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Abstract 10 

Precision Livestock Farming relies on several technological approaches to acquire in the most efficient way 11 

precise and up-to-date data concerning individual animals. In dairy farming, particular attention is paid to the 12 

automatic cow detection and tracking, as such information is closely related to animal welfare and thus to 13 

possible health issues. Computer vision represents a suitable and promising method for this purpose. 14 

This paper describes the first step for the development of a computer vision system, based on deep learning, 15 

aiming to recognize in real-time the individual cows, detect their positions, actions and movements and record 16 

the time history outputs for each animal. 17 

Specifically, a neural network based on deep learning techniques has been trained and validated on a case 18 

study farm, for the automatic recognition of individual cows in videos recorded in the barn. Four cows were 19 

selected to train and validate a YOLO neural network able to recognize a cow starting from the coat pattern. 20 

Then, precision-recall curves of the identification of individual cows were elaborated for both the specific 21 

target classes and the whole dataset in order to assess the performances of the network. 22 

By means of data augmentation techniques, an enlarged dataset has been created and considered in order to 23 

improve the performance of the network and to provide indications to increase detection efficiency in those 24 

cases where data acquisition is not easy to be carried out for long periods. The mean average precision of the 25 

detection, ranging from 0.64 to 0.66, showed that it is possible to properly identify individual cows based on 26 

their morphological appearance and that the piebald spotting pattern of a cow’s coat represents a clearly 27 

distinguishable object for a computer vision network. The results also led to obtain indications about the 28 

quantity and the characteristics of the images to be used for the network training in order to achieve efficient 29 

detections when facing with applications involving animals. 30 

 31 
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List of symbols 34 

Symbol Description 

At Average Area of the bounding boxes in training phase 

Av Average Area of the bounding boxes in validation phase 

Ot number of Occurrences in training phase 

Ov number of Occurrences in validation phase 

tp true positive 

tn true negative 

fp false positive 

fn false negative 

P Precision 

R Recall 

F1 F1-score 

Pr detection Probability 

C Confidence score 

AP Average Precision 

mAP mean Average Precision 

IoU Intersection over Union 

AIoU Average Intersection over Union 

 35 

 36 

1. Introduction 37 

The implementation of precision livestock farming (PLF) techniques in animal husbandry involves many fields 38 

of the technological innovation and several researchers are currently seeking to apply new methodologies and 39 

algorithms for both commercial and research purposes (Tullo et al., 2019). In particular, with reference to 40 

innovative applications in the livestock sector, the animals are increasingly being analyzed and studied with 41 

the help of informatics tools such as support vector machines, random forests techniques, neural networks, 42 

machine learning approaches etc. (Kamilaris and Prenafeta-Boldú, 2018; Tsai and Huang, 2014; Li et al., 2017; 43 

Okura et al., 2019). In this context, multiple challenges involve the dairy cattle sector, where the methods 44 

currently available are often unsuitable to manage the collected data and to fully extrapolate the potential 45 

informative content. 46 

In fact, weather stations monitoring barn temperature and humidity, robotic milking systems helping the daily 47 

work of the farmers, collars and pedometers controlling animals’ activities and positions (Berckmans, 2014) 48 

are capable to collect huge amounts of real-time data currently used to support the herd management. 49 
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PLF has thus contributed to switch the analysis framework of a farm from a data-poor to a data-rich situation: 50 

the research key challenge is actually to turn those data into knowledge able to provide decision-maker with 51 

real-time support for the cattle farm optimization (Barkema et al., 2015; Bewley et al., 2017; Fournel et al., 52 

2017; Van Hertem et al., 2014; Halachmi et al., 2013; Guzhva et al., 2016; Martinez-Ortiz et al., 2013). 53 

Several researches have pointed out the opportunity to develop both algorithms suitable to provide early 54 

warning and control systems able to optimize animal welfare and productivity based on data collected through 55 

Information Communication Technology (ICT) systems (Alsaaod et al., 2019; Jaeger et al., 2019; Cowley et al., 56 

2015). In this context, computer vision together with numerical analysis methodologies proved to have 57 

fundamental importance (Van Hertem et al., 2018) . Computer Vision techniques are meant to be applied in 58 

this research field in order to automate actions normally carried out by the human visual system (Taigman et 59 

al., 2014). The aim of these algorithms is to “teach” a computer to apprehend from images and videos in order 60 

to simulate the human vision and substitute the human beings in repetitive or complex actions. They have 61 

already been tested on animals with promising results (Norouzzadeh et al., 2017; Trnovszky et al., 2017), also 62 

in the livestock farming area (Aydin, 2017; Van Hertem et al., 2013), but recognizing each individual cow within 63 

the herd is still representing a challenging issue. 64 

The monitoring of position and movements of the individual animals may be necessary to quantify the main 65 

indices related to animal welfare (Song et al., 2008; Jiang et al., 2019) and behavior (Porto et al., 2013, 2015), 66 

as well as to identify any preferences of the cows regarding different zones of the barn. 67 

Moreover, video monitoring of the herd, together with the adoption of quantitative criteria to control animal 68 

welfare by means of computer vision, may represent a tool to improve citizens’ consciousness about rearing 69 

conditions and increase their knowledge about feeding and housing practices. A recent study found that fresh 70 

food and water, pasture access, gentle handling, space, shelter, hygiene, fresh air and sunshine, social 71 

companions, absence of stress, health and safety from predators are considered by citizens as necessary 72 

requirement for dairy cattle “good life” (Ventura et al., 2016). These results suggested that a transparent 73 

exposure of livestock farming to the public may resolve some concerns, and video recording appear to be a 74 

powerful tool for an effective and widespread information. 75 
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Therefore, the monitoring requirements can be considered according to two main levels of information and 76 

complexity. The first one concerns the identification at regular time intervals of the number of animals that 77 

are in a certain position, for example lying in a cubicle, standing at the manger etc. The second one deals with 78 

the identification, instant by instant, of the behavior of the individual cows, with the possibility of calculating, 79 

for each animal, the time spent in each position and the temporal sequence of its positions, including the 80 

trajectory of its movements. 81 

The first level of information makes it possible to quantify the aforementioned indices and to have an overview 82 

of the performances of the general animal welfare conditions in the farm, by appropriately integrating these 83 

indices with information on feeding and productivity of the animals, which can be deduced from other sources, 84 

such as the milking robots and mixed ration delivery systems. The second level of information allows to have 85 

specific information on the individual cow welfare condition and on the use of the various areas of the barn 86 

and represents a challenge for innovation in PLF. A computer vision system implemented through deep 87 

learning constitutes a suitable approach to achieve the latter objective. 88 

The aim of this study is to develop and test the reliability level of a computer vision system, based on deep 89 

learning techniques, for the automatic recognition of individual cows within images representing their 90 

position. In particular, whilst developing a new software framework lies outside the scope of this paper, the 91 

paper focuses on methodological aspects related to a more efficient application of ICT in the dairy cows 92 

monitoring field. In fact, while object detection is already applied in commercial applications in various 93 

contexts, individual cow recognition still represents an open issue for both the research and commercial fields, 94 

since no consolidated approach still exists. Actually, some of these blocks of information are collected by 95 

means of different very expensive sensors (ALLFLEX, 2020; DELAVAL, 2020; AFIMILK, 2020), the most of them 96 

to be worn by the animals but with the system proposed here, it will be possible to collect wider information, 97 

with a less expensive technology and finally yet importantly using a system that avoids the problems and labor 98 

due to wearable sensors. 99 

Therefore, the paper focuses on the selection, validation and performance assessment of a neural network, in 100 

terms of speed and accuracy, and at the same time outlines the key issues of the broader process, which is 101 
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strictly depending and related to the enabling steps presented in the paper. Further testing and validating cow 102 

detection procedures in various contexts, in different types of livestock structures, and in different operating 103 

conditions, is an important research field, contributing to the definition of consolidated approaches enabling 104 

cow recognition, displacement tracking and cow action/behavior (eating, drinking, lying down, standing etc.) 105 

recognition systems. This system could represent an innovative and useful tool to support the farmer in the 106 

daily management and decision-making. In fact, by means of the technology proposed here, it will be possible 107 

to calculate, for example, the indices connected to animal welfare but also to check the time spent for 108 

nutrition, drinking and walking. The outcomes of this monitoring could be effectively used by the farmers to 109 

identify potential anomalies or diseases and promptly apply specific corrective actions (e.g. on the fans 110 

controlling the barn environmental conditions, water supply, etc.). In addition to the technological system and 111 

the experimental setup adopted, the paper describes an innovative algorithm for the detection of the cows 112 

implemented and tested on a case study farm with computer vision procedures. The promising results 113 

reported here represents a first preliminary contribution to the progress of the computer vision for herd 114 

monitoring applications and could be an important support for the following study of the movements of the 115 

cows in the barn and for the analysis of their actions and behavior. 116 

 117 

2. Materials and methods 118 
 119 

2.1 Study case 120 

The case study considered in this work is the experimental dairy cattle farm of the University of Bologna, 121 

located in Ozzano Emilia, Bologna, in the North-East of Italy, where Holstein Friesian cattle is reared. This farm 122 

is managed by the Department of Veterinary Medical Science and represents a unique reality in the national 123 

context, thanks to its equipment and monitoring systems, which will allow to carry out the integrated analyses 124 

aimed at the definition of models for the interpretation of milk production, reproductive, environmental and 125 

management data. The building is a free stall experimental barn hosting about 150 animals, including 80 cows 126 

(72 milking and 8 dry cows, and 70 among calves and heifers). The barn has a resting area in bedding material 127 

for dry cows and litter cubicles for lactating cows (see Figure 1). A layout of the building is showed in Figure 1. 128 
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The barn is provided with cooling ventilation systems based on the Temperature-Humidity Index (THI) value. 129 

The cows are milked twice a day and for each cow, the behavioral, productive and health parameters are daily 130 

recorded automatically. The animals are fed with total mixed ration and auto-feeders for concentrate 131 

supplementation. 132 

 133 

 134 
Figure 1. Layout of the experimental barn. The dashed line delimitates the area framed by the camera (red 135 

colored). 136 

 137 

2.2 Software and neural network 138 

2.2.1 Tagging software 139 

VoTT (Visual object Tagging Tool) (Microsoft, 2018) was the software selected for the tagging tasks. It is an 140 

open source annotation and labelling tool for image and video assets, it is a React + Redux Web application 141 

written in Typescript. This software has been selected because it has several features, useful for the application 142 

in the field of the present work. For example, it has an extensible model for importing data from local or cloud 143 

storage providers and an extensible model for exporting labelled data to local or cloud storage providers. 144 

Moreover, it has been developed not only to analyze images, but also video frames. So, it is possible to decide 145 

the interval of frames per second and VoTT automatically transforms a video in a set of pictures. VoTT was 146 

programmed following the 'Bring Your Own Data' (BYOD) approach and in VoTT, connections are used to 147 

configure and manage source, i.e. the assets to label, and the target, i.e. the location to which labels should 148 

be exported. Then, for the development of the computer vision technology in the field of animal monitoring, 149 

camera 
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VoTT results very practical to set up and facilitate an end-to-end machine learning pipeline. In this work the 150 

version 1.0.8 has been used. 151 

 152 

2.2.2 Detection algorithm and deep learning network 153 

At the state-of-the-art, in the field of computer vision for object detection, different more or less efficient 154 

algorithms could be considered. For example, region-based convolutional neural networks (R-CNNs) (Girshick 155 

et al., 2014) have been a pioneering approach that applies deep models to object detection. Actually, Faster 156 

R-CNN (Ren et al., 2017) has been proved to be one of the most performing of its class, if compared with R-157 

CNN and Fast R-CNN (Girshick, 2015) and it has been already applied for cow detection for instance by (Bezen 158 

et al., 2020). Different is the approach implemented in YOLO - You Only Look Once (Redmon et al., 2016), 159 

where predictions are made with a single network evaluation, thus making the process much faster than 160 

region-based convolutional neural networks (R-CNN) which require thousands of evaluations for a single 161 

image. YOLO presents a totally different approach from prior detection systems, which proposes classifiers or 162 

localizers to perform detection. It is one of the state-of-the-art detectors which are capable of localizing and 163 

classifying multiple objects in images. In particular, the detector is faster than two-stage detectors: while they 164 

propose object regions first and investigate the regions for object localization and classification, YOLO 165 

combines the two stages into one neural network. Therefore, instead of applying the model to an image at 166 

multiple locations and scales, so that high-score regions of the image are considered detections, Yolo applies 167 

a single neural network to the full image. This network divides the image into regions and predicts bounding 168 

boxes and probabilities for each region and these bounding boxes are weighted by the predicted probabilities. 169 

The improvements in YOLO v3 (Redmon and Farhadi, 2018) made the algorithm even faster and suitable for 170 

problems like those investigated here. In fact, the future real applications of this system will face with the 171 

detection of large number of cows in a herd, during the time, and should be able to recognize the possible 172 

action the cow is doing in real-time. For this reason a fast algorithm is necessary and this has driven the choice 173 

of the authors towards the framework Darknet (Redmon, 2013), an open source framework for neural network 174 

development including YOLO v3. The algorithm has the advantage to look at the whole image at test time, so 175 
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that predictions are informed by the global context of the image (see Figure 2). More specifically, YOLO v3 176 

predicts an objectness score for each bounding box using logistic regression. This score should be 1 if the 177 

bounding box prior overlaps a ground truth object by more than any other bounding box prior. Each box 178 

predicts the classes the bounding box may contain using multi-label classification. At the current state of the 179 

research the authors selected and adopted YOLO v3 as detection system but the evaluation of the 180 

performances of different detection algorithms, for the problem investigated here, will be object of future 181 

investigations. 182 

 183 

184 

Figure 2. Architecture of YOLO v3. 185 

 186 

2.3 Data collection 187 

As the performance of the neural network are strictly connected to the quantity and the quality of the training 188 

dataset, particular attention was paid to the collection of a suitable dataset of video frames. The videos were 189 

registered by a HDR-CX115E (Sony) camera (see Figure 3) in a high quality standard (HD resolution, 25 frames 190 

Input frame

DARKNET

downsampling

upsampling

Feature map
resolution = 1/8 

of input

DetectionYOLO layers

shortcut

Feature map
resolution = 1/32 
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per second). The recording has been conducted on a tripod positioned 2 meters above the barn floor, so the 191 

total height for the recording was about 3.50 meters. 192 

The section recorded by the camera focused on the feeding area, including the rack (on the left) and the 193 

cubicles (on the center and on the right of the frames). A limitation of this position is that the images of the 194 

cows up in the trough are greater for quality and quantity, so the dataset is composed by more photos of the 195 

left hips than the right ones. 196 

 197 

Figure 3. The HDR-CX115E camera positioned for video recording. 198 

 199 

2.4 Research method 200 

The research has been structured in the following main phases: 201 

1) random selection in the herd of a sample of 10% of the cows’ population in the free stall area monitored 202 

by the camera (i.e. about 40 cows) during the recording phase. The sample is suitable to verify if the 203 

network is capable to recognize a cow among others and to distinguish between more animals. Then the 204 

animals have been marked, with a specific blue paint, with a letter only to help the identification of the 205 

cows in the different frames. It is worth to notice this aspect since the neural network has not been 206 
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trained based on these symbols but the bounding boxes considered only pelt portions with natural 207 

pattern of the cows; 208 

2) recording of the videos after selecting the more suitable position for the camera; 209 

3) creation of the dataset for the training phase; 210 

4) training of the neural network, i.e. definition of the parametric weights for object recognition; 211 

5) validation test of the neural network with the weights defined in phase 4 and scoring the results by means 212 

of the performance indicators defined before; 213 

6) creation of an augmented “virtual” dataset aiming to improve the detection performances of the network 214 

for the classes poorly represented in the frames used for the network training; 215 

7) repetition of the phases from 3 to 5 in order to assess the improvement in the detection performances 216 

after the manipulations operated to the frame dataset. 217 

 218 

2.5 Experimental setup and tests 219 

Four cows have been selected to train and test the neural network adopted in the study. The four letters X, V 220 

O and I have been used only to identify a specific cow and the letter corresponding to each cow was drawn on 221 

both right and left hips and on the forehead of the various cows. Two types of classes have been defined for 222 

the identification of each cow corresponding to the pelt of the hips of the four cows. A total number of 8 223 

classes (4 cows × 2 hips) has been adopted for the neural network training/validation in order to recognize the 224 

cows by the black-white pattern of each specific pelt. Therefore, each class was identified by the capital letter 225 

indicating the cow followed by right (r) or left (l) for identify the two different hips. The eight classes considered 226 

in the study are: Xleft, Xright, Vleft, Vright, Oleft, Oright, Ileft and Iright. For example, Figure 4 illustrates the internal view 227 

of the barn with a detail of the blue paint on the right hip of the cow labelled “V”, thus labelled as class Vright. 228 
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 229 

Figure 4. Example of a frame with detail of the blue paint on the right hip of the cow labelled “V” so 230 

representing the class Vright. 231 

 232 

The videos were recorded on July 2019, collecting a total duration of 210 min to carry out the study. The frame 233 

tagging phase was performed through the abovementioned VoTT software, which allowed to sample the 234 

videos at a chosen frequency and to make tags (with bounding boxes) on all the frames. In this study, the 235 

sampling frequency for the selection of the frame dataset was chosen equal to 2 frames per second because 236 

the scenario does not change in a fast way and so a higher frequency would have been redundant. Therefore, 237 

about 25200 frames were sampled. The bounding boxes used for tagging the frames were rectangular, rather 238 

than square, because the objects to be tagged, i.e. the pelt of the cows, had generally different horizontal and 239 

vertical dimensions. The coat area selected in the tagging bounding box has been the biggest rectangular area 240 

(with horizontal orientation) identifiable with continuity within the image of the hip of the cow. 241 

Thus, at the end of the tagging phase we obtained: 242 

 a collection of graphical files corresponding to every sampled frame  243 

 for each frame, a text data file like the one in Figure 5 containing the class number recognized in the 244 

frame (if any), the coordinates of the centroid of the corresponding box and the sizes of the box. 245 
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A total of 11754 frames showing at least one of the classes were identified and labelled. 246 

 247 

(a) 248 

 249 

(b) 250 

Figure 5. Tagging phase through VoTT. (a) Example of graphical file of a frame and (b) example of the data 251 

acquired by the tagging process. The coordinates of the centroid and the dimensions of the box are expressed 252 

as ratios of the dimensions of the frame. 253 

 254 

The data acquired through the tagging phase were then analyzed to quantify the occurrences of the various 255 

target classes. Moreover, the sizes (i.e. width and height) of the bounding boxes were computed as an 256 

indicator of the visibility of the target cow within the frame. In fact, a small box may indicate either a position 257 

of the cow far from the recording viewpoint, or a partial coverage of the animal by an object in the foreground. 258 

Class 
number

Coordinates of 
the centroid of 

the bounding box

Width and 
height of the 
bounding box
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The data about the occurrences of the target classes were considered for a proper definition of the split of the 259 

dataset in a training set and a validation set. The criterion adopted for the split was the selection of sets of 260 

consecutives frames accounting for about 80% of the occurrences for each class in the training set and the 261 

remaining 20% for the validation set. 10105 frames for training, 1649 frames for validation. The data resulting 262 

for each class are summarized in Table 1. 263 

 264 

Table 1 265 

Data resulting from the analysis of the tagging process. 266 

Class 
code 

Class 
# 

Occurrences in 
the whole dataset 

Xleft 0 1649 
Xright 1 1575 
Vleft 2 3249 

Vright 3   839 
Oleft 4 1113 

Oright 5   649 
Ileft 6 2524 
Iright 7   771 

 267 

The training and validation of the network was performed by a Nvidia GTX GeoForce 12GB Titan GPU. The 268 

already trained weights downloaded from the Darknet repository (Redmon and Farhadi, 2018) were used as 269 

initial weights for training and 10 000 iterations were performed to obtain the final (adjusted) weights. 270 

 271 

2.6 Results assessment 272 

In this subsection the metrics adopted for the evaluation of the performance of the system are presented. 273 

The first metric to introduce is the intersection-over-union (IoU) index, also known as Jaccard index 274 

(Rezatofighi et al., 2019), maybe the most commonly used metric for comparing the similarity between two 275 

general images. IoU encodes the properties of the items under comparison (e.g. widths, heights, locations of 276 

bounding boxes) and then calculates a normalized measure reported in Eq. (1) as the ratio between the area 277 

of the intersection divided by the union of the two bounding boxes (i.e. the predicted and the ground truth 278 

bounding boxes). 279 

 IoU =
Area of ground truth box ∩ Area of predicted box

Area of ground truth box ∪ Area of predicted box
 (1) 280 
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IoU results invariant to the problem scale and thanks to this feature the most of the performance measures in 281 

segmentation, object detection, and tracking are based on this metric (Rezatofighi et al., 2019). 282 

In pattern recognition applications, the precision (P) is the fraction of relevant instances among the retrieved 283 

instances, while the recall (R) is the fraction of relevant instances that have been retrieved over the total 284 

amount of relevant instances. Both precision and recall are therefore based on an understanding and measure 285 

of the relevance. Precision (P) and recall (R) can be expressed, in analytical form, by means of the following 286 

expressions: 287 

 𝑃 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
 (2) 288 

 𝑅 =
𝑡𝑝

𝑡𝑝+𝑓𝑛
 (3) 289 

Where: tp represents true positive, i.e., the number of cases that the detector successfully detects a class in 290 

an image with IoU greater than a prescribed threshold; fp is false positive, i.e., the number of cases that the 291 

detector reports other objects as a target class in an image, or IoU is less than a prescribed threshold; fn is 292 

false negative, i.e. the number of cases that the detector fails to detect a target class in an image. In the present 293 

work, the specific threshold has been fixed equal to 0.5. Precision is also known as “positive predictive value”, 294 

while recall is also called “true positive rate” or “sensitivity” and this last represents the proportion of actual 295 

positives are correctly identified. 296 

In the interpretation of computer vision results, the balanced F1-score (also F-score or F-measure) is a metric 297 

that combines both P and R and represent the harmonic mean (Nie et al., 2019): 298 

 F1 = 2 ∙
P∙R

P+R
= (

P−1+R−1

2
)

−1

 (4) 299 

This metric coincides with the square of the geometric mean divided by the arithmetic mean of precision and 300 

recall and is clearly close to the arithmetic mean of the two when P and R have similar values. F1 reaches its 301 

best value at 1.0 and the worst at 0.0. 302 

Moreover, the confidence score C (%) has been considered, which quantifies the reliability of the recognition 303 

of a given object within a frame. Confidence score can be calculated using the formula: 304 

 C = Pr × IoU (5) 305 
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where: Pr represents the detection probability assessed by the network that the object at hand belongs to the 306 

class attributed to it. 307 

Precision and recall have been computed for each class based on different confidence thresholds ranging from 308 

0 to 100%, and the precision-recall curves have been drawn for each class. Besides, AP (average precision) is 309 

a popular metric measuring the accuracy of object detectors. AP computes the average precision value for 310 

recall value from 0 to 1 for a specific class (Szeliski, 2011). Therefore, AP can be computed as the area under 311 

the P-R curve of such class. Then, the mean average precision (mAP) of the network was assessed as the mean 312 

of the AP values of the different classes. With analogous criteria is possible to define the average IoU (AIoU) 313 

for a specific class as the average of all the IoU values of the occurrences of the same class. 314 

 315 

3. Results and Discussion 316 

3.1 With original data frames 317 

This subsection deals with the main results obtained by considering the original set of frames described in the 318 

previous section. The set is constituted by 11754 frames, 10105 (about 85% of the total dataset) have been 319 

used for the network training whereas 1649 (about 15%) for the network validation test. The frames to be 320 

used in the validation phase were carefully selected in order to guarantee that all the 8 considered classes 321 

were adequately represented in the frames. The occurrences of each class are reported in Table 2, for both 322 

training and validation phases. Obviously, the sum of the occurrences of all the classes, i.e. 10167 and 2202 323 

respectively for training and validation phases, are bigger than the total frame number since some frames 324 

includes multiple cows belonging to different classes. 325 

 326 
Table 2 327 

Number of occurrences and average area of the bounding box for each class and for both training and 328 

validation original datasets. 329 

Training dataset 

 Xleft Xright Vleft Vright Oleft Oright Ileft Iright Sum 

Ot 1325 1273 2599 673 904 512 2270 611 10167 

At 0.01063 0.00920 0.00540 0.01688 0.00538 0.01567 0.00447 0.00502 - 

Ot × At 14.08 11.71 14.03 11.36 4.86 8.02 10.15 3.07 - 

Validation dataset 
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 Xleft Xright Vleft Vright Oleft Oright Ileft Iright Sum 

Ov 324 302 650 166 209 137 254 160 2202 

Av 0.02748 0.01540 0.00356 0.01306 0.01542 0.01364 0.01552 0.01275 - 

Ov × Av 8.90 4.65 2.31 2.17 3.22 1.87 3.94 2.04 - 

 330 

The validation of the computer vision detection could be carry out from a visual (or graphical) point of view, 331 

by looking if in one specific frame the classes object of the test (in this case the 8 hips of the 4 cows) are 332 

properly identified by the neural network. For example, Figure 6 shows in the yellow box, in the magenta box 333 

and in the green box, the identification of the left hip respectively of the cow O, cow X and cow V. The accuracy 334 

of the detection, reported in the rectangle at top-right of the figure, represent the confidence score C for each 335 

class, as calculated by YOLO, and could be correlated to the probability of finding the cow in the bounding box. 336 

For the frame in the Figure 6, for example, the detection results very good since the class Oleft and Vleft have C 337 

of 100% whereas Xleft has C about 98%. 338 

 339 

Figure 6. Example of visual validation of the classes in a frame. The yellow box (O_sx) is the identified left hip 340 

of the cow marked with the letter O; the magenta box (X_sx) is the identified left hip of the cow X and the 341 

green box (V_sx) is the identified left hip of cow V. 342 

 343 

In addition, the validation of the neural network can be performed from a mathematical point of view on the 344 

basis of global P and R scores (i.e. considering the whole data set coming from the various classes). As an 345 
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example, Figure 7(a) shows the global P-R graph (i.e. considering the dataset of the all 8 classes considered in 346 

the study) of the validation test. The trend of the global P-R graph was obtained by considering 20 different 347 

confidence interval (CI) with increasing confidence level, from 0.0% to 95% with step 5%, for the assessment 348 

of the detections based on the IoU of the single detection. As a general trend, the lower confidence interval 349 

produces points with low P and high R values. The opposite for high confidence interval. It seems useful to 350 

remember that the optimal graph trend should be that presenting high level of precision (i.e. higher than 0.8) 351 

all along the R value. Figures 7(b) and 7(c) respectively show the trend of P and R for the different CI values. 352 

For the case at hand the P value is adequate (i.e. higher than 0.8) for CI higher than 20%. For CI equal to 20% 353 

the R value is about 0.7 and it means the neural network is able to detect about the 70% of the “real” 354 

occurrences of the different classes for the various frames. Table 3 reports the main data resulting from the 355 

validation phase and related to the whole dataset. Moreover, same table reports the global F1-score and IoU 356 

values for each CI, also depicted in Figure 7d. IoU values go from 0.75 to 0.81 with an AIOU equal to 0.78. In 357 

the object detection field values higher than 0.7 until 1.0, commonly, identified detections good to excellent, 358 

then we reached, on average, a rather good detection from the network. 359 

 360 

     361 
 (a) (b) 362 
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     363 
 (c) (d) 364 

Figure 7. Principal trends obtained from the validation test by considering all the occurrences dataset and 365 

reported for different confidence interval (with original data frames). (a) P-R curve. (b) P trend; (c) R trend; (d) 366 

F1 and IoU score for different confidence interval. 367 
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Table 3 369 

Main results from the validation test by considering all the occurrences dataset and reported for different 370 

confidence interval (with original data frames). 371 

Confidence 

interval 

True 

positive* 

Ground 

truth** 
Precision Recall F1-score IoU 

0.95 1004 1039 0.9663 0.4559 0.6196 0.8126 

0.90 1134 1186 0.9562 0.5150 0.6694 0.8000 

0.85 1178 1245 0.9462 0.5350 0.6835 0.7960 

0.80 1218 1299 0.9376 0.5531 0.6958 0.7928 

0.75 1247 1346 0.9264 0.5658 0.7026 0.7891 

0.70 1277 1390 0.9187 0.5795 0.7107 0.7874 

0.65 1301 1434 0.9073 0.5904 0.7153 0.7853 

0.60 1319 1467 0.8991 0.5985 0.7187 0.7838 

0.55 1333 1505 0.8857 0.6049 0.7189 0.7833 

0.50 1353 1551 0.8723 0.6140 0.7207 0.7821 

0.45 1370 1596 0.8584 0.6217 0.7211 0.7811 

0.40 1382 1631 0.8473 0.6272 0.7208 0.7803 

0.35 1398 1686 0.8292 0.6344 0.7188 0.7790 

0.30 1422 1740 0.8172 0.6449 0.7209 0.7774 

0.25 1458 1812 0.8046 0.6612 0.7259 0.7752 

0.20 1500 1918 0.7821 0.6803 0.7276 0.7723 

0.15 1548 2040 0.7588 0.7012 0.7289 0.7700 

0.10 1598 2234 0.7153 0.7221 0.7187 0.7665 

0.05 1681 2632 0.6387 0.7566 0.6926 0.7617 

0.00 2011 5409 0.3718 0.8665 0.5203 0.7480 

* : is the number of true positive occurrences detected from the neural network 372 

** : is the number of “real” occurrences in the dataset as resulting from the visual detection performed 373 

by the operator. 374 

 375 

As far as the single class is concerned, Figure 8 shows the Precision-Recall graphs for every considered class 376 

and in Table 4 the most important parameters are collected, useful to judge the detection quality of each 377 

single class. In fact, if in some contexts an “on-average” detection score is sufficient (Szeliski, 2011). In the 378 

present applications, it is not enough being the single class detection score, important as much the “on-379 

average” score for practical PLF purposes. Then, it is possible to identify in Figure 8, and evaluate from Table 380 

4, the classes with better/worse detection scores. E.g., from the table, the classes with better AP are Vleft, Xright 381 

and Oleft. Instead, the classes with the worst AP are Oright, Iright and Ileft. 382 
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  383 

  384 

  385 

  386 
 387 
Figure 8. Precision-Recall diagram of the computer vision detection for each one of the 8 target classes by 388 
using the original data frames. 389 
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Even if the AP of the total dataset is 0.7356, some classes have AP value also rather small (i.e. Oright, Iright and 390 

Ileft with AP values respectively of 0.17, 0.40 and 0.45). The low values for the three worst classes are confirmed 391 

by the unusual trends in Figure 8. This analysis should drive the future investigations, oriented them to define 392 

the main causes of the low scores and to look for the adequate corrective actions. Differently from the previous 393 

discussed scores, the AIoU values are quite similar for the various classes are the AIoU-based identification of 394 

the worst classes is more difficult. This confirms some well-known weaknesses and limitations of this metric 395 

(Szeliski, 2011) useful to decide, with regards to an object, whether a prediction is correct or not, but it is not 396 

suitable to describe the precision of the prediction. For the sake of completeness, the conducted validation 397 

test provides a value of mAP=0.6350 obtained as mean value among the 8 classes. 398 

Finally, in order to establish possible correlations between the main features of the dataset and the outcomes 399 

from the validation test, the correlation matrix, reported in Figure 9, has been realized and adopted for the 400 

evaluation. Six independent variables, numerically quantifiable, have been selected (i.e. Occurrences, Average 401 

Area of the bounding boxes and the product Occurrences × Average Area of the bounding boxes for both 402 

training and validation datasets). Two dependent variables have been selected among the metrics adopted to 403 

evaluate the reliability of the detections (i.e. AP and AIoU). 404 

Then the correlation matrix has dimension 8×8. The numerical values adopted for the creation of the 405 

correlation matrix are those reported in Table 2 and Table 4. 406 

Table 4 407 

Summary of the results from the validation test for each class by considering the original data frames. 408 

 Xleft Xright Vleft Vright Oleft Oright Ileft Iright Total 

AP 0.6485 0.8627 0.9202 0.7838 0.8336 0.1698 0.4583 0.4027 0.7356 

AIoU 0.6625 0.7600 0.8547 0.7691 0.7553 0.5232 0.6999 0.7333 0.7812 

 409 

The main aspects are the following: 410 

 (see column #1, row #4,) the occurrences of the different classes populating training and validation 411 

datasets, shows good correlations confirming a proper subdivision of the frames into the training group 412 

and validation group (the slope of the linear regression represent the ratio 20%/80%=0.25 of used for the 413 

subdivision of the whole frame dataset); 414 
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 (see column #1, rows #7, #8 and #9) a characteristic trend exists between number of occurrences in the 415 

training dataset and the metrics used for the evaluation of the detection quality (i.e. AP and AIoU). By 416 

increasing the number of occurrences until a certain “threshold” value it increases in a considerable way 417 

the metric values, but after this threshold, the trend (see dashed red line in the subfigures) presents a 418 

knee characterized by a second branch with low slope. Then, it is like to say that after certain threshold 419 

(occurrences) value a considerable augment of the number of occurrences produces almost negligible 420 

improvement in the detections; 421 

 (see column #4, rows #7, #8 and #9) the same evaluation is valid also for the relation between number of 422 

occurrences in the validation dataset and  the metrics used for the evaluation of the detection quality; 423 

 the area of the bounding boxes shows no significant correlation with the metrics of reliability of the 424 

detections (see columns #2 and #5). Nevertheless, the features obtained by the product “Occurrences × 425 

Average Area of the bounding boxes” (see columns #3 and #6) shows a positive correlation with the 426 

metrics, although it is not possible to identify a clear regression curve. However, if we exclude the two 427 

classes with values of the product Ot x At of the training phase significantly smaller than all the other 428 

classes, i.e. Oleft and Iright , a quadratic regression curve of the relationship between AP and Ot x At is 429 

recognizable, with R2=0.837 and the following equation: 430 

 y = -0.0272 x2 +0.7111 x – 3.8179 (6) 431 

This indicates that for the classes having Ot x At > 8, AP rapidly increases up to Ot x At near to 12, then it 432 

becomes almost constant. This result shows that is possible to identify optimal values for the occurrence 433 

number and the bounding box areas in the training phase, which could be very useful to efficiently plan 434 

video acquisition to use for train the deep learning network. Therefore, this aspect deserves further and 435 

more in-depth investigations that will be carried out in future experimental campaigns carried out with 436 

additional video shooting. 437 

 lastly (see columns #7, row #8) a positive correlation is confirmed between AP and AIoU. 438 
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These results provide useful indications for both the selection of the strategies more convenient in order to 439 

improve the detection quality and the development of optimal datasets for the application investigated in this 440 

paper. 441 

First of all, if some classes are detected with poor precision, increasing the occurrences in the training dataset 442 

the detection accuracy is expected to rise. It makes no sense to increase the occurrences of all classes, 443 

especially for those classes that already have suitable metric values, because this would increase the costs of 444 

the labelling phase and the computational time of the training phase without producing considerable 445 

improvements. 446 

Above a certain threshold value of the metrics, it also seems that increasing even the occurrences of the 447 

training dataset does not produce considerable benefits. So in such cases, probably alternative solutions are 448 

to be sought, such as the replacement of some data frames with others more informative for the network. 449 

Finally, it seems that the average area of bounding boxes used for animal detection is not so influential, while 450 

the product of number of occurrences and box area is positively correlated with the average precision. This 451 

from a practical point of view has considerable advantages for the type of application investigated here, since 452 

typically in facilities such as cattle barns the videos are taken from considerable distance (even several tens of 453 

meters) due to logistical and security reasons of the cameras. On the other hand, the possibility to record 454 

videos from far away means that few cameras could be sufficient to cover large areas typical of cattle farms. 455 

The evaluation and the development of these further steps in the process of developing the applications of 456 

computer vision systems to the dairy cow sector will be the first objectives of future research work. 457 
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 458 

Figure 9. Correlation matrix between some features of the training dataset (i.e. Ot, At and Ot × At) and validation dataset (i.e. Ov, Av and Ov × Av) selected as 459 

independent variables and some metric outcomes of the validation phase selected as dependent variables. 460 
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3.2 With augmented data frames 462 

This subsection presents a first preliminary attempt to increase the detection quality of some classes. In this 463 

case, the four classes with lowest total occurrence number (i.e. Vright, Oleft, Oright and Iright) have been selected 464 

and by adopting a procedure of data augmentation, their total occurrence number have been increased. The 465 

two main objectives of the data augmentation test were: 466 

i) to understand if simple alteration of the original frames can constitute a viable method to increase the 467 

available frame datasets in the context of cow detection and, following authors’ knowledge, this represent 468 

the first application of this type of methods in the herd monitoring research field; 469 

ii) to estimate the improvement of the detection performances of the network, in terms of AP, connected to 470 

the augment of the number of occurrences. 471 

In order to judge the possible relation between augment of the number of occurrences and AP improvement, 472 

different threshold values have been investigated for the four classes. The following parameter O (%) has 473 

been adopted for the identification of the augment of the number of occurrences: 474 

 O (%) = Augmentt / Ot × 100 (7) 475 

where: Augmentt is the is the increase of the occurrence number respect to the original dataset in the frames 476 

used for the training; Ot is the occurrence number in the frames of the original dataset used in the training. 477 

Four different target ranges have been considered for O (three below 50%, i.e. 10-20%; 20-30%; 30-40%  to 478 

test the low rates of increase and one above, i.e. 60-80%) and every class has been associated to one of the 479 

ranges in order to increase the number of occurrences of the different classes in different ways. In this way 480 

has been possible to estimate a correlation between increase of occurrences and increase of detection 481 

performances when artificial frames are added in the dataset. 482 

The data augmentation procedure has selected some frames, randomly extracted among those containing the 483 

four classes indicated above, and artificially have produced a modified copy of every selected frames. The 484 

modified copy has been obtained by changing the brightness level of the original frame so simulating possible 485 

different light conditions. This procedure, performed with the software XnConvert (Allan et al., 2019), creates 486 

a series of modified frames that could really occur in the stable. As an example, Figure 10 shows the 487 
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comparison between the original and modified frame created by means of the described procedure. The 919 488 

modified frames have been added to the original dataset (with 10105 frames) in order to constitute the 489 

augmented dataset (with 11024 frames in total). 490 

 491 

  492 
 (a) (b) 493 

Figure 10. Comparison between (a) the original frame as recorded and (b) the modified frame created 494 

modifying the brightness of the image. 495 

 496 

Also in this case the frames to be used in the validation phase were carefully selected in order to guarantee 497 

that all the 8 considered classes were adequately represented in the frames. The occurrences of each class, in 498 

the augmented dataset have been reported in Table 5, for both training and validation phases. The table also 499 

collects the augment of the occurrences, for each class, with respect to the original dataset. The augment of 500 

occurrences have generated O values equal to 29.0%, 15.9%, 71.3% and 37.5% for Vright, Oleft, Oright and Iright 501 

respectively. In total, the augments of occurrences have been 1048, 158 and 1206 respectively for training, 502 

validation and total datasets. It is worth to highlight that original dataset, in terms of occurrences, has been 503 

augmented of about 10%, with the major increases related to training dataset of the classes Vright, Oleft, Oright 504 

and Iright. 505 

  506 
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Table 5 507 

Number of occurrences for each class for both training and validation augmented datasets. Augment is the 508 

increase on the occurrence number respect to the original datasets. 509 

Training dataset 

 Xleft Xright Vleft Vright Oleft Oright Ileft Iright Sum 

Ot 1383 1384 2668 868 1048 877 2147 840 11215 

Augmentt      58 111     69 195 144 365 -123 229 1048 

Validation dataset 

 Xleft Xright Vleft Vright Oleft Oright Ileft Iright Sum 

Ov 331 302 656 176 218 139 377 161 2360 

Augmentv     7    0     6   10      9     2 123     1   158 

 510 

Then, the process follows the same steps used for the analysis on the original dataset, and for the sake of 511 

comparison with the previous case, analogous graphs and tables are reported in the following in order to 512 

summarize the main results. Figure 11(a) reports the global P-R graphs of the validation test obtained for both 513 

original and augmented datasets by considering all the 8 classes. From the comparison between the two 514 

curves it emerges that also the introduction of very similar frames, which differ only in brightness from the 515 

original, can improve both the precision (P) and the network's detection quality. In fact, for the present 516 

dataset, the precision improves in the CI range from 10% to 50% (see Figure 11(b)). Conversely, the recall (R) 517 

has an anti-symmetric trend with respect to CI of 50%. It improves in the CI from 0% to 50% and slightly 518 

deteriorates for CI higher than 50% (see Figure 11(c)). Same trend is obtained for the F1-score (see Figure 519 

11(d)). As far as the IoU metrics is concerned, it decreases about 8-9% all along the CI set. For the case at hand, 520 

the P value is adequate (i.e. higher than 0.8) for CI higher than 15%. For CI equal to 15% the R value is about 521 

0.75. Table 6 collects all the results graphically reported in Figure 11. 522 

  523 
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     524 

 (a) (b) 525 

     526 

 (c) (d) 527 

Figure 11. Comparison between the principal trends obtained from the validation test by considering all the 528 

occurrences dataset and reported for different confidence interval (with both original and augmented data 529 

frames). (a) P-R curve. (b) P trend; (c) R trend; (d) F1 and IoU score for different confidence interval. 530 

 531 

As far as the single class is concerned, in Table 7 are collected the parameters used to judge the detection 532 

quality of the various classes and Figure 12 shows the Precision-Recall graphs of each single class. From the 533 

table, the classes with better AP are Vleft, Oleft.and Vright. Instead, the classes with the worst AP are Oright, Iright 534 

and Xleft. 535 
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Table 6 537 

Main results from the validation test by considering all the occurrences dataset and reported for different 538 

confidence interval (with augmented data frames). 539 

Confidence 

interval 

True 

positive* 

Ground 

truth** 
Precision Recall F1-score  IoU 

0.95 986 1011 0.9753 0.4178 0.5850 0.7615 

0.90 1076 1113 0.9668 0.4559 0.6196 0.7563 

0.85 1162 1207 0.9627 0.4924 0.6515 0.7533 

0.80 1223 1278 0.9570 0.5182 0.6723 0.7506 

0.75 1253 1322 0.9478 0.5309 0.6806 0.7489 

0.70 1293 1383 0.9349 0.5479 0.6909 0.7484 

0.65 1328 1438 0.9235 0.5627 0.6993 0.7477 

0.60 1363 1491 0.9142 0.5775 0.7079 0.7463 

0.55 1396 1544 0.9041 0.5915 0.7152 0.7454 

0.50 1437 1601 0.8976 0.6089 0.7256 0.7439 

0.45 1483 1668 0.8891 0.6284 0.7363 0.7424 

0.40 1529 1739 0.8792 0.6479 0.7460 0.7410 

0.35 1571 1812 0.8670 0.6657 0.7531 0.7403 

0.30 1609 1880 0.8559 0.6818 0.7590 0.7392 

0.25 1652 1976 0.8360 0.7000 0.7620 0.7377 

0.20 1671 2067 0.8084 0.7081 0.7549 0.7371 

0.15 1707 2183 0.7820 0.7233 0.7515 0.7351 

0.10 1760 2391 0.7361 0.7458 0.7409 0.7329 

0.05 1854 2843 0.6521 0.7852 0.7125 0.7296 

0.00 2090 5927 0.3526 0.8669 0.5013 0.7184 

* : is the number of true positive occurrences detected from the neural network 540 

** : is the number of “real” occurrences in the dataset as resulting from the visual detection performed 541 

by the operator. 542 

 543 

Table 7 544 

Summary of the results from the validation test for each class by considering the augmented data frames. 545 

 Xleft Xright Vleft Vright Oleft Oright Ileft Iright Total 

AP 0.5489 0.8755 0.9405 0.8815 0.8954 0.2405 0.7618 0.5391 0.7559 

AIoU 0.7034 0.7593 0.7481 0.8153 0.7221 0.6392 0.6635 0.7865 0.7428 

 546 

 547 

  548 
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  549 

  550 

  551 

  552 
Figure 12. Precision-Recall diagram of the computer vision detection for each one of the 8 target classes by 553 
using the augmented data frames. 554 
  555 
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In order to compare the network detection performances of the original and augmented data frame cases, 556 

the following parameter AP (%) has been defined and calculated for the four classes majorly influenced by the 557 

data augmentation procedure: 558 

 AP (%) = (APaugmented - APoriginal) / APoriginal × 100 (8) 559 

where: APaugmented is the average precision obtained using the augmented dataset; APoriginal is the average 560 

precision obtained using the original dataset. 561 

The values of O and AP, representing a (percentage) relative difference of occurrences and average precision 562 

respectively, are reported in Table 8 for the four classes of interest. 563 

 564 

Table 8 565 

Percentage relative difference of occurrences (O) and average precision (AP) for the four classes mainly 566 

influenced by the data augmentation procedure. 567 

 Vright Oleft Oright Iright 

O (%) 29.0 15.9 71.3 37.5 

  (%) 12.5 7.4 41.6 33.9 

 568 

By the analysis of the AP values in Table 8, it emerges that the augmented dataset is able, in general, to provide 569 

an improvement of the metric values, or i.e. is able to increase also the single class detection quality of the 570 

neural network, especially for those classes characterized by a considerable augment of occurrences. This was 571 

probably expected, but the most important outcomes may be that, also for the single classes, the introduction 572 

of artificially-obtained frames is suitable to increase the detection scores. This aspect has important practical 573 

implications since in applications similar to the one studied here it is not always possible to record videos for 574 

long periods. 575 

Figure 13 graphically shows the position of the values of O and AP reported in Table 8. The further emerging 576 

outcome is that exist a clear direct relation between the increase of the occurrences number and the detection 577 

performances of the network and the relation seems almost linear, at least for the investigated ranges. 578 

 579 

 580 
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 581 

Figure 13. Percentage relative difference of occurrences (O) Vs. average precision (AP) for the four classes 582 

mainly influenced by the data augmentation procedure. 583 

 584 

These outcomes confirm that for the situations in which the number of frames is not sufficient to provide a 585 

suitable occurrence number for some classes, in order to increase the detection performance of the network, 586 

a reliable strategy could be augment the dataset by adopting “virtual” frames made in-house and ad-hoc for 587 

the single classes not adequately represented in the acquired videos. This will be object of future investigations 588 

and further details are not reported here since they are beyond the scope of this paper. For the sake of 589 

completeness, the conducted validation test provides a value of mAP=0.6604, higher than the value obtained 590 

for the original dataset.  591 

The developed system is suitable to implement various future extensions performing tracking and 592 

identification of anomalous behaviours. Cows tracking can be achieved by the integration of algorithms 593 

capable to compute the IoU between chronologically subsequent frames. IoU rate can be interpreted as 594 

displacement of the animal if it overcomes a predefined threshold. This will allow to record the trajectories of 595 

individual animals and also to compute the time spent in different positions, thus providing an accurate proxy 596 

of the time budget of every cow. Furthermore, this approach can be also used to detect standing time and 597 

lying bouts, which can be used to assess welfare indices of the herd, or different groups or even individual 598 

animals. Moreover, the evaluation of a different detection algorithm will be also object of future investigations. 599 
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4. Conclusions 602 

This study represents the first step for the development of a detection system aiming to recognize individual 603 

cows, evaluate their position, understand the action the cow is carrying out and finally tracking the cow 604 

movements in the barn. A computer vision system based on deep learning models for the automatic detection 605 

of individual cow based on the pelt pattern, within images using an HD resolution camera, was designed and 606 

implemented in a case study barn. 607 

The global detection performances of the network, reported in terms of precision-recall curves, have been 608 

proved to be good for some classes and excellent for others since the AIoU is about 0.78 and the IoU for the 609 

different classes ranges from 0.75 to 0.81. The performances of the network is confirmed by the F1-score 610 

ranging from 0.67 to 0.73 for common confidence interval from 5% to 90%. The outcomes proved that the 611 

natural pattern of the cow pelt investigated in the study is suitable for the animal detection, all this 612 

representing a necessary step prior to understand the cow action. Moreover, in this study a useful still simple 613 

equation has been proposed for the evaluation of the optimal values for the occurrence number and the 614 

bounding box areas in the training phase. The regression procedure for the equation calibration showed that 615 

a quadratic relation exists between AP and Ot x At. This proposal could be very useful to efficiently plan the 616 

acquisition to use for train the network in this type of context. Finally, the application of a very simple data 617 

augmentation technique, changing the frame brightness level, has been confirmed to be an effective strategy 618 

to adopt in order to improve the performances of the network, in case of insufficient occurrences. 619 

The promising results reported here present the first phase of the work for the definition of a computer vision-620 

based system for herd monitoring applications devoted to the study of movements, actions and behavior of 621 

the cows in a barn. 622 

  623 
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