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A Computational-Effective Field-Oriented Control
Strategy for Accurate and Efficient Electric
Propulsion of Unmanned Aerial Vehicles

Alessandro Bosso, Member, IEEE, Christian Conficoni, Davide Raggini, Andrea Tilli

Abstract—In this work, we introduce an easy-to-implement
sensorless controller specifically designed for the regulation of the
propellers of Unmanned Aerial Vehicles (UAVs). As motivation,
we present a comparison of the usual motor control architectures,
i.e., Field-Oriented Control (FOC) and Brushless DC (BLDC)
control, with special attention to the typical back-ElectroMotive
Force (back-EMF) shapes found in this application. In particular,
we show that the adoption of sensorless FOC provides several
advantages, both from the efficiency and the signal quality
viewpoints, provided that accurate rotor position reconstruction
is available. Therefore, a recently proposed observer is integrated
into a nested FOC architecture, with formal stability guarantees
and low computational effort, making the resulting strategy
suitable for implementation in embedded computing systems. The
algorithm is then compared experimentally to a sensorless BLDC
controller and a high-end commercial drive, thus validating
the previous results and showing effective time-varying speed
tracking, as required for precise aggressive maneuvering. These
features of efficiency, accuracy, and simplicity might prove
instrumental in bolstering the introduction of a novel class
of high-performance, robust UAV sensorless controllers in the
forthcoming years.

Index Terms—Aircraft propulsion, energy efficiency, motor
drives, sensorless control, Unmanned Aerial Vehicles.

I. INTRODUCTION

ELECTRICALLY powered Unmanned Aerial Vehicles

(UAVs) are becoming an ever-growing source of interest

for civil, military, and industrial applications [1], [2]. On this

topic, several works from different communities can be found

[3], and a significant effort has been dedicated to improving

the related technology, control accuracy, and effectiveness in

numerous demanding scenarios. A crucial UAV design issue

is flight endurance, typically assessed in the literature at the

flight control level, e.g., considering trajectory optimization to

minimize energy losses [4], [5]. Alternative power sources [6],

on purpose design [7], and energy harvesting systems [8] have

also been explored to enhance this feature. However, not only

flight endurance but also tracking performance is critically

affected by the propeller drives, since maneuvering is achieved

by regulating the propeller speed/thrust [9].

In this respect, our work is focused on the control of

multirotor UAV electric motors, addressing its impact on effi-

ciency and accuracy. Notably, these features are related to the
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electromagnetic structure of the motors, commonly permanent

magnet machines. The typical driving technique for UAV

propellers is sensorless Brushless DC (BLDC) control [10],

[11], which is very popular nowadays because of its parameter-

free implementation and simple position/speed reconstruction

algorithms. We refer to [12], [13] for other techniques and their

relation to UAV dynamic performance. Sensorless BLDC con-

trol is adequate if the motor back-ElectroMotive Force (back-

EMF) has a trapezoidal shape. However, it is suboptimal in

efficiency and accuracy whenever applied to other structures,

in particular sinusoidal machines, known as Permanent Magnet

Synchronous Machines (PMSMs). Instead, the optimal control

technique for PMSMs, Field-Oriented Control (FOC), requires

in general sophisticated sensorless algorithms and (at least

partial) knowledge of the motor/load parameters. On the other

hand, it theoretically guarantees the highest torque-per-current

ratio and lowest torque distortion.

The objective of this paper is to propose a systematic

strategy to enhance UAV actuator performance. Firstly, we

analyze the back-EMF of UAV propeller motors and, noting

that the shape is close to sinusoidal, we present an efficiency-

accuracy comparative study of BLDC control and FOC applied

to PMSMs. This analysis represents an extension of the one

in [14], and we refer to [15] for a closely-related work. After-

ward, we propose a simple yet theoretically-solid sensorless

FOC controller. One crucial aim of this scheme is to reduce the

need for a priori knowledge of the model while guaranteeing

accurate position reconstruction, which is critical in preserving

the FOC’s desirable features during sensorless operation. In

particular, a recent sensorless observer [16] is employed to

increase the performance in variable-speed scenarios, without

requiring any information of the mechanical dynamics and

their parameters. The control scheme is then analyzed both

from the theoretical and implementation perspective, featuring

robust stability and a relatively low computational complexity.

In view of these properties, the proposed strategy is particu-

larly suitable for embedded computing systems, and it can

be adapted without effort to different loads and operating

conditions. Finally, the solution’s effectiveness is confirmed

in experimental tests, where a high-performance commercial

sensorless FOC is used as a benchmark for comparison.

The article is organized as follows. In Section II, we study

the experimental back-EMF of a set of small/medium size

UAV propeller motors, highlighting their sinusoidal shape.

Section III is devoted to a numerical comparison of BLDC

control and FOC applied to PMSMs, showing the mechanical
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Fig. 1: Experimental results for back-EMF signal identification of UAV propeller motors dragged at constant speed. Plots (a)-

(b)-(c)-(d) show one line-to-line voltage waveform of the four machines under test, plots (e)-(f)-(g)-(h) show the back-EMFs

computed from two line-to-line voltages, while the back-EMF magnitude spectra (relative to the phase in blue) are reported

in the third row, plots (i)-(j)-(k)-(l). Columns from left to right are related, respectively, to T-Motor Antigravity-4006-KV380,

T-Motor MT2212-16-KV750, T-Motor U3-KV700 and a custom motor designed for small/medium-size UAVs [14].

operating conditions that suffer the most from a suboptimal

driving choice. In Sections IV-V, the proposed sensorless

FOC is introduced and experimentally tested, while Section VI

draws some conclusive remarks and future research directions.

II. PROPELLER MOTORS ARE CLOSE TO SINUSOIDAL

Typically, permanent magnet brushless machines are

roughly classified on the basis of the ideal shape of the back-

EMF, leading to two main categories: Brushless-DC machines

in case the shape is trapezoidal, and PMSMs if it is sinusoidal.

This sharp separation does not account for the actual design

of electric machines, as much as the technological limitations

of the constructive process. As a consequence, even though

the back-EMF should match the corresponding ideal shapes

as well as possible, this feature is not reflected in practice,

with trapezoidal waveforms resulting more intricate to achieve

in comparison to the sinusoidal ones [17]. Following the

experimental analysis undertaken in [14], we compare the

back-EMF waveforms of four motors obtained by acquiring

the line-to-line voltage of those motors, kept in open-circuit

and dragged at a constant speed by an external machine. The

experimental data are provided in Figure 1 in three different

forms: one of the line-to-line voltages, the three back-EMFs

relative to the neutral point (computed as uiN = (vij+vik)/3,

with i ∈ {a, b, c} and j, k ∈ {a, b, c} \ {i}, j 6= k, where vij
are the line voltages), and the back-EMF magnitude spectrum.

From these waveforms, it is highlighted how the motors, with

different degrees of precision, resemble a sinusoidal shape.

III. BLDC CONTROL VS. FOC: ALGORITHMS AND

PERFORMANCE

We now develop the analysis, considering PMSMs (i.e., pure

sinusoidal back-EMF) for the mathematical modeling of the

motor. The deviation of the real machines from a sinusoidal

shape is then inherently included in the experiments. Besides,

the driving techniques comparison is performed under full

knowledge of rotor position and speed, so that the ensuing

results represent the best theoretical performance (no negative

effect introduced by sensorless operation).

A. The UAV Actuator Model

The dynamics of PMSMs can be described, under some

simplifying assumptions (balanced operating conditions, no

magnetic saturation, and no iron losses), as follows [18]:

λ̇j = uj −Rij

λj = ϕj(ϑ) + Lij
j ∈ {a, b, c}, ϑ̇ = ω (1)

where λj are the stator fluxes, uj , ij are the phase voltages

(relative to the neutral point) and currents, respectively, ϕj

are the rotor fluxes, ϑ is the rotor electrical position and

ω is the electrical angular speed, while R, L are the stator

resistance and inductance. In addition, the rotor fluxes can

be expressed as ϕa = ϕe cos(ϑ), ϕb = ϕe cos(ϑ − 2π/3),
ϕc = ϕe cos(ϑ+2π/3), with ϕe the nominal rotor flux ampli-

tude. Employing standard computations involving amplitude-

preserving Clarke and Park transformations, the current dy-

namics can be expressed in a generic rotating two-phase

reference frame ϑr, such that ϑ̇r = ωr, as follows:

d

dt
id = −R

L
id +

ωϕe

L
sin(ϑ− ϑr) + ωriq +

ud
L

d

dt
iq = −R

L
iq −

ωϕe

L
cos(ϑ− ϑr)− ωrid +

uq
L
.

(2)

Selecting ϑ = ϑr yields the typical rotor-aligned frame used

for sensored FOC. We complete the model by introducing the
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Fig. 2: UAV actuator scheme, with motor, propeller, power

converter, controller, and some relevant signals. In particular,

u∗a, u∗b , u∗c denote the voltage commands before PWM modu-

lation, VDC is the power converter DC-link voltage, while Ω∗

is a speed reference, e.g., imposed by a flight controller.

dynamics of the mechanical angular speed, ωm = ω/p (p are

the motor pole pairs), including the electric torque and the

propeller load, approximated for simplicity as:

Jω̇m = Te − c1ωm − c2|ωm|ωm

Te =
3

2
pϕe

(

iq cos(ϑ− ϑr)− id sin(ϑ− ϑr)
)

,
(3)

where J is the total motor and load inertia, while c1 and

c2 are positive load coefficients, related to the motor friction

and the propeller aerodynamic torque. The complete structure

of a UAV actuator, including the power converter and the

controller, is summarized in Figure 2.

B. BLDC Control vs. FOC: Algorithms

One of the most popular control strategies for UAV motors

is sensorless BLDC control. The core principle of BLDC

control is to inject currents in two phases at a time, with their

selection aimed at producing the maximum average torque.

For the implementation of this technique, the values of the

electrical angle ϑ are divided into six intervals (sextants).

In each sextant, one leg of the power converter is driven

with PWM at a specific duty-cycle, another is kept at fixed

voltage (typically low1), while the third is uncontrolled. This

way, current flow is enabled between the two controlled

phases. Sensorless BLDC control is typically based on Zero-

Crossing algorithms, which keep track of the open phase

voltage (embedding back-EMF information) to compute the

sextant commutation instants in a parameter-free manner. A

speed controller is then employed to assign the duty-cycle of

the PWM-controlled phase. In fact, since the Zero-Crossing

algorithms keep the current vector (on average) aligned with

the back-EMF, it is possible to establish a relationship between

the controlled phase duty-cycle and the rotating speed.

FOC techniques, on the other hand, aim to achieve the

maximum torque-per-current ratio controlling the currents in

1This is a widespread modulation strategy that has been shown to minimize
converter switching power losses [19], [20].

TABLE I: T-Motor Antigravity-4006-KV380 parameters

Stator resistance R [mΩ] 108 Stator inductance L [µH] 30.6

Number of pole pairs p 12 Rotor magnetic flux ϕe [mWb] 1.3

the synchronous frame (2), with ϑr = ϑ, so that (id, iq) →
(0, i∗q), i

∗
q = 2T ∗/(3pϕe), where T ∗ is the requested torque.

The typical FOC implementation scheme consists of nested

PI controllers for current and speed loops [21], along with

back-EMF compensation feedforward actions. In the context

of sensorless control, the unmeasurable states are usually

provided by nonlinear observers [22], [23]. As a consequence,

FOC requires (at least partial) knowledge of the parameters for

implementation, while BLDC control does not. In particular,

either a priori parameter knowledge or identification schemes

are needed. These considerations indicate that FOC generally

requires more computational resources in a digital controller.

C. Efficiency and Accuracy of the Driving Techniques

Coherently with the experimental tests, we perform the

analysis employing the parameters of T-Motor Antigravity-

4006-KV380, which were experimentally estimated and are

reported in Table I. To make the results independent of the

specific mechanical load, we evaluate power and efficiency in

2-dimensional maps, depending on (constant) speed and the

average torque resulting from the driving technique. In [14],

a similar comparison was performed with some simplifying

assumptions on the stator current during BLDC control op-

eration, as it was supposed directly regulated with the PWM

duty-cycle. Since we assumed constant current at each sextant

except during the commutation transients, it was possible to

directly compare the resistive power losses for a given average

electric torque Tavg. In particular, assuming stepwise current

response of the BLDC control after a sextant commutation:

PCu, BLDC = 2R
πTavg

3
√
3pϕe

)

2

, PCu, FOC =
3R

2

(

2Tavg

3pϕe

)

2

, (4)

which yields the ratio PCu, BLDC/PCu, FOC = π2/9. This result

implies that the BLDC control resistive losses are almost 10%
higher than FOC losses. In [14], transient losses and power

converter non-ideal components were accounted for as well,

indicating the mechanical operating points where the adoption

of FOC is particularly beneficial.

In practice, BLDC control is usually not implemented with

a current control loop, thus only requesting specific duty-

cycle values to run at the target speed, similarly to V/f
open-loop strategies and in a parameter-free operation fashion.

As a consequence, a theoretical analysis of BLDC control

becomes more complicated than in the previous work. A

viable strategy is, in principle, to consider the current at its

steady-state, but the time-scale separation between the current

dynamics and the sextant commutation is not satisfactory

in the considered operative range. Therefore, BLDC control

and FOC techniques have been tested on Matlab-Simulink c©,

collecting the absorbed powers and the torque ripple. The

simulator was designed with SimScape Power Systems to

reproduce a realistic behavior of the power converter, and

opportune PWM techniques (with carrier frequency at 15kHz)
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Fig. 3: Simulated power and efficiency of BLDC control and FOC, with respect to speed and the average generated torque.

(a)-(e): average motor total power of BLDC control (top) and FOC (bottom), respectively. (b)-(f): resistive average power

losses of BLDC control (top) and FOC (bottom). (c)-(g): average efficiency computed from total motor power and resistive

power, for BLDC control (top) and FOC (bottom). (d): difference between FOC and BLDC control motor efficiencies. (h):

difference of resistive losses of BLDC control and FOC, relative to FOC losses (percentage values). Note that the simulations

yield higher values than the theoretical 10% of [14]. The experimental load curve of the propeller under test is reported in red.
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Fig. 4: Simulated torque ripple of BLDC control and FOC.

(a)-(c): 2D maps of the torque ripple (percentage value), for

BLDC control (top) and FOC (bottom). The experimental load

curve of the propeller under test is reported in red. (b)-(d):

Simulated torque waveform at mid-range value of the propeller

mechanical characteristics, i.e., ωm = 4500rpm and Tavg =
0.0972Nm, for BLDC control (top) and FOC (bottom).

were employed to approximate as well as possible the real

motor control operation. In order to highlight the effect of the

driving techniques, position/speed information was provided

to the controllers.

In particular, a grid of speed and duty-cycle values was

used to impose the simulation settings for the BLDC control:

the resulting average torque, rms torque, average total motor

power, and average resistive power were collected, so that the

desired maps were obtained via interpolation. Similarly, the

power values were collected for FOC, at given constant speed,

imposing the current controller (a standard PI with back-EMF

compensation) to track constant torque references.

The results are reported in Figures 3-4, where, for com-

pleteness, we indicated the experimental speed-torque charac-

teristic of the propeller T-Motor CFProp 13×4.4 L. Note that

BLDC control exceeds the theoretical 10% losses increase that

would occur under ideal current actuation. In particular, we

obtained along the propeller characteristic a motor efficiency

difference of 3.65%, 1.49% and 0.54%, evaluated at 3000rpm,

4500rpm, and 6000rpm, respectively. For this reason, FOC

is expected to outperform BLDC control efficiency if the

same carrier frequency is adopted. In the experimental tests,

it was necessary to increase the sampling frequency of the

BLDC control for a satisfactory performance of the Zero-

Crossing algorithm. However, despite the resulting advantage

for the BLDC control, we will show that the efficiency of FOC

remains higher throughout the operative range.

On the other hand, the torque distortion in FOC operation

is significantly reduced, as highlighted in Figure 4. This

result is seen both in the 2D maps of the electric torque

ripple, computed as
√

T 2
rms − T 2

avg/Tavg (percentage values),

and in the example waveforms in the mid-range value of

the propeller characteristic (4500rpm). In particular, for the

selected operating condition, both controllers were simulated

with a large interval (4s) to compute Trms and Tavg, leading to

a particularly accurate estimation of the ripple values, given

by 32.7% (FOC) and 54.4% (BLDC control).

IV. THE PROPOSED CONTROL STRUCTURE

We now introduce a computational-effective sensorless FOC

strategy, centered on the framework adopted in [16]. The goal

is to develop an output-feedback controller that regulates the
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Fig. 5: Structure of the proposed control solution. The scheme is interfaced to the controlled system as shown in Figure 2.

rotor mechanical speed ωm to a reference ω∗
m, available for

design along its derivative ω̇∗
m. The only known system param-

eters are R, L, and p, while the sole available measurements

are given by the stator currents. Here, the fundamental idea

is to exploit a re-parametrization of the PMSM dynamics that

highlights the position estimation error as a synchronization

error between frames. For simplicity, we assume ω positive

during all UAV operation, in order to continuously generate

thrust for flight maneuvering2. Consider, in place of the

generic representation frame ϑr, the rotor position estimation

ϑ̂, with
˙̂
ϑ = ω̂ and ω̂ to be appropriately designed. By

letting ϑ̃ = ϑ − ϑ̂, χ = ωϕe, ξ = 1/ϕe, hd = χ sin(ϑ̃),
hq = −χ cos(ϑ̃), the following PMSM dynamics hold:

d

dt
id = −R

L
id +

hd + ud
L

+ ω̂iq

d

dt
iq = −R

L
iq +

hq + uq
L

− ω̂id

˙̃
ϑ = χξ − ω̂. (5)

Note that the frames given by ϑ and ϑ̂ achieve synchronization

only if hd → 0. The back-EMF vector h = (hd, hq)
T is

unavailable for control, yet we can replace its measurement

with a suitable estimate by means of a high-gain observer:

˙̂ıd = −R
L
ı̂d +

ĥd + ud
L

+ ω̂iq + kp ı̃d,
˙̂
hd = ki ı̃d

˙̂ıq = −R
L
ı̂q +

ĥq + uq
L

− ω̂id + kp ı̃q,
˙̂
hq = ki ı̃q

(6)

with kp and ki positive scalars and ı̃d = id − ı̂d, ı̃q = iq − ı̂q
the current estimation errors. The back-EMF estimate ĥ =
(ĥd, ĥq)

T can be used to design an adaptive attitude observer,

which is chosen as follows:

˙̂
ϑ = ξ̂

√

ĥ2d + ĥ2q + kηĥd = ω̂,
˙̂
ξ = γĥd, (7)

where kη and γ are positive gains. In addition, let ˆ̄ω =

ξ̂
√

ĥ2d + ĥ2q/p be the estimated mechanical speed, and note

that the term kηĥd in ω̂ is omitted to reduce sensitivity to

measurement noise. The observer (6)-(7) was proven in [16] to

have a regional practical asymptotic stability characterization3,

as long as the speed ω is far from zero and with bounded

derivative during all operation.

2See [16] for a more general representation accounting for both speed signs.
3Notably, the domain of attraction is very close to the entire state space.

The controller structure can be then completed with a nested

stabilizer for reference torque generation and current tracking.

Denote with ω̃m = ˆ̄ω−ω∗
m the estimated speed mismatch, and

consider the following PI controller:

T ∗ = −kpωω̃m + σω , σ̇ω = −kiωω̃m

Ṫ ∗ = −kpω
˙̄̂ω + kpωω̇

∗

m − kiωω̃m,
(8)

with kpω and kiω positive scalars. Note that, for simplicity,

we do not introduce feedforward terms in T ∗ to account

for the load or the derivative ω̇∗
m. Exploiting the estimation

of ξ = 1/ϕe provided by the attitude observer, we can

directly translate the torque reference and its derivative into

corresponding signals associated with the current iq:

i∗q =
2

3p
ξ̂T ∗, p∗q =

2

3p

(

˙̂
ξT ∗ + ξ̂Ṫ ∗

)

. (9)

The remaining step in the control design consists of tracking

a current signal of the form (0, i∗q). Consider the estimated

current mismatch errors ed = ı̂d, eq = ı̂q − i∗q . As shown in

the following, defining the errors with the estimated currents

instead of the measured ones is motivated by the simple

stability analysis. We can assign the input voltages as follows:

ud = −ĥd − L(ω̂iq + kpeed) + σd, σ̇d = −kieed

uq = Ri∗q − ĥq + L(ω̂id + p∗q − kpeeq) + σq, σ̇q = −kieeq,
(10)

with kpe, kie positive gains for tuning.

Finally, we recall the transformations involved in the conver-

sion of signals from the rotating two-phase to the three-phase

representation and vice-versa:

(

uα
uβ

)

=

(

cos(ϑ̂) − sin(ϑ̂)

sin(ϑ̂) cos(ϑ̂)

)

(

ud
uq

)





u∗a
u∗b
u∗c



 =







1 0

−0.5
√
3/2

−0.5 −
√
3/2







(

uα
uβ

)

,

(11)

(

iα
iβ

)

=
2

3

(

1 −0.5 −0.5

0
√
3/2 −

√
3/2

)





ia
ib
ic





(

id
iq

)

=

(

cos(ϑ̂) sin(ϑ̂)

− sin(ϑ̂) cos(ϑ̂)

)

(

iα
iβ

)

.

(12)
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The overall scheme is shown in Figure 5, and a generic trajec-

tory planner is also reported to convert a speed command Ω∗ 

(requested, e.g., by a flight controller), into suitable references

ω∗
m, ω̇∗

m. The detailed description of this block is out of the

scope of the analysis.

A. Error System Analysis and Tuning

In addition to the above structure, we provide some con-

siderations to appropriately tune the controller, based on the

simplifying assumption that ω̇∗
m = 0. These arguments rely on

the linearization of the error system and allow to draw a simple

local stability analysis. In this context, formal robustness

guarantees can be provided also for the case ω̇∗
m 6= 0. We

begin by defining the error equations.

Let ı̃ = (̃ıd, ı̃q)
T , h̃ = (h̃d, h̃q)

T = (hd − ĥd, hq − ĥq)
T =

h − ĥ, and ξ̃ = ξ − ξ̂. Recall the observer error dynamics in

[16], with the high-gain estimation error:

˙̃ı = −
(

R/L+ kp

)

ı̃+ h̃/L, ˙̃h = −kiı̃+ ḣ, (13)

and the attitude observer reconstruction error:

˙̃ϑ = χ(ξ̃ − kη sin(ϑ̃)) + δ1,
˙̃ξ = −γχ sin(ϑ̃) + δ2, (14)

where both δ1 and δ2 vanish in h̃ = 0. Here, we include

the dynamics of the estimated current mismatch dynamics

and of the speed tracking error, highlighting the shape of

ḣ in (13), which represents a disturbance for the back-EMF

reconstruction. Let e = (ed, eq)
T , σ = (σd, σq)

T , then it

holds:

ė = −
(

R/L+ kpe

)

e+ σ/L+ kpı̃, σ̇ = −kiee (15)

To compute the speed dynamics, we first factorize by Taylor

expansion the speed estimation error, for ω > 0 and h̃
sufficiently small:

p(ˆ̄ω − ωm) = ξ̂|ĥ| − ξ|h| = (ξ − ξ̃)|h− h̃| − ξ|h|
= −p(ξ̃/ξ)ωm + (ξ̃ − ξ)δ3(h, h̃)

(16)

where δ3 vanishes in h̃ = 0. Denote with eω = ωm − ω∗
m the

tracking error, then it holds (ω̃m = eω + ˆ̄ω − ωm, ω̇∗
m = 0):

Jėω = (3pϕe/2) cos(ϑ̃)i
∗

q − c1(ω
∗

m + eω)− c2(ω
∗

m + eω)
2+

+ (3pϕe/2)(̃ıq + eq) cos(ϑ̃)− (3pϕe/2)(̃ıd + ed) sin(ϑ̃)

=
ξ − ξ̃

ξ
cos(ϑ̃)

[

σω − kpωeω + kpω
ξ̃

ξ
(ω∗

m + eω)

]

+

− d0 − d1eω − c2e
2
ω + δ4(ξ, ξ̃, ϑ̃, h, h̃) +

+ (3pϕe/2)(̃ıq + eq) cos(ϑ̃)− (3pϕe/2)(̃ıd + ed) sin(ϑ̃)
(17)

where d0, d1 are positive scalars and δ4 a map vanishing in

h̃ = 0. Consider σ̃ω = σω − d0, with associated dynamics:

˙̃σω = −kiωeω + kiω(ξ̃/ξ)(ω
∗

m + eω) + δ5(ξ, ξ̃, h, h̃), (18)

with δ5 vanishing in h̃ = 0. Since χ = |h| = (p/ξ)(ω∗
m + eω),

we have

ḣ =
p

ξ
ėω

(

sin(ϑ̃)

− cos(ϑ̃)

)

+
p

ξ
(ω∗

m+eω)

(

cos(ϑ̃)

sin(ϑ̃)

)

(ω−ω̂), (19)

where in particular the second term vanishes in h̃ = 0, ϑ̃ = 0,

ξ̃ = 0. This means that the error system (13)-(14)-(15)-(17)-

(18) has an equilibrium in the origin, whose local stability

analysis can be performed via two time-scales arguments. In

particular, we impose the dynamics (13)-(15) to be the fast

subsystem, while we leave the attitude estimation error (14)

and the speed dynamics (17)-(18) as the slow subsystem.

Consider system (13). Following the same arguments as in

[16], we select kp, ki by placing the roots of the polynomial

P1(λ) = λ2 +
(

R/L+ kp

)

λ+ ki/L (20)

in ε−1{λ1, λ2}, where the pair {λ1, λ2} is a design choice and

ε is a positive scalar. System (15) is cascade-interconnected

with the previous one, hence we similarly choose kpe, kie to

place the roots of the polynomial

P2(λ) = λ2 +
(

R/L+ kpe

)

λ+ kie/L (21)

in ε−1{λ1e, λ2e}. The parameter ε is then employed as pertur-

bation parameter, and time-scale separation can be imposed by

choosing it sufficiently small, i.e. by imposing sufficiently high

gains. In particular, analysis can be performed considering two

simplified limit systems as ε → 0+ [24, Chapter 11]: the

boundary-layer system and the reduced-order model.

The reduced-order model, corresponding to the slow sub-

system as ı̃ = h̃ = e = σ = 0, is analyzed by linearization

of the dynamics. The attitude estimation error, given by the

dynamics of (ϑ̃, ξ̃), corresponds to the following system:

ẏ =
pω∗

m

ξ

(

−kη 1
−γ 0

)

y, (22)

whose eigenvalues can be assigned with kη, γ, exploiting a

priori flux information and the range of speed references for

flight control. On the other hand, the linearization of the speed

tracking error dynamics, associated with (eω, σ̃ω), is given by:

ż =

(

−kpω+d1

J
1
J

−kiω 0

)

z +
1

ξ

(

kpωω∗

m−d0

J

kiωω
∗
m

)

(

0 1
)

y, (23)

which is cascade-interconnected with (22), hence kpω , kiω can

be chosen independently from kη , γ. Finally, we can summa-

rize the local stability properties of the proposed controller.

Proposition 1. Consider a constant reference ω∗
m, satisfying

0 < Ω ≤ ω∗
m ≤ Ω, with positive scalars Ω, Ω. Pick, and

fix, arbitrary positive scalars kη, γ, kpω, kiω, and choose λ1,

λ2, λ1e, λ2e such that the polynomials P1(·) and P2(·) are

Hurwitz, for any ε > 0. Then, there exists ε∗ > 0 such that,

for all ε satisfying 0 < ε < ε∗, the origin of the error system

(13)-(14)-(15)-(17)-(18) is locally exponentially stable.

Proof. The analysis is similar to [16, Proposition 1]. In

particular, the boundary layer system is globally exponentially

stable by design of λ1, λ2, λ1e, λ2e, while the reduced-order

model is locally exponentially stable. Furthermore, the vector

field and its partial derivatives, up to second order, are bounded

in a neighborhood of the origin, since ω∗
m 6= 0 and thus |ĥ|

is twice differentiable in its arguments. It is then sufficient

to notice that the origin of the error system is an isolated



TABLE II: Possible Implementation Sequence and Computational Burden of the Proposed Solution

Sums Multiplications Comparisons Sq. Root & SinCos Number of States
Adaptive observer (7) with wrap (25) 2 or 3 6 2 1 2

Computation of ˙̂ω̄ (eq. (28)) 1 1 0 0 1

Speed controller (8) 4 4 0 0 1

Current ref. generator (9) 1 5 0 0 0

Coordinate transformation (12) 5 7 0 2 0

Current controller (10) 9 9 0 0 2

High-gain observer (6) or (24) 10 (7) 10 (8) 0 0 4

Coordinate transformation (11) 4 4 0 2 (0) 0

equilibrium, for any bounded ε > 0, to guarantee that all

sufficient conditions of [24, Theorem 11.4] hold.

The practical relevance of this result is due to the inherent

robustness to small perturbations (such as small values of ω̇∗
m)

ensured by the theorem of total stability [25, Theorem 10.2.1].

Notably, we can re-define the error of the speed integrator as

σ̃ω = σω − d0 − Jω̇∗
m, thus indicating that weaker singular

perturbations results [24, Theorems 11.1-11.2] can be applied

in time intervals such that Ω ≤ ω∗
m ≤ Ω and ω̈∗

m is continuous.

This means that the proposed controller is also effective in

time-varying scenarios, as long as ε > 0 is sufficiently small.

B. Computational Analysis and Implementation Details

We conclude the description of the proposed controller with

an analysis of the computational effort. The complexity of the

structure revolves around the evaluation of the mathematical

operations on the right-hand side of equations from (6) to (12),

including the computation of some auxiliary signals. In this

analysis, we do not consider the controller discretization, since

the corresponding burden is heavily affected by the chosen

algorithm. For clarity, in Section V we will also indicate the

cost associated with our discretization choices. The overall

data are reported in Table II, with the controller components

indicated in a possible implementation sequence (from top to

bottom). We remark that the adaptive observer was separated

from the computation of ˙̄̂ω, as motivated in the following.

Some comments are needed to explain the indicated values.

Firstly, the values outside the parentheses are the minimum

operations needed if each controller component is treated as

an independent block, with input/output signals corresponding

to those in Figure 5 (and the error signals computed in the first

block they are needed). Within the parentheses, instead, we

indicated the computations achieved with some optimization

between the blocks. On the one hand, the trigonometric

functions are counted once and indicated in the first component

that includes them. On the other hand, an alternative to the

high-gain observer (6) is obtained by replacing ud and uq
with the expressions in (10), leading to:

˙̂ıd = −
(

kpe +
R

L

)

ed +
σd
L

+ kpı̃d,
˙̂
hd = kiı̃d

˙̂ıq = −
(

kpe +
R

L

)

eq +
σq
L

+ kpı̃q + p∗q ,
˙̂
hq = ki ı̃q,

(24)

which allows a slight reduction of the number of operations.

We also remark that the computation of eq in the observer

(24) is redundant, since it is already available from (10).

Concerning the adaptive attitude observer, the implementa-

tion is based on wrapping the estimated angle at each time:

wrap(ϑ̂) =















ϑ̂+ 2π if ϑ̂ < −π
ϑ̂ if ϑ̂ ∈ [−π, π]
ϑ̂− 2π if ϑ̂ > π,

(25)

which requires two comparisons at each evaluation and an

additional sum in case of underflow or overflow. In this

respect, the values in Table II correspond to the common

situation where ϑ̂(0) ∈ [−π, π] and the distance between

consecutive samples of ϑ̂ is below 2π.

It is also meaningful to investigate the implementation of ˙̄̂ω.

In particular, the computation in exact form is the following:

˙̄̂ω =
˙̂
ξ

p

√

ĥ2d + ĥ2q + ki
ξ̂

p

ĥdı̃d + ĥq ı̃q
√

ĥ2d + ĥ2q

, (26)

which has a singularity in ĥd = ĥq = 0. Denoting (ĥd, ĥq) =
r(cos(ψ), sin(ψ)), for r ≥ 0 and ψ ∈ (−π, π], it holds:

˙̄̂ω =
˙̂
ξ

p
r + kir

ξ̂

p

cos(ψ)̃ıd + sin(ψ)̃ıq
r

, (27)

therefore, for any ψ, the limit as r → 0+ exists and is

finite. Since this limit is not unique, a possible implementation

procedure if r is close to 0 consists of preserving the previous

value of ψ and simplifying r. In this work, for computational

simplicity, we opt instead to approximate ˙̄̂ω through a filter:

˙̂ωf = −kf(ω̂f − ˆ̄ω), yf = −kf(ω̂f − ˆ̄ω), (28)

where kf is a positive scalar, while yf is used to replace ˙̄̂ω in the

expression of Ṫ ∗. The computations of the filter are reported

in a separate row in Table II. By choosing kf sufficiently

large, it is possible to ensure an accurate estimate of ˙̄̂ω. This

fact is motivated by singular perturbations arguments, since

the resulting dynamics can be included in the error system

analysis, without modifying the result in Proposition 1. Finally,

we remark that the initialization ω̂f(0) = ˆ̄ω(0) is a convenient

choice to mitigate the initial transient behavior.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The main components of the equipment are the follow-

ing: an Aim-TTi CPX400DP bench power supply, a LeCroy

HDO4054 four-channel oscilloscope and an aluminum frame

to suspend a T-Motor Antigravity-4006-KV380, coupled with

a T-Motor CFProp 13×4.4 L Propeller. In addition, we



equipped the motor with a 14bit-resolution on-axis magnetic 
rotary encoder (AD5047D-EK-AB encoder evaluation kit and 
AS5000-MD6H-2 diametric magnet), in order to compare the 
sensorless control algorithms with a common speed-position 
information source (clearly, the encoder was employed for 
analysis and not for feedback). Two separate electronic devices 
were deployed: a commercial electronic speed controller T-

Motor ALPHA 40A LV and a custom power converter, en-

dowed with a Mosfet-VSI, and a Cortex-M4 digital controller 
operated with a lightweight Hard Real-Time Operating System 
(developed by our team) that was synchronized with the 
inverter PWM carrier. This board was used to host, apart from 
the control algorithms of the following subsections, also a 
position/speed acquisition routine to elaborate the encoder data 
for analysis. The experimental setup is depicted in Figure 6, 
where the main components can be clearly identified.

B. Efficiency and Accuracy Comparison

The algorithms that we use for comparison are the proposed

controller, the commercial FOC T-Motor ALPHA 40A LV,

tuned specifically by the manufacturer for the motor and

propeller under test, and a custom sensorless BLDC controller

with Zero-Crossing detection. Since the power electronics of

the three algorithms is not the same, only the absorbed motor

power is considered, whereas power converter contributions

are excluded: this is consistent with the simulation results of

Section III. To make the comparisons as reliable as possible,

the proposed FOC was implemented at a sampling frequency

of 15kHz, corresponding to that of T-Motor ALPHA 40A LV.

Discrete-time versions of the controller and observer units

were developed with the forward Euler method, except for

the estimated current dynamics in (6), where we employed

the matrix exponential. From a computational point of view,

the forward Euler discretization involved a sum and a mul-

tiplication for each state (for a total of 8 states), while the

matrix exponential led to an increase of the operations by

Fig. 6: Experimental setup for the efficiency/accuracy tests.

The voltage and current probes are shown unconnected in

order to display more clearly the custom power converter, in

the picture connected to the motor and the power supply.

TABLE III: Tuning Parameters of the Proposed Controller

kp 1178 ki 340
λ1,2

ε
(−2.36 ± 2.36i) × 103

kpe 964 kie 154.6
λ1e,2e

ε
−2357, −2142

kη 115.8 γ 6707 λ1s,2s (−4.29 ± 4.29i) × 102

kpω 7.1 × 10−3 kiω 41.7 × 10−3 λ1ω,2ω −46.6, −6.3

one multiplication for each state (for the remaining 2 states).

In addition, we adopted a fixed-point implementation (with

scaling chosen for each signal), to comply with the deadline

imposed by the sampling frequency. Besides, a look-up table

and the CORDIC algorithm were employed to evaluate the

square root and the trigonometric functions, respectively. The

algorithm was finally obtained through code generation from

a Simulink model. A precise evaluation of the computational

time, from sensor acquisition to the PWM level assignment,

was retrieved experimentally while running the algorithm on

a Cortex-M4 with 144MHz clock frequency. This way, we

established with 1000 evaluations an average elapsed time of

24.2µs, with minimum and maximum values given by 21.2µs

and 26.3µs, respectively. These results were obtained without

the need of a floating-point unit, and including several over-

heads due to measurement processing and voltage actuation.

The adopted controller gains are reported in Table III, with

the perturbation parameter chosen as ε = 1.5L/R = 4.24 ×
10−4, along with the corresponding subsystem eigenvalues

(see the last column in Table III). These values stem from the

solutions of (20), (21) for the current observer and controller,

and from the state matrices of the linearized systems (22),

(23). For the latter, we considered the linearization around a

point corresponding to the mean value of the speed range, i.e.,

4500rpm, load inertia J = 1.43× 10−4Kgm2 and load coeffi-

cients c1 = 1.25× 10−4Nms/rad, c2 = 0.3× 10−6Nms2/rad2

(estimated values from the Simulink model for code genera-

tion), leading to the coefficient d1 = 4.08 × 10−4Nms/rad.

Finally, it was sufficient to choose kf = 500 to ensure a

satisfactory approximation of ˙̄̂ω. On the other hand, the BLDC

controller was implemented at 40kHz, since the sampling of

all data in the development board is aligned with the PWM

frequency, therefore keeping 15kHz was insufficient to obtain

a precise Zero-Crossing at high mechanical speed. Indeed, at

6000rpm, the sextant frequency is 7.2kHz; thus, at 15kHz, only

approximately two samples are acquired for each sextant.

Two experimental comparisons are presented. All con-

trollers were tested for their efficiency performance under

constant speed conditions, while only the FOC algorithms

were analyzed from the accuracy viewpoint, considering some

aggressive time-varying speed references.

The power absorption experiments were performed driv-

ing the motor at constant mechanical speed, computing for

each operating point the total power of the motor reading

two phase currents and two line voltages (Aron connection),

and obtaining the resistive power from the sampled currents

(computing the third from the star connection) considering

the motor resistance R = 108mΩ, measured at a temperature

close to the operating one. The results are shown in Figure

7, where an efficiency estimation from total and resistive
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Fig. 7: Efficiency comparative analysis. (a): total power mea-

sured with an Aron connection to the motor. (b): resistive

losses, computed with the current measurements and assuming

R as in Table I. (c): efficiency computed assuming the resistive

power as only power loss source. The proposed controller is

in blue, T-Motor ALPHA 40A LV is in red, while the BLDC

controller is indicated in green. (d): comparison between the

simulated FOC efficiency (red) and the corresponding exper-

imental results, considering as total power the experimental

data reduced by 2.8W. The simulated BLDC control efficiency

at 15kHz is also shown (in green).

power is also indicated4. As expected from the preliminary

estimations and the simulation analysis, the FOC algorithms

outperform the BLDC controller, despite the non-perfectly

sinusoidal back-EMF of the motor (see Figure 1-(a)-(e)-(i))

and the significantly lower current ripple due to the higher

PWM frequency of the adopted BLDC control. Indeed, the

improvement of the motor’s efficiency achieved by FOC,

compared to BLDC control, is 0.4%, 0.77%, and 0.98% at

3000rpm, 4500rpm, and 6000rpm, respectively. Note that

the resistive losses of the commercial FOC and the proposed

controller are matched with the simulation results, indicating

that both these algorithms provide a very accurate position

reconstruction in steady-state conditions. However, the FOC

total powers have a relatively constant difference between

simulations and experiments: in Figure 7-(d) we show the

resulting efficiency, obtained reducing the experimental total

powers by a constant offset of 2.8W. Since this graph displays,

with satisfactory precision (up to probe numeric errors), a

proper matching between simulation and experimental data,

we suggest that the mismatch is possibly introduced by

iron losses and the non-ideal sinusoidal shape of T-Motor-

Antigravity-4006-KV380. In Figure 7-(d) we also indicated

the simulated BLDC control efficiency at 15kHz, highlighting

the improvement expected from FOC if all controllers were

implemented at the same frequency.

Finally, we show how the proposed FOC controller performs

with variable speed references. In Figure 8, we indicated

the comparison between the proposed controller and T-Motor

ALPHA 40A LV, considering different scenarios that highlight

the dynamic behavior of the two controllers: in particular,

4Due to motor heating and unaccounted iron losses, the computed efficiency
overestimates the actual one, but the mismatch is not expected to be large.
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Fig. 8: Accuracy comparison between the proposed controller

and T-Motor ALPHA 40A LV. The responses of the proposed

solution are in (a)-(c)-(e), with encoder speed (blue), estimated

speed (red), and references Ω∗ (yellow) and ω∗
m (violet), while

the responses of T-Motor ALPHA 40A LV are in (b)-(d)-(f),

with encoder speed (blue) and reference speed Ω∗ (yellow).
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Fig. 9: Tracking performance of the proposed controller for

the sinusoidal reference scenario of Figure 8-(e). (a): estimated

speed mismatch. (b): speed estimation error.

positive and negative step references and amplitude-modulated

sinusoids were considered. In these tests, we indicated the

observer’s estimated speed, ˆ̄ω, to validate the variable-speed

tracking features proven in [16]. Notably, the proposed con-

troller displays a generally exponential transient response, in

addition to a higher consistency when tracking challenging

time-varying references. The accuracy of our scheme in the

sinusoidal reference scenario is further highlighted in Figure

9, where we indicated the estimated speed mismatch and the

speed estimation error. Consequently, in light of the achieved

tracking performance, the proposed solution is expected to be

particularly suitable for aggressive UAV maneuvering.

VI. CONCLUSIONS

We presented a comparative study, based on simulation

and experimental results, between different control strategies

employed for the electric propulsion of UAVs. Starting from

the physical characteristics of the motors adopted in this

field, we showed the benefits of FOC over BLDC control,

resulting in higher efficiency and longer flight duration. A



low-complexity sensorless controller was presented to achieve 
high performance in aggressive speed reference tracking. The 
proposed controller still depends, for correct implementation, 
on accurate knowledge of stator resistance and inductance: 
future efforts will be dedicated to supplying this information 
online with adaptive and system identification techniques. 
Addressing this aspect will be critical, in the next years, to 
comply with the ever-growing performance and robustness 
requirements for Unmanned Aerial Vehicles.

REFERENCES

[1] “Study analysing the current activities in the field of UAV,” European
Commission, Tech. Rep., 2014.

[2] T. H. Cox, C. J. Nagy, M. A. Skoog, and I. A. Somers, “Civil UAV
capability assessment,” NASA, Tech. Rep., December 2004.

[3] K. P. Valavanis, Advances in unmanned aerial vehicles: state of the art

and the road to autonomy. Springer Science & Business Media, 2008,
vol. 33.

[4] D. Yang, Q. Wu, Y. Zeng, and R. Zhang, “Energy tradeoff in ground-
to-UAV communication via trajectory design,” IEEE Transactions on
Vehicular Technology, vol. 67, no. 7, pp. 6721–6726, 2018.

[5] F. Morbidi, R. Cano, and D. Lara, “Minimum-Energy path generation for
a quadrotor UAV,” in 2016 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, May 2016, pp. 1492–1498.
[6] R. D’Sa, D. Jenson, T. Henderson, J. Kilian, B. Schulz, M. Calvert,

T. Heller, and N. Papanikolopoulos, “SUAV: Q-An improved design for
a transformable solar-powered UAV,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2016, pp.
1609–1615.

[7] S. Driessens and P. Pounds, “The triangular quadrotor: a more efficient
quadrotor configuration,” IEEE Transactions on Robotics, vol. 31, no. 6,
pp. 1517–1526, 2015.

[8] R. A. Sowah, M. A. Acquah, A. R. Ofoli, G. A. Mills, and K. M.
Koumadi, “Rotational energy harvesting to prolong flight duration of
quadcopters,” IEEE Transactions on Industry Applications, vol. 53,
no. 5, pp. 4965–4972, 2017.

[9] P. Pounds, R. Mahony, and P. Corke, “System identification and control
of an aerobot drive system,” in 2007 Information, Decision and Control.
IEEE, 2007, pp. 154–159.

[10] T.-H. Kim, H.-W. Lee, and M. Ehsani, “State of the art and future
trends in position sensorless brushless DC motor/generator drives,” in
31st Annual Conference of IEEE Industrial Electronics Society, 2005.

IECON 2005. IEEE, 2005, pp. 8–pp.
[11] P. P. Acarnley and J. F. Watson, “Review of position-sensorless opera-

tion of brushless permanent-magnet machines,” IEEE Transactions on

Industrial Electronics, vol. 53, no. 2, pp. 352–362, 2006.
[12] Ø. Magnussen, G. Hovland, M. Ottestad, and S. Kirby, “Experimental

study on the influence of controller firmware on multirotor actuator
dynamics,” in 2014 IEEE International Symposium on Robotic and

Sensors Environments (ROSE) Proceedings. IEEE, 2014, pp. 106–111.
[13] O. Solomon and P. Famouri, “Dynamic performance of a permanent

magnet brushless dc motor for uav electric propulsion system-part i,” in
IECON 2006-32nd Annual Conference on IEEE Industrial Electronics.
IEEE, 2006, pp. 1400–1405.

[14] A. Bosso, C. Conficoni, and A. Tilli, “Multirotor UAV flight endurance
and control: the drive perspective,” in IECON 2016 - 42nd Annual

Conference of the IEEE Industrial Electronics Society. IEEE, 2016,
pp. 1839–1845.

[15] M. Miyamasu and K. Akatsu, “Efficiency comparison between Brushless
dc motor and Brushless AC motor considering driving method and
machine design,” IEEJ Journal of Industry Applications, vol. 2, no. 1,
pp. 79–86, 2013.

[16] A. Tilli, A. Bosso, and C. Conficoni, “Towards sensorless observers
for sinusoidal electric machines with variable speed and no mechanical
model: A promising approach for PMSMs,” Systems & Control Letters,
vol. 123, pp. 16–23, January 2019.

[17] T.-Y. Lee, M.-K. Seo, Y.-J. Kim, and S.-Y. Jung, “Motor design and
characteristics comparison of outer-rotor-type BLDC motor and BLAC
motor based on numerical analysis,” IEEE Transactions on Applied

Superconductivity, vol. 26, no. 4, pp. 1–6, June 2016.
[18] W. Leonhard, Control of electrical drives. Springer Science & Business

Media, 2001.

[19] Y.-S. Lai, F.-S. Shyu, and Y.-H. Chang, “Novel loss reduction pulsewidth
modulation technique for brushless dc motor drives fed by MOSFET
inverter,” IEEE Transactions on Power Electronics, vol. 19, no. 6, pp.
1646–1652, 2004.

[20] A. Sathyan, N. Milivojevic, Y.-J. Lee, M. Krishnamurthy, and A. Emadi,
“An FPGA-based novel digital PWM control scheme for BLDC motor
drives,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp.
3040–3049, 2009.

[21] C. M. Verrelli and P. Tomei, “Global stability for the inner and outer
PI control actions in non-salient-pole PMSMs,” Automatica, vol. 117, p.
108988, 2020.

[22] P. Bernard and L. Praly, “Convergence of gradient observer for rotor
position and magnet flux estimation of permanent magnet synchronous
motors,” Automatica, vol. 94, pp. 88–93, 2018.

[23] D. Bazylev, A. Pyrkin, and A. Bobtsov, “Position and speed observer
for PMSM with unknown stator resistance,” in 2018 European Control

Conference (ECC). IEEE, 2018, pp. 1613–1618.
[24] H. K. Khalil, Nonlinear Systems, Third Edition. Prentice-Hall, 2002.
[25] A. Isidori, Nonlinear Control Systems II. Springer-Verlag, 1999.

Alessandro Bosso received the Master’s Degree in
Automation Engineering and the Ph.D. degree in
automatic control from the University of Bologna,
Italy, in 2016 and 2020, respectively. Currently, he
is a postdoctoral researcher at the Department of
Electrical, Electronic and Information Engineering
(DEI), at the University of Bologna. His research
interests include nonlinear control with input and
state constraints, nonlinear and distributed adaptive
control, hybrid systems, and sensorless control of
electric machines.

Christian Conficoni received the Master’s Degree
in Electronic Engineering, from the University of
Bologna, Italy, in 2008. In 2013, he received the
Ph.D. degree in automatic control from the same
institution. Currently he is a postdoctoral researcher
at the Department of Electrical, Electronic and In-
formation Engineering (DEI), at the University of
Bologna. His research interests include nonlinear
control applied to power electronics and electrome-
chanical systems oriented to power quality enhance-
ment, sensorless adaptive observers for electric ma-

chines, and energy-oriented optimal power/thermal management of complex
computing platforms.

Davide Raggini received the Master’s Degree in
Automation Engineering from the University of
Bologna, Italy, in 2017. He is currently holding
a Research Fellow position at the Department of
Electrical, Electronic and Information Engineering
(DEI), at the University of Bologna, focusing on the
development of embedded control systems for ad-
vanced mechatronics. His research interests include
embedded real-time control systems and real-time
kernels, wireless sensor networks (WSN), power and
digital electrical and electronics design.



Andrea Tilli received the Ph.D. degree in system
science and engineering from the University of
Bologna in 2000. He is currently associate professor
at the Department of Electrical, Electronic and In-
formation Engineering ”Guglielmo Marconi” (DEI)
of the same university. His current research interests
include applied nonlinear, adaptive and constrained
control techniques, electric drives for motion con-
trol and energy generation, advanced mechatronic
systems, diagnosis and prognosis of automatic ma-
chines, active power filters, and thermal control of

many-core systems-on-chip and supercomputers.


	computationa effective field copertina
	09187680



