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The paper presents a conceptual mathematical model for Alzheimer’s disease (AD). Ac-

cording to the so-called amyloid cascade hypothesis, we assume that the progression of AD

is associated with the presence of soluble toxic oligomers of beta-amyloid. Monomers of

this protein are produced normally throughout life, but a change in the metabolism may

increase their total production and, through aggregation, ultimately results in a large

quantity of highly toxic polymers. The evolution from monomeric amyloid produced by

the neurons to senile plaques (long and insoluble polymeric amyloid chains) is modelled

by a system of ordinary differential equations (ODEs), in the spirit of the Smoluchovski

equation.

The basic assumptions of the model is that, at the scale of suitably small representative

volumes (REVs) of the brain, the production of monomers depends on the average degra-

dation of the neurons and in turn, at a much slower time-scale, the degradation is caused

by the number of toxic oligomers. To mimic prion-like diffusion of the disease in the brain

we introduce an interaction among adjacent REVs, that can be assumed to be isotropic

or to follow given preferential patterns. We display the results of numerical simulations

which are obtained under some simplifying assumptions. For instance the amyloid cascade

is modelled by just three ODEs, and the simulations refer to abstract 2D domains, simpli-

fications which can be easily avoided at the price of some additional computational costs.

Since the model is suitably flexible to incorporate other mechanisms and geometries, we

believe that it can be generalised to describe more realistic situations.

Key Words: Smoluchowski equations, mathematical models of Alzheimer’s disease, amyloid

cascate hypothesis
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1 Introduction

Alzheimer’s Disease (AD), a neurodegenerative disease with a huge social and economic

impact, is the prevalent form of late life dementia [36]. The biomedical knowledge about

the AD-pathology is rapidly growing, as witnessed by a vast literature, but the etiology,

the mechanisms and the progression of the AD-pathology, as well as their relationship

to clinical and cognitive manifestations, are still far from understood. The trajectories of

AD-progression in the patient’s brain are highly stereotyped but vary individually. The

lack of full understanding of the pathophysiology of AD-progression, its insidious onset

and the clinical heterogeneity and variability in speed and pattern progression, severely

complicate the rigorous characterisation and prognosis of the disease, and hampers in-

formed, data-driven clinical intervention.

In this context there is a pressing need to find and validate biomarkers to track and

predict disease progression. Several biomarkers are currently under investigation: genetic

analysis (APOE status, Presenilin, APP), cerebrospinal fluid homogenates (CSF tau

protein, amyloid Aβ42 protein), imaging (atrophy, glucose PET for hypometabolism,

AV45-PET for amyloid, T807- or AV1451-PET for tau) and cognitive tests (ADAS-cog,

AVLT, MMSE).

In this paper we use the in silico approach, based on mathematical modelling and com-

puter simulations, and supplementary to the huge amount of in vivo and in vitro research

(see [1, 5, 7, 10, 15, 19, 26, 29, 34, 45, 59]; we refer in particular to [10] for a comprehensive

updated overview of mathematical approaches in the literature.

The general idea is to develop a highly flexible model of the interplay between the

excess of Aβ42 protein in the Central Nervous System (CNS) and the progression of the

disease, focussing on the early stage of the disease where there is still hope to intervene

and stop the further development of the disease. Flexibility of the model is essential: it

means that one can test several modelling hypotheses based on medical input and easily

adapt the model to new medical insight.

Roughly speaking, the Aβ protein is normally produced during life by neurons in the

CNS through intramembranous proteolysis of APP (amyloid precursor protein), a large

trans-membrane protein involved in signal transduction pathways [47]. By unknown and

partially genetic reasons, some neurons – referred to as malfunctioning neurons – present

an unbalance between produced and cleared Aβ. This ultimately leads to the presence

of highly toxic oligomers of, among other isoforms, Aβ40 and Aβ42. For the sake of

simplicity, from now on we shall write Aβ.

More precisely, Aβ oligomers are subject to two different phenomena:

● agglomeration, leading eventually to the formation of long, insoluble amyloid fibrils,

which accumulate in spherical microscopic deposits known as senile plaques;

● diffusion through the microscopic tortuosity of the brain tissue.

In addition, recently it has been proposed that neuronal damage spreads in the neuronal

net through a neuron-to-neuron prion-like propagation mechanism [9,53].

Agglomeration can be articulated in several steps [12, 48]: initial seeds, soluble small
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oligomers, protofibrils and insoluble polymers, and amyloid fibrils with a β-sheet confor-

mation. However, this level of description is beiond the scope of our model, as will be

explained in detail in the next section. The connection between Aβ and AD relies on the

fact that, as is largely accepted, Aβ amyloid plays an important role in the process of

the cerebral damage (the so-called amyloid cascade hypothesis [39]). In particular some

soluble Aβ42 oligomers have been suggested as the principal cause of neuronal death and

eventually dementia [60].

Soluble Aβ shows a multiple neurotoxic effect: it induces a general inflammation that

activates the microglia which in turn secretes proinflammatory innate cytokines [31] and,

at the same time, increases intracellular calcium levels [29], which ultimately leads to

apoptosis and neuronal death.

Although senile plaques are associated with AD, their presence is not strictly related

to the severity of the disease. High levels of soluble Aβ correlate better with the presence

and degree of cognitive deficits than plaque statistics. Indeed, diffuse amyloid plaques are

commonly present in the brains of cognitively intact elderly people. Some authors (see

for instance [32]) overturn the traditional perspective, and claim that large aggregates

of Aβ can actually be inert or even protective to healthy neurons. Analogously, Aβ

monomers have been shown to lack neurotoxicity [56] and have in fact been suggested to

be neuroprotective [28,63].

In the present paper we introduce a model to describe the toxic effect of beta-amyloid

on neurons. Proceeding in the spirit of mean field approximation, we divide a given

cerebral region in a number of smaller subregions. In each of them we write a system of

ordinary differential equations to describe the evolution of the number of beta-amyloid

monomers, oligomers and plaques. These equations depend on the average health state

of the neurons in the subregion under consideration, which is updated at given times

(say every half a year, a relatively “long” period which reflects the slow evolution of

the disease). The updating depends on both the amount of toxic oligomers which are

present in the subregion itself and the average health state in neighbouring subregions.

We present some numerical simulations to illustrate the behaviour of solutions and their

parameter dependence.

We stress again that the present model only takes into account the evolution of the

Aβ, and ignores the role played by the microglia in neuronal death and in the formation

of senile plaques. For these aspects, we refer for instance to [42] and [19]. In the same

spirit we ignore also the progressive degeneration of the brain due to aging.

The paper is organised as follows. In Section 2 we briefly review some of the mathemat-

ical models of Alzheimer’s disease and in Section 3 we present the basic model. In Section

4 we discuss a specific example of the model and present numerical simulations. We also

provide the corresponding source MATLAB codes, which are available in GitHub repos-

itory at the URL: https://github.com/LucaMeacci/Alzheimer_MathModel_Ejam. Fi-

nally, in the Appendix, existence, positivity and asymptotic behaviour of the example

introduced in Section 4 are discussed.

https://github.com/LucaMeacci/Alzheimer_MathModel_Ejam
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2 Mathematical modelling

The mathematical model of aggregation and diffusion of Aβ analyzed in the present

paper is based on the so-called Smoluchowski coagulation equations, originally introduced

by Smoluchowski [57] in 1917 to describe the binary coagulation of colloidal particles

moving according to Brownian motion. Subsequently, these equations were used to model

a variety of phenomena such as the evolution of a system of solid or liquid particles

suspended in a gas (in aerosol science), polymerisation (in chemistry), aggregation of

colloidal particles (in physics), formation of stars and planets (in astrophysics), red blood

cell aggregation (in hematology), behaviour of fuel mixtures in engines (in engineering),

etc. Moreover, several additional physical processes have been subsequently incorporated

into the model (diffusion, fragmentation, condensation, influence of external fields, see,

e.g. [16,40,62]). We refer also to [17], [18], and [1,5,7,23,35] for a more exhaustive account

of the literature on the Smoluchowski system.

In spite of the large literature on applications of Smoluchowski equations in many

branches of science, in the field of biomedical research their use seems to be rather

limited. Here we only consider the applications of coagulation equations to mathematical

models related to AD. For different approaches, in particular to prion-like diffusion and

role of the tau-protein, we refer the reader to [10].

As far as we know, Murphy and Pallitto [45, 49] were the first ones who used Smolu-

chowski equations to describe Aβ-agglomeration, starting from an in vitro approach.

More recently a systematic approach to the modelling of Aβ-agglomeration and the for-

mation of senile plaques was carried on in a series of papers [1,5,7,8,11,14,22–25]. In [1,11,

25] the authors consider a model at microscopic scale. They use suitable Smoluchowski

type equations to describe the diffusion and agglomeration of soluble Aβ-oligomers of

different lengths in small portion of the cerebral parenchyma, of the size of the soma

of a single neuron (from 4 to 100 µm), and the formation of plaques, identified with

insoluble assemblies of very long polymers. Some other phenomena were also included

in the model, such as fragmentation of long polymers [25] and clearance of Aβ from the

CSF [11].

A macroscopic model was proposed in [5, 8]. The authors couple the set of truncated

Smoluchowski equations already used in [1] to a kinetic-type transport equation that

models the spreading of neuronal damage, including the possibility of spreading through

neuron-to-neuron prion-like transmission. The model takes into account both the micro-

scopic phenomena of diffusion and aggregation of the Aβ peptide, characterised by a

short time scale (of a few days, the time needed for the formation of the senile plaques:

see [42]) and the macroscopic spreading of the disease and the associated cerebral atro-

phy in large parts of the brain, with a long time scale (of several years, the time needed

for the development of the disease). Remarkably, the model involves mathematical quan-

tities (concentration of plaques, neuronal damage) that have a precise counterpart in

terms of clinically observed parameters through PIB-PET (Pittsburgh compound-B, to

detect senile plaques: see e.g. [13]) and FDG-PET (fluorodeoxyglucose PET, to evaluate

the brain metabolism of both glucose and oxygen: see e.g. [43]).

Finally, the papers [7, 22–24] are dedicated to the transition from the microscopic

scale to the macroscopic scale, through different mathematical procedures: [7] adapts
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arguments from modern Boltzmann-type kinetic theory for multi-agent systems [50],

while [22–24] rely on homogenisation procedures (in [23, 24] neurons are assumed to

be periodically distributed, whereas [22] introduces randomness of the distributions of

neurons and the onset of the disease).

Recently the production of the Aβ and then the onset of AD has been associated with

the tau protein, a prion-like intra-neuronal protein (see e.g. [38]; we refer to [58] for a

careful overview of the subject). Therefore also the mathematical modelling of prion-like

proteins could be relevant to Aβ mdelling. We refer for instance to [30, 34, 52], but we

refer once more to [10] for an exhaustive panorama of the literature.

In most of the previous papers the diffusion of the amyloid as well as the (possible)

prion-type infection is assumed to be uniform, whereas it has been observed that, if we

are looking to a real macroscopic model, the disease diffuses between different regions

of the brain according to the anatomical connection strength between them. To describe

this kind of diffusion, a network model has been introduced in [20,21,41,53–55,61].

3 The model

As we explained in the Introduction, our basic assumption is that the progression of

AD is related to the evolution of the amount of Aβ in the cerebro-spinal fluid (CSF).

Amyloids are produced as monomers by neurons, diffuse in the CSF (with a diffusivity

that decreases with their size), and may aggregate and polymerise, producing longer

polymeric chains. In polymerisation [16,40,62] the use of the Smoluchowski equation can

be described as follows. For k ∈ N, let Pk denote a polymer of length k, formed by k

identical units (monomers). If the polymers are sufficiently close, they can merge into

a single polymer whose length equals the sum of the length’s of the two (only binary

reactions are considered). The merge of a polymer of size k with a polymer of size j can

be written as

Pk + Pj Ð→ Pk+j .

We postulate that there exists a number n such that polymers of length < n are

soluble and those of length ⩾ n are immobile. In the spirit of the dynamics of continuous

media, we adopt a strategy of mean field approximation and divide the cerebral region

under consideration in a sufficiently large number of elements (representative elementary

volumes, REV). A more precise discussion on the dimension of the REV will be presented

when we will introduce the concept of “cerebral degradation”. We denote by wi(t) the

number of soluble amyloid polymers of length i (i < n) contained in the given REV at

time t, while Wn(t) will denote the total number of immobile particles in the REV.

For the sake of simplicity we assume that there exists a constant K > 0 which does not

depend on i and j such that the aggregation rate Ri,j of two soluble polymers of length

i and j is given by

Ri,j =
⎧⎪⎪⎨⎪⎪⎩

Kwiwj if i, j < n, i ≠ j
1
2
Kwi(wi − 1) ≈ 1

2
Kw2

i if i, j < n, i = j.
(3.1)

Similarly, assuming that two immobile polymers do not merge, we postulate that the
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aggregation rate for a soluble and an immobile polymer is given by

Ri,n = Rn,i =K∗wiWn if i < n. (3.2)

Since the probability of merging is smaller if one of the two polymers is immobile, we

assume that K∗ <K.

The evolution of the number of monomers in a given REV is described by the differ-

ential equation

dw1

dt
= −Kw1

n−1

∑
j=1

wj −K∗w1Wn +Λ −M1w1, (3.3)

where Λ > 0 is the production rate of monomers and M1 > 0 their mortality, i.e. the

clearance due to both the phagocytic activity of the microglia and the possible reabsorp-

tion by blood vessels (see [2, 51]), The evolution of the number of oligomers, ws(t) with

1 < s < n, is described by

dws
dt

= K
2
∑
i+j=s

wiwj −Kws
n−1

∑
j=1

wj −K∗wsWn −Msws. (3.4)

Finally, the differential equation for the number of immobile aggregates is

dWn

dt
= K

2
∑

i+j⩾n; i,j<n

wiwj −MnWn. (3.5)

The next step is to model the progression of AD. We associate the average degree of

malfunctioning of the neurons in each REV with a parameter a ranging from 0 to 1;

a = 0 means that this portion of the brain is healthy, while a = 1 corresponds to complete

degeneration. At this point we discuss the dimension of the REV. It should be large

enough to contain a sufficiently large number of neurons so that it makes sense to define

the quantity a as the average degree of malfunctioning of the neurons contained in the

REV. On the other hand, the dimensions of the REV are to be taken small enough so

that the variation of a over the macroscopic scale of the cerebral region are identifiable.

Ideally, the experimental resolution of the FDG-PET, extensively discussed in [44], should

suggest how to choose the size of the REV, which could very well depend on the part

of the brain under consideration. In reality, the size of the REV is also determined by

computational costs, an issue which becomes of critical importance in the case of 3D

simulations. For each REV we assume that a is a nondecreasing function of time, and its

variation is essentially due to two different effects:

- a local effect, due to the level of toxicity of the amyloids in the REV itself;

- a non-local effect, induced by degradation of the adjacent REV’s.

Concerning the local effect, the current opinion is that, while monomers are innocu-

ous, neurons degenerate if the concentration of soluble toxic oligomers exceeds a given

threshold. The relative influence γi > 0 of each oligomer is still under investigation, but

we can define the quantity

D =
n−1

∑
i=2

γiwi, (3.6)

and assume that degradation occurs when D exceeds a threshold value D∗ > 0.

Since the typical timescale of degradation is much slower than that of aggregation, it
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is reasonable to assume that there exists T > 0 such that a is constant in each of the time

intervals (0, T ), (T,2T ), (2T,3T ), . . . , and update the value of a at the times T , 2T , 3T

etc. Typically, (0, T ) can be thought of as a period of half a year.

Based on these considerations we postulate for the local effect the relation

a(t) = a(mT ) + θ[D(mT ) −D∗]+ for mT < t ⩽ (m + 1)T, (3.7)

where [⋅]+ means the positive part and θ is a given positive constant.

To model the non-local effect, we assume that the REV’s in which we divide the

cerebral region under investigation are cubes of equal size stacked in such a way that

each of them has faces in common with its neighbors. We define the neighborhood of a

REV (located in the interior of the region) as formed by the 26 cubes that have at least

one vertex in common with it. If we consider the region embedded in a ”virtual frame”

formed by cubes where a is constantly equal to zero, the definition applies to every REV

to be considered. At this point we update the value of a in the following way

a(t) = a(mT ) + σ∑[ak(mT ) − a(mT )]+ for mT < t ⩽ (m + 1)T, (3.8)

where the sum ranges over the 26 cubes in the neighborhood of the given REV, and

σ is a given positive constant. Condition (3.8) can be easily generalised. For example

we could assume that the influence of the neighbors is different in different directions,

i.e. substituting the sum on the RHS by ∑σk[ak(mT ) − a(mT )]+.

Combining (3.7) and (3.8), we obtain the law by which we update the value of a in

each REV of the region at times T , 2T , 3T etc.

The final step in the modelling consists in specifying how the level of degeneration

influences the dynamics of the amyloids. The influence is twofold: on one side the degen-

eration leads to the reduction of the number of ”active” neurons, but on the other side

it also causes an increased production of monomers by each neuron. Combining the two

effects we can postulate that the number of monomers produced in the REV per unit

time is given by

Λ = A(1 − a)(1 + βa), (3.9)

where A is the number of monomers produced in a healthy REV and β > 1 is a prescribed

constant. It is known that, during the desease, the maximum production of amyloid can

be of 4-6 times larger than in a healthy brain (see e.g. [19]). Accordingly, we choose

β = 15.

4 A specific example

To test the model, we consider the following simplified situation: we divide the total pop-

ulation of amyloids in just 3 subpopulations: monomers, toxic oligomers, and immobile

aggregates (a larger number of subpopulations just requires a more cumbersome notation

and only leads to a slight increase in computing time and a less transparent visualisation

of the results).

We rescale wi (i = 1,2,3) by a number N to be chosen and define

X(t) = w1(t)
N

, Y (t) = w2(t)
N

, Z(t) = w3(t)
N

.
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According to [46] the mass of a monomer is about 4.5 kDa, i.e. about 8⋅10−12 nanograms.

We choose N = 1011, corresponding to the order of magnitude of the number of monomers

in a nanogram, so that X represents, in order of magnitude, the mass of monomers in

nanograms in the REV. For the evolution of the amyloids we choose one day as the unit

time.

Setting k = K/N , k∗ = K∗/N and λ = Λ/N , the differential equations (3.3–3.5) take

the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X ′ = −kX2 − kXY − k∗XZ −M1X + λ
Y ′ = 1

2
kX2 − kXY − kY 2 − k∗Y Z −M2Y

Z ′ = 1
2
kY 2 + kXY −M3Z.

(4.1)

The production rate Λ is given by (3.9) where the constant A represents the production

rate in a healthy tissue. Rescaling yields

λ = λ0(1 − a)(1 + βa) with λ0 = A/N.

We observe that the production rate λ0 depends on the total number of REV’s used to

describe the brain. Here we assume that we have about 500 REV’s of equal size. Choosing

λ0 = 2 corresponds to a daily monomer production of 2 nanograms in each REV and 1000

nanograms in a healthy brain. Quantification of the monomer production in the brain is

rather controversial in the literature. For example, Karran et al. [39] mention an estimate

of 4000 nanograms per day, where Bateman et al. [4] mention only 60 nanograms. In this

context our choice of λ0 seems reasonable.

We choose the remaining constants in (4.1).

Mi Assuming that the daily clearance amounts to 1%, we take Mi = 10−2 for i = 1,2,3.

k, k∗ Although in the literature there are various attempts to give explicit formula’s

for k and k∗ [27, 45, 49], we believe that their choice remains rather arbitrary. In the

simulations below, we choose k = 10−4 and k∗ = 5 ⋅ 10−6. In this context we stress that

our example is rather conceptual and speculative, and mainly aimed to illustrate the

potentiality of the model.

Solving the system e.g. with initial data X(0) = Y(0) = Z(0) = 0 we find the solution

when a = 0, displayed in Figure 1.

The graphs suggest that there exist equilibrium values reached within a few months

even when the initial data are far from equilibrium. Referring to the Appendix for some

additional comments on system (4.1), we just note that the system can be scaled: if the

volume of the REV is divided by a factor m, then dividing λ by m and multiplying k

and k∗ by m, the asymptotic values of X, Y and Z, are also divided by m.

4.1 Dynamics of AD: local effect

Now we simulate the dynamics of AD. Assume that the threshold D∗ (that in this

particular case is a value Y ∗) for the normalised number of toxic oligomers in a single

REV is Y ∗ = 22.

First, we describe the degradation taking into account just the local effect based on
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Figure 1. Solution of system (4.1) with a = 0.

(3.7). This is just a test of the model and would refer to the abstract situation in which

the initial malfunctioning of the neurons affects all the REVs in the same way (thus

canceling every prion-like transmission). We set θ = 10−3 and assume that at a given time

(taken as t = 0), in each REV a jumps to a value 0.02 and therefore λ = 2.548. We take

T as 180 days, i.e. we update the value of a twice a year. The results are displayed in

Figures 2, 3 and 4. More precisely, Figure 2 represents the evolution of the degradation

a; Figure 3 shows the normalised number of toxic oligomers in each REV; Figure 4 shows

how the production rate of monomers in each REV evolves with time. In these graphs,

t is expressed in years after the onset of the disease. In the early stage of the disease the

shape of the curve appearing in Figures 3 and 4 fits the clinical data presented in the

literature (see [37], Figure 6, and also [5], Figure 3). On the other hand, the decrease

in the concentration of Aβ is well known in clinical practice: quoting from [3], “meta-

analyses suggest that AD can be differentiated from other dementias by the detection of

lower concentration of Aβ1−42. . . ”. Moreover, low concentration of Aβ42 in CSF (Celebral

Splinal Fluid) is listed among diagnostic criteria and differential diagnosis of AD from

other dementias.

We point out that the stability of the model (more precisely of a similar model) is

discussed in detail in [6]).

4.2 Including the non-local effect

To simplify the numerical simulation and the visualisation of the results, from now on we

consider a 2D model: a square grid of 20 × 20 REV’s. The setting of the parameters, for

uniformity, will be the same as before: Mi = 10−2, k = 10−4 and k∗ = 5 ⋅10−6. In addition to

the local effect (3.7) (with θ = 10−3), we will take into account the prion-like propagation

modelled by (3.8) starting with the case of isotropic propagation with σ = 0.05. As initial
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Figure 2. Progression of the average degradation a of neurons in a REV (local effect)

when the onset of the disease takes place at t = 0 (a(0) = 0.02).

Figure 3. Evolution of the (normalised) number of toxic oligomers in the REV during

the progression of the disease.

condition, we assume for instance that a = 0 in each REV with the exception of the square

with coordinates (6,6), where we put a = 0.02. Figure 5, which contains the screenshots

at 10, 12.5, 15 and 17.5 years, shows the progressive degradation of the tissue.
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Figure 4. Evolution of the average monomer production in the REV during the progres-

sion of the disease.

Figure 5. Non-local effect in a 2D model. Screenshots at different times (t = 10, t =
12.5, t = 15, t = 17.5 years). The initial situation is such that only one REV (of coordinates

(6,6)) has an initial malfunctioning index a = 0.02.
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To conclude this section we consider a case in which the propagation is anisotropic.

In the following example case, we set the same initial condition of the previous example,

i.e., a = 0.02 in the region of coordinates (6,6) and a = 0 otherwise. But in this case, just

to be specific, we assume that the propagation (corresponding to a value of σ = 0.2) in

the directions NE–SW and E–W are 20 times larger than the propagation in the other

directions, in the half-left-part and half-right-part of the brain respectively. In Figure

6 we can see the particular behaviour of the propagation of the disease as visualized

through the screenshots at 10, 12.5, 15 and 17.5 years.

Figure 6. An example of non-isotropic propagation. Screenshots at different times (t =
10, t = 12.5, t = 15, t = 17.5 years). The initial situation is such that only one REV (of

coordinates (6,6)) has an initial malfunctioning index a = 0.02.

5 Conclusions

We have proposed a relatively simple model for the so-called amyloid cascade hypothesis

for AD and its effect on the state of degradation of neurons. Dividing a portion of the

brain in sufficiently small subregions and averaging the state of degradation in each

subregion, we have formulated a system of ordinary differential equations for the number

of monomeric and oligomeric beta-amyloid polymers and the insoluble amyloid plaques.

The typical time scale of the amyloid peptides evolution is much faster than that of

the evolution of the state of degradation of the neurons. The latter process can take
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into account a prion-like diffusion of the disease. We have also presented some numerical

results in 2D to illustrate the behaviour of the solutions. A MATLAB implementation

of the mathematical model to simulate the results presented in this work is available in

GitHub at the URL: https://github.com/LucaMeacci/Alzheimer_MathModel_Ejam.

The key point of the model is its high level of flexibility. Additional features could be

implemented in the model. For instance:

● diffusion of soluble amyloid within the cerebral parenchima;

● toxic effect of phosphorylated τ protein inside neurons and its interaction with β-

amyloid;

● more realistic anatomy of the brain;

● clearance of the amyloid due to the continuous production and removal of the cere-

brospinal fluid.

The possibility of including different phenomena in the model is particularly impor-

tant since the role of the various mechanisms in the development of AD is not yet well

understood. In other words, numerical simulations can be used to test different modelling

hypotheses.
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Appendix A

A.1 Global existence of solutions of system (4.1)

We consider the system (4.1) with positive initial data X(0), Y(0), Z(0). It is easy to

show that the system has a global positive solution. Indeed, we show that X, Y and Z

https://github.com/LucaMeacci/Alzheimer_MathModel_Ejam
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are bounded. For this purpose, we consider the system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X ′ = −kX2 − kXY − k∗XZ −M1X + λ
Y ′ = 1

2
kX2 − kXY − kY 2 − k∗Y Z −M2Y

Z ′ = 1
2
kY 2 + kXY −M3Z,

with positive Cauchy data X(0), Y (0), Z(0). Then X(t) > 0, Y (t) > 0, Z(t) > 0 as long

as the solution exists.

In addition

X ′ ⩽ −kX2 + λ − k∗XZ ⇒X(t) ⩽ α ∶= max

⎧⎪⎪⎨⎪⎪⎩
X(0),

√
λ

k

⎫⎪⎪⎬⎪⎪⎭

Y ′ ⩽ kα2 − kY 2 − k∗Y Z ⇒ Y (t) ⩽ β ∶= max{Y (0), α}

Z ′ ⩽ 1
2
kβ2 + kαβ −M3Z,

so that also Z is bounded.

A.2 Equilibrium solutions

Let us consider the equilibrium solutions of system (4.1), i.e. the solutions of the algebraic

system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 = −kX2 − kXY − k∗XZ −M1X + λ
0 = 1

2
kX2 − kXY − kY 2 − k∗Y Z −M2Y

0 = 1
2
kY 2 + kXY −M3Z.

(A 1)

We shall prove that system (4.1) has an equilibrium solution

X ≡X0 > 0 Y ≡ Y0 > 0 Z ≡ Z0 > 0. (A 2)

In addition, this solution is unique among all positive equilibrium solutions of (A 1).

Existence of equilibrium solutions: solutions of system (A 1) satisfy Z = k
2M3

Y 2 +
k
M3
XY and

⎧⎪⎪⎨⎪⎪⎩

−kX2 − kXY − k∗X( k
2M3

Y 2 + k
M3
XY ) −M1X + λ = 0

1
2
kX2 − kXY − kY 2 − k∗Y ( k

2M3
Y 2 + k

M3
XY ) −M2Y = 0,

i.e. a system of 2 quadratic equations in X:

⎧⎪⎪⎨⎪⎪⎩

(1 + k∗

M3
Y )X2 + (Y + k∗

2M3
Y 2 + M1

k
)X − λ

k
= 0

X2 − 2 (Y + k∗

M3
Y 2)X − 2Y 2 − k∗

M3
Y 3 − 2M2

k
Y = 0.

The positive solutions of the quadratic equations are

X =X1(Y ) =
− (Y + k∗

2M3
Y 2 + M1

k
) +

√
(Y + k∗

2M3
Y 2 + M1

k
)
2
+ 4λ

k
(1 + k∗

M3
Y )

2 (1 + k∗

M3
Y )
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and

X =X2(Y ) = Y + k∗

M3
Y 2 +

√
(Y + k∗

M3
Y 2)

2
+ 2Y 2 + k∗

M3
Y 3 + 2M2

k
Y

Observe that X2(Y ) is strictly increasing,

X2(0) = 0, X2(∞) =∞, X1(0) = −M1

2k
+ 1

2

√
(M1

k
)2 + 4λ

k
> 0,

and

X1(Y ) =
Y + k∗

2M3
Y 2 + M1

k

2 (1 + k∗

M3
Y )

⎛
⎜⎜
⎝
−1 +

¿
ÁÁÁÁÀ1 +

4λ
k

(1 + k∗

M3
Y )

(Y + k∗

2M3
Y 2 + M1

k
)
2

⎞
⎟⎟
⎠

=
Y + k∗

2M3
Y 2 + M1

k

2 (1 + k∗

M3
Y )

⎛
⎜⎜
⎝

4λ
k

(1 + k∗

M3
Y )

2 (Y + k∗

2M3
Y 2 + M1

k
)
2

⎞
⎟⎟
⎠
(1 + o(1))→ 0 as Y →∞.

Hence the curves X = X1(Y ) and X = X2(Y ) have at least one intersection point

(X0, Y0), which corresponds to an equilibrium solution (X0, Y0, Z0), where Z0 = k
2M3

Y 2
0 +

k
M3
X0Y0.

Uniqueness of equilibrium solutions: let us notice preliminarily that a solution

(X0, Y0, Z0) of system (A 1) such that X0 > 0, Y0 > 0, Z0 > 0 satisfies (A 2).

The last equation gives

M3Z = 1
2
kY 2 + kXY.

Replacing in (A 1) we have

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 = −kX2 − kXY − k∗

M3
X( 1

2
kY 2 + kXY ) −M1X + λ

0 = 1
2
kX2 − kXY − kY 2 − k∗

M3
Y ( 1

2
kY 2 + kXY ) −M2Y

0 = 1
2
kY 2 + kXY −M3Z.

(A 3)

Multiplying the first equation by −Y and the second by X we obtain

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 = kX2Y + kXY 2 + k∗

M3
XY ( 1

2
kY 2 + kXY ) +M1XY − λY

0 = 1
2
kX3 − kX2Y − kXY 2 − k∗

M3
XY ( 1

2
kY 2 + kXY ) −M2Y X

0 = 1
2
kY 2 + kXY −M3Z.

(A 4)

Summing up the two first equations in (A 4) we get

λY =kX2Y + kXY 2 + kk∗

2M3
XY 3 + kk

∗

M3
X2Y 2 +M1XY

+ 1
2
kX3 − kX2Y − kXY 2 − kk∗

2M3
XY 3 − kk

∗

M3
X2Y 2 −M2Y X,

(A 5)

and eventually

Y (λ + (M2 −M1)X) = k
2
X3.
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Since X > 0, necessarily, λ + (M2 −M1)X > 0. Consider now the function

f(X) =
k
2
X3

λ + (M2 −M1)X
,

defined on the interval

I ∶= {X > 0 , λ + (M2 −M1)X > 0}.

We notice now that f ′(X) > 0 in I, since

3k
2
X2(λ + (M2 −M1)X) − k

2
X3(M2 −M1)

= kX3(M2 −M1) + 3kλ
2
X2 = kX2(X(M2 −M1) + 3λ

2
)

> λ
2
> 0.

Thus, by contradiction, if (X0, Y0, Z0) and (X1, Y1, Z1) are different solutions of (A 1)

with 0 <X0 <X1, we have 0 < Y0 < Y1. Then the first equations of (A 3) gives

λ =kX2
0 + kX0Y0 + k∗

M3
X0( 1

2
kY 2

0 + kX0Y0) +M1X0

< kX2
1 + kX1Y1 + k∗

M3
X1( 1

2
kY 2

1 + kX1Y1) +M1 = λ,

yielding a contradiction.

To be specific, we substitute the values Mi = 10−2, k = 10−4 and k∗ = 5 ⋅ 10−6, as in

our simulations and we find that X1(Y ) is decreasing and that the intersection of the

two curves X = X1(Y ) and X = X2(Y ) corresponds to the values found in Figure 1 of

Section 4, as it can be seen in Figure A 1.

Figure A 1. Graphs of the curves X = X1(Y ) and X = X2(Y ) with Mi = 10−2, k = 10−4

and k∗ = 5 ⋅ 10−6.

Stability of equilibrium solutions: for sake of simplicity from now on we assume

M1 = M2 = M3 =∶ M . In order to prove the asymptotic stability of the equilibrium
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solution, we have to prove that the eigenvalues of the Jacobian matrix

⎛
⎜
⎝

−2kX − kY − k∗Z −M −kX −k∗X
kX − kY −kX − 2kY − k∗Z −M −k∗Y
kY kX + kY −M

⎞
⎟
⎠

(A 6)

of the map defined by (A 1), evaluated at the critical point (X,Y,Z), have negative real

parts, keeping in mind that X > 0, Y > 0, Z > 0. In other words, we have to prove

that the characteristic polynomial of the Jacobian matrix of (A 1) is a so-called Hurwitz

polynomial (see e.g. [33], Chapter II, Theorem 4.2). We write le characteristic polynomial

in the form

−λ3 + aλ2 + bλ + c. (A 7)

An elementary computation shows that c < 0, so that the polynomial (A 7) has a

real negative solution. In order to prove that the remaining solutions have negative real

part, we apply to (A 7) the so-called Routh-Hurwitz criterion (see, e.g., [33], Chapter II,

Theorem 6.1). It is straightforward to see that a < 0, b < 0, so that we have but to show

(see equation (6.1) in [33]) that

ab + c > 0. (A 8)

A cumbersome but elementary computation shows now that

ab + c = k2(9k − k∗)X3 + 21k3X2Y + 18k3XY 2 + 6k3Y 3 + 3k2k∗X2Y +
15k2k∗X2Z + 6k2k∗XY 2 + 26k2k∗XY Z+
2k2k∗Y 3 + 13k2k∗Y 2Z + 24k2MX2 + 44k2MXY + 22k2MY 2 + 2kk∗

2
XY Z+

9kk∗
2
XZ2 + kk∗2Y 2Z + 9kk∗

2
Y Z2 + 4kk∗MXY +

30k k∗MXZ + 2kk∗MY 2 + 30kk∗MY Z + 24kM2X + 24kM2Y +
2k∗

3
Z3 + 10k∗

2
MZ2 + 16k∗M2Z + 8M3 > 0,

provided k ⩾ 1
9
k∗.

Thus the equilibrium solution of the system (A 1) with positive Cauchy data is asymp-

totically stable when k ⩾ 1
9
k∗. This condition is coherent with the choice of k, k∗ in Figure

A 1, i.e. k∗ = k
20

.

A.3 Parameter dependence

Here we sketch a numerical investigation on the dependence of the model on the values

chosen for the parameters k and Mi. In particular, we show how their variations influence

the values of the asymptotic value of Y (that will be denoted by Ŷ ) which is the key

factor in the evolution of AD.

We have already noted that multiplying k and k∗ by a factor m and dividing λ by the

same factor, then X, Y , and Z are also divided by m. Maintaining the same relationship

between k and k∗ as in our simulations (k∗ = k/20) we see that doubling or dividing by

2 the value of k does not induce a relevant variation in Ŷ (see Table A 1).

On the other hand, as evident from the data in the Table A 2, the dependence on M
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Table A 1. Dependence of Ŷ on the values chosen for k.

k Ŷ

10−4 20.26
0.5 × 10−4 20.51
2 × 10−4 18.00

Table A 2. Dependence of Ŷ on the values chosen for M .

M Ŷ

10−2 20.26
0.5 × 10−2 29.62
2 × 10−2 9.06

(which, as in our simulations is the common value of M1, M2 and M3) is much more

critical.
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[40] Laurençot, P., and Mischler, S. Global existence for the discrete diffusive coagulation-
fragmentation equations in L1. Rev. Mat. Iberoamericana 18, 3 (2002), 731–745.

[41] Matthus, F. Diffusion versus network models as descriptions for the spread of prion
diseases in the brain. Journal of Theoretical Biology 240, 1 (2006), 104 – 113.

[42] Meyer-Luehmann, M., Spires-Jones, T., Prada, C., Garcia-Alloza, M.,
De Calignon, A., Rozkalne, A., Koenigsknecht-Talboo, J., Holtzman, D. M.,
Bacskai, B. J., and Hyman, B. T. Rapid appearance and local toxicity of amyloid-β
plaques in a mouse model of Alzheimer’s disease. Nature 451, 7179 (2008), 720–724.

[43] Mosconi, L., Berti, V., Glodzik, L., Pupi, A., De Santi, S., and de Leon, M.
Pre-clinical detection of Alzheimer’s disease using FDG-PET, with or without amyloid
imaging. J. Alzheimer’s Dis. 20(3) (2010), 843–854.

[44] Moses, W. Fundamental limits of spatial resolution in pet. Nucl Instrum Methods Phys
Res A. 648, Supplement 1 (2011), S236–S240.

[45] Murphy, R. M., and Pallitto, M. M. Probing the kinetics of β-amyloid self-association.
J. Struct. Biol. 130, 2-3 (2000), 109–122.

[46] Nag, S., Sarkar, B., Bandyopadhyay, A., Sahoo, B., Sreenivasan, V., Kombrabail,
M., Muralidharan, C., and Maiti, S. Nature of the amyloid-β monomer and the
monomer-oligomer equilibrium. J. Biol. Chem. 286, 16 (2011), 13827–13833.



The amyloid cascade hypothesis and Alzheimer’s disease 21

[47] O’Brien, R., and Wong, P. Amyloid precursor protein processing and Alzheimer’s dis-
ease. Annual Review of Neuroscience 34 (7 2011), 185–204.

[48] Ono, K., Condron, M. M., and Teplow, D. B. Structure-neurotoxicity relationships of
amyloid β-protein oligomers. P. Natl. Acad. Sci. USA 106, 35 (2009), 14745–14750.

[49] Pallitto, M. M., and Murphy, R. M. Mathematical model of the kinetics of beta-
amyloid fibril growth from the denatured state. Biophys. J. 81, 3 (2001), 109–122.

[50] Pareschi, L., and Toscani, G. Interacting Multiagent Systems: Kinetic equations and
Monte Carlo methods. Oxford University Press, 2013.

[51] Plog, B., and Nedergaard, M. The glymphatic system in central nervous system health
and disease: Past, present, and future. Annual Review of Pathology: Mechanisms of
Disease 13 (02 2018), 379–394.

[52] Prüss, J., Pujo-Menjouet, L., Webb, G. F., and Zacher, R. Analysis of a model for
the dynamics of prions. Discrete Contin. Dyn. Syst. Ser. B 6, 1 (2006), 225–235.

[53] Raj, A., Kuceyeski, A., and Weiner, M. A network diffusion model of disease progres-
sion in dementia. Neuron 73, 6 (2012), 1204–1215.

[54] Raj, A., LoCastro, E., Kuceyeski, A., Tosun, D., Relkin, N., and Weiner, M.
Network diffusion model of progression predicts longitudinal patterns of atrophy and
metabolism in alzheimers disease. Cell Reports 10, 3 (2015), 359 – 369.

[55] Schfer, A., Weickenmeier, J., and Kuhl, E. The interplay of biochemical and biome-
chanical degeneration in alzheimers disease. Computer Methods in Applied Mechanics
and Engineering 352 (2019), 369 – 388.

[56] Shankar, G. M., Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardson, N. E., Smith,
I., Brett, F. M., Farrell, M. A., Rowan, M. J., Lemere, C. A., Regan, C. M.,
Walsh, D. M., Sabatini, B. L., and Selkoe, D. J. Amyloid-beta protein dimers
isolated directly from alzheimer’s brains impair synaptic plasticity and memory. Nat.
Med. 14 (2008), 837–842.

[57] Smoluchowski, M. Versuch einer mathematischen theorie der koagulationskinetik kolloi-
der lsungen. IZ. Phys. Chem. 92 (1917), 129168.

[58] Tatarnikova, O. G., Orlov, M. A., and N.V, B. Beta-amyloid and tau protein: Struc-
ture, interaction and prion-like properties. Biochemistry (Moscow) 80, 13 (2015), 1800–
1819.

[59] Urbanc, B., Cruz, L., Buldyrev, S. V., Havlin, S., Irizarry, M. C., Stanley, H. E.,
and Hyman, B. T. Dynamics of plaque formation in Alzheimer’s disease. Biophys. J.
76, 3 (1999), 1330–1334.

[60] Walsh, D. M., and Selkoe, D. J. Aβ oligomers: a decade of discovery. J. Neurochem.
101, 5 (2007), 1172–1184.

[61] Weickenmeier, J., Jucker, M., Goriely, A., and Kuhl, E. A physics-based model
explains the prion-like features of neurodegeneration in alzheimer’s disease, parkinson’s
disease, and amyotrophic lateral sclerosis. J. of the Mechanics and Physics of Solids 124
(2019), 264–281.

[62] Wrzosek, D. Existence of solutions for the discrete coagulation-fragmentation model with
diffusion. Topol. Methods Nonlinear Anal. 9, 2 (1997), 279–296.

[63] Zou, K., Gong, J. S., and Yanagisawa, K.and Michikawa, M. A novel function of
monomeric amyloid-protein serving as an antioxidant molecule against metal-induced
oxidative damage. J. Neurosci. 22 (2002), 4833–4841.


	Introduction
	Mathematical modelling
	The model
	A specific example
	Dynamics of AD: local effect
	Including the non-local effect

	Conclusions
	Appendix A
	Global existence of solutions of system (??) 
	Equilibrium solutions
	Parameter dependence

	References

