
24 December 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Sciullo L., Montori F., Trotta A., Di Felice M., Cinotti T.S. (2020). Discovering Web Things as Services
within the Arrowhead Framework. Institute of Electrical and Electronics Engineers Inc.
[10.1109/ICPS48405.2020.9274694].

Published Version:

Discovering Web Things as Services within the Arrowhead Framework

Published:
DOI: http://doi.org/10.1109/ICPS48405.2020.9274694

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/801018 since: 2021-04-09

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ICPS48405.2020.9274694
https://hdl.handle.net/11585/801018

This is the post peer-review accepted manuscript of:

L. Sciullo, F. Montori, A. Trotta, M. Di Felice and T. Salmon Cinotti,
”Discovering Web Things as Services within the Arrowhead Frame-
work,” 2020 IEEE Conference on Industrial Cyberphysical Systems
(ICPS), Tampere, Finland, 2020, pp. 571-576, doi: 10.1109/ICPS48405.2020.9274694.

The published version is available online at:
https://doi.org/10.1109/ICPS48405.2020.9274694

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works

Discovering Web Things as Services within the
Arrowhead Framework

Luca Sciullo∗, Federico Montori∗, Angelo Trotta∗, Marco Di Felice∗†, Tullio Salmon Cinotti∗†

∗ Department of Computer Science and Engineering, University of Bologna, Italy
†Advanced Research Center on Electronic Systems “Ercole de Castro”, Italy

Email: {luca.sciullo, federico.montori2, angelo.trotta5, marco.difelice3, tullio.salmoncinotti}@unibo.it

Abstract—The IoT is spreading heavily around us and many
new standard at different architectural layers proliferate. This
creates a heavy interoperability gap that many architectural
proposals and new standards have tried to cope with over
the years. In particular, we take into account the Arrowhead
interoperability Framework, a powerful and promising paradigm
for interconnecting local clouds and we demonstrate the possi-
bility to integrate it with the emerging W3C Web of Things
standard. We study the usage of the Arrowhead Framework as
a potential candidate for discovery operation and inclusion of
WoT ecosystems within Service Oriented Architectures (SOA),
in order to support the integration of legacy and proprietary
systems. To this aim, a three-layered architecture is proposed
and validated experimentally on a proof-of-concept use case, by
highlighting the advantages of the proposed integration.

Index Terms—Arrowhead framework, Web of Things, inter-
operability, platform integration.

I. INTRODUCTION

The Internet of Things (IoT) is a paradigm that is rev-

olutionizing heavily the world we live in. The number of

connected devices already overtook the world population, and

new integration paradigms are proposed on a monthly basis.

As a matter of fact, interoperability is one of the toughest

challenges that has been raised in the last decade. Many

interoperability platforms have been proposed for different

uses cases [Di Martino et al.(2018)Di Martino, Rak, Ficco,

Esposito, Maisto, and Nacchia]. However, to fully unleash the

power of joining different sources of information, sometimes

the challenge shifts to connecting such clouds together. In

fact, not rarely IoT clouds tend to behave as closed islands

with little or no interoperability with the outside world. The

Arrowhead Framework [Delsing(2017)] is an interoperability

Service Oriented Architecture (SOA), proposed within the

Arrowhead European project, which interconnects several IoT-

based local clouds. It has been proposed for industrial automa-

tion, however, it fits many more scenarios by now and has been

used extensively to interconnect worlds of different domains.

In this paper we analyze a possible integration between

the Arrowhead Framework and the W3C Web of Things

(WoT) paradigm, which is a standardization effort for the IoT

undertaken by the World Wide Web Consortium (W3C) over

the last years [W3C Working Group(2019a)]. In particular,

the integration is shown through a proposed three-layered

architecture in which a standalone WoT ecosystem is inte-

grated within an Arrowhead local cloud. We chose the WoT

because it is, nowadays, the most promising standardization

effort within the application layer of the IoT, however there can

be many cases in which legacy, obsolete or even proprietary

systems need an ad-hoc integration with such world. For such

reason, we envision the Arrowhead Framework as the candi-

date architecture for filling such gaps, as well as maintaining

properties such as late binding and loose coupling between

services. Indeed, while the conceptual similarity between the

two paradigm allows an agile integration, the potential of

compliant applications gets significantly boosted.

More in detail, the contributions of this study can be

summarized by the following three points:

• We propose a three-layered architecture thanks to which

clients compatible with both the Arrowhead Framework

and the W3C WoT will be able to interact with the IoT

devices.

• We design an essential middleware component, defined as

WAE, that acts as a discovery bridge for the WoT layer.

• We validate the proposed architecture providing perfor-

mance evaluation in a real world scenario in which a

multitude of Web Things is instantiated and published to

the main service broker.

The paper is then structured as follows: Section II provides

the basics of the Arrowhead Framework and the W3C Web of

Things, as well as the related works in literature, Section III

defines the high-level architecture and its components, while

Section IV focuses on the interaction of the components of

the architecture, Section V shows details about the implemen-

tation, Section VI provides the details about our validation

experiment and, finally, Section VII concludes the paper.

II. BACKGROUND

A. Arrowhead Framework

Over the last decades, ecosystems revolving around IoT in

its various facets have shown the common trend of shifting

from monolithic or ad-hoc deployments to architectures in

which each entity is responsible for producing or consuming

services, as in any Service-Oriented Architecture. The Arrow-

head Framework (AHF)1 is the result of an effort of more

than 80 European partners [Delsing(2017)] and has been used

1https://www.arrowhead.eu

extensively in several other EU initiatives such as Productive

4.02, Far-Edge3 and Arrowhead Tools4.

The Framework, designed for supporting IoT automation

scenarios at any application level, is based on the key guide-

lines that characterize a SOA: late binding, loose coupling,

and lookup [Breivold and Larsson(2007)]. More in detail, each

System of Systems (SoS) based on the AHF is deployed

in connected local clouds, each of them managing their

internal services and communicating with each other in a

non-hierarchical structure, therefore separating responsibilities

while still guarantee interoperability. Each local cloud hosts

several Systems, defined as the software components that

interact with each other and shape the application workflow.

Systems can expose a number of Services as well as consume

other services in the network, they are indeed defined as

Service Providers or Service Consumers (clearly any system

can be both). The interaction between systems and services

within each local cloud is given by the “Core Systems” (CS)

– one instance is deployed per local cloud – that support and

orchestrate the exchange of information. They are divided into

“Mandatory” CS, which have to be deployed within a local

cloud to make it Arrowhead-compatible, and “Support CS”

[Varga et al.(2017)Varga, Blomstedt, Ferreira, Eliasson, Jo-

hansson, Delsing, and de Soria]. Mandatory CS are described

in detail below:

• The Service Registry system is responsible for the

registration of each service within the local cloud. It acts

as a repository, against which other systems can perform

a service lookup – i.e. a discovery operation – in order

to obtain the information and the endpoint of the service

they are looking for. In the last version of the CS (4.1.3

at the time of writing), the service lookup is performed

through HTTP REST calls.

• The Authorization system is responsible for the correct

interaction between producers and consumers according

to their rights. It manages the correct authentication of

providers and consumers as well as their authorization

for consuming or producing resources based on a set of

rules that can be added or modified by the cloud manager.

• The Orchestration system is responsible for coordinating

the interactions between systems freeing the consumers

from the burden of establishing their preferences at design

time. With the Orchestration system, the Service Provider

that is best suitable for the consumer’s request can be

chosen dynamically based on a list of orchestration rules

about the type of service requested. This can potentially

handle cases of faults and perform load balancing.

Support CS are not mandatory and can be included in any

local cloud where needed. Examples of available Support CS

are: QoS Manager, Translator System, Event Handler and Con-

figuration Manager. Furthermore, the Gatekeeper System and

the Gateway System, which are still Support CS, are devoted

2https://productive40.eu/
3http://faredge.eu/#/
4https://www.arrowhead.eu/arrowheadtools

to the inter-cloud communication, mediating the exchange of,

respectively, lookup requests and chunks of data [Varga and

Hegedus(2015)]. The latest version of all the AHF components

(4.1.3 at the time of writing) can be found in [Arrowhead

Consortia()].

B. Web of Things

The chaotic world of the Internet of Things is characterized

by tens of different technologies, protocols, and architectures

for interconnecting Smart Things to the Internet. Because of

its fragmented nature, one of the biggest challenge of the IoT

landscape is constituted by the lack of interoperability. For this

reason, starting from 2015, several universities and companies

in the WoT ecosystem seamlessly joined the W3C working

group for the definition of a Web of Things (WoT) standard,

whose goal is claimed to counter the fragmentation of the

IoT, by defining a reference architecture, the communication

patterns and the interfaces of the Things; the rationale is to

enable the interoperability among IoT systems, regardless of

the underlying stack implementation and of the networking

technologies being used. In particular, the W3C WoT Archi-

tecture is based on four main blocks:

• Web Thing: a Web Thing, referred also to as simply

Thing, is defined as whatever entity can be semantically

described. More precisely, and reporting the working

group’s words: a Thing is “an abstraction of a physical

or a virtual entity whose metadata and interfaces are

described by a WoT Thing Description, whereas a virtual

entity is the composition of one or more Things.” [W3C

Working Group(2019a)]. A Thing can be a device, a log-

ical component of a device, a local hardware component,

or even a logical entity such as a location (e.g., room or

building).

• WoT Thing Description (TD): the Thing Description is

the structured data that defines a Thing, like its metadata,

together with its Interaction Affordances and its links

to other Things. By default it is serialized by using the

JSON-LD language and follows the Property, Action, and

Event paradigm, i.e., it maps each state variable of the

Thing to a Property, each commands that can be invoked

on the Thing to an action, and each notification fired by

the Thing to an event.

• WoT Scripting API: despite this is an optional block,

the Scripting APIs provide a standard way for writing

Applications that define the Thing Behaviour. Thanks also

to a scripting runtime system (Wot Runtime), the TAs are

portable, i.e. they can be easily re-used and moved on

different Things.

• WoT Binding Templates: the Binding Templates are

a collection of metadata that describe the strategies of

communication offered by a Thing, like for instance:

Machine-to-Machine (M2M) through CoAP with TLS

security mechanism and CBOR as Content Type.

C. Related Works

The Web of Things paradigm presents nowadays the chal-

lenge of implementing a discovery operation of Web Things

that supports matching and lookup as well as orchestration, for

which several proposals have been presented in the literature

[Zhou et al.(2016)Zhou, De, Wang, and Moessner]. In fact,

Thing Discovery has been repeatedly claimed as a desirable

feature to cope with several problems, for instance, the mo-

bility of Things [Kamilaris and Ali(2016)], although, in the

very last months, progresses have been made within the W3C

as a new discovery paradigm – we will use it in the form of

a Thing Directory – is starting to build within the standard.

It is still quite embryonic, in fact, many unofficial works

have been produced in the meantime. A recent paper [Sciullo

et al.(2020)Sciullo, Gigli, Trotta, and Di Felice] proposed an

ecosystem for managing resources and applications in the

context of the W3C WoT, including a proof-of-concept discov-

ery mechanism. Among the other discovery implementations

for generic WoT approaches, we cite the Dyser framework

[Romer et al.(2010)Romer, Ostermaier, Mattern, Fahrmair, and

Kellerer] and the WOTSF system [Younan et al.(2016)Younan,

Khattab, and Bahgat], although they only focus on the lookup

part, while no matching mechanism is implemented.
In industrial and generic IoT scenarios, a strong integration

capability is required. The Arrowhead Framework has been

applied in a wide variety of cases and, in many of them, it

has been integrated with other IoT frameworks. In [Lam and

Haugen(2019)] the authors survey the potentials of semantics

in the IoT and propose the integration of the Semantic Web

of Things (SWoT), proposed in [Noura et al.(2019)Noura,

Gyrard, Heil, and Gaedke], with the Arrowhead Framework.

In other cases, protocol translation via a proxy has been the

predominant solution: the work in [Palm et al.(2019)Palm,

Paniagua, Bodin, and Schelén] is on the conversion of mes-

sage payloads and headers the work in [Campos-Rebelo

et al.(2019)Campos-Rebelo, Moutinho, Paiva, and Maló] is

focused on the XSLT rule-based data transformation and the

work in [D’Elia et al.(2016)D’Elia, Viola, Montori, Azzoni,

and Maiero] envisions the integration with a Kura-based

architecture for the implementation of a real world electro-

mobility scenario.

III. ARCHITECTURAL DESIGN

In this section we define in detail the architectural struc-

ture of our proposal for integrating Web Things within the

Arrowhead Framework. Despite the great potential of WoT

paradigm, since the process of making an already existing

service W3C WoT-compliant requires some effort, there can

still be cases - especially those involving old legacy systems

- in which a service could be interested to benefit from

capabilities offered by Web Things, without joining the WoT

ecosystem. In particular, our proposal is specifically designed

for such components that may either be unable to understand

the same language and use the same protocols as the WoT

ecosystem does, or be unaware of the location of the Web

Things that need to be queried. More in detail, we envision an

ecosystem in which a set of Web Things, which are devoted

to collect data through sensors, expose their data to potential

consumers that are external to their ecosystem, in particular:

• A consumer that is able to communicate using the WoT

standard and the same communication protocol the Web

Things are using, however it does not know how to reach

the Web Things endpoint.

• A consumer that has no information about the Web

Things endpoint and communicates only using another

legacy protocol (say, HTTP).

In order for the whole ecosystem or, as it is defined in

the Arrowhead official documentation model5, the System

of Systems (SoS) to be able to cope with such cases, we

propose an architecture in which each Web Thing is also

a Service Provider of an Arrowhead local cloud, therefore

exposing sensor data as a service. The Arrowhead Framework

allows indeed each service to be discoverable through its

main component: the Service Registry. As anticipated in

Section II-A, the Service Registry acts as the main service

broker in a SOA: for each service in the local cloud that

advertises its endpoint through a publish call, it keeps in

memory a service record, encoded in JSON, that includes

a set of service metadata. The record includes the type of

service, its endpoint and the protocol used, although other

metadata can be added upon need. In a typical and simple

scenario, a Service Provider first publishes its service record,

then a Service Consumer willing to consume such service

performs a service lookup call against the Service Registry and

obtains information about the endpoint and the protocol of the

desired service. Once this information is held by the Service

Consumer, the communication with the Service Registry is

no longer needed and the Service Provider and the Service

Consumer can communicate directly.

Note that in an Arrowhead service consumption the Orches-

tration module also has its part: it gets queried by the Service

Consumer for a service of a defined type and it searches the

Service Registry for the most suitable service record, based

on a set of rules. The use of the Orchestration service is

out of the scope of this paper, therefore we intentionally

simplify the interaction bypassing the Orchestration and only

demonstrating the architectural integration.

IV. SERVICE INTERACTIONS

In order to support different types of external consumers

interacting with the WoT ecosystem, we propose the layered

architecture in Figure 1. The architecture consists of three

conceptual layers: the Physical layer, the WoT Layer and the

Arrowhead Layer. Entities on each layer can communicate

directly with other entities belonging to the same layer as

they are assumed to use the same application protocol. For

different layers, instead, entities either have an abstraction

or a inter-layer communication channel, as will be explained

later. On the bottom-left corner we depicted the physical

5https://www.arrowhead.eu/arrowheadframework/this-is-it/
documentation-model/

Layer abstraction Intra-layer link Inter-layer link

Physical layer

WoT layer

Arrowhead layer

WAEWT

WT

WT

WoT consumer

Thing Directory

Service

ATM

ATMATM

AH consumer

Registry

Fig. 1. The System Architecture

sensors, the only entity of the physical layer. Sensors can be

of any type as long as they produce a numerical observation

from the real world. Each sensor gets abstracted onto a Web

Thing, according to the WoT paradigm. Each Web Thing is

then registered onto a special Thing Directory, a standard

registry for the WoT ecosystem, as specified in [W3C Working

Group(2019a)]. The central component of the WoT Layer,

the WoT Arrowhead Enabler (WAE), can be classified as

a WoT Mashup Application, a concept recently outlined in

[Sciullo et al.(2020)Sciullo, Gigli, Trotta, and Di Felice]. In

detail, it periodically queries the Thing Directory to detect

new Web Things right after they spawn (i.e. the binding

with the actual sensor is generated). As new Web Things

are detected, the WAE performs a publish operation for

each of them against the Service Registry in the Arrowhead

Layer to publish Web Things as new Arrowhead services.

The communication between the WAE and the SR is the

sole case of inter-layer communication channel, in which a

component (in this case the WAE) acts as a proxy able to

use two different communication protocols. Furthermore, each

Web Thing is extended onto the Arrowhead Layer by a new

module, called Arrowhead Thing Mirror (ATM). The ATM

exposes the Web Thing service endpoint as an HTTP Web

Service in the Arrowhead local cloud. Note that a Web Thing

and its relative ATM can run on the same piece of software

as well as in separate components connected by a custom

communication link. The ATM plays, to some extent, the role

of an Arrowhead service adapter, however, it does not perform

publish operation, as they are handled by the WAE.

The record published by the WAE exposes by default the

endpoint and the metadata of the ATM related to the Thing,

while the JSON-LD description of the Thing at the WoT Layer

is converted to a string and encapsulated in the newly created

“TD” subfield of the “metadata” JSON field of the service

record. This way, a consumer can interact with the Web Thing

in two ways, depending on its communication capabilities:

• An HTTP-enabled Consumer queries the Service Reg-

istry, selects the service that provides the type of data

needed and gets the endpoint of the service, which

corresponds to the endpoint of the related ATM. The

Consumer then performs the consume calls against the

service offered by the ATM which, in turn, queries the

Web Thing and retrieves the data point. Response data

travels then backwards to the Consumer.

• A WoT-enabled Consumer queries the WAE, which re-

trieves the list services from the Service Registry. As

the consumer is only able to interact with WoT-enabled

systems, the WAE decapsulates the related TD from the

field “metadata” of the service record and sends it back

to the consumer. The latter is then able to select a Web

Thing among the received ones and query it directly; the

Web Thing endpoint is enclosed in the TD itself, thus the

actual endpoint, which belongs to the ATM, is ignored.

The whole interaction for the two types of consumers is

shown in detail through the sequence diagram in Figure 2.

In particular, it shows mainly two patterns:

1) Web Things’ publication on SR: when a Web Thing is

generated, it automatically instantiates an ATM to be able to

fulfill a request coming from an AH Consumer. At the same

time, the Web Thing publishes itself on the Thing Directory,

according to the draft of the W3C standard proposal. The WAE

is in charge of keep checking if new Web Things appear on

the Thing Directory, and in case to publish themselves on the

SR. This can be achieved in two ways, depending on the WAE

implementation: either the WAE polls the Thing Directory or

the WAE is implemented as a Web Thing, so it can subscribe

to Thing Directory’s events. The SR is listening from queries

of services’ consumers and replies with all the Services is

aware of, including the Arrowhead ones that however are not

shown in this diagram.

2) Web Things’ consuming: once the services related to

Web Things become available on the SR, they can be queried

by consumers. Depending on the kind of consumer, there are

different interactions. The easiest case is the one involving an

AH Consumer, since it has only to query the SR, to get the

list of services and to directly interact with them through their

ATM. A Wot Consumer instead requires more steps in order

to be able to retrieve the Thing Description of the Web Thing

that should be consumed. First, it has to send the query to the

WAE, since it might not be able to speak directly to the SR.

Hence, the WAE forwards the request to the SR and waits for

the list of services that match the query originally coming from

the WoT Consumer. Finally, WAE returns the list to the WoT

Consumer, that is now able to consume the Web Thing and to

interact with it, for instance by invoking one of its actions.

V. IMPLEMENTATION

We here briefly describe the implementation of the main

components of our architecture. The Service Registry is a

JAVA server that exposes some REST APIs. In particular,

we used the API already available as open source project

[Arrowhead Consortia()]. All Web Things involved in the

scenario have been implemented and instantiated by using

node-wot [W3C Working Group(2019b)], the official W3C

framework for the WoT. The WAE component has been

designed as a Web Thing - for being able to natively speak

Architecture Interactions

Thing Directory WAE Service Registry AH Consumer WoT ConsumerWeb Thing

publish

ATM

launch

loop

look for new Web Things

publish

query

forward query

call service

return Result

return Result

query

return Services

return Services

call Action

return Services

return Web Things

Fig. 2. Sequence diagram presenting the interactions of all the components of our three-layer architecture

TABLE I
LIST OF PROPERTIES, ACTIONS, AND EVENTS OF THE WAE THING.

Name Type Description

listOfWebThings Property
List of all the Web Things the WAE
is aware of.

startCrawling Action
Start to look for new Web Things that
are published on the TD.

query Action
Forward the query of a Wot Consumer
to the WAE.

newWebThing Event
This event is fired when a new Web
Thing has been discovered on the TD
by the WAE.

to other W3C WoT entities - and as an HTTP client - in

order to use the SR’s APIs. As shown in table I, following

the paradigm Properties, Action, Events as explained in II-B,

the WAE Web Thing exposes the listOfWebThings Property

for listing all the already known Web Things it has published.

Additionally, it exposes also the startCrawling and the query

actions. The first is automatically invoked once the WAE

has been deployed to look for new Web Things that have

been published on the Thing Directory. The second one is

invoked by a WoT Consumer in order to query the SR and

to get the list of services that match its request. Finally, a

generic event newWebThing is fired each time new Web Things

have been discovered by the WAE. Both the HTTP client

of WAE and the AH Consumer have been customized for

our need by taking advantage of the already existing open

source NodeJS Arrowhead Client [Arrowhead Consortia()].

Each WoT Consumer is a Mashup Application, i.e., a javascript

application that uses node-wot framework as a library and

simply consumes multiple Things to interact with them in

order to collect data and manipulate it for its needs. Lastly, the

ATM is an ExpressJS web server that maps each Web Thing

Affordance to a REST API and that uses the node-wot as a

library behind the scenes in order to interact with the Web

Thing it represents.

VI. VALIDATION

In order to validate our proposal, we created a proof-of-

concept scenario where we deployed the components of the

architecture described in section III. The goal of our validation

is dual: first, we want to prove the functionalities of the

Arrowhead discovery in conjunction with the WoT ecosystem.

Secondly, we want to show the benefits of such discovery

method for a generic Consumer that is agnostic of the real

nature of the services used for its application. In particular,

we instantiated a WoT Arrowhead Enabler (WAE) which is

in charge of discovering new Web Things and of publishing

them on the Arrowhead SR to make them available to all the

possible consumers. Each new Web Thing is launched after

λ seconds from the previous one, and then published as soon

as it has been discovered by the WAE. Additionally, after a

pre-defined TIMEMAX interval of time, Web Things start

disconnecting every λ seconds and so they are unregistered

from the SR. This means that, depending on the WAE’s Update

Frequency (WUP), there could be some delay before Web

Things become available/unavailable on the SR. Figure 3(a)

shows the total number of services made available on the

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35
 0

 2

 4

 6

 8

 10

D
is

co
v
er

ed
 S

er
v
ic

es

O
n
li

n
e

T
h
in

g
s

Time (sec)

Discovered Services
Online Things

(a)

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 50 100 150 200 250 300 350 400 450 500
 0

 10

 20

 30

 40

 50

 60

 70

 80

D
et

ec
te

d
 V

al
u
e

(d
B

)

O
n
li

n
e

T
h
in

g
s

Time (sec)

Detected Value
Online Things

(b)

Fig. 3. Figure 3(a) shows the Online Things vs Discovered Services, while Figure 3(b) shows the mean detected value over all the sensors.

SR and the number of Web Things online. In this case,

since λ = 1 second and WUP = 3 seconds, the plot

shows the misalignment between the online Web Things and

the ones registered as Arrowhead services in the Arrowhead

SR. Both Web Things and their correspondent Arrowhead

services increase until TIMEMAX is reached and then they

start decreasing accordingly respectively to λ and WUP

frequencies. While in the first case we focused on validating

the Thing Discovery, in the second case we set up a testbed

for validating a Consumer entity. In particular, we instantiated

an Arrowhead consumer that retrieves the values from some

services and elaborate them. More in details, the services are

WoT services that return the value of acoustic sensors, with

an error estimated of ±5dB, while the application’s goal is

to detect the walk of a human inside a room. The application

first queries the Arrowhead SR for looking for all the available

sensors, then it retrieves the detected values and computes the

average of the value obtained. Depending on the use case,

a threshold can be set for identifying a particular feature.

Figure 3(b) shows the behaviour of the application over the

time, with the number of Web Thing Services that changes

over the time. For this testbed, the parameters are set to: λ = 3

seconds, WUP = 1 second, and TIMEMAX = 250 seconds.

It is clear that the more WoT Things services contribute to the

detection phase, and the more the average gets closer to 35

dB, that is a reasonable sound level for the human walking.

VII. CONCLUSION

In this paper we have presented the integration of a W3C

Web of Things (WoT) ecosystem within the Arrowhead in-

teroperability Framework, in order to support a much larger

number of applications and make possible the interaction

between the state-of-the-art WoT-enabled systems and services

and legacy ecosystems. This is an important achievement as

it also presents an alternative form of discovery for the W3C

WoT that includes hybrid interactions with other components

and, thus, maintaining the concepts of loose coupling and late

binding even outside the single frameworks. The integration

presented in this paper is not the only possible way of making

such systems interact, in fact, we have shown the inclusion of

a WoT system within the Arrowhead Framework, however, the

dual integration could still be possible. This is object of study

currently and will be further analyzed as future work. Also, we

plan to extend the experimental validation by considering real-

world condition monitoring use-cases where the integration of

heterogeneous things/services is of paramount importance.

ACKNOWLEDGEMENTS

This research is funded by ECSEL, the Electronic Com-

ponents and Systems for European Leadership Joint Under-

taking under grant agreement No 826452 (Arrowhead Tools),

supported by the European Union Horizon 2020 research and

innovation programme and by the member states.

REFERENCES

[Di Martino et al.(2018)Di Martino, Rak, Ficco, Esposito, Maisto, and Nacchia]
B Di Martino, M Rak, M Ficco, A Esposito, SA Maisto, and S Nacchia.
Internet of things reference architectures, security and interoperability:
A survey. Internet of Things, 1:99–112, 2018.

[Delsing(2017)] Jerker Delsing. Iot automation: Arrowhead framework. CRC
Press, 2017.

[W3C Working Group(2019a)] W3C Working Group. WoT Reference Ar-
chitecture (Proposed Recommendation 30 January 2020), 2019a. URL
http://www.w3.org/TR/wot-architecture/.

[Breivold and Larsson(2007)] Hongyu Pei Breivold and Magnus Larsson.
Component-based and service-oriented software engineering: Key con-
cepts and principles. In 33rd EUROMICRO Conference on Software

Engineering and Advanced Applications (EUROMICRO 2007), pages
13–20. IEEE, 2007.

[Varga et al.(2017)Varga, Blomstedt, Ferreira, Eliasson, Johansson, Delsing, and de Soria]
Pal Varga, Fredrik Blomstedt, Luis Lino Ferreira, Jens Eliasson, Mats
Johansson, Jerker Delsing, and Iker Martı́nez de Soria. Making
system of systems interoperable–the core components of the arrowhead
framework. Journal of Network and Computer Applications, 81:85–95,
2017.

[Varga and Hegedus(2015)] Pál Varga and Csaba Hegedus. Service interac-
tion through gateways for inter-cloud collaboration within the arrowhead
framework. 5th IEEE WirelessVitae, Hyderabad, India, 2015.

[Arrowhead Consortia()] Arrowhead Consortia. Arrowhead Framework offi-
cial repository. URL https://github.com/arrowhead-f.

[Zhou et al.(2016)Zhou, De, Wang, and Moessner] Yuchao Zhou, Suparna
De, Wei Wang, and Klaus Moessner. Search techniques for the web
of things: A taxonomy and survey. Sensors, 16(5), 2016.

[Kamilaris and Ali(2016)] Andreas Kamilaris and Muhammad Intizar Ali.
Do “web of things platforms” truly follow the web of things? In 2016

IEEE 3rd World Forum on Internet of Things (WF-IoT), pages 496–501.
IEEE, 2016.

[Sciullo et al.(2020)Sciullo, Gigli, Trotta, and Di Felice] Luca Sciullo,
Lorenzo Gigli, Angelo Trotta, and Marco Di Felice. Wot store:
Managing resources and applications on the web of things. Internet of

Things, page 100164, 2020.
[Romer et al.(2010)Romer, Ostermaier, Mattern, Fahrmair, and Kellerer]

Kay Romer, Benedikt Ostermaier, Friedemann Mattern, Michael
Fahrmair, and Wolfgang Kellerer. Real-time search for real-world
entities: A survey. Proceedings of the IEEE, 98(11):1887–1902, 2010.

[Younan et al.(2016)Younan, Khattab, and Bahgat] Mina Younan, Sherif
Khattab, and Reem Bahgat. Wotsf: A framework for searching in the
web of things. In Proceedings of the 10th International Conference on

Informatics and Systems, pages 278–285, 2016.
[Lam and Haugen(2019)] An Ngoc Lam and Øystein Haugen. Applying

semantics into service-oriented iot framework. In 2019 IEEE 17th

International Conference on Industrial Informatics (INDIN), volume 1,
pages 206–213. IEEE, 2019.

[Noura et al.(2019)Noura, Gyrard, Heil, and Gaedke] Mahda Noura, Amelie
Gyrard, Sebastian Heil, and Martin Gaedke. Automatic knowledge
extraction to build semantic web of things applications. IEEE Internet

of Things Journal, 6(5):8447–8454, 2019.
[Palm et al.(2019)Palm, Paniagua, Bodin, and Schelén] Emanuel Palm,

Cristina Paniagua, Ulf Bodin, and Olov Schelén. Syntactic translation
of message payloads between at least partially equivalent encodings. In
2019 IEEE International Conference on Industrial Technology (ICIT),
volume 88, 2019.

[Campos-Rebelo et al.(2019)Campos-Rebelo, Moutinho, Paiva, and Maló]
Rogerio Campos-Rebelo, Filipe Moutinho, Luı́s Paiva, and Pedro Maló.
Annotation rules for xml schemas with grouped semantic annotations.
In IECON 2019-45th Annual Conference of the IEEE Industrial

Electronics Society, volume 1, pages 5469–5474. IEEE, 2019.
[D’Elia et al.(2016)D’Elia, Viola, Montori, Azzoni, and Maiero] Alfredo

D’Elia, Fabio Viola, Federico Montori, Paolo Azzoni, and Matteo
Maiero. Electro mobility automation through the arrowhead framework.
In IECON 2016-42nd Annual Conference of the IEEE Industrial

Electronics Society, pages 5246–5252. IEEE, 2016.
[W3C Working Group(2019b)] W3C Working Group. Eclipse Thingweb

node-wot. Source repository, 2019b. URL https://github.com/eclipse/
thingweb.node-wot.

