability with a characteristic frequency pattern. For
q ∼> 0.3, several simulations have found that the inner cav-
ity in the accretion disk becomes lopsided (MacFadyen and
Milosavljević, 2008; Shi et al., 2012; Noble et al., 2012;
D’Orazio et al., 2013; Farris et al., 2014). In this case,
the most prominent period is 3-8 times longer than the
orbital period. 2) Multi-wavelength signatures of relativis-
tic Doppler boost. As mentioned above, the relativistic
Doppler boost can explain the quasi-sinuosoidal variability

13This 1 per cent does not include the trial factors that are asso-
ciated with large sample from which the source was chosen.

in optical bands. Additionally, if the UV/X-ray luminos-
ity also arises in gas bound to the BHs, their luminosity
should vary in tandem with the optical, but with ampli-
tudes which depend on the spectral curvature in the re-
spective bands. Therefore, the relativistic Doppler boost
scenario offers a robust prediction, which can be tested
with multi-wavelength data (D’Orazio et al., 2015; Charisi
et al., 2018). The possible application of this technique will
be further discussed in Sect. 6.2. 3) Characteristic infrared
echoes. The optical/UV luminosity is produced in compact
regions close to the central BH. Subsequently, it is repro-
cessed by the dusty torus, and it is re-emitted in IR. When
the torus is illuminated anisotropically, e.g., if the source
of the torus irradiation is the moving secondary BH in a
binary, the IR light curve shows characteristic time lags
and amplitudes that can help distinguishing binaries from
a single central SMBH (D’Orazio and Haiman, 2017; Jun
et al., 2015). 4) Periodic self-lensing flares. If the binary
is not too far from face-on (with inclination ∼< 30 deg),
the accretion disk of one BH is lensed when it passes be-
hind the other BH, which can produce bright X-ray/optical
flares (Haiman, 2017; D’Orazio and Di Stefano, 2018). 5)
X-ray outburst from tidal disruption events. The tidal dis-
ruption of stars by SMBHs (tidal disruption events; TDEs)
causes a characteristic X-ray outburst lightcurve, which
declines as the stellar debris is accreted by the black hole
(see Komossa and Zensus 2016 for a review). Lightcurves
of TDEs which occur in SMBHB systems look characteris-
tically different from TDEs of single black holes (Liu et al.,
2009). The lightcurves show dips and recoveries, as the
second SMBH acts as a perturber and temporarily inter-
rupts the accretion stream on the primary. Simulations
by Liu et al. (2014a) have shown, that the lightcurve of
the TDE in the inactive galaxy SDSS J1201+3003 (Sax-
ton et al., 2012) is consistent with a binary SMBH model
with a primary mass of 106M�, a mass ratio q = 0.1 and
a semi-major axis of 0.6 milli-pc. This method is of par-
ticular interest, since TDE rates in galaxy major mergers
are strongly enhanced by up to two orders of magnitude
with respect to single SMBH (Li et al., 2017), and it allows
to identify SMBHBs in non-active, quiescent host galax-
ies; conversely, essentially all other SMBHB identification
methods discussed in this review require that at least one,
or both, SMBHs are active.

Part III

Future perspectives
In this section we describe the observational strategies that
will be available in the future to uncover dual and binary
AGN, using ground- and space-based facilities operating in
different energy bands. As widely discussed in the previ-
ous sections, depending on the spatial separation, different
techniques need to be applied in order to detect AGN dual
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systems, AGN in close binaries, and SMBHs during the
latest phases of the inspiral and proper merger. We will
explore several of these techniques, starting from systems
at kpc separations down to µpc where the SMBHBs emit
GWs. We will describe recent advances in numerical sim-
ulations of circumbinary disks around SMBHBs and enter
the realm of GW observations.

As discussed in Sect. 1, so far, most of the dual- and
multiple-AGN on kpc scales have been found serendipi-
tously. In spite of the huge effort put into carefully con-
structing selected samples using a number of observing
criteria, none of these appeared to be efficient in discov-
ering dual AGN so far. In the future our search strat-
egy will shift toward reasonably well identified samples
obtained by cross-matching various multi-waveband sur-
vey catalogs. Optical/NIR or MIR spectroscopy will be
needed to infer the redshift of the host galaxies and con-
firm a physical association. In order to discover kpc-scale
dual AGN, we describe below (without attempting to be
comprehensive) planned surveys and future instruments
dedicated to their search.

To probe the 10–100 pc scales, as described in
Sect. 2.2.3, we need radio interferometric observations with
very high-resolution. Having contemporary AGN activity
in the radio is much less likely than having dual AGN in
the optical and X-rays, but at low accretion rates AGN
become radio-loud, therefore sensitive radio instruments
will be essential probes in this regime. In particular, two
techniques can be mentioned: one relies on finding power-
ful transient radio sources – signalling new AGN activity
– near an already known AGN. The other one consists of
revealing dual activity comparing precision astrometry in
the optical and the radio bands.

The sub-pc regime presented in Sect. 4 will remain the
most challenging, although AGN variability studies are
quite promising. The breakthrough in this field will come
with the advent of GW astronomy, that provides a direct
way of detecting orbiting SMBHBs probing scales between
∼ 10µpc and a few milli-pc, when the black holes are coa-
lescing or in the verge of merging, years to centuries before
the final plunge.

5. Search for dual and multiple AGN in the era of
surveys

5.1. Radio surveys in the cm waveband
The Next Generation Very Large Array – ngVLA and

the Square Kilometre Array – SKA (and its precursors:
APERTIF, ASKAP, MeerKAT) are being (have been) de-
signed to be able to carry out deep surveys that cover a
large fraction of the sky. These interferometers will be
complementary in various ways, and they will be syner-
gistic with ESFRI-listed facilities (CTA, KM3Net and E-
ELT) and other major observatories.

The VLA Sky Survey14 is being carried out at 2–4 GHz,

14https://science.nrao.edu/science/surveys/vlass/

and therefore will have improved sensitivity and angular
resolution compared to its predecessors at 1.4 GHz (NVSS
and FIRST; see Table 2). The large observing bandwidth
will allow for spectral index measurements, making these
data ideal to search for flat-spectrum dual-AGN cores for
example. The VLASS potentials for AGN mergers with a
separation less than 7 kpc have been described in a white
paper by Burke-Spolaor et al. (2014, 2018). The ngVLA
(Murphy, 2018) would greatly expand the instantaneous
frequency range (1-116 GHz), the field of view, and the
resolution of the array (with baselines at least 300 km).
The ngVLA will be capable of probing active massive black
holes and their feedback below 106 M� (Nyland et al.,
2018), entering a very interesting regime for dual-AGN
activity studies.

ASKAP (Johnston et al., 2007) and MeerKAT (Norris
et al., 2011) are SKA precursors employing different tech-
nologies, but both are very fast survey machines (Table 2).
They will survey the Southern sky down to ∼ µJy sensi-
tivities, and produce catalogs for tens of millions of radio
sources albeit with limited resolution. The mid-frequency
telescope of the phase-I SKA (SKA1-MID) will have more
power to distinguish between star formation and AGN ac-
tivity (with baselines up to ∼150 km). SKA1 Continuum
Surveys (SASS1; Prandoni and Seymour, 2015, and refer-
ences therein) top priority science cases include the star
formation history of the Universe, the role of black holes
in galaxy evolution, gravitational lensing and more. These
surveys will detect the bulk (∼ 90 per cent) of the AGN
population, the majority of which is missed in current ra-
dio surveys (Smolcic et al., 2015).

While SKA1-MID will have a resolution of ∼ 0.1−1 arc-
sec, the core of the array can be coherently phased up to
mimic a single radio telescope. By combining this very
high sensitivity component with other radio telescopes
around the world one may form a powerful very long base-
line interferometry network, a concept known as SKA-
VLBI (Paragi et al., 2015). This is particularly relevant
for us, because very sensitive VLBI observations is the
only way to directly address the (hitherto) missing pop-
ulation of dual-AGN with a separation of a few (tens of)
parsec. SKA2 will have a sensitivity of at least an order
of magnitude higher than SKA1, and its resolution will
be about 20 times better, therefore it will be competitive
in resolution with current VLBI arrays. The SASS2 1.4
GHz survey of the southern sky will detect some 3.5 bil-
lion radio sources at high angular resolution (Norris et al.,
2015). These surveys will contain a huge number of dual-
AGN candidates, that can be further down-selected based
on radio spectral index, multi-band properties, and vari-
ability. This latter might reveal episodic accretion from
an otherwise inactive pair to an already well established
AGN, like the one recently discovered next to Cyg-A in
the mid-IR (Canalizo et al., 2003) and in the radio (Per-
ley et al., 2017). A possible form of episodic accretion is
represented by TDE, that are found to occur dominantly
in galaxies with post-starburst star formation history and
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Table 2: Present and future high-resolution continuum radio surveys

Telescope Survey Resolution Frequency Sensitivity Sky
[arcsec] [GHz] rms [µJy] coverage

VLA NVSS 45" 1.4 450 δ > −40 deg
VLA FIRST 5" 1.4 150 104 deg2

VLA VLASS 2.5" 2–4 70 δ > −40 deg
ASKAP EMU 10" 1.13–1.43 10 δ < +30 deg
MeerKAT MIGHTEE 6" 0.9–1.67 1 20 deg2

SKA1-MID* SASS1 0.5–1" 0.95–1.76 4 δ < +30 deg
SKA2* SASS2 ∼ 0.1” 0.95–1.76 0.1 δ < +30 deg
*Indicative only. SKA surveys will have various tiers with different parameters.

merger origin (Zabludoff et al., 1996; French et al., 2016;
Pfister et al., 2019a). The accretion rates are expected to
be higher in black holes with lower masses, such as in the
case of white-dwarf - intermediate-mass black hole encoun-
ters. Radio (and in fact multi-band) observation of TDEs
next to and already active nucleus will reveal exotic pairs
of dual-AGN. Note that these IMBH+WD encounters may
also lead to GW radiation that might be detectable by
LISA in the Local Group (Rosswog et al., 2009; Anninos
et al., 2018).

Finally, it is worth noting that VLBI offers down to
∼ 10 µas level astrometric accuracy for bright radio AGN
(Fey et al., 2015). This has been matched recently with
the Gaia spacecraft in the optical, allowing for synergistic
studies of AGN positions for a large overlapping sample in
the radio and optical for the first time. Objects with signif-
icant optical–radio positional offsets may serve as natural
candidates for dual AGN that warrant follow-up observa-
tions (Orosz and Frey, 2013). According to the most recent
studies based on new Gaia data, the majority of significant
(mas or sub-mas level) Gaia–VLBI offsets occur down-
stream or upstream of the AGN jet (Kovalev et al., 2017;
Plavin et al., 2019). This suggests that in general strong
optical jet emission is present at least on 20–50 pc scales
from the central engine. In turn, optical–radio offsets with
position angles significantly different from that of the jet
may indicate either dual AGN containing a radio-loud and
a radio-weak companion, or offset/recoiling AGN. Further
Gaia data releases and improved VLBI astrometric solu-
tions hold the potential for identifying more dual AGN
candidates.

5.2. X-ray surveys

In the next decades, new X-ray observatories will greatly
enlarge the population of known AGN, in particular at
high redshift. The key players are eROSITA, Athena and,
possibly, AXIS and Lynx . Table 3 summarizes the main
properties of their scientific payload relevant to the obser-
vational study of dual AGN.
eROSITA (Merloni et al., 2012) is the primary instru-

ment on the Russian Spektrum-Roentgen-Gamma (SRG)
mission. Successfully launched in July 2019, eROSITA
aims at performing a 4-year long survey of the X-ray sky.

Building on the experience of the ROSAT All-Sky Sur-
vey (Voges et al., 1999; Boller et al., 2016), eROSITA
will be about 20 times more sensitive in the 0.5–2 keV
energy band, while providing the first true imaging sur-
vey of the hard (2–10 keV) X-ray sky. Among the main
scientific goals of eROSITA, AGN studies feature promi-
nently. eROSITA aims at determining the accretion his-
tory of SMBHs by studying in unprecedented details the X-
ray AGN luminosity function, in particular the still poorly
understood luminosity-dependent fraction of obscured ob-
jects; studying the clustering properties of X-ray selected
AGN at least up to z ∼ 2; and identifying rare AGN sub-
populations such as high-redshift, possibly highly obscured
nuclei. This will be possible thanks to a large sample
of about 3 million AGN to be detected during the nomi-
nal survey, of which several tens of thousands at redshift
higher then 3, and a few thousands with bolometric lumi-
nosities larger than 1046 erg s−1. The angular resolution
will be comparable to that of XMM-Newton, ∼16′′ Half-
Energy Width (HEW) on-axis, and ∼28′′ averaged over
the whole 1-degree diameter Field-of-View (FoV). This will
limit the redshift range on which dual AGN with a sep-
aration ≤100 kpc can be resolved to the local Universe
(z ≤0.3; see Fig. 20). The moderate spectral resolution
(∼130 eV at 6 keV, similar to present-day CCD-based in-
struments) will not allow efficient spectral separation of
unresolved galaxy-AGN pairs. However, the eROSITA ob-
serving cadence in the survey phase – most of the sky will
be revisited approximately every 6 months, with the poles
being monitored with higher cadence – will allow each lo-
cation of the sky to get visited at least eight times in the
four years of the mission, so detection of AGN via vari-
ability also in dual systems will be viable. Such a search
will however be possible only for relatively bright systems
at the large separations allowed by eROSITA spatial reso-
lution, coupled with a proper spectroscopic identification
of the variability-detected sources.

Athena is a L-(Large) Class X-ray observatory in the
Cosmic Vision Program of the European Space Agency
(Nandra et al., 2013), due to launch in early 2030s. Athena
will combine a collecting area at 1 keV more than one or-
der of magnitude larger than any existing or planned X-
ray mission, and a 5′′ on-axis HEW mirror with a very
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Table 3: Performance of the X-ray payload discussed in Sect. 5.2. Legenda: HEW = High Energy Width, averaged over the FoV (field-of-view);
sensitivity: in erg s−1 cm−2 in the 0.5-2 keV energy range; the sky coverage is at the “Sensitivity” flux.

Payload HEW FoV Energy range (keV) Sensitivity Sky coverage
eROSITA/SRG 28" 1.03◦ dm. 0.3–10 ≈10−14 All sky
WFI/Athena 6" 40’×40’ 0.2-12 ≈3×10−17 30 deg2

Lynx 0.5" 22’×22’ 0.5-10 ≈3×10−19 20 deg2

gentle performance degradation over the field-of-view of
the Wide Field Imager (WFI). This is a Silicon Active
Pixel Sensor camera with a large FoV (40’×40’), high-
count rate capabilities, and CCD-like energy resolution
(about 150 eV at 6 keV). This combination will allow a
survey speed more than two orders of magnitude faster
than Chandra and XMM-Newton. Thanks to a multi-tier
survey strategy covering almost 30 Ms during the 4-year
nominal operational life, Athena will probe an AGN popu-
lation more than two orders of magnitude fainter than the
SDSS and Euclid QSOs. At the end of the nominal sur-
vey, Athena will have detected over 400,000 AGN, probing
several thousand AGN at z ≥4, a few hundred at z ≥6,
and several tens of Compton-thick AGN at the peak of the
accreting black hole activity. Its average angular resolu-
tion over the WFI FoV (∼6′′) will allow probing dual AGN
down to a separation of a few tens of kpc (see Fig. 20). A
new observational window in X-rays will be opened by the
other instrument onboard Athena, the X-ray Integral Field
Units (X-IFU), thanks to its unprecedented spectroscopic
capabilites (down to few eV). As outlined in McKernan
and Ford (2015), it will be possible, in nearby AGN, to
search for the presence of binary systems (with q ∼> 0.01
and moderate, < 0.1, eccentricity) separated by several
hundreds gravitational radii. Radial velocity shifts will be
imprinted on the broad iron Kα line due to oscillations
of a massive black hole around its barycenter, therefore
multiple observations of the same object will eventually
provide the imprints of the presence of a binary system
close to merger. Furthermore, if both AGN in a binary,
obscured system are emitting fluorescence iron lines and
if their difference in systemic velocity is larger than few
hundreds km/s (as NGC 6240), it will be possible, for suf-
ficiently long (∼Ms) exposures, to spectrally resolve close
systems through an analysis of the iron line energy peaks
(Piconcelli et al., in prep.).

On a longer time-scale, Lynx 15 is a concept study for
consideration by NASA in the context of the forthcoming
2020 Astrophysics Decadal Survey. The main technical
advancement of this proposed mission is a densely-packed,
thin grazing incidence mirror with an effective area of 2 m2

at 1 keV, and sub-arc second angular resolution over a
high-definition X-ray imager in the focal plane. Lynx is
expected to push the quest for young SMBHs in the very
early Universe by two orders of magnitude in intrinsic lu-
minosity. Its exquisite angular resolution, well matching

15https://wwwastro.msfc.nasa.gov/lynx/

Figure 20: Resolvable distance (in kpc) versus redshift for the future
X-ray facilities discussed in this paper. The quantity on the y-axis
is twice the angular resolution (in units of Half-Energy Width) fol-
lowing Ranalli et al. (2013). From top to bottom: eROSITA (average
HEW), eROSITA (on-axis), Athena, and Lynx.

that of JWST and WFIRST, will allow to study binary
AGN with a separation down to a few kpc over a very
wide redshift range (Fig. 20). In particular, the large field-
of-view of WFIRST Wide-Field Instrument, 0.8×0.4 deg2,
coupled to its sensitivity, is ideal for surveys purposes, and
will provide optical/near-IR counterparts to faint and/or
obscured AGN pairs detected by Lynx .

Along the pathway outlined by Lynx in terms of sub-arc
second angular resolution and larger than Chandra effec-
tive area, we need to mention AXIS , which is a probe-class
NASA mission under study for the 2020 Decadal Survey
(Mushotzky, 2018). Although AXIS is characterized by
much lower sensitivity compared to Lynx (being, however,
10× better than Chandra over a 24×24 arcmin2 field-of-
view), it will allow detection and characterization of kpc-
scale AGN pairs up to high redshift, with a foreseen launch
for 2028.

Hard X-rays are able to trace accretion even in obscured
AGN, with some limitations for the most heavily obscured
systems. As such, they are an ideal tool in the hunt
for multiple active nuclei in a galaxy, providing typically
a higher contrast with respect to stellar-related emission
processes than observations at other wavelengths. The ca-
pability of detecting nuclear, accretion-related emission in
galaxies with limited (or negligible) indications of an active
nucleus at other wavelengths is therefore one of the major
advantages of X-ray observations, although the planned X-
ray missions described above, eROSITA and Athena, will
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have poor and moderate angular resolution, respectively,
thus strongly limiting the possibilities of disclosing and
properly characterizing close (< kpc) dual systems if both
members are active. The high point-like luminosity, the
non-thermal spectral shape of the continuum and the pres-
ence of a strong Fe line emission in the X-ray spectrum are
clear signatures allowing to discriminate the presence of
an AGN with respect to potential astrophysical “contami-
nants” such as hot shocked gas in region of intense nuclear
star formation. However, the success of any strategies to
identify AGN through X-ray surveys invariably hinges on
a synergetic approach with facilities at other wavelengths.
These synergies work bi-directionally, both trough X-ray
follow-ups of candidates identified at other wavelengths,
or by campaigns in optical/IR (OIR) to identify the AGN
counterparts of X-ray sources.

An example of the former aspect is the potential synergy
between SKA and Athena. The sky survey at 1.4 GHz of
the first-phase SKA (SASS1 starting at early 2020’s) will
provide the sky map (3π steradians) to an r.m.s. of about 4
µJy/beam (1σ) with a resolution of 1". SASS1 will there-
fore be a powerful detector of low-luminosity AGN (∼ 1039

erg s−1) even for the radio-quiet population16. As such, it
will be invaluable resource for investigation of systems of
dual and multiple AGN. At these faint flux densities, the
main population consists of a mixture of both star-forming
galaxies and radio-quiet AGN and different techniques are
needed in order to distinguish among these two popula-
tions: radio morphology, spectral index, polarization, vari-
ability, radio-infrared ratio, optical and IR colours, SEDs,
optical line ratios, X-ray power. Athena follow-up can give
a fundamental contribution in the identification of AGN
and in the estimate of the nuclear properties through X-
ray luminosity and spectroscopy: the WFI will follow-up
the SASS1 sources in multiple systems and detect, even in
the case of strong absorption, all nuclei at moderate angu-
lar separation (>5′′); in addition, the X-IFU will be able
to separate the non-thermal from the soft thermal (star-
burst) component, and provide an accurate determination
of basic astrophysical parameters for both components (lu-
minosity, temperature/spectral index, strength and ioniza-
tion state of nuclear reprocessing features).

Identification of the OIR counterparts of sources de-
tected in the few tens square degrees of the Athena
WFI and eROSITA surveys will rely on a large set of
multi-wavelength data that will be available through e.g.
Subaru-HSC, SDSS V, LSST (see Sect. 5.3), andWFIRST.
The last two facilities, however, will not be available at the
time the eROSITA survey is completed. Moreover, the
comparatively poor angular resolution of eROSITA adds
further uncertainties to the counterpart identification with
respect to, e.g., XMM-Newton.

16AGN with log(Rx) < −4.5, where Rx is radio loudness defined
as the luminosity ratio between the luminosity densities at 5 GHz
and in the 2–10 keV band; see Terashima and Wilson 2003.

5.3. Optical spectroscopy
While the upcoming X-ray missions eROSITA and

Athena will provide a large number of X-ray sources (as
discussed above), subsequent characterization of the AGN
nature and precise redshift measurements are only possi-
ble with large spectroscopic surveys. New wide-field opti-
cal spectrographs such as WHT/WEAVE (Dalton et al.,
2012), VISTA/4MOST (see Merloni et al. 2012 for an in-
depth discussion of the natural synergies with eROSITA)
or ELT/HARMONI (see Padovani et al. 2017 for a review)
will provide the necessary numbers and depth to statisti-
cally evaluate the fraction of dual AGN among all galaxy
pairs down to a certain separation and AGN luminosity.

The characterization and identification of obscured
AGN in optical spectroscopy still rely mainly on classical
narrow emission-line diagnostics (e.g. Baldwin et al., 1981;
Veilleux and Osterbrock, 1987), which are able to distin-
guish AGN photoionization from other ionization mechan-
sims due to the hardness of the AGN spectrum at UV
wavelength. However, line ratios may be significantly af-
fected by mixing AGN photoionization with ionization by
star-forming regions (e.g. Davies et al., 2014; Trump et al.,
2015) which makes a unique characterization difficult, in
particular at high redshifts where the systematic decrease
in gas-phase metallicity leads to rather similar line ratios
for the different ionization processes (e.g Kewley et al.,
2013; Trump et al., 2013; Steidel et al., 2014; Coil et al.,
2015). Integral-field unit (IFU) spectroscopy can migi-
tate those effects to some degree as ionization sources can
be spatially separated much better than in fiber-based or
long-slit spectroscopy. Large IFU spectroscopic surveys
like CALIFA (Sánchez et al., 2012), SAMI (Croom et al.,
2012) and MaNGA (Bundy et al., 2015) allow to system-
atically identify AGN at low redshifts through kpc-scale
AGN ionization even if the integrated or central galaxy
spectra are dominated by ionization from star formation
(Wylezalek et al., 2018). In addition, the detection of
higher ionization lines, like the HeII λ4685 in the rest-
frame optical wavelength range (Bär et al., 2017) or the
HeII λ1480 in the rest-frame far-UV wavelength range
(Feltre et al., 2016), offer a promising alternative to charac-
terize faint obscured AGN at low and high redshifts. The
HeII λ1480 line can be observed at high redshift in the
optical wavelength so that high-sensitive wide-field IFUs
such as VLT/MUSE or Keck/KCWI offer the unique op-
portunity to detect faint type 2 obscured narrow-line AGN
at small separation down to the seeing limit.

Overdensities of multiple AGN separated by a few 10s
of kpc have been detected this way within a few giant
Lyα nebulae (Cantalupo et al., 2014; Hennawi et al., 2015;
Cai et al., 2017; Arrigoni Battaia et al., 2018). Hence,
dual AGN can be resolved and studied in merging galaxy
systems at high redshifts with separations of much less
than 30 kpc (e.g. Husemann et al., 2018). Many more close
obscured AGN multiple systems with kpc-scale separation
will be likely been detected at z ∼ 2−4 using this technique
in the future.
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5.4. Mid-IR imaging and spectroscopy

Motivated by the outstanding scientific results obtained
by the Hubble Space Telescope (HST), its successor, the
JWST, will push our view to longer wavelengths beyond
the HST capabilities. With its larger collecting area (i.e.
25.4 m2, 6.25 times bigger than HST), higher sensitivity,
and finer angular resolution at wavelengths shorter than
28.8µm, JWST will outclass Hubble’s imaging potential in
the infrared and will provide a factor of 5-7 better spec-
tral resolution than the Spitzer/IRS high-resolution instru-
ment. As a result, JWST will provide both high angular
resolution imaging and spectroscopy at mid-infrared wave-
length to identify obscured dual AGN via the emission of
the molecular torus in the mid-infrared.

Specifically, the NIRCam imaging and spectroscopic
modes covering the wavelength range 0.6–6 µm (angu-
lar resolution of 0.07′′, Greene et al. 2017) and the Mid-
Infrared Instrument (MIRI, 5–28 µm) will have a supe-
rior spatial resolution at λ > 1µm (i.e. 0.031′′ at 0.6–2.3
µm against the 0.13′′ of HST at 0.9–1.7 µm) and will pro-
vide a ×50 better sensitivity with respect to Spitzer/IRAC
(Rieke et al., 2015b,a). The Infrared Field Unit Near In-
fraRed Spectrograph (NIRSpec), which operates over a
wavelength range of 0.6 to 5.3 µm, in the highest spec-
tral resolution mode is a factor of ∼ 5 better than the
highest resolution spectrograph on Spitzer-IRS.

With this exquisite spectral coverage, JWST offers us
the opportunity to study the accretion disk emission re-
processed in the infrared by the dust surrounding the
SMBH through accurate torus models, measure extended
emission-line structures (i.e. ionization cones, outflows),
and reconstruct the gas kinematics as never done before.
Although JWST is not properly a survey instrument (be-
cause of the limited field-of-view), its imaging from NIR to
MIR will cover significant areas on deep fields which will
probe a significant volume at high redshift.

Larger areas of the sky (10×10 arcmin2) will be covered
at MIR wavelengths (∼ 17 − 34 µm) in photometric/low-
resolution spectroscopic mode by the Space Infrared Tele-
scope for Cosmology and Astrophysics, SPICA with the
SMI/CAM instrument. SPICA (Roelfsema et al., 2018),
selected as a new-mission concept study by ESA for M5,
will also probe the physics of accreting systems using the
mid-IR/far-IR emission lines thanks to the ∼ 34− 230 µm
coverage of the Safari instrument, thus potentially extend-
ing the studies of such systems up to very high redshifts.

6. The quest for hard SMBH binaries

6.1. AGN variability

Time-domain surveys in the 2020s will provide power-
ful datasets for selecting SMBHB candidates whose na-
ture can be tested with follow-up observations. The
Large Synoptic Survey Telescope (LSST), scheduled for

first light in 2020, will be the flagship time-domain ma-
chine. The well sampled, long-duration, high signal-to-
noise light curves from LSST, in combination with the un-
precedented sample size of about a million quasars, will
be the best database for identifying candidate SMBHBs,
based on (semi)periodic variability.

LSST is currently under construction on Cerro Pachón
in the Chilean Andes. The telescope features an effective
aperture of 6.7 m and will be equipped with a 9.2 deg2

field-of-view survey camera and ugrizy filter set, spanning
the range from the atmospheric cutoff in the UV to the
limit of CCD sensitivity in the near-infrared. A dedicated
survey telescope, LSST will rapidly scan large areas of
the sky to faint magnitudes, fulfilling its “wide-fast-deep”
mantra.

LSST will spend 85-90 per cent of its time on a 10-year
time-domain photometric survey covering 18,000 deg2 of
the sky. The “baseline cadence” that allows LSST to meet
its science goals is laid out by Ivezić et al. (2008) and de-
scribed in the LSST observing strategy white paper17. Ac-
cording to this cadence, LSST would scan the observable
sky every 3 nights in back-to-back pairs of 15 s exposures,
called visits. The survey would reach median single-visit
depths of 23.14, 24.47, 24.16, 23.40, 22.23, 21.57 and have
a median number of 62, 88, 199, 201, 180, 180 visits in
ugrizy, respectively, from 2,293 overlapping fields. How-
ever, the LSST cadence is not yet set and the Observing
Strategy White Paper describes the ongoing work in the
community to optimize it. One alternative to the base-
line cadence’s spatially uniform annual tiling of the sky
that is being explored is a “rolling cadence” that focuses
on different parts of the survey area in different years.

LSST will spend 10-15 per cent of its time on specialized
projects, including the Deep Drilling Fields (DDFs). These
will receive a higher cadence than the 10-year survey,
with the possibility of doing AGN variability science for
104−5 AGN. So far, four multi-wavelength fields have been
selected: ELAIS-S1, XMM-LSS, Extended CDF-S, and
COSMOS. The definition of additional DDFs and other
specialized projects (mini-surveys) is extremely open, with
decisions ongoing up to and beyond LSST first light. It
is worth noting that the final decisions on the observ-
ing strategy will affect how efficiently LSST can detect
SMBHB candidates. For instance, if the “rolling cadence”
is selected, it may not allow LSST to build the long base-
lines that are necessary for the search of SMBHB. Addi-
tionally, even though LSST will have a nominal cadence
of 3 days, given that the filters are successively alternated,
the light curves in each band will contain a dozen dat-
apoints every year. Techniques like the multi-band pe-
riodogram (VanderPlas and Ivezić, 2015) have been de-
veloped to coherently take full advantage of the multi-
ple time series. Nevertheless, it is unclear if they can

17The LSST Observing Strategy white paper is a live docu-
ment available https://github.com/LSSTScienceCollaborations/
ObservingStrategy/tree/master/whitepaper.
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be extended to quasar light curves, where the variabil-
ity is colour-dependent. Another challenge is presented
from the large available sample; this will pose significant
statistical challenges in order to robustly filter false peri-
odic detections. On the positive side, LSST is likely to
dramatically improve our understanding of the underlying
quasar variability, which eventually will facilitate the pe-
riodicity search. Additionally, the LSST data streams can
be combined with existing time-domain data, from sur-
vey like CRTS, providing light curves with long baselines
and high-quality data, which are necessary for this kind of
analysis.

In addition to candidates found from the growing body
of all-sky photometric surveys including LSST, many more
will come with the dawn of complementary “panoptic spec-
troscopy”. Pioneering this frontier, the Sloan Digital Sky
Survey V (SDSS V, Kollmeier et al. 2017) will be the first
homogeneous, wide spectral coverage all-sky multi-epoch
spectroscopic survey.

SDSS V will last 5 years and science will be grouped
into the Local Volume Mapper (LVM), Milky Way Map-
per (MWM), and Black Hole Mapper (BHM) programs,
with that last being the most relevant for finding grav-
itationally bound SMBHBs. The BHM program en-
compasses three scientific areas: eROSITA spectroscopic
follow-up, reverberation mapping, and an all-sky multi-
epoch spectroscopic survey. eROSITA will be a key player
in searches for dual AGN via sensitive X-ray imaging
surveys (Sect. 5.2) and BHM will provide spectroscopic
identification and redshifts for ∼400,000 eROSITA X-ray
sources (primarily AGN at high Galactic latitude) in the
first ∼ 1.5 years of the survey. BHM will also build on the
SDSS-IV reverberation-mapping and time-domain spec-
troscopic survey (TDSS) programs to deliver new black
hole mass measurements for ∼ 1000 − 1500 0.1 < z < 4.5
quasars/AGN and a few to a dozen epochs of spectroscopy
per target for 25,000 quasars spanning temporal baselines
of months to a decade. For most of the sky, this dataset
will not yield enough spectroscopic epochs to fully popu-
late radial velocity curves for SMBHB candidates. How-
ever, it will provide a starting point for follow-up cam-
paigns and enable a critical benchmark measurement of
how normal quasars vary on a wide range of timescales.

In the high-energy domain, it is worth mentioning The
planned future Chinese X-ray mission Einstein Probe, a
dedicated time-domain soft X-ray all-sky monitor aim-
ing at detecting X-ray transients including TDEs in large
numbers (Yuan et al., 2016). It will provide well-covered
lightcurves. These will allow us to search systematically
for the characteristic phases of intermittency and recov-
ery in the lightcurves from TDEs which happen in binary
SMBHs (see Sect. 4.3). This method will provide a census
of the SMBHB fraction in quiescent galaxies, once enough
lightcurves have been obtained.

From an X-ray spectroscopic perspective, for relatively
bright and local sources, Athena will allow to associate pe-
culiarities in the iron line features (i.e., double-peaked iron

Kα emission-line profile, as reported in Severgnini et al.
2018; see Sect. 4.2.2) with the presence of a sub-kpc scale
dual AGN. Moreover, variability of the iron line, as de-
scribed in Sect. 5.2 (see McKernan and Ford 2015), will
offer another viable, though challenging, possibility to dis-
close the presence of dual nuclei at close separation.

6.2. Theory and Simulations
We discuss here in detail the properties of SMBHBs em-

bedded in circum-binary disks, expanding on the theoret-
ical background summarized in Sect. 3. Simulations have
now followed binaries to merger in pseudo-Newtonian po-
tentials (Tang et al., 2018) or very close to merger in full
GR (Bowen et al., 2019) where space-time is violently
changing (see also Sect. 7.1). These, and previous sim-
ulations of SMBHBs embedded in circumbinary disks are
converging on the following signatures.

Periodicities. The mass inflow rate across the cavity
folows particular patterns, arising from modulation of the
gas inflow on the binary’s orbital period and half-orbital
period, as well as on the factor of few longer time-scales
corresponding to the orbital period at the cavity wall.
In particular, the variability structure of the mass accre-
tion rates seen in simulations can be roughly divided into
four distinct categories, based on the binary mass ratio
q ≡ M2/M1. For q ∼< 0.05, the disk is steady and the
BH accretion rate displays no strong variability (D’Orazio
et al., 2013; Farris et al., 2014; D’Orazio et al., 2016). For
0.05 ∼< q ∼< 0.3, the accretion rate varies periodically on
the timescale tbin, with additional periodicity at ≈ 0.5tbin.
Binaries with 0.3 ∼< q ∼< 0.8 clear a lopsided central cavity
in the disk, causing variability on three timescales. The
dominant period, (3−8)tbin is that of an over-dense lump,
orbiting at the ridge of the cavity, with additional periodic-
ities at tbin and ≈ 0.5tbin (MacFadyen and Milosavljević,
2008; Shi et al., 2012; Noble et al., 2012; Roedig et al.,
2012; Farris et al., 2014; D’Orazio et al., 2016). The dom-
inant period depends on the size of the cavity, and thus
on disk parameters, such as temperature and viscosity. Fi-
nally, equal-mass (q = 1) binaries display variability at the
longer lump period and at ≈ 0.5tbin.

Enhanced brightness. As emphasized by Farris et al.
(2015b), the heating of the gas near the binary is domi-
nated by shocks, rather than the usual viscous dissipation
for a single-BH disk. As a result, the total luminosity
of the binary can significantly exceed, even by 1-2 orders
of magnitude, that of a Shakura-Sunyaev disk with the
same mass and external large-scale accretion rate (see also
Lodato et al. 2009; Kocsis et al. 2012b,a). Interestingly,
the additional power must come at the expense of the
binary’s binding energy, and is therefore directly tied to
disk’s contribution to the binary’s inspiral rate (although
this extra energy source does not exist if the disk torques
are positive and cause an outspiral, rather than an inspi-
ral; see Tang et al. 2017; Muñoz et al. 2019; Moody et al.
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2019). Also interestingly, this point was noted in the con-
text of pre-main sequence stellar binaries by Terquem and
Papaloizou (2017).

Unusual spectral shapes. The shock-heating, together
with the evacuation of the gas from the central cavity
around the binary, also changes significant distortions
in the spectral shape, compared to the usual Shakura-
Sunyaev disk. In particular, there can be a “notch” in
the spectrum, at the frequencies where the emission, in
the absence of a binary, would have been dominated by
the gas missing from the cavity (Sesana et al., 2012b;
Gültekin and Miller, 2012; Roedig et al., 2014), although
this notch can be partially filled in by the emission from
the shock-heated mini-disks and accretion streams in
the cavity (Farris et al., 2015b). On the other hand,
strong shock-heating in the innermost regions (near the
cavity’s ridge, and inside the cavity) can give rise to
unusually hard spectra at higher frequencies, making
the spectrum extend to much harder photon energies
than for a Shakura-Sunyaev disk, possibly also leading to
unusually strong broad-line emission.

As anticipated in Sect. 6.1, variability with LSST will
provide a powerful set of data for selecting good SMBHBs
through their periodic signal.

More challenging will be the observations of brightest
sources or AGN with a peculiar X-ray profile in the hard-
est energy bands (above 10 keV). In fact, a bump above
10 keV peaking at 30 keV is commonly observed in AGN
and possibly associated to the well known Compton hump
(George and Fabian, 1991). This component, along with
the fluorescence Fe line, is produced through the inverse
Compton of photons from the central hot region (the so-
called emitting corona) on the optically-thick accretion
disk within the AGN. Nevertheless, the two models (single
BH accretion disk and circumbinary disks) should produce
flux variability in different timescales (order of few tens of
seconds in single 108 M� BH accretion disks). In this di-
rection, future time-resolved spectral analysis would help
to break the degeneracy, and then disentangle the origin
of the observed spectral signature.

7. GW horizons

In the near future, observations of SMBHBs through
their low-frequency GW emission (from nHz 0.1Hz; see
Fig. 21) promise to be revolutionary in our understanding
of the formation and growth of SMBHs.

GWs are ripples in spacetime propagating at the speed of
light, generated by accelerated masses with a time-varying
non-zero mass quadrupole moment (Thorne, 1987). Bi-
nary systems of two compact objects are therefore ideal
sources of GWs. In particular, SMBHBs are among the
loudest sources of GWs when observed during the phases of

late inspiral and coalescence (Sathyaprakash and Schutz,
2009).

Four simple notions are worth of mention in this con-
text. First, circular binaries emit sinusoidal GWs at twice
their orbital frequency, while eccentric binaries emit at fre-
quencies that are multiples of the orbital frequency (Peters
and Mathews, 1963). As rule of thumb, GWs circularize
any initially eccentric orbit, but some residual eccentricity
can remain at coalescence if, e.g., the binary hardened in a
triple interaction (Bonetti et al., 2019), or is detect during
its secualar adiabatic contraction (as for the case of PTA
sources discussed below).

Second, the strain amplitude h of a GW, which is the
sum of the two polarization states of the wave, weighted
through the antenna pattern of the detector, is a well un-
derstood function of the binary parameters and the main
scaling of h with key parameters to the source are high-
lighted in this formula

h ∼ (GMz)
5/3

c4DL
(πf)2/3, (4)

where M = (1 + z)M1M2/(M1 + M2) is the redshifted
chirp mass of the binary, DL its luminosity distance and
f = fr/(1 + z) is the observed GW frequency (being fr
the frequency in the source rest frame). Third, during the
inspiral, the frequency fr sweeps to higher values as the
binary contracts, in response to the energy loss by GWs.
Its rate of change, in the observer frame is

ḟ =
96

5
π3/8

(
GMz

c3

)5/3

f11/3. (5)

The chirp refers to the phase of inspiral when both h and
f increase with time, until coalescence. Measuring ḟ pro-
vides an accurate determination of the chirp massMz, and
an estimate of the time to coalescence. Coalescence occurs
at a frequency close to ∼ c3/GM , where M = M1 +M2 is
the total mass of the binary in the source frame.

Fourth, the plus of GW observations is that they will
not give “candidates” but rather “secure detections”; pro-
viding that the analysis is not faulty, there is not much
room left for alternative interpretation of clear GW sig-
nals (see, e.g., Abbott et al., 2016). On the minus side, our
“secure detections” of GWs events will have poor sky local-
ization (Klein et al., 2016; Goldstein et al., 2018), which
will generally make coincident EM identification or follow-
ups rather problematic (see detailed discussion in Sect. 7.1
and Sect. 7.2)18.

In the following, we briefly discuss the two low-frequency
observational windows that will soon become extremely

18This was not the case for the merging neutron star binary
GW170817 (Abbott et al., 2017a), which resulted in a spectacular
multi-wavelength observational campaign (Abbott et al., 2017b) de-
spite an initial GW sky localization of ≈ 30deg2. Although this is
promising, one should bear in mind that low-frequency EM sources
are expected to be observed at much further distances, and their
emission is likely going to be Eddington limited, making them much
fainter than short gamma-ray bursts.
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Figure 21: Characteristic strain amplitude versus frequency of binaries in the GW landscape. The black curves are the sensitivity of LISA,
Advanced LIGO and Virgo, and various PTA experiments. In the PTA band, the GW signal (blue jagged line) is characterized by the
incoherent superposition of quasi-monochromatic binaries (lavender diamonds). Blue triangles show a sample of individually resolvable
SMBH binaries. In the LISA band, loudest sources will be merging SMBH binaries, shown here by the blue tracks. Other sources include
extreme mass ratio inspirals (EMRIs, orange tracks) and stellar mass BHBs (pale and dark blue ticks). The LIGO/Virgo band is the realm
of stellar mass compact objects, and typical tracks are shown in purple. From Colpi and Sesana (2017).

relevant for SMBH binary science. The mHz frequency
range will be probed by LISA (Amaro-Seoane et al., 2017),
the third ESA L-class mission scheduled for launch in 2034.
The nHz frequency window is currently probed by PTAs
(Foster and Backer, 1990), and future radio instruments
such as FAST (Nan et al., 2011) and SKA (Dewdney et al.,
2009) will provide a significant contribution.

7.1. LISA: probing the SMBH assembly from their infancy
LISA will detect merging SMBH binaries from

few×103 M� to few×107 M� everywhere in the Universe
(Colpi et al., 2019). Expected detection rates are un-
certain, varying between several to few hundred over the
planned 4-year mission lifetime (Klein et al., 2016; Bonetti
et al., 2019). Note that, although the bulk of these events
will involve SMBHBs with M < 105 M� at z > 5, EM
observations will be greatly facilitated by more massive
(M > 106 M�) and closer (z < 3) systems (McGee et al.,
2018), which might be detected by LISA at a rate of few
per year.

One important question to address is whether the bi-
nary would remain bright and periodic all the way to

merger. Naively, one would expect that this is not the
case; as mentioned in Sect. 3, at a binary separation of
∼ 100Rs (Schwarzschild radii), the GW-driven inspiral
timescale becomes shorter than the local viscous time and
the binary “decouples” from the disk. Past this stage, the
runaway binary leaves the disk behind, which is unable
to follow the rapidly shrinking binary (Liu et al., 2003;
Milosavljević and Phinney, 2005). Encouragingly, it has
now been demonstrated that this is not the case. Farris
et al. (2015a), Tang et al. (2018) and Bowen et al. (2018,
2019) have performed simulations of GW-driven nearly
equal-mass binaries all the way to merger. The former sim-
ulations started binary evolution from an initial separation
prior to the fiducial decoupling, and the last from a sep-
aration encompassing twelve orbits prior merging. These
studies have shown that the gas is able to accrete onto the
black holes, all the way to the merger, despite the rapid
contraction of the binary orbit. The physical reason for
this is that the angular momentum from the gas can be
removed by gravitational torques and shocks caused by
the binary, which dominate over viscosity, and operate on
much shorter time-scales.
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3D MHD simulations in GR (Bowen et al., 2018, 2019)
have confirmed that strong gravity develops an m = 1 az-
imuthal asymmetry (or lump) in the circumbinary disk,
which quasi-periodically modifies the accretion flow into
the central cavity and thus to the mini-disks. Radial
pressure gradients accelerate the inflow rate on the black
holes well beyond that associated with stresses arising from
MHD turbulence, dynamically coupling the mini-disks to
the lump, directly. If the accretion rate makes the flow
optically thick, soft X-ray emission comes from the inner
rim of the circum-binary disk and harder radiation from
the mini disks if also coronal emission is excited (Tang
et al., 2018; d’Ascoli et al., 2018, see Sect. 3). While an
optical-UV chirp might be present in tandem with the GW
emission in the very early phase of the inspiral, due to
Doppler shift induced by the circular motion, near plunge
an overall dimming and loss of periodicity might charac-
terize the emission due to the erosion of each mini disk
by the tidal field of the companion black hole, whose size
shrinks down to a few times the innermost stable circu-
lar orbit (Tang et al., 2018; Bowen et al., 2018). Out-
side thermalized regions and in case of low accretion rates,
coronal emission around the two SMBHs may give rise
to hard X-ray emission. Its modulation might depend on
the orientation of the binary orbital plane relative to the
line of sight, Doppler beaming and gravitational lensing.
At plunge and in the post-merger phase, numerical sim-
ulations demonstrated that an incipient relativistic jet is
launched by the new spinning SMBH, which may spark
gamma-ray emission and afterglow emission in its impact
with the ISM (Gold et al., 2014).

Advance localization of the binary by LISA weeks to
months prior to merger to a few square degrees on the sky
(Kocsis et al., 2008; Lang and Hughes, 2008; McWilliams
et al., 2011) will enable a measurement of this EM chirp by
wide-field X-ray (and possibly also optical) instruments.

A comparison of the phases of the GW and EM chirp
signals will help break degeneracies between system pa-
rameters, and probe a fractional difference ∆v in the
propagation speed of photons and gravitons as low as
∆v/c ≈ 10−17 (Haiman, 2017).

In order to explore to what extent LISA-EM synergies
might be feasible, we consider here few selected cases, with
masses ranging from 105 M� to 107 M�, out to z = 7, as
listed in Table 4.

For the sake of the discussion, we make the following
simple assumptions:
1. the merging binary emits either at its Eddington limit

(LEdd) or at 10 per cent of this value (0.1LEdd)19.

19Despite observed AGN have average luminosity of about
0.1LEdd, we expect SMBHBs to form following major mergers, which
are also known to trigger copious gas inflows in the remnant nu-
cleus. Hydrodynamical simulations of SMBHB evolution in galaxy
mergers show that the amount of gas bound to the binary can sus-
tain Eddington-limited accretion throughout the merger process (e.g.
Dotti et al., 2009; Capelo et al., 2015), which justifies our choice of
exploring also the LEdd case (cf right panel of Fig. 8).

For the two cases, the bolometric luminosity is L =
1.4× 1044M6 erg s−1 and L = 1.4× 1043M6 erg s−1,
respectively, where M6 = M/106 M�;

2. at these values of luminosity, ≈10 per cent of the emis-
sion is in the 2− 10 keV band (Lusso et al., 2012);

3. a generic 1.5 bolometric correction for observations in
optical/infrared;

4. a radio luminosity based on the triggering of a pow-
erful radio jet of Ljet ≈ 1043M6 erg s−1 at GHz fre-
quencies (regardless of the assumed Eddington ratio
of point 1).

These assumptions translate in the observables detailed in
Table 4. Absorption is not considered in the X-ray fluxes
estimates reported in Table 4 while, as discussed above
(see Sect. 1.2), galaxies in their advanced stage of merg-
ing are substantially obscured. However, we note that at
high redshift (z = 3, 5, 7) obscuration, with typical value of
NH=1023 cm−2, will not affect the hard X-ray (2–10 keV)
flux estimates, while at z = 1 the estimated flux will de-
crease by about 10 per cent. We refer the reader to Sect. 5
of Tamanini et al. (2016) for further discussion about the
modelling of the emission and the conversion into magni-
tudes and fluxes. We also stress that the emission models
are very simplified and numbers in Table 4 are indicative.

For relatively massive sources at z ≤ 3 (first three rows
in Table 4) LISA might provide the sky location of the
source with ∆Ω < 0.4 deg2 at merger, a less than 10
per cent precision on the luminosity distance measurement
(mostly limited by weak lensing), plus intrinsic source pa-
rameters such mass and mass ratio to better than 1 per
cent, and the spin parameters of the two BHs to a 0.01−0.1
absolute precision (Klein et al., 2016). Depending on the
exact low-frequency performance of LISA, these systems
might enter in band months before coalescence, allowing
pre-merger identification and localisation (although with
a much worse precision of several deg2). For a LISA band
entry frequency of f < 0.1 mHz, the orbital period is
several minutes. Note that both a 107M� system emit-
ting at 0.1LEdd and an Eddington limited 106M� binary
at z ≤ 1 have an apparent magnitude of mv ≈ 23.5,
within the capabilities of LSST. The LISA error-box can
therefore be covered periodically by LSST in the attempt
to identify a varying source matching the orbital period
(Haiman, 2017), as discussed in Sect. 4.3. Note that at
those small magnitudes a lot of transient optical signals
are expected; matching a flux periodic variation to the
(extremely well measured by LISA) frequency evolution of
the binary might provide the key to discern the true GW
source from other contaminants.

An arcsec sky localization precision during the late inspi-
ral phase will allow to point any instrument in any band
to obtain multi-wavelength coverage of the source, trac-
ing its evolution as it proceeds to merger. This scenario
would yield an unprecedented wealth of information about
merging SMBHBs, allowing a time-dependent tracing of
the emission at all wavelength, thus probing the interac-
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Table 4: Emission properties of selected GW sources observed by LISA. Besides the source mass and redshift, reported are the 1-σ relative
error in the luminosity distance measurement, ∆DL/DL, and the sky localization region ∆Ω at merger, defined such that the probability
of finding the source within this region is 1 − e−1 ≈ 0.63 (Barack and Cutler, 2004). As for the EM emission, 10 per cent Eddington and
Eddington-limited emission are assumed. The visual magnitude, mv , has been obtained by applying a bolometric correction BC= 1.5, the
X-ray flux assumes 10 per cent of the bolometric luminosity in the 2 − 10 keV band with a power-law distribution with slope Γ =1.7. The
radio flux density is based on the jet emission model of Meier (2001). Numbers should only be considered indicative as neither extinction nor
absorption have been applied. See text in Sect. 7.1 for details

0.1LEdd LEdd

Mass redshift ∆DL/DL
∆Ω

mv
X-ray flux

mv
X-ray flux Radio flux

[M�] [deg2] [erg s−1cm−2] [erg s−1cm−2] [µJy]
107 1 0.05 0.3 23.5 3.2× 10−15 21 3.2× 10−14 2× 104

106 1 0.01 0.1 26 3.2× 10−16 23.5 3.2× 10−15 2× 103

106 3 0.04 0.4 28.9 2.6× 10−17 26.5 2.6× 10−16 135
106 5 0.07 2 30.3 8× 10−18 27.8 8× 10−17 38
105 5 0.1 5 32.5 8× 10−19 30 8× 10−18 3.8
105 7 0.1 10 33.5 4× 10−19 31 4× 10−18 1.7

tion between the binary and the surrounding gas after dy-
namical decoupling (see, e.g., Tang et al., 2018; Bowen
et al., 2018). Observations at multiple scales will probe
the host of such system, providing unprecedented infor-
mation about the physical environment of merging binary
hosts at large. The emission properties of the system can
be used to construct a consistent model that can be re-
scaled to search for the much more abundant population
of wider binaries (Haiman et al., 2009) – thus not emitting
in the LISA band – in, e.g., LSST data.

As we move to higher redshifts, observations become
more complicated. Beyond z = 1, identifying a periodic
pre-merger counterpart with LSST will be unfeasible, be-
cause even an Eddington-limited binary is simply too dim.
Moreover, LISA parameters will not be so sharply deter-
mined, mostly because of the lower S/N and relative larger
error in luminosity distance, which ramps up to 10 per
cent, also because of weak lensing. Combined with the
intrinsic low flux of such a high-redshift source, this will
make EM identification problematic. Eddington-limited
systems with M ∼> 106M� will still be within the nom-
inal limiting flux of Athena up to z ≈ 5, and to z ≈ 3
the sky localization might still be good enough to fall
within a single WFI FoV. Thus Athena can be pointed
after merger, searching for a distinctive X-ray afterglow,
maybe associated to the launch of a jet or to a post-
merger re-brightening of the source. At even lower masses
(≈ 105M�) and higher redshifts, the best chance of find-
ing an EM counterpart will be the identification of a µJy
transient with SKA, than might be associated with the
emergence of a transient radio jet at merger (Palenzuela
et al., 2010; Kaplan et al., 2011). SKA will have a unique
combination of sensitivity and large field of view (see Ta-
ble 2 in Sect. 5.1). Its sub-arcsec angular resolution will
make follow up observation possible in all bands, charac-
terizing the source and its environment. Detection of sev-
eral such events will give invaluable insights on the high-
redshift assembly of SMBHs in connection to their hosts
(Sesana et al., 2011a).

7.2. PTAs: giants in the low-redshift Universe

A GW propagating into space affects the travel time
of photons, an effect that is measurable in very precise
cosmic clocks like millisecond pulsars. The typical magni-
tude of the effect on the pulse time of arrival (ToAs) is of
the order δt ≈ h/(2πf) (where f is the GW frequency),
which for an SMBH binary of 109M� at 500 Mpc distance
with an orbital period of a year gives ≈ 10 ns (Sesana and
Vecchio, 2010). Several PTA projects around the world
are monitoring O(100) millisecond pulsars, some of them
to better than 100 ns accuracy (Desvignes et al., 2016;
Reardon et al., 2016; Verbiest et al., 2016; Arzoumanian
et al., 2018). The correlation of ToAs from multiple pul-
sars effectively increases the sensitivity of this technique,
which is now starting to probe the interesting region of
the astrophysical parameter space where SMBH binaries
are expected to reside (Middleton et al., 2018). In the long
run, the SKA will likely boost current PTAs sensitivity by
more than an order of magnitude (Janssen et al., 2015).

The primary target of PTA campaigns is the cosmic
population of centi-pc separation SMBH binaries with
M > 108M� at z < 1 (Sesana et al., 2008), emitting in the
nHz frequency band (i.e. with orbital periods from decades
to months). Crucially, this implies that PTAs and time-
domain surveys will be targeting the same sources, opening
synergies that can work in both directions.

EM to PTA. The first thing to notice is that sensitivity
of EM probes is not a problem for typical PTA sources.
A M = 109M� system at z = 1 will be, for example,
well within reach of single pointings with both LSST and
eROSITA. Assuming emission at 0.1LEdd, and neglecting
obscuration, the flux in the 2–10 keV and 0.5-2 keV energy
band would be 3 and 1.8 ×10−13 erg s−1cm−2, respectively
(adopting the same assumptions about the X-ray spectrum
shape as in the previous section). We know that the soft
X-ray band is affected by absorption and AGN residing in
galaxies in advanced merger stage are often substantially
obscured (see Sect. 1.2). A better avenue would therefore
be to observe in the 2–10 keV band, which is less affected
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by obscuration. In-fact, assuming an intrinsic column den-
sity NH = 1023cm−2 (Ricci et al., 2017; De Rosa et al.,
2018), the X-ray flux for the aforementioned binary de-
creases to 2.8 and 0.2 ×10−13 erg s−1cm−2 in 2–10 keV
and 0.5–2 keV, respectively. This is still above the single-
point flux limit of eROSITA in both the hard and soft-X
ray bands in 4 years all-sky survey (eRASS:4, see Sect. 5.2)
and marginal within the average value expected at the end
of the one-year all sky survey (eRASS:1). In general, all
sky time-domain surveys will generate a large amount of
candidates that can be verified or dismissed by PTA ob-
servations. As already mentioned, this particular line of
research has already been implemented on specific SMBH
binary candidate samples (Sesana et al., 2018), casting
doubts about their nature. Besides allowing verification
of the individual brightest candidates, PTAs will also pro-
vide a strong consistency check of the overall population
statistics. A high S/N detection of the stochastic GW
background and of its spatial anisotropies (although on
large scales only) can be cross-correlated with the popula-
tion of SMBH binary candidates identified in EM surveys,
to see whether they match or not. In turn, this can provide
strong constrains on the fraction of accreting SMBH bina-
ries at z < 1, and thus on their typical environment. For
example, a majority of the GW background unaccounted
for by EM candidates will be an indication that massive
low-redshift binaries preferentially evolve in gas-poor en-
vironments, being mostly driven by stellar dynamics.

PTA to EM. Although the incoherent sum of all the
sources will create a stochastic GW background, several
individual sources will be eventually singled out from the
signal, some with S/N> 10. Those will mostly be systems
with M > 109M� at z < 0.5 (Rosado et al., 2015; Kel-
ley et al., 2019c), for which PTAs will provide a relatively
poor sky localization within . 100 deg2. Although this
figure seems discouraging, two things should be borne in
mind. First, those are extremely massive systems at rela-
tively low redshift; if they are active they are bound to be
extremely bright (unlike the case of LISA sources). Sec-
ond, they will necessarily reside in very massive galaxies,
limiting the number of likely hosts to < 1000 even over
such a large region of the sky (Goldstein et al., 2019). Pe-
riodic coverage of the relevant sky region in optical, radio
and X-rays, will allow to scrutinize all potential brightest
hosts, as the GW emission is stationary or slowly chirp-
ing. Again, if no convincing variable AGN is seen, one
can confidently say either that the system is severely sub-
Eddington or that the AGN does not have a periodically
variable signature at that given explored wavelength and
timescales. On the other hand, a confident detection of a
periodic source matching the GW period will allow deep
follow-ups at all wavelengths. Identification of the host
will also break the mass-distance degeneracy in equation
(4), allowing a 10 per cent estimate of the source chirp
mass. High resolution integral field spectroscopy will al-
low to probe the environment of the source from Mpc to
sub-kpc scales, providing a wealth of information about

the interplay of the binary with its host at different scales.
Periodicity and variability at all wavelengths, spectroscopy
of broad emission lines (including, possibly, Kα lines) will
permit a detailed characterization of the accretion flow
onto the SMBH binary and the efficiency of the emission
processes at play, that can be used to test our theoretical
models of SMBH binary-disk interaction.

Part IV

Concluding remarks
We reviewed the multi-faceted astrophysics of dual and
binary AGN systems, and discussed topics that emerged
in the meeting held at the Lorentz Center in Leiden “The
Quest for Multiple Supermassive Black Holes: A Multi-
Messenger View”. Dual and binary AGN are rare and of-
ten obscured sources. Their discovery and their modeling
is complex but their importance is overarching, as the as-
trophysics ruling the formation of dual AGN encompasses
many scales and different cosmic environments. This re-
quires on the one hand costly, multiband and coordinated
follow-ups in order to firmly establish the presence of mul-
tiple AGN systems on all scales and on the other hand
multi-scale theoretical models, bridging the AU scale of
accretion disks with the Mpc scales of cosmic structures.

Within our broader community, judging the reliability
and/or the significance of an observational (or even a the-
oretical) result is often difficult because of the limited
knowledge of the methodology used by groups working in
different fields. The aim of this review is to provide a com-
prehensive summary of results and techniques adopted by
different groups working in this field, with focus on obser-
vations, theory, and numerical simulations.

While there is a rich literature on the topic, systematic
searches of binary/dual SMBHs, or studies of their candi-
date hosts are rare. The future missions in different energy
domains, from radio to X-rays, will increase the number of
candidate dual AGN systems by orders of magnitude due
to enhanced resolution and sensitivity. Simultaneously,
the combination of all surveys (e.g., optical/NIR or MIR)
available in the near future will allow to filter out the “real”
dual AGN from the false positives.

Current state-of-the-art cosmological simulations of
galaxy evolution and simulations of isolated galaxy merg-
ers provide important tools for the interpretation of ob-
servations and allow us to detect the presence of dual,
obscured AGN systems. In particular, cosmological sim-
ulations suggest that dual AGN activity is not a unique
tracer of galaxy mergers, since many inactive SMBH pairs
at kpc-scale separations exist.

Although isolated merger simulations typically reach a
higher resolution compared to the coarser-grained cosmo-
logical simulations, dust obscuration from the torus in the
vicinity of the SMBHs is not resolved yet. This might lead
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to an over-estimate of the lifetime of dual AGN, if inferred
from observations in the X-rays. Future higher resolution
and improved subgrid recipes need to be developed in or-
der to describe the behavior of these systems.

We then provided an overview on the current theoretical
understanding of the orbital decay of SMBHBs from the
hundred pc to sub-pc scale. Several physical processes
can cause the evolution of SMBH pairs to stall in this
regime of separations. Such systems would be detectable
as single/dual AGN, if fed individually (on the larger scale)
or if surrounded by a circumbinary disk which feeds the
two SMBHs through mini-disks. A quantity of interest for
observations is the characteristic residency time which, on
these scales, is of order of ∼ 10 Myrs or less, yet sufficiently
extended to enable detection.

At the time of writing, there are few hundred pc and
sub-pc scale SMBHB candidates described in the litera-
ture but their nature as true binaries is inconclusive and
remains to be tested through time-domain and contin-
ued multi-wavelength monitoring. The new photometric
(e.g., ZTF, LSST and others) and spectroscopic searches
(e.g., SDSS-V) promise to provide even longer baselines
and larger datasets of AGN which can be used to search
for binary signatures – a crucial advancement given the
low incidence of sub-pc SMBHBs expected from theory.
Combined with a growing sophistication of simulations of
gravitationally bound binaries and improved theoretical
predictions for EM and GW signatures, this bodes well
for future detections of SMBHBs. In the next decades,
GW observatories, such as LISA and PTAs, will provide
first direct evidence of binary and merging high-z SMBHs,
and of a GW foreground of inspiralling SMBHBs at z ∼ 1.
These prospected observations will open a new chapter in
studies of binary and dual SMBHBs.
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