
C. Sacerdoti Coen, A. Tiu (Eds.): 15th International Workshop
on Logical Frameworks: Theory and Practice (LFMTP 2020)
EPTCS 332, 2021, pp. 1–17, doi:10.4204/EPTCS.332.1

© A. Gengelbach, J. Åman Pohjola & T. Weber
This work is licensed under the
Creative Commons Attribution License.

Mechanisation of Model-theoretic Conservative Extension

for HOL with Ad-hoc Overloading

Arve Gengelbach
Uppsala University, Uppsala, Sweden

arve.gengelbach@it.uu.se

Johannes Åman Pohjola
CSIRO’s Data61, Sydney, Australia

University of New South Wales, Sydney, Australia

johannes.amanpohjola@data61.csiro.au

Tjark Weber
Uppsala University, Uppsala, Sweden

tjark.weber@it.uu.se

Definitions of new symbols merely abbreviate expressions in logical frameworks, and no new facts
(regarding previously defined symbols) should hold because of a new definition. In Isabelle/HOL,
definable symbols are types and constants. The latter may be ad-hoc overloaded, i. e. have different
definitions for non-overlapping types. We prove that symbols that are independent of a new definition
may keep their interpretation in a model extension. This work revises our earlier notion of model-
theoretic conservative extension and generalises an earlier model construction. We obtain consistency
of theories of definitions in higher-order logic (HOL) with ad-hoc overloading as a corollary. Our
results are mechanised in the HOL4 theorem prover.

1 Introduction

Isabelle/HOL enriches higher-order logic with ad-hoc overloading. While other theorem provers of
the HOL family support overloaded syntax through enhancements of parsing and pretty printing, in Is-
abelle/HOL overloading is a feature of the logic. The user-defined symbols are types and constants, and
in Isabelle/HOL the latter may have multiple definitions for non-overlapping types. For instance, +α→α→α

is an overloaded constant with different definitions for different type instances of commutative monoids
such as the natural numbers or the integers.

Overloaded definitions need further care as the defined symbols may be used prior to their defini-
tion, which if treated improperly may lead to cyclic definitions, i. e. unfolding of definitions might not
terminate.

For a logic to be useful it should have unprovable statements. A logic is consistent if a contradic-
tion cannot be deduced from any of its theories. HOL with user-defined types and constants without
overloading is consistent. This can be proved by an argument based on standard semantics [16], where
Booleans, function types and the equality constant are interpreted as expected, and type variables are
interpreted as elements of a fixed universe of sets. The consistency story for HOL with overloading is a
long one [20, 15, 12, 17]. Åman Pohjola and Gengelbach [17] prove HOL with overloading consistent in
a machine-checked proof, by constructing models of theories of definitions through a construction that
originates from Kunčar and Popescu [12]. Kunčar and Popescu introduce a dependency relation between
the symbols of a theory to track dependencies of defined symbols on their definiens. Under an additional
syntactic restriction on overloading [10], they construct a model for any (finite) theory of definitions for
which the dependency relation is terminating.

http://dx.doi.org/10.4204/EPTCS.332.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Mechanisation of Model-theoretic Conservative Extension for HOL

Apart from consistency, a definitional mechanism should be model-theoretically conservative: any
model of a theory can be extended to a model of the extended theory with new definitions, keeping
interpretations of formulae that are independent of the new symbols intact. Informally, at least symbols
that are independent of a theory extension may keep their interpretation in a model extension.

For HOL without overloading, model-theoretic conservativity holds unconditionally [8]. With over-
loading, model-theoretic conservativity holds for symbols that are independent of new definitions, as
Gengelbach and Weber prove [4]. However, their proof was based on inherited wrong assumptions
from Kunčar and Popescu [12], that Åman Pohjola and Gengelbach in their mechanised model construc-
tion [17] uncover and correct. Additionally, the mechanisation supports theory extension by the more
expressive constant specification [2], which is a definitional mechanism also used in the theorem provers
ProofPower and HOL4 to simultaneously introduce several new constants that satisfy some property.

This paper joins these two lines of work in mechanising that the definitional mechanisms of types
and overloaded constants are model-theoretically conservative. The result holds for models that interpret
constants introduced by constant specification equal to their witnesses and replaces the earlier mono-
lithic model construction with an iterative one. An interpretation of this result is that the definitional
mechanisms of Isabelle/HOL are semantically speaking robustly designed: at least symbols that are
independent of an update may keep their interpretation in a model extension.

Even more generally, the syntactic counterpart of model-theoretic conservativity, proof-theoretic

(syntactic) conservativity shall hold [20]. Informally, a definitional mechanism is proof-theoretically

conservative if the definitional extension entails no new properties, except those that depend on the sym-
bols which the extension introduces.

For Isabelle/HOL conservativity has been studied in an absolute manner, i. e. any definitional theory
is a conservative extension of initial HOL [11], the theory of Booleans with Hilbert-choice and infinity ax-
iom. Gengelbach and Weber [5] prove conservativity of any definitional extension above initial HOL, by
translating a model-theoretic conservativity for a generalised semantics into its syntactic counterpart. As
their semantics are similar to ours, this paper adds to the reliability of their result.

We describe the syntax and (lazy ground) semantics of HOL with ad-hoc overloading in Section 2.
Subsequently, in Section 3 we recapitulate the independent fragment as the part of a theory that is inde-
pendent of an extension by a new definition. This fragment is crucial in the iterative model construction,
i. e. model-theoretic conservativity in Section 4. We discuss related work in Section 5. The definitions
and theorems in this paper are formalised in the HOL4 theorem prover as part of the CakeML project.1

Contributions We make the following contributions

• We adapt and formalise the previously introduced independent fragment [4] (i. e. a theory’s syntax
fragment that is independent of a theory update) to support a more general definitional mechanism
for constants: constant specification [2].

• We use the independent fragment to prove a notion of model-theoretic conservativity [4] in a new
setting for the lazy ground semantics [17], which delays type variable instantiation and does not
instantiate the type of term variables. To the best of our knowledge, this is the first mechanised
conservativity result for a logic with overloaded definitions.

• Our work generalises and replaces the earlier monolithic model construction of Åman Pohjola and
Gengelbach [17], and obtains consistency of HOL with ad-hoc overloading as a corollary.

1https://code.cakeml.org/tree/master/candle/overloading/semantics/

https://code.cakeml.org/tree/master/candle/overloading/semantics/

A. Gengelbach, J. Åman Pohjola & T. Weber 3

2 Background

In this section we introduce the syntax and semantics of HOL with ad-hoc overloading, which we in-
herit from the earlier work of Åman Pohjola and Gengelbach [17]. Their formalisation makes use of
infrastructure from the formalisation of HOL Light (without overloading) by Kumar et al. [9], and the
theoretical work on the consistency of HOL with ad-hoc overloading by Kunčar and Popescu [12].

2.1 Types and terms

Types Types, described by the grammar type = Tyvar string | Tyapp string (type list), are rank-1 poly-
morphic. Type variables Tyvar can be instantiated by a type substitution (ranged over by Θ), which ex-
tends homomorphically to type constructors Tyapp. For a type ty and a type substitution Θ , we call Θ ty

a (type) instance of ty, denoted by ty ≥Θ ty. Two types ty1 and ty2 are orthogonal, denoted by ty1 # ty2,
if they have no common instance. Ground types are those that contain no type variables, hence remain
unchanged under any type substitution. A type substitution is ground if it maps every type to a ground
type. As ground types only have trivial instances, any two ground types are either equal or orthogonal.

Terms Terms are simply typed λ -expressions, described by the grammar

term = Var string type | Const string type | Comb term term | Abs term term

We only consider well-formed terms, that is, λ -abstractions must be of the form Abs (Var x ty) t, i. e. have
a term variable as first argument representing the binder. A closed term t, denoted closed t, contains only
bound term variables. A term is welltyped if it has a type by the following rules (wherein → abbreviates
the later introduced function type):

Var n ty has_type ty Const n ty has_type ty

s has_type (dty → rty) t has_type dty

Comb s t has_type rty

t has_type rty

Abs (Var n dty) t has_type (dty → rty)

A well-typed term tm has a unique type which we denote typeof tm. Applying a type substitution Θ to a
term means to apply Θ to the types within, e. g. Θ (Const c ty) = Const c (Θ ty) (which we call constant

instance) for a constant Const c ty. Orthogonality extends from types to constant instances:

Const c ty1 # Const d ty2
def

= c 6= d ∨ ty1 # ty2.

A user may introduce (non-built-in) types and constants by theory extension, as described in Sec-
tion 2.3. For types and constants we generally say symbols.

Built-ins We abbreviate

Bool for Tyapp «bool» []
x → y for Tyapp «fun» [x; y]
Equal ty for Const «=» (ty → ty → Bool)
s === t for Comb (Comb (Equal (typeof s)) s) t

Any type with any of these type constructors at the top level is built-in, as is the constant Equal. These
are the only symbols which are not user-defined. A formula is a term of type Bool.

4 Mechanisation of Model-theoretic Conservative Extension for HOL

For a set of types tys we consider its built-in closure, written builtin_closure tys:

Bool ∈ builtin_closure tys

ty ∈ tys

ty ∈ builtin_closure tys

ty1 ∈ builtin_closure tys ty2 ∈ builtin_closure tys

(ty1 → ty2) ∈ builtin_closure tys

Non-built-ins We define operators to collect the non-built-in types of terms and types, and also the
non-built-in constants of terms. The list x• consists of the outermost non-built-in types of a type or term
x.

Bool•
def

= []

(dom → rng)•
def

= dom• ++ rng•

ty•
def

= [ty] otherwise

(Var v0 ty)•
def

= ty•

(Const v1 ty)•
def

= ty•

(Comb a b)•
def

= a• ++ b•

(Abs a b)•
def

= a• ++ b•

As an example, the outermost non-built-in types of map(α→Bool)→α list→Bool list over a polymorphic unary
list type α list are:

(Const «map» ((Tyvar α → Bool)→ (Tyvar α) list → Bool list))• =

[Tyvar α ; (Tyvar α) list; Bool list]

Any type ty can be recovered from built-in types and the type’s outermost non-built-in types:

∀ ty. ty ∈ builtin_closure (ty•)

For terms t, we define the list t◦ to contain all non-built-in constants of t:

(Comb a b)◦
def

= a◦ ++ b◦ (Var x ty)◦
def

= []

(Abs _ a)◦
def

= a◦ (Equal ty)◦
def

= []

(Const c ty)◦
def

= [Const c ty] otherwise

2.2 Inference system

A signature is a pair of functions that assign type constructor names their corresponding arity and con-
stant names their corresponding type. A theory is a pair (s,a) of a signature s and a set of terms (axioms) a.
Gengelbach and Weber [4] consider a fixed signature, that is all symbols are initially declared, and a fixed
set of axioms. Here instead, both the signature and the (possibly non-definitional) axioms may be ex-
tended (see Section 2.3). The functions axsof, tysof and tmsof return the respective components of a
theory or signature.

Derivability of sequents is defined inductively as a ternary relation (thy,hyps) ⊢ p between a the-
ory thy, a list of terms (hypotheses) hyps and a term (conclusion) p. We display three of the standard
inference rules of higher-order logic, with their syntactic well-formedness constraints. The condition
type_ok (tysof ctxt) ty requires that ty is either a type variable or a type constructor applied to the correct
number of arguments, as indicated by its arity in the signature, and that these arguments are also type_ok.
Similarly, term_ok (sigof thy) p requires that p is a well-typed term, and that its types and constants are
instances from the given signature. Finally, theory_ok ctxt requires that in the context ctxt all axioms are
well-formed formulae, the theory has well-typed types and contains at least the built-in symbols.

A. Gengelbach, J. Åman Pohjola & T. Weber 5

theory_ok thy p has_type Bool term_ok (sigof thy) p

(thy,[p]) ⊢ p
ASSUME

theory_ok thy type_ok (tysof thy) ty term_ok (sigof thy) t

(thy,[]) ⊢ Comb (Abs (Var x ty) t) (Var x ty) === t
ABS

(thy,h1) ⊢ l1 === r1 (thy,h2) ⊢ l2 === r2 welltyped (Comb l1 l2)

(thy,h1∪h2) ⊢ Comb l1 l2 === Comb r1 r2
MK_COMB

2.3 Theory extensions

A theory is obtained from the empty theory by incremental updates. A list of updates is a context, and
the function thyof returns the context’s theory.

update =
NewAxiom term

| NewType string num

| NewConst string type

| TypeDefn string term string string

| ConstSpec bool ((string × term) list) term

NewAxiom adds its argument formula to the theory’s set of axioms. NewType and NewConst are type and
constant declarations; they extend the theory’s signature. The remaining TypeDefn and ConstSpec are
definitions of a type and of constants, respectively. Definitions may extend both the signature and the set
of axioms, and we defer their discussion to Sections 2.4 and 2.5.

The updates relation specifies when an update is a valid extension of a context:

prop has_type Bool

term_ok (sigof ctxt) prop

NewAxiom prop updates ctxt

name /∈ domain (tmsof ctxt)
type_ok (tysof ctxt) ty

NewConst name ty updates ctxt

name /∈ domain (tysof ctxt)

NewType name arity updates ctxt

The rule for NewAxiom requires that an axiom is a formula over the context’s signature. The rule for
NewConst requires that the constant’s name is new for the context and that its type is from the context’s
signature. Similarly, the rule for NewType requires that the type name is new for the context.

The reflexive relation ctxt2 extends ctxt1 expresses that a context ctxt2 is obtained from a context ctxt1

by a sequence of updates. The context init_ctxt contains the built-ins, i. e. the types Bool and Fun and
the equality constant. Its extension hol_ctxt also contains a type of individuals, the theory of Booleans,
a Hilbert-choice constant with its characteristic axiom, and the axioms of extensionality and infinity.

6 Mechanisation of Model-theoretic Conservative Extension for HOL

2.4 Type definitions

A type definition TypeDefn name pred abs rep introduces
a new type constructor name defined by its characteristic,
closed predicate pred as a subset of a host type. It makes
available the type Tyapp name l where the argument list
l corresponds to the distinct type variables of pred. A
proof that the predicate is satisfiable is a prerequisite, as
in HOL types are non-empty. Additionally, abstraction
and representation bijections between the new type and
the subset of the host type are axiomatically introduced.

(thyof ctxt,[]) ⊢ Comb pred witness

closed pred

name /∈ domain (tysof ctxt)
abs /∈ domain (tmsof ctxt)
rep /∈ domain (tmsof ctxt)

abs 6= rep

TypeDefn name pred abs rep updates ctxt

2.5 Constant specification

Constant specification ConstSpec ov eqs prop defines possibly several constants by one axiom prop.
For (ci, ti) ∈ eqs, each of the constants ci is introduced by a closed witness term ti, that is, the predi-
cate prop holds assuming all equalities

(thy, [Var c1 (typeof t1) === t1; . . . ;Var cn (typeof tn) === tn]) ⊢ prop.

Each of the variables Var ci serves as a placeholder for Const ci.
If the constant specification is marked as overloading, i. e. if ov is true, the mechanism allows to intro-

duce instances of already declared constants. Non-overloading constant specifications need to introduce
constants with fresh names.

(thyof ctxt,map (λ (s,t). Var s (typeof t) === t) eqs) ⊢ prop

every (λ t. closed t ∧ ∀v. v ∈ tvars t ⇒ v ∈ tyvars (typeof t)) (map snd eqs)
∀x ty. VFREE_IN (Var x ty) prop ⇒ (x,ty)∈ map (λ (s,t). (s,typeof t)) eqs

constspec_ok ov eqs prop ctxt

ConstSpec ov eqs prop updates ctxt

Here VFREE_IN x tm denotes that x is a free term variable in tm. The predicate constspec_ok imposes
two important restrictions on constant specifications: the context resulting from the update needs to be
orthogonal (no two defined symbols have a common type instance), and any introduced overloading of
previously declared constants must not allow cycles through the definitions. We discuss how the latter is
avoided with a dependency relation and define orthogonality of contexts in Section 2.6.

Constant specification generalises the introduction of new constants via equational axioms, as con-
sidered in [4], by allowing implicit definitions.2 For further discussion of its advantages we refer to [2].

2.6 Non-cyclic theories

Cycles in theories with overloaded symbols can be avoided by restricting possible definitions in two
ways that we define in this section. First, dependencies introduced by definitions and declarations need
to be terminating, which is achieved by Kunčar and Popescu through a dependency relation that Åman
Pohjola and Gengelbach [17] extend to its present form. Secondly, declared or defined symbols need
to be orthogonal [15], that is any pair of constants or any pair of types that originates from distinct
definitions is orthogonal.

2For instance, Euler’s number e can be implicitly defined as the real-valued solution of a particular differential equation.

A. Gengelbach, J. Åman Pohjola & T. Weber 7

We write u ≡ t for definitional updates, to mean that either u is introduced by a type definition with
predicate t or otherwise u is one of the constants introduced by a constant specification with the witness t.
For a context ctxt and types or terms u and v the dependency relation u ctxt v holds whenever:

1. There is a definition u ≡ t in the context ctxt and v ∈ t•∪ t◦, or

2. u = Const _ ty is a constant of type ty and v ∈ ty•, or

3. u = Tyapp _ l is a type and v ∈ l.

The first rule applies only to symbols defined by TypeDefn or ConstSpec, whereas the other rules apply
also to symbols declared with NewType and NewConst. Formally is a relation on type + term, a disjoint
union with canonical injections INL and INR.

The (type-)substitutive closure R↓ of a binary relation R relates Θ t1 and Θ t2 if t1 R t2. A relation
R is terminating if there is no sequence (xi)i∈N such that xi R xi+1 for all i ∈N. If a binary relation R is
terminating, its inverse (λxy.yRx) is well-founded.

A context is orthogonal if any two distinct type definitions and any two distinct constant definitions
are orthogonal. Orthogonality ensures that definitional theories have at most one definition for each
ground symbol (recall ground means type-variable free).

Åman Pohjola and Gengelbach prove that a model exists for each orthogonal context with overloaded
definitions whose substitutive closure of the dependency relation is terminating.

2.7 Semantics

In this section we introduce the semantics, which we inherit from Åman Pohjola and Gengelbach [17].

Zermelo-Fraenkel set theory The semantics is parametrised on a universe where the axioms of
Zermelo-Fraenkel set theory (ZF) hold. A model of ZF is not constructible within HOL by Gödel’s
incompleteness argument. This setup is not new [17]. The existence of a set-theoretic universe is also
an assumption in the mechanised proof of soundness of HOL Light (without overloading) [8], and it
originates with Arthan [1].

Although this parametrisation appears as the assumption is_set_theory mem in some theorem state-
ments, in the pretty-printed definitions we often omit the additional argument mem : U ⇒ U ⇒ bool.
Herein, the type variable U is the universe of sets. We also assume is_infinite mem indset, which states
that indset : U is an infinite set.

For set membership mem x s we write x ∈: s. One is a singleton set, Boolset is the set of two distinct
elements True and False, and Boolean : bool ⇒ U injects Booleans from HOL into U in the expected way.
Funspace s r contains as elements all functions with domain s : U and co-domain r : U . Abstract s r f is
the intersection of the graph of f : U ⇒ U with s× r. In the special case that for any x ∈: s we have
(x, f x) ∈: r, then Abstract s r f ∈: Funspace s r. For x ∈: s and g = Abstract s r f , we write g ’ x for f x,
namely the second component of (x, f x) from g.

Lazy ground semantics A pillar of the semantics is a (signature) fragment, which is a tuple (tys,consts)
from a signature sig satisfying:

is_sig_fragment sig (tys,consts)
def

=
tys ⊆ ground_types sig ∧ tys ⊆ nonbuiltin_types ∧ consts ⊆ ground_consts sig ∧

consts ⊆ nonbuiltin_constinsts∧

∀s c. (s,c) ∈ consts ⇒ c ∈ types_of_frag (tys,consts)

8 Mechanisation of Model-theoretic Conservative Extension for HOL

The types tys are ground, non-built-in types from the signature sig. Each constant from consts is non-
built-in and has a ground type from the fragment, where types_of_frag (tys,consts) is defined as the
built-in type closure builtin_closure tys. The total fragment is the largest fragment of a signature sig.

total_fragment sig
def

= (ground_types sig ∩ nonbuiltin_types,ground_consts sig ∩ nonbuiltin_constinsts)

The function δ : type ⇒ U assigns to each non-built-in type of a fragment a value in the universe.
ext δ extends this to built-in types in a standard manner. Similarly, ext γ extends an interpretation of
non-built-in constants γ to the built-in constants. A (fragment) interpretation is a tuple (δ ,γ) such that

is_type_frag_interpretation tys δ
def

= ∀ ty. ty ∈ tys ⇒ inhabited (δ ty)

is_frag_interpretation (tys,consts) δ γ
def

=
is_type_frag_interpretation tys δ ∧ ∀(c,ty). (c,ty) ∈ consts ⇒ γ (c,ty) ∈: ext δ ty

Ground semantics means that only ground instances of types and constants are interpreted. A frag-

ment valuation v assigns to each Var x ty, with Θ ty a (ground) type of the fragment, a value that lies in
the interpretation of Θ ty.

valuates_frag frag δ v Θ
def

=
∀x ty.Θ ty ∈ types_of_frag frag ⇒ v (x,ty) ∈: ext δ (Θ ty)

The term semantics is defined as a continuation of a fragment interpretation, parametrised by a frag-
ment valuation v and a type instantiation Θ .

termsem δ γ v Θ (Var x ty)
def

= v (x,ty)

termsem δ γ v Θ (Const name ty)
def

= γ (name,Θ ty)

termsem δ γ v Θ (Comb t1 t2)
def

= termsem δ γ v Θ t1 ’ (termsem δ γ v Θ t2)

termsem δ γ v Θ (Abs (Var x ty) b)
def

=
Abstract (δ (Θ ty)) (δ (Θ (typeof b))) (λ m. termsem δ γ vL(x,ty) 7→ mM Θ b)

Herein f Lx 7→ yM is the function that at x takes the value y and elsewhere equals f .
The semantics applies type substitutions lazily, i. e. as late as possible and never to the type of term

variables. This avoids a problem [17] with the eager semantics of Kunčar and Popescu: in HOL’s Church-
style atoms, variables Var x (Tyvar a) and Var x Bool are distinct and hence should be allowed to have
different valuations under all type substitutions. With the lazy ground semantics, for Θ (Tyvar a) = Bool

we just have v (x,Tyvar a) ∈: ext δ (Θ (Tyvar a))= Boolset and v (x,Bool) ∈: ext δ (Θ Bool)= Boolset. In
contrast, eager ground semantics erroneously identifies v (x,Θ (Tyvar a)) = v (x,Θ Bool).

We define the satisfaction relation of a fragment interpretation (δ ,γ), hypotheses hyps and a term p

w. r. t. a fragment frag and a type substitution Θ . Every fragment valuation v that satisfies all instantiated
hypotheses must satisfy the instantiated term Θ p.

satisfies frag δ γ Θ (hyps,p)
def

=
∀v.

valuates_frag frag δ v Θ ∧ p ∈ terms_of_frag_uninst frag Θ ∧

every (λ t. t ∈ terms_of_frag_uninst frag Θ) hyps ∧ every (λ t. termsem δ γ v Θ t = True) hyps ⇒

termsem δ γ v Θ p = True

A. Gengelbach, J. Åman Pohjola & T. Weber 9

Satisfaction of hypotheses hyps and a conclusion p w. r. t. a fragment interpretation (δ ,γ) and a signature
sig is quantified over all ground type substitutions of the signature.

sat sig δ γ (hyps,p)
def

=
∀Θ .
(∀ ty. tyvars (Θ ty) = []) ∧ (∀ ty. type_ok (tysof sig) (Θ ty)) ∧
every (λ tm. tm ∈ ground_terms_uninst sig Θ) hyps ∧ p ∈ ground_terms_uninst sig Θ ⇒

satisfies (total_fragment sig) δ γ Θ (hyps,p)

A total fragment interpretation (δ ,γ) is a model of a theory thy if all of the theory’s axioms are satisfied.

models δ γ thy
def

=
is_frag_interpretation (total_fragment (sigof thy)) δ γ ∧

∀p. p ∈ axsof thy ⇒ sat (sigof thy) (ext δ) (ext (ext δ) γ) ([],p)

As the semantic counterpart of derivability (Section 2.2), we define semantic entailment (thy,hyps) � p.

(thy,hyps) � p
def

=
theory_ok thy ∧ every (term_ok (sigof thy)) (p::hyps) ∧
every (λ p. p has_type Bool) (p::hyps) ∧ hypset_ok hyps ∧

∀δ γ . models δ γ thy ⇒ sat (sigof thy) (ext δ) (ext (ext δ) γ) (hyps,p)

The inference system is sound w. r. t. this semantics [17].

3 Symbol-independent fragment

After recapitulating the syntax and semantics in the previous section, we are set to discuss our contribu-
tion. The convenience that constants may be used prior to their definition comes at the price that inter-
pretations of previously introduced symbols may change in extensions that define previously undefined
symbols. For instance, the interpretation may change for defined orderings on lists, lexicographically de-
fined as ≤α list→α list→Bool === lex(≤α→α→Bool), if an update defines any previously undefined instance
of ≤. In this section we carve out the fragment of all symbols that are unaffected by a theory update.

An independent fragment collects constants and types of a host fragment frag whose definitions
within a theory context ctxt are independent of any of the symbols from a set U .

indep_frag ctxt U frag
def

=

let V = { x | ∃Θ u. u ∈ U ∧ x (ctxt
↓)

∗
Θ u } ;

V2 = { (x,ty) | INR (Const x ty) ∈ V } ; V1 = { x | INL x ∈ V } in

(fst frag \ V1,snd frag \ V2)

The set U contains the symbols introduced by a theory extension. In contrast to [4], where U is a singleton
set, we allow the introduction of several symbols at once, e. g. via constant specification. The set V is
the pre-image of type instances Θ u of elements u from U (with Θ a ground type substitution) under the
reflexive-transitive, type-substitutive closure of the dependency relation ctxt . As host fragment frag, we
only consider total fragments (over different signatures). An independent fragment of a total fragment is
indeed a signature fragment, since constants depend on their types.

⊢ ctxt extends init_ctxt ⇒

is_sig_fragment (sigof ctxt) (indep_frag ctxt U (total_fragment (sigof ctxt)))

10 Mechanisation of Model-theoretic Conservative Extension for HOL

We prove this claim in script, to give a flavour of the reasoning involved in the mechanisation.
Thereby we amend the earlier proof [4] for the case where a type substitution ρ and • do not com-
mute on a type ς , i. e. ρ(ς •) 6= ρ(ς)•. (This case had been excluded by a faulty lemma inherited from
Kunčar and Popescu.)

For a fixed context, FU denotes the fragment independent of symbols U , and GType• and GCInst◦

are all types and non-built-in constants of the total fragment, respectively.

Proof. For a ground constant instance cσ ∈ GCInst◦ \V , we show that also its type σ is from the types
of FU . Assume that σ /∈ builtin_closure(GType•\V). Thus σ • 6⊆GType•\V and there is a type τ ∈σ •∩V .
Assuming the dependency cσ

↓+ τ the contradiction cσ ∈ V follows. We now show cσ
↓+ τ for

τ ∈ σ •:
Let cς be a (defined or declared) constant. It holds cς t for t ∈ ς • and thus for any instance cρ(ς)

↓

ρ(t) for t ∈ ς •. Generally, ρ(ς)• 6= ρ(ς •) as Åman Pohjola and Gengelbach notice [17]. If ς is a type
variable or a non-built-in type, ς • = {ς}, then cρ(ς)

↓ ρ(ς) and ρ(ς) t for t ∈ ρ(ς)•. If on the other
hand ς = a→ b is the built-in function type, thus σ is a function type and let ρ be such that ρ(a→ b) =σ .
Any type below σ and above τ ∈ σ • is a function type (as τ ∈ σ • 6= {σ}). If τ is introduced by a type
instantiation, then within a → b there is a type variable α such that ρ(α) syntactically contains τ . Thus
ca→b α by α ∈ (a → b)• and ρ(α) + τ (as in ρ(α) there are only function types above τ). If τ was
not introduced by a type instantiation and τ ′ is the type within a → b such that ρ(τ ′) = τ , then ca→b τ ′

and consequently cρ(a→b)
↓ ρ(τ ′) = τ .

Symbols introduced by a theory extension Until now, the independent fragment has been defined
without regard to the theory extension mechanism, to contain all symbols that are independent of the
symbols from an arbitrary set U . The relevant independent fragments are those that are independent of
a theory extension, i. e. those for which U contains the constant instances and types that are introduced
by a theory update. For an update upd, we set U = upd_introduces upd as the apex of the independent
fragment cone.

upd_introduces (ConstSpec ov eqs prop)
def

= map (λ (s,t). INR (Const s (typeof t))) eqs

upd_introduces (TypeDefn name pred abs rep)
def

=
[INL (Tyapp name (map Tyvar (mlstring_sort (tvars pred))))]

upd_introduces (NewType name arity)
def

=
[INL (Tyapp name (map Tyvar (genlist (λ x. implode (replicate (SUC x) #“a”)) arity)))]

upd_introduces (NewConst name ty)
def

= [INR (Const name ty)]

upd_introduces (NewAxiom prop)
def

= []

For constant specifications and declarations, upd_introduces returns the constants available for use after
the theory update. For type definitions, the introduced type constructor has as arguments all type variables
of the defining predicate sorted by name. Type declarations introduce a type constructor whose arguments
are arity many distinct type variables.

In the definition of upd_introduces we make two choices:

• The independent fragment of an update defining a type τ by a predicate tσ→Bool defines U = {τ}.
For a type substitution ρ either all instances ρ(τ), repρ(σ→τ) and absρ(τ→σ) are in FU or otherwise
in its complement (that we earlier denoted V). Although the proof of said property is non-trivial,
the choice of defining U = {τ} instead of U = {τ , repσ→τ ,absτ→σ} adds the convenience (for case

A. Gengelbach, J. Åman Pohjola & T. Weber 11

analysis in some proofs) that any constant introduced by an update (w. r. t. upd_introduces) does
not come from a type definition.

• As non-definitional axioms generally are not conservative, any symbol’s interpretation may be
affected by such an update, hence we define upd_introduces (NewAxiom prop) def

= [].

We henceforth only regard independent fragments related to theory updates.

indep_frag_upd ctxt upd frag
def

= indep_frag ctxt (upd_introduces upd) frag

The independent fragment of a theory ctxt extended by upd is carved out from the total fragment over
the extended signature, but factually any symbols introduced by the update are not within the fragment:

⊢ let idf = indep_frag_upd (upd::ctxt) upd (total_fragment (sigof (upd::ctxt))) in
upd::ctxt extends init_ctxt ⇒

fst idf ⊆ fst (total_fragment (sigof ctxt)) ∧ snd idf ⊆ snd (total_fragment (sigof ctxt))

Hereby, the upd-independent fragments over the signatures ctxt and upd::ctxt are equal, as each symbol
introduced by the extension by upd depends on a symbol in upd_introduces upd.

4 Model-theoretic Conservativity

In this section we discuss how we construct a model of an extended theory while keeping parts of a model
from the theory prior to extension. With the properties of the construction and an extra assumption on
the given models we prove model-theoretic conservativity.

4.1 Model construction

From a model (∆ ,Γ) of a theory ctxt we construct a model (δ ,γ) of the extension upd::ctxt. Supported
theory extensions are either extensions by definition or declaration of constants or a type, or otherwise
admissible non-definitional axioms. A model of the extended theory is constructed by recursion over
part of the ↓ relation, based on the model (∆,Γ). In contrast, the model construction in [12] obtains a
model from the ground up, by recursion over the entire ↓ relation, without reference to any previous in-
terpretation.

A model is constructed by two mutually recursive functions type_interpretation_ext ind ctxt upd ∆ Γ ty

and term_interpretation_ext ind ctxt upd ∆ Γ c ty that return the interpretation of a type or constant in-
stance, respectively. As arguments these functions take the model (∆ ,Γ) of the theory ctxt, the up-
date upd and an infinite type ind. The model construction for a definitional theory extension upd::ctxt is
guarded with a check: if the symbol to interpret lies in the independent fragment

indep_frag_upd (upd::ctxt) upd (total_fragment (sigof ctxt))

of a definitional update upd, the symbol may be interpreted w. r. t. the model (∆ ,Γ). Otherwise the
symbol’s interpretation is constructed as discussed in earlier work [17, 12, 4].

12 Mechanisation of Model-theoretic Conservative Extension for HOL

Our amendments to the model construction are a few lines each (here the four lines of the second
if branch) in type_interpretation_ext and term_interpretation_ext. The inherited tedious parts are elided.

type_interpretation_ext ind upd ctxt ∆ Γ ty
def

=
if ¬wellformed (upd::ctxt)
then One

else if

(∀ tm. upd 6= NewAxiom tm) ∧
ty ∈ fst (indep_frag_upd (upd::ctxt) upd (total_fragment (sigof ctxt)))
then ∆ ty

else . . .

Requirements for Constant Specification The differing constant definition mechanism entails that
the model construction yields no model, but only a fragment interpretation of the theory’s total fragment.

For a theory ctxt that has a model (∆,Γ) we need to prove that any axiom from ctxt holds in a
model (δ ,γ) of a valid theory extension upd::ctxt. In its proof we are presented with a sub-case that
occurs due to the different definitional mechanism for constants, as compared to Gengelbach and Weber.
We illustrate the problem by an example theory:

Let ctxt be a theory where by constant specification two constants dBool and eBool are defined to be
distinct by the axiom dBool 6= eBool, that holds for the witnesses dBool = False and eBool = (cBool ⇒True)
for a declared-only constant cBool. Let an update upd define cBool = True. For the fragment of ctxt that
is independent of this update of cBool we write F . For a model (∆ ,Γ) of ctxt we have to show that the
axiom dBool 6= eBool holds in the model extension (δ ,γ) for upd::ctxt as obtained from the above model
construction. With dBool ∈ F and eBool 6∈ F , it is impossible to prove that γ(dBool) 6= γ(eBool) as we only
know γ(dBool) = Γ (dBool) and γ(eBool) = true.

In the example two constants are simultaneously introduced and defined in terms of another, and
only one lies in the independent fragment. In the iterative model construction, information is lost on how
constants are interpreted that are dependencies of a symbol. We choose to only extend models where
each defined constant is interpreted as its witness.

We require that all constants, defined by constant specifications in a context ctxt, are interpreted equal
to their witness in a model (∆ ,Γ).

models_witnesses ∆ Γ ctxt
def

=
∀ov cl prop c cdefn ty Θ .

ConstSpec ov cl prop ∈ ctxt ∧ (c,cdefn)∈ cl ∧ ty = typeof cdefn ∧

(c,Θ ty) ∈ ground_consts (sigof ctxt) ∧ (c,Θ ty) ∈ nonbuiltin_constinsts⇒

Γ (c,Θ ty) = termsem (ext ∆) (ext (ext ∆) Γ) empty_valuation Θ cdefn

This added requirement is preserved by the model construction.

⊢ is_set_theory mem ⇒

∀upd ctxt ∆ Γ .
upd::ctxt extends init_ctxt ∧ inhabited ind ∧

is_frag_interpretation (total_fragment (sigof ctxt)) ∆ Γ ∧

models_witnesses ∆ Γ ctxt ⇒

models_witnesses (type_interpretation_ext ind upd ctxt ∆ Γ)
(term_interpretation_ext ind upd ctxt ∆ Γ) (upd::ctxt)

A. Gengelbach, J. Åman Pohjola & T. Weber 13

The restriction to models of theories that satisfy models_witnesses keeps the expressivity of Arthan’s
constant specification and is conservative w. r. t. constant definition.

Alternatively, the problem as depicted in the example can be circumvented through extending the
dependency relation with cross-dependencies. For simultaneously introduced constants d and e, any
dependency x of e (i. e. e x) also becomes a dependency of d (i. e. d x) and likewise with d and
e swapped. Any constants that are introduced together would thereby be assumed to be related, which
reduces expressivity. For two declared constants fα and gBool the otherwise legitimate simultaneous
definition of fα = gα and gBool = True becomes impossible, as it is cyclic: gBool

↓ gBool. Instead each
conjunct would need to be a theory extension on its own.

4.2 Model-theoretic conservativity

In this subsection we introduce our main result. The mechanism to extend theories by definitions or
declarations is model-theoretically conservative if for any theory ctxt with a model (∆ ,Γ) that interprets
any constant witness pair from constant specification equal, any theory extension upd::ctxt (where upd is
a definition or declaration) has a model (δ ,γ) that also satisfies the property:

let idf = indep_frag_upd (upd::ctxt) upd (total_fragment (sigof ctxt)) in

(∀ ty. ty ∈ fst idf ⇒ δ ty = ∆ ty) ∧ ∀c ty. (c,ty) ∈ snd idf ⇒ γ (c,ty) = Γ (c,ty)

If this property holds, it naturally extends to any ground term that is built from built-in types and symbols
from the independent fragment idf . Hence any such term’s interpretation in the new model (δ ,γ) equals
its interpretation in the old model (∆ ,Γ). With the restriction to models that interpret constants as their
witnesses we derive that the construction in Section 4.1 yields a model.

⊢ is_set_theory mem ⇒

∀upd ctxt ∆ Γ .
ctxt extends init_ctxt ∧ inhabited ind ∧ upd updates ctxt ∧

axioms_admissible mem ind (upd::ctxt) ∧ models ∆ Γ (thyof ctxt) ∧ models_witnesses ∆ Γ ctxt ⇒

models (type_interpretation_ext ind upd ctxt ∆ Γ) (term_interpretation_ext ind upd ctxt ∆ Γ)
(thyof (upd::ctxt))

This constructed model trivially satisfies the given property that interpretations from the upd-independent
fragment are kept if the upd is a declaration or a definition.

At different stages in the proof of model-theoretic conservativity, case analysis occurs of how an
update upd may extend a theory ctxt by upd updates ctxt. As an example, proof obligations similar to
the following reoccur frequently in the formalisation. To show that a symbol x keeps its interpretation
in a model extension w. r. t. an update upd, one has to show that x is independent of the update upd by
proving that all dependencies of x are on symbols from the upd-independent fragment.

Future work could investigate if the model construction may be conservative even w. r. t. NewAxiom

updates of admissible axioms from hol_ctxt.

4.3 Consistency

As a consequence of the model construction from the previous section, we obtain consistency of defini-

tional extensions of hol_ctxt, that is extensions that do not contain NewAxiom.

14 Mechanisation of Model-theoretic Conservative Extension for HOL

A theory is consistent if there is a provable and an unprovable sequent. We inherit the following
definition from Kumar et al. [9].

consistent_theory thy
def

=
(thy,[]) ⊢ Var «x» Bool === Var «x» Bool ∧ ¬((thy,[]) ⊢ Var «x» Bool === Var «y» Bool)

As a corollary of our work, the existence of a model of init_ctxt combined with the incremental model
construction yields consistency of definitional extensions of hol_ctxt [12, 17]. The restriction on the in-
terpretations of constants as their witnesses trivially holds in init_ctxt and is an invariant in the induction.

⊢ is_set_theory mem ∧ is_infinite mem ind ⇒

∀ctxt. definitional_extension ctxt hol_ctxt ⇒ consistent_theory (thyof ctxt)

This work thus generalises and replaces the earlier non-incremental model construction [17].

5 Related Work

For untyped first-order logic, extension by definition of predicate and function symbols is discussed by
Shoenfield [19, § 4.6]. A definitions by a predicate extends a theory with an equivalence that contains the
predicate only on the left-hand side; a definition by a function symbol requires the proof that the func-
tion symbol indeed is a mathematical function. These mechanisms are proof-theoretically conservative,
and each model of the original theory has one unique corresponding model of the extended theory. In
consequence, both definitional mechanisms are model-theoretically conservative.

Farmer [3] defines an extension of a theory to be a super-set that is a model-theoretic conservative ex-
tension, hence keeps model interpretation and consistency. By example of simply-typed first-order logic
with extension by algebraic datatypes and constant definitions, the author discusses also weaker notions
of semantic conservativity and its properties w. r. t. theory embeddings, so called theory instantiation.

In their formalisation of HOL Light without overloading [9], Kumar et al. also make model-theoretic
conservativity a requirement for theory extension by definitions or declarations. They denote this prop-
erty sound_update ctxt upd of each such extension of ctxt by upd, and prove consistency by an inductive
argument. As the definition mechanism for constants they use constant specification that allows to in-
troduce multiple constants at once, given witnesses for which the defining axiom is derivable. Constant
specification was first introduced by Arthan [2], and is is implemented in HOL4 [14] and ProofPower.

The study of theoretical foundations of overloaded definitions (together with type classes in higher-
order logic) dates back to Wenzel [20]. For Wenzel an extension mechanism for deductive logics needs
to be syntactically conservative, which he proves for constant definition where all instances are defined
at once. In addition, the considered constant definitions can be unfolded, which is called realisability. In
this discussion the interplay of overloaded constants and type definitions is not considered.

To avoid inconsistencies Obua [15] remarks that the unfolding of definitions needs to terminate for
both type and constant definitions. Further Obua discusses that termination is not semi-decidable for
overloaded definitions that recurse through types. The proof sketch of conservativity of overloading in
Isabelle, he misses that inconsistencies may be introduced by dependencies through types.

For the Isabelle framework with its Haskell-style type classes, Wenzel and Haftmann [7] state re-
quirements on overloading definitions without discussing if these suffice for acyclic dependencies.

Kunčar and Popescu [12] aim to close the consistency gap for definitional theories in Isabelle, in
showing that every definitional theory has a model, by a model construction that recurses into the de-
pendencies of definitions. Fixable gaps in their result are closed in the mechanisation of the model

A. Gengelbach, J. Åman Pohjola & T. Weber 15

construction by Åman Pohjola and Gengelbach [17]. Instead of constant definition their mechanisation
considers Arthan’s constant specification, and gives the above discussed lazy fragment-ground semantics.
We base on their implementation work and generalise their monolithic model construction.

In two works, Kunčar and Popescu study consistency of definitional theories by syntactic arguments.
They encode formulas through an unfolding of definitions into a richer logic HOL with comprehension
types (HOLC) and prove that provability is preserved [13]. Ultimately, definitional theories are consistent
by the consistency of HOLC.

In another paper, they use an unfolding that stays in the logic of HOL [11] by relativising defined
types in formulas to a predicate on the defined type’s host type. The proof-theoretic conservativity
result holds for any definitional theory unfolded into initial HOL, and motivates a dual model-theoretic
conservativity result where any model of initial HOL can be extended to a model of a given definitional
theory. Our paper proves model-theoretic conservativity of two arbitrary definitional theories.

In recent work Gengelbach and Weber [5] prove model-theoretic conservativity of definitional theo-
ries [4] for semantics that do not require full function spaces in order to derive their syntactic counterparts.
A definitional extension of a theory is proof-theoretically conservative, that is, if a formula’s types and
constants are unchanged by a theory update, and the formula is derivable after the update, then it is also
derivable from the theory before the update. Their proof-theoretical result holds for constant definition
and it is unclear how that result is transferable to constant specification with regard to the additional
restriction on models models_witnesses in our proof.

Mizar is a theorem prover that supports overloading of symbols even for overlapping sub-types [6],
where either the interpretation w. r. t. a definition may be specified or the most recently introduced def-
inition is chosen for interpretation. Despite mentions of consistency of this sophisticated mechanism
(e. g. [18]) there is no proof for consistency or conservativity of Mizar.

6 Conclusion

We established that type definitions and constant specifications in HOL with ad-hoc overloading of ar-
bitrary theories above init_ctxt with fixed admissible axioms from hol_ctxt are model-theoretically con-
servative. The result holds for models that interpret each constant introduced by constant specification
equal to the constant’s witness. An interpretation of this result is that the definitional mechanisms of
Isabelle/HOL are semantically speaking robustly designed: at least symbols that are independent of an
update may keep their interpretation in a model extension.

Model-theoretic conservativity has a proof-theoretic (syntactic) counterpart. Roughly, an extension
is proof-theoretically conservative if it entails no new theorems in the original language. In other words,
every formula of the original language that is a theorem in the extension is already provable in the
original theory.

In earlier work, Kunčar and Popescu [11] show that any definitional theory is a proof-theoretically
conservative extension of initial HOL, i. e. hol_ctxt. The semantic counterpart is that any definitional
theory is model-theoretically conservative above initial HOL. Comparably, our semantic conservativity is
stronger as it holds for arbitrary theories above hol_ctxt, which we achieved by utilising the independent
fragment, i. e. a subset of the signature that is independent of a theory extension.

We conjecture that the syntactic counterpart of our result holds: if D′ is an extension of D such that
D′ ⊢ϕ , where ϕ is a formula whose non-built-in constant instances and types are independent of symbols
defined in D′ \ D, then D ⊢ ϕ . Gengelbach and Weber recently proved this conjecture for constant
definition through equality axioms [5]. We leave its study for the more general constant specification

16 Mechanisation of Model-theoretic Conservative Extension for HOL

mechanism [2] to future work.

References

[1] Rob Arthan: HOL Formalised: Semantics. Available at http://www.lemma-one.com/ProofPower/

specs/spc002.pdf.

[2] Rob Arthan (2014): HOL Constant Definition Done Right. In: Interactive Theorem Proving, Springer Inter-
national Publishing, pp. 531–536, doi:10.1007/978-3-319-08970-6_34.

[3] William M. Farmer: A General Method for Safely Overwriting Theories in Mechanized Mathematics Systems.
Available at http://imps.mcmaster.ca/doc/overwriting-theories.pdf.

[4] Arve Gengelbach & Tjark Weber (2017): Model-Theoretic Conservative Extension for Definitional Theories.
In Sandra Alves & Renata Wasserman, editors: 12th Workshop on Logical and Semantic Frameworks, with
Applications, LSFA 2017, Brasília, Brazil, September 23-24, 2017, Electronic Notes in Theoretical Computer
Science 338, Elsevier, pp. 133–145, doi:10.1016/j.entcs.2018.10.009.

[5] Arve Gengelbach & Tjark Weber (2020): Proof-theoretic Conservativity for HOL with Ad-hoc Overloading.
In Violet Ka I Pun, Volker Stolz & Adenilso da Silva Simão, editors: Theoretical Aspects of Computing -
ICTAC 2020 - 17th International Colloquium, Macau, China, November 30 - December 4, 2020, Proceedings,
Lecture Notes in Computer Science 12545, Springer, pp. 23–42, doi:10.1007/978-3-030-64276-1_2.

[6] Adam Grabowski, Artur Kornilowicz & Adam Naumowicz (2010): Mizar in a Nutshell. J. Formalized
Reasoning 3(2), pp. 153–245, doi:10.6092/issn.1972-5787/1980.

[7] Florian Haftmann & Makarius Wenzel (2006): Constructive Type Classes in Isabelle. In Thorsten Altenkirch
& Conor McBride, editors: Types for Proofs and Programs, International Workshop, TYPES 2006, Notting-
ham, UK, April 18-21, 2006, Revised Selected Papers, Lecture Notes in Computer Science 4502, Springer,
pp. 160–174, doi:10.1007/978-3-540-74464-1_11.

[8] Ramana Kumar, Rob Arthan, Magnus O. Myreen & Scott Owens (2014): HOL with Definitions: Semantics,

Soundness, and a Verified Implementation. In: Interactive Theorem Proving, Springer, Cham, pp. 308–324,
doi:10.1007/978-3-319-08970-6_20.

[9] Ramana Kumar, Rob Arthan, Magnus O. Myreen & Scott Owens (2016): Self-Formalisation of Higher-

Order Logic - Semantics, Soundness, and a Verified Implementation. J. Autom. Reasoning 56(3), doi:10.
1007/s10817-015-9357-x.

[10] Ondrej Kuncar (2015): Correctness of Isabelle’s Cyclicity Checker: Implementability of Overloading in

Proof Assistants. In Xavier Leroy & Alwen Tiu, editors: Proceedings of the 2015 Conference on Certified
Programs and Proofs, CPP 2015, Mumbai, India, January 15-17, 2015, ACM, pp. 85–94, doi:10.1145/
2676724.2693175.

[11] Ondrej Kuncar & Andrei Popescu (2018): Safety and conservativity of definitions in HOL and Isabelle/HOL.
PACMPL 2(POPL), pp. 24:1–24:26, doi:10.1145/3158112.

[12] Ondrej Kuncar & Andrei Popescu (2019): A Consistent Foundation for Isabelle/HOL. J. Autom. Reasoning
62(4), pp. 531–555, doi:10.1007/s10817-018-9454-8.

[13] Ondřej Kunčar & Andrei Popescu (2017): Comprehending Isabelle/HOL’s Consistency. In Hongseok Yang,
editor: Programming Languages and Systems - 26th European Symposium on Programming, ESOP 2017,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, Lecture Notes in Computer Science 10201, Springer, pp. 724–749,
doi:10.1007/978-3-662-54434-1_27.

[14] Michael Norrish & Konrad Slind (2014): The HOL System LOGIC. Available at http://downloads.
sourceforge.net/project/hol/hol/kananaskis-10/kananaskis-10-logic.pdf.

[15] Steven Obua (2006): Checking Conservativity of Overloaded Definitions in Higher-Order Logic. In Frank
Pfenning, editor: Term Rewriting and Applications, 17th International Conference, RTA 2006, Seattle, WA,

http://www.lemma-one.com/ProofPower/specs/spc002.pdf
http://www.lemma-one.com/ProofPower/specs/spc002.pdf
http://dx.doi.org/10.1007/978-3-319-08970-6_34
http://imps.mcmaster.ca/doc/overwriting-theories.pdf
http://dx.doi.org/10.1016/j.entcs.2018.10.009
http://dx.doi.org/10.1007/978-3-030-64276-1_2
http://dx.doi.org/10.6092/issn.1972-5787/1980
http://dx.doi.org/10.1007/978-3-540-74464-1_11
http://dx.doi.org/10.1007/978-3-319-08970-6_20
http://dx.doi.org/10.1007/s10817-015-9357-x
http://dx.doi.org/10.1007/s10817-015-9357-x
http://dx.doi.org/10.1145/2676724.2693175
http://dx.doi.org/10.1145/2676724.2693175
http://dx.doi.org/10.1145/3158112
http://dx.doi.org/10.1007/s10817-018-9454-8
http://dx.doi.org/10.1007/978-3-662-54434-1_27
http://downloads.sourceforge.net/project/hol/hol/kananaskis-10/kananaskis-10-logic.pdf
http://downloads.sourceforge.net/project/hol/hol/kananaskis-10/kananaskis-10-logic.pdf

A. Gengelbach, J. Åman Pohjola & T. Weber 17

USA, August 12-14, 2006, Proceedings, Lecture Notes in Computer Science 4098, Springer, pp. 212–226,
doi:10.1007/11805618_16.

[16] Andrew M. Pitts (1993): The HOL Logic. In M.J.C. Gordon & Tom Melham, editors: Introduction to HOL:
A Theorem-Proving Environment for Higher-Order Logic, Cambridge University Press, pp. 191–232.

[17] Johannes Åman Pohjola & Arve Gengelbach (2020): A Mechanised Semantics for HOL with Ad-hoc Over-

loading. In Elvira Albert & Laura Kovács, editors: LPAR23. LPAR-23: 23rd International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, EPiC Series in Computing 73, EasyChair, pp.
498–515, doi:10.29007/413d. Available at https://easychair.org/publications/paper/9Hcd.

[18] Piotr Rudnicki (1992): An Overview of the Mizar Project. In Bengt Nordström, Kent Petersson & Gordon
Plotkin, editors: Proceedings of the 1992 Workshop on Types for Proofs and Programs, pp. 311–332. Avail-
able at http://mizar.org/project/MizarOverview.pdf.

[19] Joseph R. Shoenfield (1967): Mathematical Logic. A.K. Peters, Natick, Mass.

[20] Markus Wenzel (1997): Type Classes and Overloading in Higher-Order Logic. In Elsa L. Gunter & Amy P.
Felty, editors: Theorem Proving in Higher Order Logics, 10th International Conference, TPHOLs’97, Murray
Hill, NJ, USA, August 19-22, 1997, Proceedings, Lecture Notes in Computer Science 1275, Springer, pp.
307–322, doi:10.1007/BFb0028402.

http://dx.doi.org/10.1007/11805618_16
http://dx.doi.org/10.29007/413d
https://easychair.org/publications/paper/9Hcd
http://mizar.org/project/MizarOverview.pdf
http://dx.doi.org/10.1007/BFb0028402

C. Sacerdoti Coen, A. Tiu (Eds.): 15th International Workshop
on Logical Frameworks: Theory and Practice (LFMTP 2020)
EPTCS 332, 2021, pp. 18–34, doi:10.4204/EPTCS.332.2

© P. Papapanagiotou & J. Fleuriot
This work is licensed under the
Creative Commons Attribution License.

Object-Level Reasoning with Logics Encoded in HOL Light

Petros Papapanagiotou
School of Informatics

University of Edinburgh
Edinburgh, United Kingdom
ppapapan@inf.ed.ac.uk

Jacques Fleuriot
School of Informatics

University of Edinburgh
Edinburgh, United Kingdom

jdf@inf.ed.ac.uk

We present a generic framework that facilitates object level reasoning with logics that are encoded
within the Higher Order Logic theorem proving environment of HOL Light. This involves proving
statements in any logic using intuitive forward and backward chaining in a sequent calculus style.
It is made possible by automated machinery that take care of the necessary structural reasoning
and term matching automatically. Our framework can also handle type theoretic correspondences
of proofs, effectively allowing the type checking and construction of computational processes via
proof. We demonstrate our implementation using a simple propositional logic and its Curry-Howard
correspondence to the λ -calculus, and argue its use with linear logic and its various correspondences
to session types.

1 Introduction

Higher order logic (HOL) proof assistants, such as HOL Light [13], provide the means to encode other
languages and prove conjectures specified within them (object-level reasoning). This can help understand
how the objects of an encoded logic behave or develop practical applications using that logic, such as
the development of correct-by-construction programs, type checking, or verification of specific terms or
programs (such as the work on linear logic in Coq by Power et al.[31]).

In practice, performing proofs within an encoding of a custom logic in HOL typically requires the
development of specialised tools and tactics, in what can be seen as a theorem prover within a theorem
prover. These include, for example, mechanisms for fine-grained structural manipulation of the encoded
formulae, customised application of the inference rules, seamless backward and forward chaining, etc.
Users often need to develop such tools in an ad-hoc way in order to reason specifically about the logic
they are interested in, and this drastically increases the effort and time required to obtain a useful encod-
ing. Moreover, such tools may not scale across other logics, leading to a replication of effort.

We present a generic framework and toolset for object-level reasoning with custom logics encoded
in HOL Light. It aims to facilitate the exploration of different logic theories by minimizing the effort
required between encoding the logic and obtaining a proof. Assuming a sequent calculus style encoding
of the logic’s inference rules, it allows their direct and intuitive application both backwards and forwards,
while the system automates most of the structural reasoning required. The implemented tactics can also
be used programmatically to construct automated proof procedures.

An important part of our framework, which sets it apart from similar systems like Isabelle (see Sec-
tion 5.1), is the handling of type theoretical correspondences between encoded logics and programs.
These are inspired by the propositions-as-types paradigm (or Curry-Howard correspondence) between
intuitionistic logic proofs and the λ -calculus [16]. They enable the construction of executable terms in
some calculus via proof, also referred to as computational construction. Terms are attached on each
logical formula, so that the formula represents the type of the term. The application of inference rules on

http://dx.doi.org/10.4204/EPTCS.332.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

P. Papapanagiotou & J. Fleuriot 19

such a term annotated with its type, results in the construction of a more complex computational expres-
sion with some guaranteed correctness properties. Typically, cut-elimination in the proof corresponds to
a reduction or execution step in the constructed term.

Our framework allows the user to easily construct computational terms and test and compare different
logics and the behaviour of their correspondences (or even multiple correspondences of the same logic
at the same time), merely by manipulating the encoding of the inference rules rather than having to
rebuild or repurpose the implemented tools each time. More specifically, our framework allows 2 types
of proofs:

• Type checking proofs involve conjectures whose computational translation is given and the proof
can only succeed if the conjecture is provable and the translation is correct. Such proofs effectively
verify the types of programs.

• Construction proofs involve conjectures whose computational translation is unknown and is con-
structed as the proof progresses. Such proofs allow us to construct programs that match a given
type via proof.

One of the main motivations of our work lies in the variety of computational translations between
linear logic and session types, which we discuss briefly in Section 5.

2 Example: Simple Logic

In order to provide simple examples of the functionality of our system, we focus on a subset of propo-
sitional logic involving only conjunction (×) and implication (→). More specifically, the terms of our
example propositional logic can be defined as follows, using True (T) as a constant/bottom object:

Prop ::= T | Prop×Prop | Prop→ Prop (1)

Our system is tailored to sequent calculus formulations, mainly because sequent calculus deduction
is easier to encode as an inductive definition within HOL (and particularly in HOL Light). Note, however,
that we use an intuitionistic sequent calculus which is equivalent to natural deduction [10].

The inference rules of our simple logic are shown in Figure 1. Note that Γ and ∆ represent contexts,
i.e. finite sequences of formulae that are not affected by the application of the rule.

In the next sections we investigate how this example logic can be encoded in HOL Light and then
how our framework enables object-level proofs automatically without any further coding.

2.1 Encoding

A standard way of encoding such a logic in HOL Light starts by defining the syntax of the terms, in our
case as shown in (1), as an inductive type. Note that, for clarity, we typeset definitions and formulas
using the standard logical symbols for the various connectives instead of the harder to read ASCII-based
syntax of HOL Light. The actual HOL Light implementation is available in the code base (see Section 4)
and we also point out mappings between standard logic and HOL Light syntax where necessary.

We then need to provide the means to describe a sequent based on logical consequence (denoted by
`). A sequent may contain multiple formulas, including multiple copies of the same formula (such as in
the contraction rule C in Figure 1), and is thus often represented using a list of terms.

Like most logics, our example includes an Exchange rule (see Figure 1). This means that the order
of the terms in the sequent is not important, so that A, B `C and B, A `C are semantically identical.

20 Object-Level Reasoning with Logics Encoded in HOL Light

Identity & Cut

A `A Ax
Γ `A ∆, A `C

Γ, ∆ `C Cut

Structural Rules

Γ, A, B, ∆ `C
Γ, B, A, ∆ `C

Exchange Γ `C
Γ, A `C W

Γ, A, A `C
Γ, A `C C

Logical Rules

Γ, A `C
Γ, A×B `C L1×

Γ, B `C
Γ, A×B `C L2× Γ `A ∆ `B

Γ, ∆ `A×B R×

Γ, B `C ∆ `A
Γ, ∆, A→ B `C L→

Γ, A `B
Γ `A→ B R→

Figure 1: The inference rules of the subset of propositional logic used as an example.

For this reason, in paper proofs the Exchange rule is almost always used implicitly, especially in com-
plex proofs which may require a large number of applications of Exchange to manipulate the sequents
in the right form. We avoid their use altogether in our framework by replacing lists of formulas in a
sequent with multisets1. In this case, the mechanism of bringing the sequents in the appropriate form
relies on reasoning about and matching multisets, and these tasks can be automated more efficiently (see
Section 4.2)2.

An existing theory in HOL Light already has many useful formalised properties of multisets, and we
added some more in our own small library extension. A variety of methods and tools, such as multiset
normalisation, needed for our particular tasks were also implemented. Finally, we introduced HOL Light
abbreviations for multiset sums (^) and singleton multisets (’), in order to obtain a cleaner syntax. In
this paper though, for readability, we use the] symbol to denote a multiset sum, whereas enumerated
multisets are enclosed in curly brackets {·}.

Based on the above, the sequent Γ, A `B can be represented using ` as an (infix) boolean function
in the term (Γ]{A}) `B. Note that a context Γ is represented by a multiset variable, i.e. a variable of
type (Prop)multiset, whereas formulas A and B are term variables of type Prop. Also note that other
logics may have additional or different types of arguments. For example, a regular (non-intuitionistic)
sequent calculus will need 2 multisets of terms (left and right side) and some formulations of linear logic
may need 4 multisets of terms (to distinguish linear from non-linear contexts). Our framework can deal
with any of these situations with no additional specification other than the definition of ` as a function.

Using this representation of sequents, the inference rules of the logic can be encoded as an inductive
definition of logical consequence ` as a function |-- in HOL Light. Note that this is different from HOL
Light’s syntax for entailment in proven HOL theorems |-, which we omit here altogether to prevent

1Sets may also be used to eliminate the need for weakening and contraction rules, but we prefer multisets as a more general
approach that allows us to encode Linear Logic (see Section 5).

2However rare, non-commutative (or non-associative) substructural logics do exist, such as Lambeck’s calculus of syntactic
types [18]. These can still be expressed in our framework using lists and will work with our tactics, but will simply not take
advantage of the specialised multiset matching.

P. Papapanagiotou & J. Fleuriot 21

any ambiguity. In the encoding, HOL implication (=⇒) expresses valid derivations between sequents,
making HOL the effective meta-logic. As an example, the R× rule from Figure 1 can be specified in the
definition of ` as follows:

Γ `A=⇒∆ `B=⇒(Γ]∆) `A×B (2)

2.2 Object-level proofs

So far we covered a straightforward encoding of a logic in HOL Light, with tools that are already avail-
able. Given such an encoding, one would expect to be able to do some object-level proofs. Let us take
the commutativity of conjunction (×), i.e. `X×Y → Y ×X as an example of such a proof:

X `X Ax

X×Y `X L1× Y `Y Ax

X×Y `Y L2×

X×Y, X×Y `Y ×X R×

X×Y `Y ×X C

`X×Y → Y ×X R→ (3)

Using vanilla HOL Light, proof (3) can be accomplished using the interactive steps shown in Fig-
ure 2. The actual proof script is available online and executed interactively (see link in Section 4).

Step Tactic Goal(s)
Initial state ∅ `X×Y → Y ×X

1 MATCH_MP_TAC (R→) ∅]{X×Y} `Y ×X
2 MATCH_MP_TAC (C) ∅]({X×Y}]{X×Y}) `Y ×X
3 REWRITE_TAC[MUNION_EMPTY2] {X×Y}]{X×Y} `Y ×X
4 MATCH_MP_TAC (R×) {X×Y} `Y ∧ {X×Y} `X
5 CONJ_TAC {X×Y} `Y {X×Y} `X
6 SUBGOAL_THEN (∅]{X×Y} `Y)... ∅]{X×Y} `Y {X×Y} `X
7 MATCH_MP_TAC (L2×) ∅]{Y} `Y {X×Y} `X
8 REWRITE_TAC[MUNION_EMPTY2] {Y} `Y {X×Y} `X
9 MATCH_ACCEPT_TAC (ID) {X×Y} `X

10 SUBGOAL_THEN (∅]{X×Y} `X)... ∅]{X×Y} `X
11 MATCH_MP_TAC (L1×) ∅]{X} `X
12 REWRITE_TAC[MUNION_EMPTY2] {X} `X
13 MATCH_ACCEPT_TAC (ID)

Figure 2: Interactive steps in HOL Light performing proof (3).

Although there are 7 rule applications in the original proof, the HOL Light script contains almost
double the steps even for such a simple, straightforward proof.

The main tactic that allows the application of inference rules is MATCH_MP_TAC, which matches the
consequent of a HOL implication in a theorem with the goal and sets the antecedent as the new goal. Our
rules are expressed using implication, so MATCH_MP_TAC fits well for this use. However, the consequent
and goal must match exactly for the tactic to work. This forces us to constantly manipulate the structure
of the goal to ensure the rule is applied correctly.

Step 1 is straightforward. Observing the R→ rule in Figure 1 and the initial state, it is clear that
Γ in the rule is matched to the left-hand side of the turnstile, i.e. ∅. The new goal is produced by the

22 Object-Level Reasoning with Logics Encoded in HOL Light

antecedent of the rule Γ, A `B, where the left-hand side becomes Γ]{A}, i.e. ∅]{X ×Y}. The empty
multiset is therefore carried forward in the new goal.

This causes a problem after Step 2, where we want to apply the R× rule. If we were to immediately
apply MATCH_MP_TAC, it would yield the instantiation Γ = ∅ and ∆ = {X ×Y}]{X ×Y}. However,
we would rather have a different context split, i.e. one where Γ = {X ×Y} and ∆ = {X ×Y}. In this
particular case, this is easily solved by eliminating the empty multiset via rewriting with the theorem
MUNION_MEMPTY23, i.e. the property ∀M.∅]M = M. In other cases, this is not as simple to solve. For
example, in Steps 6−7 we need to reintroduce an empty multiset to match with Γ in the L2× rule through
a new subgoal (using SUBGOAL_TAC).

Even through this simple example, it is clear that performing such object-level proofs with an en-
coded logic can be tedious. We need to be able to manipulate the goal state to allow the rules to match,
which often requires multiple steps using rewritting or appropriate rule instantiations. This effort put into
the management of multiset-based context is also encountered in related work [31].

Our framework facilitates this process, alleviating the need for such fine-grained manipulation. More
specifically, it provides both forward and backward reasoning with simple procedural tactics. It also
performs intelligent multiset matching automatically, performing all the necessary manipulations (such
as adding empty multiset as required) in the background. Using our framework, the proof script from
Figure 2 is simplified as shown in Figure 3. Notice how each rule application now only requires a single
proof step in HOL Light, using our ruleseq command described in Section 4.

Step Tactic Goal(s)
Initial state ∅ `X×Y → Y ×X

1 ruleseq (R→) {X×Y} `Y ×X
2 ruleseq (C) {X×Y}]{X×Y} `Y ×X
3 ruleseq (R×) {X×Y} `Y {X×Y} `X
4 ruleseq (L2×) {Y} `Y {X×Y} `X
5 ruleseq (ID) {X×Y} `X
6 ruleseq (L1×) {X} `X
7 ruleseq (ID)

let TIMES_COMM = prove_seq (‘∅ ` X×Y → Y ×X‘,
ETHENL (ETHEN (ruleseq R→) (ETHEN (ruleseq C) (ruleseq R×)))

[ETHEN (ruleseq L2×) (ruleseq ID) ;

ETHEN (ruleseq L1×) (ruleseq ID)]);;

Figure 3: Interactive (top) and packaged (bottom) steps performing proof (3) using our framework.

3 Example: The Curry-Howard isomorphism

Howard’s seminal paper describes the use of first order logic as a system for simply typed λ -calculus
and studies the correspondence of cut elimination to function evaluation in what came to be known as
the Curry-Howard correspondence [16]. Howard uses natural deduction for his formulation, noting how
it is “inappropriate” for Gentzen’s sequent calculus. Girard delves deeper into this distinction between

3https://github.com/PetrosPapapa/hol-light-tools/blob/91f3f1b030728e0edf3ec86732d185207839a8ad/

Library/multisets.ml#L75

https://github.com/PetrosPapapa/hol-light-tools/blob/91f3f1b030728e0edf3ec86732d185207839a8ad/Library/multisets.ml#L75
https://github.com/PetrosPapapa/hol-light-tools/blob/91f3f1b030728e0edf3ec86732d185207839a8ad/Library/multisets.ml#L75

P. Papapanagiotou & J. Fleuriot 23

the two proof systems and provides a translation from natural deduction to intuitionistic sequent calculus
(i.e. sequents with a single conclusion) [10].

To simplify the discussion, we focus on a subset of this type theory involving only function and
product types as primitives, to mirror the simple logic presented in the previous section, but also in the
spirit of Wadler’s discussion of the same topic [34]. The corresponding λ -calculus is defined with the
following syntax:

Lambda ::= Var A | Lambda Lambda | (Lambda,Lambda) | λA. Lambda

This includes variables (Var), function application (f x), products (x,y), and functions (λx. y). Note
that this type definition is polymorphic with respect to the type of variables A. This allows us to describe
the (simple) types of this calculus using any datatype (though typically one would use strings).

We also define two projection functions for products f st and snd so that f st (x,y) = x and snd (x,y) =
y. Normally, projections are added as a primitive constructor of the inductive type. Cut elimination can
then be used to prove what we give by definition here. Since we will not be performing cut elimination
proofs, we employ these definitions as a more pragmatic approach.

Using the above syntax and mirroring the rules shown in Figure 1, the rules of this type theory are
shown in Figure 4.

Identity & Cut

x :A `x :A Ax
Γ `z :A ∆, z :A `x :C

Γ, ∆ `x :C Cut

Structural Rules

Γ, x :A, y :B, ∆ `z :C
Γ, y :B, x :A, ∆ `z :C

Exchange Γ `z :C
Γ, x :A `z :C W

Γ, x :A, x :A `z :C
Γ, x :A `z :C C

Logical Rules

Γ, f st x :A `z :C
Γ, x :A×B `z :C L1×

Γ, snd x :B `z :C
Γ, x :A×B `z :C L2×

Γ `x :A ∆ `y :B
Γ, ∆ `(x,y) :A×B

R×

Γ, f y :B `z :C ∆ `y :A
Γ, ∆, f :A→ B `z :C L→

Γ, Var x :A `y :B
Γ `λx.y :A→ B

R→

Figure 4: The inference rules of the Curry-Howard correspondence for our given subset of propositional
logic.

It is worth mentioning the explicit distinction between any lambda term and specifically variables.
The R→ rule enforces that only variables can be entered in a λ expression, a property which is usually
implicit in such formulations.

In the next sections, we describe how this encoding can be built on top of the previous one in HOL
Light, and explain what kind of object-level proofs we would like to perform.

24 Object-Level Reasoning with Logics Encoded in HOL Light

3.1 Encoding

The encoding of such a type theory can be very similar to the one we described in Section 2.1 for the
same logic without computational components. The main difference is that in this case, our logical
terms are augmented with lambda terms whose types they are describing. For this reason, we define the
operator : (represented as :: in HOL Light to avoid a conflict with its own type annotation) as an infix
term constructor.

The inference rules are defined inductively in the same way, simply using annotated terms instead of
propositions. As an example, the R× rule is defined as follows:

Γ `x :A=⇒∆ `y :B=⇒(Γ]∆) `(x,y) :A×B (4)

It is worth noting that in other types of computational correspondence, such as those involving linear
logic (see Section 5), calculus terms can be attached to the entire sequent (as opposed to formulas within
it). We accomplish this by adding an additional argument to the consequence function (i.e. to `).

3.2 Object-level proofs

As mentioned in Section 1, there are 2 types of proofs that can be performed at the object-level with such
a logic: type checking and construction proofs.

The example proof of commutativity of × from Section 2.2 can be used to type check the function
λx.(snd(Var x), f st(Var x)) as follows:

f st(Var x) :X ` f st(Var x) :X Ax

Var x :X×Y ` f st(Var x) :X
L1×

snd(Var x) :Y `snd(Var x) :Y Ax

Var x :X×Y `snd(Var x) :Y
L2×

Var x :X×Y, Var x :X×Y `(snd(Var x), f st(Var x)) :Y ×X
R×

Var x :X×Y `(snd(Var x), f st(Var x)) :Y ×X
C

`λx.(snd(Var x), f st(Var x)) :X×Y → Y ×X
R→

(5)

Notice how, as far as the logical derivation is concerned, proofs (3) and (5), i.e. the proof with and
without computational annotations, are identical (although type checking a different function of the same
type would require a different proof). Our framework reflects this property, since the proof script from
Figure 3 can be used exactly as is to perform proof (5).

The equivalent construction proof aims to construct the term corresponding to the type X×Y→Y×X
from the proof instead of knowing it a priori. We can express such proofs using existential quantification
in the meta-logic (HOL) to set the following goal:

∃ f . ` f :X×Y → Y ×X

Although type checking proofs can be performed in a relatively straightforward way, using appro-
priate rule applications that match not only the logical but also the computational terms, construction
proofs can be challenging to do even on paper. Although the logical derivation relies only on the logi-
cal terms, the construction of the computational term requires careful tracking of metavariables across
the entire proof. For example, the above proof can only be completed by (iteratively) instantiating f to
λx.(snd(Var x), f st(Var x)).

In our framework, the same proof script from Figure 3 can be used for the construction proof. The
construction is performed automatically in the background, as described in Section 4.4, and the con-
structed term can be extracted once the proof is complete with a simple instantiation of f .

P. Papapanagiotou & J. Fleuriot 25

4 Implementation

In this Section, we describe the key implemented features of our framework. These include the following:
1. Adapted procedural tactics for forward and backward reasoning inspired from Isabelle (Section 4.1).

2. Smarter matching of sequents using multiset matching (Section 4.2) and metavariable unification
(Section 4.4).

3. Updated functions for proof state management and tactic application to allow arbitrary extensions
of the proof state (Section 4.3).

4. Better management of metavariables, ensuring they are carried forward in the extended proof state
for each subgoal (Section 4.3).

5. Functions that facilitate the extraction of constructed components (Section 4.4).
The full implementation, including the examples included in this paper in full detail, can be found

online. The code base is separated into a library of general purpose tools4 (for instance including the
extended tactic system described in Section 4.3 and the multiset theorems used in Section 4.2), and the
logic encoding library itself5. An online tutorial providing a more hands-on guide to encoding the logics
described in this paper and the use of our framework is also provided6.

4.1 Procedural tactics

Traditional use of HOL systems, such as HOL4 and HOL Light, dictates the use of tactics for backwards
reasoning and so called rules for forward reasoning [13]. Tactics are applied on a goal and produce a
(possibly empty) set of new subgoals, whereas rules are functions that combine one or more theorems
or assumptions to derive new facts. One of the main problems with this approach, particularly in the
context of an encoded logic, is that every inference rule needs to be expressed both as a new tactic that
applies the inference backwards (as we would typically want a lot more flexibility than what is offered
by MATCH_MP_TAC) and as a new rule/function that applies the inference forwards. In our example, this
would require 9 new tactics and 9 new rules/functions for the primitive inference rules of our simple
logic in Figure 1 (except the Exchange rule), plus a new tactic and a new function for each derived rule.
Our Curry-Howard encoding from Figure 4 would require a different implementation of another 9 tactics
and 9 rules.

An alternative, more flexible approach can be found in the procedural proof tactics for natural deduc-
tion in Isabelle [29], namely rule, erule, drule and frule. These enable the usage of any arbitrary
theorem in a proof, either as a forward reasoning step (manipulating assumptions – drule and frule),
as a backwards reasoning step (breaking down the goal – rule), or simultaneous forward and backwards
reasoning (erule). They essentially separate the mechanism of matching a rule to a particular goal
state and the rule itself. There are also the four alternatives rule_tac, erule_tac, drule_tac, and
frule_tac, which can be used to partially instantiate a rule before applying it (for example in order to
resolve ambiguities when a rule can be matched to a particular proof state in more than one way). Using
these tactics, one can manipulate custom inference rules from any encoded logic.

For this reason, we make use of our Isabelle Light framework [23], which emulates the aforemen-
tioned Isabelle tactics in HOL Light. It also includes a few tactics for managing metavariables, which
are key to this work (see Section 4.3).

4https://github.com/PetrosPapapa/hol-light-tools
5https://github.com/PetrosPapapa/hol-light-embed
6https://petrospapapa.github.io/hol-light-embed/CurryHoward.html

https://github.com/PetrosPapapa/hol-light-tools
https://github.com/PetrosPapapa/hol-light-embed
https://petrospapapa.github.io/hol-light-embed/CurryHoward.html

26 Object-Level Reasoning with Logics Encoded in HOL Light

The extension of Isabelle Light with the new features described in this work resulted in a new set of
procedural tactics tailored to object level reasoning with encoded sequent calculus logics. The new tactics
with the additional functionality are marked with a “seq” tag in their name. For example, ruleseq is
the extension of rule, whereas rule_seqtac is the extension of rule_tac (and similarly for erule,
drule, and frule).

4.2 Multiset matching

In Section 2.1, we discussed the use of multisets to represent sequents in order to avoid the Exchange
rule, followed by examples of the structural manipulation needed in proofs in Section 2.2. When using
inference rules in our system we aim to match the multisets describing the involved formulas appropri-
ately, with minimum effort from the user.

Let us take the L1× rule as an example:

Γ, A `C
Γ, A×B `C L1×

When matching the context of the conclusion, i.e. Γ]{A×B}, we need to find matches for the Γ multiset
and the {A×B} term.

Let us consider a goal with context {x× y} for some x,y. Our goal here is to obtain the instantiation
{A/x, B/y} in order to split the conjunction. It is obvious, however, that the multisets do not match
directly, as the goal is not a sum]. Although {A×B} matches with {x× y}, there is no component
to match with Γ. Instead, we need to introduce an empty multiset so that the goal’s context becomes
∅]{x× y}.

If, instead, the context of the goal was {x× y}]{z} for some z, the structure would match the ex-
pected sum. However, if we match the multisets directly we would obtain the instantiation {{x× y}/Γ}
and then our match would fail as z and A×B do not match.

Finally, if the context of the goal was a larger sum, such as {x× y}]{z}]{w} for some w, then we
would want Γ to be matched to the whole of {z}]{w}.

We therefore implement an algorithm that properly matches multiset parts of sequents by incorpo-
rating commutativity and associativity of multiset sum]. Performing this type of AC-matching is a
well studied problem [17]. Our particular case incolves matching of terms with no shared variables
(eliminating the need for occurs checks) and no nested AC functions (we only have a single flat level
of multisets), making this problem more tractable than the general case and solvable in P. Our algo-
rithm splits the multisets into their elements, which are either singleton multisets (formulas) or multiset
variables (environments). Then it performs the following matches:

1. First it tries to match elements of the multiset taken from the inference rule that do not contain free
variables, i.e. constants and terms pre-instantiated by the user.

2. Then it tries to match elements that are not variable multisets. In our example, {A⊗ B} is a
singleton set that will be matched first.

3. Multiset variables (such as Γ in our example) are left for last because they can match any part
of the target. If the target does not have enough elements for all such multiset variables, they
are matched to the empty multiset, whereas if there are more elements left in the goal than the
available variables, they are combined into a single multiset sum.

P. Papapanagiotou & J. Fleuriot 27

If a match is found for all elements of the rule, the rule is instantiated accordingly. We then apply
multiset normalisation via rewriting with the properties of multiset sum, which leads to the rule and the
target (goal and assumption) to match exactly, thus allowing the appropriate LCF style justification of
the rule application.

As an extra step, we eliminate any remaining empty multisets from the resulting subgoals. These
are viewed as part of the internal mechanics of structural manipulation and outside of the encoded logic.
They should not be of interest to the user, instead making the proof goal more confusing.

It is worth noting that our algorithm does not currently support backtracking when matching multiset
variables. It merely attempts to find one possible match, under the assumption that if the user needs a
different match, they will explicitly instantiate the rule (see Section 4.1) to guide the algorithm accord-
ingly. Supporting backtracking is non-trivial as it requires an explicit interaction with the proof state and
the tactic application mechanisms, but we are considering it as future work as it can prove particularly
useful in automated proof procedures.

4.3 Metavariables

Metavariables in a proof are variables whose instantiations are deferred to later stages in the proof or
until the proof is finished. They are particularly useful in a construction proof, where the computational
translation (i.e. the λ -calculus term in our example) is initially unknown and constructed during the proof
(see Section 3.2). It is worth noting that, although metavariables exist as a feature in HOL Light, they
are rarely used and are seen as “a bit of a historical accident”7. However, in our case they are essential
in order to construct computational translations.

Metavariables are shared by all subgoals of a proof, and thus HOL Light stores them beyond the scope
of any single subgoal. In contrast, HOL Light tactics are functions that apply to a single subgoal. As a
result, tactics have no access to any information on already existing metavariables. This causes problems
during the application of our tactics, since they need to (a) be able to freely instantiate metavariables to
anything that matches and (b) ensure that metavariables that are newly introduced during construction
are fresh.

We address this issue by enhancing HOL Light so that tactics can handle subgoals extended with
additional information about the proof state (as a state monad). We call these extended tactics etactics
and their definition, contrasted to the definition of a regular HOL Light tactic is shown below:

type tactic = goal -> goalstate ;;

type ’a etactic = ’a -> goal -> (goalstate * ’a) ;;

Note that ’a is a type variable that allows the state to be of any type. In our case, this extension
allows for our tactics to be given (a) an integer counter that ensures freshness of new variables (similarly
to the genvar mechanism of HOL Light) and (b) the list of currently used metavariables, in addition to
the target subgoal.

The functions eseq, prove_seq, ETHEN, ETHENL, EORELSE, etc. shown in our examples are part of
this extension, are therefore applicable to etactics, and correspond to the HOL Light functions e (apply
a tactic interactively), prove (prove a lemma with a composite tactic), THEN (sequential application of
tactics), THENL (apply a tactic and then apply a list of tactics, each to one of the produced subgoals),
ORELSE (try to apply a tactic and if it fails apply a different tactic), etc. Note that, the original HOL Light
tactics can be used within this extension with the ETAC keyword:

7Personal communication with John Harrison, 2009.

28 Object-Level Reasoning with Logics Encoded in HOL Light

let (ETAC: tactic -> ’a etactic) = fun tac s g -> tac g,s ;;

Another challenge in the effective use of metavariables lies in the justification of every rule ap-
plication. The LCF approach adopted in HOL Light requires that every tactic application can formally
reproduce the original goal from its generated subgoals. Metavariables make this more challenging as the
original goal and subgoals may mutate at any point based on the instantiation of their metavariables. The
justification mechanisms for ruleseq and the other tactics successfully deal with this issue. Moreover,
our efforts on this front uncovered a 20 year old bug with metavariable instantiations in HOL Light8.

4.4 Construction

Computational construction in HOL Light proofs is enabled through the use of metavariables. Unknown
computational components (i.e. λ -calculus annotations in our example) are treated as metavariables that
are gradually instantiated through the application of the inference rules. Note that when using an infer-
ence rule, any variables that are not matched to any (sub)terms of the assumptions or the goal are added
as metavariables in the new subgoals. At the end of the proof, applying the resulting instantiations to the
initial goal’s metavariables gives us the computational terms resulting from that proof.

To demonstrate how such construction proofs work in our framework, let us return to the proof of
commutativity of × discussed in Section 3.2:

∃ f . ` f :X×Y → Y ×X (6)

First, we use the HOL Light META_EXISTS_TAC tactic to eliminate the existential quantifier and add
the variable f to the list of metavariables, which allows it to be instantiated gradually in the attempt to
find the correct witness. We then perform a backwards proof, by applying the associated inference rules.
The first step, involves the R→ rule:

Γ, Var x :A `y :B
Γ `λx.y :A→ B

R→

The backwards application of the rule (using ruleseq) tries to match the conclusion of the rule
Γ `λx.y :A→B to the current goal ` f :X×Y→Y×X . Knowing that f is a metavariable, the framework
uses unification instead of matching. This yields the following instantiation:

{λx.y/ f , X×Y/A, Y ×X/B, ∅/Γ} (7)

Note that x and y are variables in the rule that are not matched to any subterms in the goal, so they are
added as metavariables in the new goal Var x :X×Y `y :Y ×X .

The contraction (C) step simply yields the goal Var x :X ×Y, Var x :X ×Y `y :Y ×X . We then want
to apply the R× rule (with all variables primed for freshness):

Γ′ `x′ :A′ ∆′ `y′ :B′

Γ′, ∆′ `(x′,y′) :A′×B′
R×

Following the same unification mechanism as before, we obtain the new instantiation:

{(x′,y′)/y, Y/A′, X/B′, {Var x :X×Y}/Γ
′, {Var x :X×Y}/∆

′} (8)

8https://github.com/jrh13/hol-light/pull/52

https://github.com/jrh13/hol-light/pull/52

P. Papapanagiotou & J. Fleuriot 29

At this point, we can observe the gradual instantation of f , by composing the 2 instantations (7)
and (8), yielding {λx.(x′,y′)/ f}.

The rest of the proof yields further instantations of the metavariables x′ and y′, eventually resulting
in the final instantation for f , namely λx.(snd(Var x), f st(Var x)). It is worth noting that x is still a
metavariable in this final result, having never been instantiated to anything else in the proof.

This process demonstrates a fruitful use of metavariable unification and instantiation to allow con-
struction proofs. This is only achieveable thanks to the multiset matching and metavariable management
functionality described in the previous sections.

One of the key benefits of this approach is that the user never deals with any of the computational
terms explicitly. In fact, one can install a custom term printer in HOL Light to hide the λ terms com-
pletely from the proof, whilst the proof script remains unaffected. This is in-line with the natural expec-
tation that the logical proof should not be affected by the computational annotations.

In addition to this, we have introduced a constr_prove command to further facilitate construction
proofs. As previously mentioned, construction proofs produce existenatially quantified lemmas, such
as (6). These are not very practical, as the constructed term is not visible in the lemma, but can only
extracted through the metavariables in the finished proof state. The constr_prove command proves the
existentially quantified goal, then strips the quantifiers and replaces the variables with the constructed
terms. This results in a proven theorem with all the constructed components instantiated.

For instance, consider the following command, which proves lemma (6) using a packaged version of
the proof script from Figure 3:

constr_prove (‘∃ f . ∅ ` f :X×Y → Y ×X‘,
ETHENL (ETHEN (ruleseq R→) (ETHEN (ruleseq C) (ruleseq R×)))

[ETHEN (ruleseq L2×) (ruleseq ID) ;

ETHEN (ruleseq L1×) (ruleseq ID)]);;

This command will yield the theorem ∅ `λx.(snd(Var x), f st(Var x)) :X×Y → Y ×X directly.
In addition to making the user workflow for producing constructed lemmas easier, this facilitates

the development of libraries of lemmas for different correspondences of the same logic, because the
computational terms associated with each lemma do not need to be explicit. For example, if one chose
to use a different correspondence of our simple logic, other than the Curry-Howard correspondence
to λ -calculus, they would need to change the original encoding, by adapting the inductive definition
of `. However, the proof involving constr_prove shown above would still be valid and it would
automatically generate the correct theorem based on the new correspondence.

4.5 Usage and Integration with HOL Light

The implemented generic tactics integrate well within the (extended) tactic system of HOL Light. More
specifically, they can be used at different levels, such as the following:

1. Interactively: They allow the application of inference rules of the encoded logic in a step-by-step
interactive proof setting, using the eseq command.

2. In packaged proofs: HOL Light proofs are traditionally packaged in a prove statement by com-
bining the tactics that achieve the proof using the so-called tacticals such as THEN and EVERY.
Our introduced tactics can also be combined in the same way, with the extended tacticals ETHEN,
EEVERY, etc. For example, the packaged verification proof of the commutativity of × is shown at
the bottom half of Figure 3.

30 Object-Level Reasoning with Logics Encoded in HOL Light

3. Programmatically: Our procedural tactics facilitate the construction of advanced procedures for
proofs in the encoded logics. For instance, they can be directly used within proof search algo-
rithms, helping to reduce the overhead of manipulating the structure of the sequents. Our imple-
mentation includes an example of such an automated proof procedure of a type of Linear Logic
proofs (see Section 5).

4. Visually: In related research, our tactics have proven useful in the context of diagrammatic reason-
ing [26]. In this, the user performs gestures in a purely graphical interface. Each gesture triggers a
reasoning task in our encoded Linear Logic, and this is accomplished via the framework described
in the current work.

5 Further Examples: Linear Logic

So far, our discussion revolved around a simple subset of propositional logic and its well studied corre-
spondence to λ -calculus. The usefulness of our framework becomes more apparent when one considers
that it can work in the exact same way with the encoding of any logic or correspondence, without the
need for any further configuration or metadata of any kind.

A particular logic, which has multiple evolving correspondences, is linear logic [9], a substructural
logic with no weakening or contraction rules. In the 90s, Abramsky, Bellin and Scott developed the
proofs-as-processes paradigm [1, 2], introducing a correspondence between Classical Linear Logic and
the π-calculus [21] and forming a type system for deadlock-free concurrent processes. We have used this
paradigm in conjunction with our reasoning framework extensively for the specification and composition
of workflow processes using Classical Linear Logic [25], with real-world applications in the modelling
of clinical pathways in the healthcare domain [27, 24].

As the use of concurrent systems has scaled up dramatically in the past decade, reasoning about their
properties, including attempts to ensure deadlock freedom and session fidelity, has been a major research
track in concurrency theory for the past years and is an ongoing effort. This effort has brought forth the
emergence of new correspondences of linear logic to session types [15], which are used to provide richer
semantics for the types of communicated values and session-based protocols in mobile processes [8].

Caires et al. use Intuionistic Linear Logic terms to describe session types and attach them via a
proofs-as-processes style to π-calculus channels [4]. Subsequent published papers describe further de-
velopments of this theory, including a version for asynchronous communication [7], a comparison to
a Classical Linear Logic based version [5], and the use of dependent session types to describe proper-
ties about the information being communicated [32, 30]. In parallel to this track, Wadler developed a
propositions-as-sessions theory [33]. In it, he chooses to loosen the connection to the original π-calculus
by introducing a new process calculus named CP. Reductions in CP are defined based on cut-elimination
steps in Classical Linear Logic, instead of being defined separately and then having their correspondence
to cut-elimination proven. Further developments in the correspondence between linear logic and session
types are being produced to this day [14].

Our framework has the capacity to work hand-in-hand with the meta-theoretic efforts in these strands
of work, by providing a formal setting to produce object-level proofs. This can help generate actual
process instances using linear logic proofs and examine their properties. For instance, this can shine
light into how new session type languages, such as Wadler’s CP, can behave in practice.

To demonstrate this, our implementation9 includes 2 example encodings of linear logic. The first,
is an encoding of Intuitionistic Linear Logic with no correspondence. The second is an encoding of

9https://github.com/PetrosPapapa/hol-light-embed/blob/master/Examples/

https://github.com/PetrosPapapa/hol-light-embed/blob/master/Examples/

P. Papapanagiotou & J. Fleuriot 31

the propositions-as-sessions paradigm, i.e. a correspondence of Classical Linear Logic to CP. The latter
includes an automated tactic that can prove a type of linear logic sequents within this encoding.

It is worth noting that both these examples and the Curry-Howard encoding described in this paper
can all be loaded in HOL Light at the same time, and managed by the same set of tactics we discussed.

5.1 Related Work

There are strong similarities between our system and the core design of Isabelle [28, 29], which pro-
vides support for a variety of formal theories, such as Higher Order Logic (Isabelle/HOL) and Zermelo-
Fraenkel set theory (Isabelle/ZF). Essentially, it exposes an intuitionistic meta-logic (Isabelle/Pure) that
enables the encoding of different theories, and the development of sophisticated proof tactics and pro-
cedures for both interactive and automated theorem proving within those theories. Our work draws
inspiration from this approach and enables similar functionality (for instance our encoding of Intuition-
istic Linear Logic10 strongly resembles the one in Isabelle11). The key difference lies in the ability to
construct an initially unknown computation of a given type using any given set of primitive logic/type
rules annotated with their computational translation. Simple synthesis using Constructive Type Theory
has been shown to be possible in Isabelle12, but has not been investigated to any depth since its for-
malisation almost 30 years ago by Paulson. Moreover, we use HOL Light’s Higher Order Logic as the
meta-logic which is more expressive than Isabelle, but narrows the kinds of logics whose use we can
automate.

We employ a similar perspective in terms of multiset sequents to embed logics to that of Dawson and
Goré’s implementation in Isabelle/HOL [6]. While their work is further evidence of the need and useful-
ness of frameworks for arbitrary encoded logics, it focuses on reasoning about meta-theoretic properties.
Instead, our framework is designed to tackle object-level reasoning and computational construction at
that level.

Other systems that are known to rely on the propositions-as-types paradigm such as Coq [3] and
Agda [22] have efficient, specialised procedures to deal with computational construction, but these are
exclusive to their particular underlying type systems. They are not generic and so cannot be used to
reason with different logics or correspondences.

Another similar approach is that of λProlog, a logic programming-based system aimed at hosting
encodings of different logics and calculi [20]. For example, Forum is a linear logic based meta-logic built
on top of λProlog [19]. Although λProlog allows more expressive encodings and provides proof search
by default (based on its logic programming backend), it cannot support construction proofs because of its
lack of support for metavariables (as argued by Guidi et al. who suggest potential extensions to achieve
this [12]). Moreover, λProlog does not provide the guarantees of correctness of modern theorem provers,
e.g. via the LCF approach [11], as is the case here with HOL Light.

In principle, other logical frameworks, such as Isabelle and Coq, would allow a similar implementa-
tion, and we believe some of the ideas and techniques presented here could transfer over. We chose HOL
Light because it is a powerful system that allows interaction at a low level, resulting in much flexibility
and programmability. For instance, it allows direct access to the proof structure and involved terms,
which facilitates the development of sophisticated custom tactics or even an entire extension of the proof
system as described in Section 4.3.

10https://github.com/PetrosPapapa/hol-light-embed/blob/master/Examples/ILL.ml
11https://isabelle.in.tum.de/dist/library/Sequents/Sequents/ILL.html
12https://isabelle.in.tum.de/dist/library/CTT/CTT

https://github.com/PetrosPapapa/hol-light-embed/blob/master/Examples/ILL.ml
https://isabelle.in.tum.de/dist/library/Sequents/Sequents/ILL.html
https://isabelle.in.tum.de/dist/library/CTT/CTT

32 Object-Level Reasoning with Logics Encoded in HOL Light

6 Conclusion

In summary, we presented a generic framework for object-level reasoning with encoded logics within
HOL Light. We assume the inference rules of an encoded logic are encoded in a sequent calculus style,
through the definition of logical inference as a function of logical terms.We focus on sequents that consist
of multisets of terms, allowing their arbitrary ordering, though this is not necessarily a requirement.

The framework then exposes tactics, originally inspired by Isabelle’s procedural natural deduction
tactics, that allow intuitive forward and backward application of these rules. They automatically take
care of structural reasoning and appropriate construction of the computational component. The latter
provides the means for extracting correct-by-construction terms via any correspondence in the style of
Curry-Howard. The tactics rely on a complex implementation involving multiset matching, unification,
and metavariables. Although they work within an extended tactic system, they can integrate with the
HOL Light proof environment, and can be used interactively, in packaged proofs, programmatically (for
example to construct automated proof procedures), or even visually.

We demonstrated the functionality of the tactics through a simple propositional logic and its λ -
calculus correspondence. Encodings of linear logic and its correspondence to the π-calculus or to session
types, two of which are included as examples in the framework, showcase the usefulness of this work
towards the study and development of deadlock-free software with session types.

Future goals include optimisations in terms of efficiency and metavariable management. We will also
study the encoding of quantified object logics, as part of a more in-depth consideration of the full capa-
bilities and limitations of the framework. Moreover, we are exploring ways to support natural deduction
style rules in addition to the currently supported sequent calculus style.

We believe our implementation provides the basis for facilitated encodings of logics within HOL
Light, without the need to reimplement an entire proof engine from scratch. This creates the potential to
easily and effectively test the behaviour of different logics and their computational translations. Based
on this, our framework can prove to be powerful tool for research in type theory and programming
languages, in addition to its already successful application in process specification and composition and
the healthcare domain.

Acknowledgement

We would like to thank the attendees of Logical Frameworks and Meta Languages: Theory and Practice
(LFMTP) 2020 and the anonymous reviewers for their constructive feedback.

References

[1] S. Abramsky (1994): Proofs as processes. Theoretical Computer Science 135(1), pp. 5–9, doi:10.1016/0304-
3975(94)00103-0.

[2] G. Bellin & PJ Scott (1994): On the π-calculus and linear logic. Theoretical Computer Science 135(1), pp.
11–65, doi:10.1016/0304-3975(94)00104-9.

[3] Y. Bertot, P. Castéran, G. Huet & C. Paulin-Mohring (2004): Interactive theorem proving and program devel-
opment: Coq’Art: the calculus of inductive constructions. Springer-Verlag New York Inc, doi:10.1007/978-
3-662-07964-5.

http://dx.doi.org/10.1016/0304-3975(94)00103-0
http://dx.doi.org/10.1016/0304-3975(94)00103-0
http://dx.doi.org/10.1016/0304-3975(94)00104-9
http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1007/978-3-662-07964-5

P. Papapanagiotou & J. Fleuriot 33

[4] Luı́s Caires & Frank Pfenning (2010): Session Types as Intuitionistic Linear Propositions. In Paul Gastin &
Francois Laroussinie, editors: CONCUR 2010 - Concurrency Theory, Lecture Notes in Computer Science
6269, Springer Berlin Heidelberg, pp. 222–236, doi:10.1007/978-3-642-15375-4 16.

[5] Luı́s Caires, Frank Pfenning & Bernardo Toninho (2012): Towards concurrent type theory. In: Proceedings
of the 8th ACM SIGPLAN workshop on Types in language design and implementation, TLDI ’12, ACM,
New York, NY, USA, pp. 1–12, doi:10.1145/2103786.2103788.

[6] Jeremy E. Dawson & Rajeev Goré (2010): Generic Methods for Formalising Sequent Calculi Applied to
Provability Logic. In Christian G. Fermüller & Andrei Voronkov, editors: Logic for Programming, Artificial
Intelligence, and Reasoning, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 263–277, doi:10.1007/978-
3-642-16242-8 19.

[7] Henry DeYoung, Luı́s Caires, Frank Pfenning & Bernardo Toninho (2012): Cut Reduction in Linear Logic as
Asynchronous Session-Typed Communication. In Patrick Cégielski & Arnaud Durand, editors: Computer
Science Logic (CSL’12) - 26th International Workshop/21st Annual Conference of the EACSL, Leibniz
International Proceedings in Informatics (LIPIcs) 16, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, pp. 228–242, doi:10.4230/LIPIcs.CSL.2012.228.

[8] Simon J. Gay, António Ravara & Vasco T. Vasconcelos (2003): Session Types for Inter-Process Communica-
tion. Technical Report TR-2003-133, Department of Computing Science, University of Glasgow.

[9] Jean-Yves Girard (1995): Linear Logic: its syntax and semantics. In Jean-Yves Girard, Yves Lafont &
Laurent Regnier, editors: Advances in Linear Logic, London Mathematical Society Lecture Notes Series
222, Cambridge University Press, doi:10.1017/CBO9780511629150.

[10] Jean-Yves Girard, Paul Taylor & Yves Lafont (1989): Proofs and Types. Cambridge University Press, New
York, NY, USA.

[11] M. Gordon, R. Milner & C. P. Wadsworth (1979): Edinburgh LCF: A Mechanized Logic of Computation
(Lecture Notes in Computer Science), first edition. 78, Springer-Verlag, doi:10.1007/3-540-09724-4 3.

[12] Ferruccio Guidi, Claudio Sacerdoti Coen & Enrico Tassi (2016): Implementing Type Theory in Higher Order
Constraint Logic Programming. Working paper or preprint.

[13] J. Harrison (1996): HOL Light: A tutorial introduction. Lecture Notes in Computer Science, pp. 265–269,
doi:10.1007/BFb0031814.

[14] Bas van den Heuvel & Jorge A. Pérez (2020): Session Type Systems based on Linear Logic: Clas-
sical versus Intuitionistic. Electronic Proceedings in Theoretical Computer Science 314, p. 1–11,
doi:10.4204/eptcs.314.1.

[15] Kohei Honda (1993): Types for dyadic interaction, pp. 509–523. Springer, Berlin, Heidelberg, doi:10.1007/3-
540-57208-2 35.

[16] William A. Howard (1980): The formulas-as-types notion of construction. In J. P. Seldin & J. R. Hindley,
editors: To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism, Academic Press,
pp. 479–490. Reprint of 1969 article.

[17] Deepak Kapur & Paliath Narendran (1992): Complexity of unification problems with associative-
commutative operators. Journal of Automated Reasoning 9(2), pp. 261–288, doi:10.1007/BF00245463.

[18] Joachim Lambek (1961): On the calculus of syntactic types. Structure of language and its mathematical
aspects 166, p. C178, doi:10.1090/psapm/012.

[19] Dale Miller (1996): Forum: A multiple-conclusion specification logic. Theoretical Computer Science 165(1),
pp. 201 – 232, doi:10.1016/0304-3975(96)00045-X.

[20] Dale Miller & Gopalan Nadathur (2012): Programming with Higher-Order Logic, 1st edition. Cambridge
University Press, New York, NY, USA, doi:10.1017/CBO9781139021326.

[21] Robin Milner (1991): The polyadic n-calculus: a tutorial. Logic and Algebra of Specification 94, pp. 91–180,
doi:10.1007/978-3-642-58041-3 6.

http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1145/2103786.2103788
http://dx.doi.org/10.1007/978-3-642-16242-8_19
http://dx.doi.org/10.1007/978-3-642-16242-8_19
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.228
http://dx.doi.org/10.1017/CBO9780511629150
http://dx.doi.org/10.1007/3-540-09724-4_3
http://dx.doi.org/10.1007/BFb0031814
http://dx.doi.org/10.4204/eptcs.314.1
http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1007/BF00245463
http://dx.doi.org/10.1090/psapm/012
http://dx.doi.org/10.1016/0304-3975(96)00045-X
http://dx.doi.org/10.1017/CBO9781139021326
http://dx.doi.org/10.1007/978-3-642-58041-3_6

34 Object-Level Reasoning with Logics Encoded in HOL Light

[22] Ulf Norell (2007): Towards a practical programming language based on dependent type theory. Ph.D. thesis,
Chalmers University of Technology.

[23] Petros Papapanagiotou & Jacques Fleuriot (2010): An Isabelle-Like Procedural Mode for HOL Light. In
Christian G. Fermüller & Andrei Voronkov, editors: Logic for Programming, Artificial Intelligence, and
Reasoning, Lecture Notes in Computer Science 6397, Springer, pp. 565–580, doi:10.1007/978-3-642-16242-
8 40.

[24] Petros Papapanagiotou & Jacques Fleuriot (2015): Modelling and Implementation of Correct by Construction
Healthcare Workflows, pp. 28–39. Springer International Publishing, Cham, doi:10.1007/978-3-319-15895-
2 3.

[25] Petros Papapanagiotou & Jacques Fleuriot (2019): A Pragmatic, Scalable Approach to Correct-by-
Construction Process Composition Using Classical Linear Logic Inference. In Fred Mesnard & Peter J.
Stuckey, editors: Logic-Based Program Synthesis and Transformation, Springer International Publishing,
Cham, pp. 77–93, doi:10.1007/978-3-030-13838-7 5.

[26] Petros Papapanagiotou, Jacques Fleuriot & Sean Wilson (2012): Diagrammatically-Driven Formal Verifica-
tion of Web-Services Composition. In Philip Cox, Beryl Plimmer & Peter Rodgers, editors: Diagrammatic
Representation and Inference, Lecture Notes in Computer Science 7352, Springer Berlin Heidelberg, pp.
241–255, doi:10.1007/978-3-642-31223-6 25.

[27] Petros Papapanagiotou & Jacques D. Fleuriot (2013): Formal verification of collaboration patterns in health-
care. Behaviour & Information Technology, pp. 1–16, doi:10.1080/0144929X.2013.824506.

[28] Lawrence C. Paulson (1990): Isabelle: The Next 700 Theorem Provers. Logic and Computer Science 31, p.
361–386.

[29] Lawrence C. Paulson (1994): Isabelle: A Generic Theorem Prover. Lecture Notes in Computer Science 828,
Springer, doi:10.1007/BFb0030541.

[30] Frank Pfenning, Luis Caires & Bernardo Toninho (2011): Proof-Carrying Code in a Session-Typed Process
Calculus. In Jean-Pierre Jouannaud & Zhong Shao, editors: Certified Programs and Proofs, Lecture Notes in
Computer Science 7086, Springer Berlin Heidelberg, pp. 21–36, doi:10.1007/978-3-642-25379-9 4.

[31] J. Power, C. Webster, C. Maynooth & I. Kildare (1999): Working with Linear Logic in Coq. In: 12th
International Conference on Theorem Proving in Higher Order Logics, Work-in-Progress Report.

[32] Bernardo Toninho, Luı́s Caires & Frank Pfenning (2011): Dependent session types via intuitionistic
linear type theory. In: Proceedings of the 13th international ACM SIGPLAN symposium on Princi-
ples and practices of declarative programming, PPDP ’11, ACM, New York, NY, USA, pp. 161–172,
doi:10.1145/2003476.2003499.

[33] Philip Wadler (2014): Propositions as sessions. Journal of Functional Programming 24(2-3), p. 384–418,
doi:10.1017/S095679681400001X.

[34] Philip Wadler (2015): Propositions As Types. Commun. ACM 58(12), pp. 75–84, doi:10.1145/2699407.

http://dx.doi.org/10.1007/978-3-642-16242-8_40
http://dx.doi.org/10.1007/978-3-642-16242-8_40
http://dx.doi.org/10.1007/978-3-319-15895-2_3
http://dx.doi.org/10.1007/978-3-319-15895-2_3
http://dx.doi.org/10.1007/978-3-030-13838-7_5
http://dx.doi.org/10.1007/978-3-642-31223-6_25
http://dx.doi.org/10.1080/0144929X.2013.824506
http://dx.doi.org/10.1007/BFb0030541
http://dx.doi.org/10.1007/978-3-642-25379-9_4
http://dx.doi.org/10.1145/2003476.2003499
http://dx.doi.org/10.1017/S095679681400001X
http://dx.doi.org/10.1145/2699407

C. Sacerdoti Coen, A. Tiu (Eds.): 15th International Workshop
on Logical Frameworks: Theory and Practice (LFMTP 2020)
EPTCS 332, 2021, pp. 35–53, doi:10.4204/EPTCS.332.3

Deductive Systems and Coherence for
Skew Prounital Closed Categories

Tarmo Uustalu
Reykjavik University, Reykjavik, Iceland

Tallinn University of Technology, Tallinn, Estonia

tarmo@ru.is

Niccolò Veltri
Tallinn University of Technology, Tallinn, Estonia

niccolo@cs.ioc.ee

Noam Zeilberger
École Polytechnique, Palaiseau, France

noam.zeilberger@lix.polytechnique.fr

In this paper we develop the proof theory of skew prounital closed categories. These are variants
of the skew closed categories of Street where the unit is not represented. Skew closed categories
in turn are a weakening of the closed categories of Eilenberg and Kelly where no structural law is
required to be invertible. The presence of a monoidal structure in these categories is not required. We
construct several equivalent presentations of the free skew prounital closed category on a given set
of generating objects: a categorical calculus (Hilbert-style system), a cut-free sequent calculus and
a natural deduction system corresponding to a variant of planar (= non-commutative linear) typed
lambda-calculus. We solve the coherence problem for skew prounital closed categories by showing
that the sequent calculus admits focusing and presenting two reduction-free normalization procedures
for the natural deduction calculus: normalization by evaluation and hereditary substitutions. Normal
natural deduction derivations (βη-long forms) are in one-to-one correspondence with derivations
in the focused sequent calculus. Unexpectedly, the free skew prounital closed category on a set
satisfies a left-normality condition which makes it lose its skew aspect. This pitfall can be avoided by
considering the free skew prounital closed category on a skew multicategory instead. The latter has a
presentation as a cut-free sequent calculus for which it is easy to see that the left-normality condition
generally fails.

The whole development has been fully formalized in the dependently typed programming lan-
guage Agda.

1 Introduction

Proof theory and category theory have gone hand in hand since the pioneering works of Lambek [17, 18,
19] and a number of researchers that followed immediately, like Lawvere [20], Szabo [31, 32], Mann
[24], Mints [26]. Category theory helps the proof theorist with mathematical models for logical proof
systems, which should help tackling problems like analysis of the connections between different types of
proof systems, e.g., sequent calculi and natural deduction [41]. On the other hand, proof theory provides
the category theorist with a toolbox for identifying the internal language of categories and for solving
problems of combinatorial nature such as Mac Lane’s coherence problem [22, 14].

Given a certain notion of category with structure, it is natural to ask whether there exists deductive
systems (with good proof-theoretic properties) presenting the “canonical” category with that structure.
For Cartesian closed categories, such systems are given by, e.g., the sequent calculus of intuitionistic
logic and its natural deduction system, which we also know as typed lambda-calculus. For symmetric
monoidal closed categories, some such systems are the sequent calculus of intuitionistic linear logic (with

http://dx.doi.org/10.4204/EPTCS.332.3

36 Deductive Systems and Coherence for Skew Prounital Closed Categories

I,⊗,() and the linear variant of typed lambda-calculus [7, 34]. Formally, the “canonical” category with
structure arises from a free construction. E.g., simply-typed lambda-calculus (with 1,×,⇒) and with
atomic types taken from a set At, is a presentation of the free Cartesian monoidal closed category on At.

In recent work, we have investigated the deductive systems associated to skew monoidal categories [35,
37]. These are a weakening, first studied by Szlachányi [33], of monoidal categories [6, 22] in which
the unitors and associator are not required to be invertible, they are merely natural transformations in a
particular direction. These categories are not uncommon, e.g., they appear in the study of relative mon-
ads [3] and quantum categories [16]. The free skew monoidal category on a set At can be constructed as
a sequent calculus with sequents of the form S | Γ −→C, where the antecedent is split into an optional
formula S, called the stoup, and a list of formulae Γ, the context. This sequent calculus has some pe-
culiarities: left rules apply only to the formula in the special stoup position, while the tensor right rule
forces the formula in the stoup of the conclusion to be the formula in the stoup of the first premise. This
sequent calculus enjoys cut elimination and a focused subsystem, defining a root-first proof search strat-
egy attempting to build a derivation of a sequent. The focused calculus finds exactly one representative
of each equivalence class of derivations and is thus a concrete presentation of the free skew monoidal
category, as such solving the coherence problem for skew monoidal categories.

In this paper, we perform a similar proof-theoretic analysis of skew prounital closed categories [36].
These are the skew variant of prounital closed category of Shulman [28, Rev. 49], which in turn is a
relaxation of the notion of closed category by Eilenberg and Kelly [11, 21]. Intuitively, a prounital
closed category is a category with an internal hom object A (B for any two objects A and B. There
is no requirement for a unit object I, nor for a tensor product ⊗. But the unit is implicitly present to a
degree thanks to the presence of a functor J : C→ Set, with J A playing the role of the set of maps from
the non-represented unit to the object A. In other words, for a closed category C, we have J A = C(I,A).
Related categories where the unit is “half-there” appear in the study of categorical models of classical
linear logic [12]. Yet weaker are Lambek’s residuated categories [17] (with one implication) where the
unit is completely absent. Skew closed categories, a variant of closed categories where no structural law
is required to be invertible, were first considered by Street [30].

We present several deductive systems giving different but equivalent presentations of the free skew
prounital closed category on a set At: a categorical calculus (Hilbert-style system), a cut-free sequent
calculus and a natural deduction calculus. Similarly to the skew monoidal case [35], sequents in sequent
calculus have the form S | Γ −→C and the left implication rule only applies to the formula in the stoup
position. The natural deduction calculus is, under Curry-Howard correspondence, a variant of planar
typed lambda-calculus [1, 39]. Lambda-terms in this calculus have all free and bound variables used
exactly once and in the order of their declaration.

We give two equivalent calculi of normal forms: a focused sequent calculus and normal natural de-
duction derivations, corresponding to canonical representatives of βη-equality. We show three reduction-
free (in the sense that we do not use techniques from rewriting theory) normalization procedures: fo-
cusing [5], sending a sequent calculus derivation to a focused derivation; normalization by hereditary
substitutions [38, 13], sending a natural deduction derivation to a focused derivation; normalization by
evaluation [8, 4], sending a natural deduction derivation to a normal natural deduction derivation.

Using our sequent calculus, it is possible to show that the free skew prounital closed category on a
set satisfies a left-normality condition. The structural law ĵ, that we are not asking to be invertible, turns
out to be invertible anyway. This degeneracy implies that our sequent calculus and natural deduction
calculus admit a stoup-free presentation. In particular, the natural deduction calculus is equivalent, under
Curry-Howard correspondence, to (non-skew) planar typed lambda-calculus. From a category-theoretic
point of view, there is no reason to construct the free skew prounital closed category on a set instead of

T. Uustalu, N. Veltri & N. Zeilberger 37

a more interesting category. We conclude this paper by discussing two equivalent presentations of the
free skew prounital closed category on a skew multicategory [10] instead of a set: a Hilbert-style calculus
and a cut-free sequent calculus. These constructions generalize the free construction on a set and do not
generally entail the left-normality condition.

As explained by Shulman [28, Rev. 49], prounital closed categories are the natural notion of cate-
gory with internal hom as the only required connective (when we do not have/do not want a monoidal
structure I,⊗ in the category), since they form an essential, in the sense of minimal, class of models for
planar typed lambda-calculus. This is the case because, formally, they are equivalent to closed multi-
categories [23]. Multicategories are models of deductive systems with only identity and composition as
basic operations, while closed multicategories are also able to model implication. Standard approaches
to denotational semantics of typed lambda-calculus, adapted to the planar case, would exclude prounital
closed categories as valid models. This is because these approaches usually require the presence of a
Cartesian monoidal (just monoidal in the planar case) structure complementing the closed structure. We
believe there is no good reason to discard models not interpreting the non-existing connectives I,⊗ and
prounital closed categories are the right notion of categorical model for planar typed lambda calculus.
Analogously, skew prounital closed categories are the correct notion of category with skew internal hom
as the only required connective, since they are equivalent to closed skew multicategories [10], a skew
variant of closed multicategories.

It is worth mentioning that there is another way of weakening closed categories by simply drop-
ping all references to the unit altogether, that is, by only asking for internal hom objects equipped with
the extranatural transformation L and pentagon equation (c5) described below. These may be called non-
unital closed categories, or semi-closed categories after Bourke [9], and are of some interest in providing
interpretations for planar lambda terms with no closed subterms (a condition analogous to that of bridge-
lessness in graph theory [39]). We do not treat nonunital closed categories explicitly here, although we
expect that our results may be adapted from the prounital to the nonunital case in a straightforward way.

We fully formalized the results presented in the paper in the dependently typed programming lan-
guage Agda. The formalization uses Agda version 2.6.0. and it is available at https://github.com/
niccoloveltri/skew-prounital-closed-cats.

2 Skew Prounital Closed Categories

A skew prounital closed category [36] is a category C equipped with functors J : C→ Set (the element
set functor) and (: Cop×C→ C (the internal hom functor) and (extra)natural transformations j, i, L
typed

jA ∈ J (A (A) iA,B : J A→ C(A (B,B) LA,B,C ∈ C(B (C,(A (B)((A (C))

satisfying the following equations where we write ◦0 : C(A,B)× J A→ J B for J as a left action, i.e.,
f ◦0 e = J f e:
(c1) e = iA,A e◦0 jA ∈ J A for e ∈ J A;

(c2) iA(A,A(C jA ◦LA,A,C = idA(C ∈ C(A (C,A (C);

(c3) LA,B,B ◦0 jB = jA(B ∈ J ((A (B)((A (B));

(c4) iA,B e (C = ((A (B)(iA,C e)◦LA,B,C ∈ C(B (C,(A (B)(C) for e ∈ J A;

(c5) (B (C) (LA,B,D ◦ LB,C,D = LA,B,C (((A (B) ((A (D)) ◦ LA(B,A(C,A(D ◦ LA,C,D

∈ C(C (D,(B (C)(((A (B)((A (D))).

https://github.com/niccoloveltri/skew-prounital-closed-cats
https://github.com/niccoloveltri/skew-prounital-closed-cats

38 Deductive Systems and Coherence for Skew Prounital Closed Categories

We typically write C(−,B) for J B. Let S be an optional object, i.e., S is either nothing (denoted
S =−) or it is an object of C. We define C(S,B) as J B if S =− and as C(A,B) if S = A. The use of this
“enhanced” notion of homset with an optional object as domain allows the unification of the two notions
of composition ◦ and ◦0. We overload the composition symbol ◦: given f ∈ C(S,B) and g ∈ C(B,C),
we write g◦ f ∈ C(S,C), which is equal to g◦0 f when S =− and it is equal to the usual composition of
maps g◦ f when S = A. With the new notation, the types of structural laws j and i become

jA ∈ C(−,A (A) iA,B : C(−,A)→ C(A (B,B)

We note that it is not strictly necessary to require that (is a functor Cop×C→ C. It suffices to
require that A (: C→ C is a functor for every A, since the functorial action (B can for any B be
defined from the rest of the structure as f (B = iA(A′,A(B ((A (f)◦ jA)◦LA,A′,B for f : A→ A′ and
proved to preserve identity and composition and be natural in B from the equations governing it. Under
such an alternative definition of skew prounital closed category, the equations (c4)–(c5) above have to be
suitably adjusted and an equation for bifunctoriality of (added.

Skew prounital closed categories differ from Shulman’s prounital closed categories in that the deriv-
able map

ĵA,B : C(A,B)→ C(−,A (B)
ĵA,B f = (A (f)◦ jA

(1)

is not required to be a natural isomorphism. A skew prounital closed category in which ĵ is invertible is
called left-normal.

We should note that Shulman’s prounital closed categories, although more normal than skew prouni-
tal closed categories, are nonetheless partially skew. One could also require right-normality and associa-
tive-normality, corresponding to invertibility of certain derivable maps ı̂ and L̂ [36]. Eilenberg and Kelly’s
closed categories are partially skew in that they are not associative-normal.

Example. A simple example of a prounital closed category (adapted from de Schipper [29]) is obtained
by taking a suitable full subcategory of the skeletal version F of the Cartesian monoidal closed cate-
gory of finite sets and functions (i.e., exactly one set of each finite cardinality). Namely, we keep only
cardinalities from M ⊆ N given inductively by: 3 ∈ M and nm ∈ M for all m,n ∈ M. Now 1 /∈ M and
3×3 = 9 /∈M, so we have lost the original unit I = 1 and the tensor p⊗m = p×m, but we still have the
internal hom given by m (n = nm. No other candidate unit or tensor can work since we need to have
m ∼= I (m and C(p⊗m,n) ∼= C(p,m (n). Nevertheless, this category is prounital with the J functor
given by the composition of inclusions M ↪→ F ↪→ Set, and jm and im,n defined in the evident way. This
category is left-normal, but neither right-normal nor associative-normal.

To skew a closed category, one can use any left-strong monad on it [36]; the same construction works
for a prounital closed category (the concept of left-strength of a monad has to be adjusted to this setting).
We consider the reader monad given by T m = mk for some fixed k ∈ M. The Kleisli category is skew
prounital closed with the internal hom defined by m (T n = m (T n = nk×m. This category is neither
left-normal nor right-normal or associative-normal.

Alternatively, we can begin with F and take the full subcategory corresponding to M = N \ {0,1}.
This time we get a prounital monoidal closed category. We can skew it as before and we still get a skew
prounital nonmonoidal closed category since the Kleisli construction destroys the tensor.

A strict prounital closed functor between skew prounital closed categories C and D consists of a
functor F : C→D such that F (A (B) = F A (F B, F (f (g) = F f (F g, and the structural laws j,
i and L are preserved on the nose. In particular, the functor F is asked to map C(S,B) to D(F S,F B), with

T. Uustalu, N. Veltri & N. Zeilberger 39

F S =− if S =− and F S = F A if S = A, and preserve the enhanced notion of composition ◦ : C(B,C)×
C(S,B)→ C(S,C). Skew prounital closed categories and strict prounital closed functors between them
form a category.

3 The Free Skew Prounital Closed Category on a Set

We now look at different presentations of the free skew prounital closed category on a set of generating
objects. Let us first make explicit the definition of this free construction.

The free skew prounital closed category on a set At is a skew prounital closed category FSkPCl(At)
equipped with an inclusion ι : At→ FSkPCl(At), interpreting elements of At as objects of FSkPCl(At).
For any other skew prounital closed category C with a function G : At→ C, there must exist a unique
strict prounital closed functor Ḡ : FSkPCl(At)→ C compatible with ι .

The existence of the free skew prounital closed category FSkPCl(At) entails the existence of a left
adjoint to the forgetful functor between the category of skew prounital closed categories and strict prouni-
tal closed functors and the category of sets and functions.

3.1 Categorical Calculus

The first presentation consists of a deductive system that we call the categorical calculus since it is
directly derived from the definition of skew prounital closed category. (We could also think of it as a
Hilbert-style calculus of sorts, or under the Curry-Howard correspondence, a combinatory logic.) Objects
are formulae inductively generated as follows: a formula is either an element X of At (an atomic formula)
or of the form A (B, where A,B are formulae. We write Fma for the set of formulae.

Maps between an optional formula S and a formula C are derivations of the sequent S =⇒C, induc-
tively generated by the following inference rules:

A =⇒ A id
S =⇒ B B =⇒C

S =⇒C
comp C =⇒ A B =⇒ D

A (B =⇒C (D
(

=⇒ A (A
j =⇒ A

A (B =⇒ B i B (C =⇒ (A (B)((A (C)
L

(2)

Derivations are identified up to a congruence relation .
= that is inductively generated by the following

pairs of derivations:

(category laws) id◦ f .
= f f .

= f ◦ id (f ◦g)◦h .
= f ◦ (g◦h)

((functorial) id (id
.
= id (f ◦h)((k ◦g) .

= (h (k)◦ (f (g)

f (id◦ j .
= id (f ◦ j

(j, i,L (extra)nat. trans.) g◦ i(e)◦h (id
.
= i(h◦ e)◦ id (g

(f (g)((id (h)◦L .
= id ((f (id)◦L◦g (h

i(e)◦ j .
= e i(j)◦L .

= id
(c1-c5) L◦ j .

= j id (i(e)◦L .
= i(e)(id

id (L◦L .
= L (id◦L◦L

(3)

In the term notation for derivations, we write g ◦ f for comp f g to agree with the standard categorical
notation.

The categorical calculus defines the free skew prounital closed category on At in a straightforward
way. Given another skew prounital closed category C with function G : At→ C, we can easily define
mappings Ḡ0 : Fma→ C0 and Ḡ1 : S =⇒ C→ C(Ḡ0(S), Ḡ0(C)) by induction. These specify a strict
prounital closed functor, in fact the only existing one satisfying Ḡ0(X) = G(X).

40 Deductive Systems and Coherence for Skew Prounital Closed Categories

3.2 Cut-Free Sequent Calculus

The second presentation of FSkPCl(At) is a sequent calculus. Sequents are triples of the form S | Γ−→
C. The succedent C is a formula in Fma. The antecedent is split in two parts: the stoup S is an optional
formula, i.e. it is either empty or it is a single formula; the context Γ is a list of formulae.

Derivations in the sequent calculus are inductively generated by the following inference rules:
A | Γ−→C
− | A,Γ−→C

pass
S | Γ,A−→ B

S | Γ−→ A (B (R

A | −→ A
ax

− | Γ−→ A B | ∆−→C
A (B | Γ,∆−→C (L

(4)

(pass for ‘passivate’, L, R for introduction on the left (in the stoup) resp. right) and identified up to the
congruence $ induced by the equations:

(η-conversion) axA(B $(R ((L (pass axA,axB))

(commutative conversions)
pass ((R f)$(R (pass f) (for f : A′ | Γ,A−→ B)

(L (f ,(R g)$(R ((L (f ,g)) (for f :− | Γ−→ A′, g : B′ | ∆,A−→ B)

(5)

There are no primitive cut rules in this sequent calculus, but two forms of cut are admissible:
S | Γ−→ A A | ∆−→C

S | Γ,∆−→C
scut

− | Γ−→ A S | ∆0,A,∆1 −→C
S | ∆0,Γ,∆1 −→C

ccut
(6)

Notice that the left rule (L acts only on the implication A (B in the stoup. Another left rule (C
acting on implication in the passive context is derivable from cut:

− | Γ f−→ A S | ∆0,B,∆1
g−→C

S | ∆0,A (B,Γ,∆1 −→C (C =

− | Γ f−→ A B | −→ B
ax

A (B | Γ−→ B (L

− | A (B,Γ−→ B
pass

S | ∆0,B,∆1
g−→C

S | ∆0,A (B,Γ,∆1 −→C
ccut

(7)

Soundness. Sequent calculus derivations can be turned into categorical calculus derivations using a
function sound : (S | Γ−→C)→ (S =⇒ JΓ|CK), where the formula JΓ|CK is inductively defined as

J |CK =C JA,Γ|CK = A (JΓ|CK

Given f : S | Γ,A −→ B, define sound((R f) simply as sound(f). Given f : A | Γ −→ C, define
sound(pass f) as

=⇒ A (A
j

A =⇒ A id A
sound(f)
=⇒ JΓ|CK

A (A =⇒ A (JΓ|CK
(

=⇒ A (JΓ|CK
comp

=⇒ JA,Γ|CK

The double-line rule corresponds to the application of the equality JA,∆|CK = A (J∆|CK. Given
f :− | Γ−→ A and g : B | ∆−→C, define sound((L(f ,g)) as

A =⇒ A id B
sound(g)
=⇒ J∆|CK

A (B =⇒ A (J∆|CK
(

A (J∆|CK =⇒ JΓ|AK (JΓ,∆|CK L?

sound(f)
=⇒ JΓ|AK

JΓ|AK (JΓ,∆|CK =⇒ JΓ,∆|CK
i

A (J∆|CK =⇒ JΓ,∆|CK
comp

A (B =⇒ JΓ,∆|CK
comp

T. Uustalu, N. Veltri & N. Zeilberger 41

where the operation L?, defined by induction on Γ, performs iterated applications of the structural law
L. The function sound is well-defined, in the sense that it sends $-equivalent derivations to .

=-related
derivations.

Completeness. Derivations in the categorical calculus can be turned into sequent calculus derivations
via a function cmplt : (S =⇒ JΓ|CK)→ (S | Γ −→ C) . The ax rule models the identity map, while
sequential composition is interpreted using scut. Functoriality of (is modelled using (R and (L.
The function cmplt sends the structural laws j, i,L of skew prounital closed categories to the following
derivations in the sequent calculus:

(j)
A | −→ A

ax

− | A−→ A
pass

− | −→ A (A (R

(i) − | −→ A B | −→ B
ax

A (B | −→ B (L

A | −→ A
ax

− | A−→ A
pass

B | −→ B
ax

A (B | A−→ B (L

− | A (B,A−→ B
pass

C | −→C
ax

B (C | A (B,A−→C (L

B (C | A (B−→ A (C (R

B (C | −→ (A (B)((A (C)
(R

(L)

The function cmplt is well-defined, in the sense that it sends .
=-equivalent derivations to $-related deriva-

tions. Moreover it is possible to prove that cmplt is the inverse of sound (up to the equivalence relations .
=

and $). This shows that the sequent calculus is a presentation of the free skew prounital closed category
FSkPCl(At).

3.3 Natural Deduction Calculus

The third presentation of FSkPCl(At) is a natural deduction calculus. Sequents are triples S | Γ−→nd C
as in the sequent calculus of Section 3.2, but the left rule (L for (is replaced by the elimination rule
(e.

A | Γ−→nd C
− | A,Γ−→nd C

pass
S | Γ,A−→nd B

S | Γ−→nd A (B
(i

A | −→nd A
ax

S | Γ−→nd A (B − | ∆−→nd A
S | Γ,∆−→nd B

(e

The two cut rules in (6) are admissible also in the natural deduction calculus. Derivations are identified
by the congruence relation $nd, a skew ordered variant of the usual βη-equivalence of simply typed
lambda-calculus, induced by the equations

(β -conversion) (e ((i f ,g)$nd ccut (g, f) (for f : S | Γ,A−→nd B, g :− | ∆−→nd A)

(η-conversion) f $nd (i ((e (f ,pass ax)) (for f : S | Γ−→nd A (B)

(commutative conversions)
pass ((i f)$nd (i (pass f) (for f : A′ | Γ,A−→nd B)

pass ((e (f ,g))$nd (e (pass f ,g) (for f : A′ | Γ−→nd A (B, g :− | ∆−→nd A)
(8)

This natural deduction calculus corresponds to a variant of the planar fragment of linear typed
lambda-calculus [1, 39]. The formulae correspond to types. The derivations correspond to lambda terms
in which all free and bound variables are used exactly once and in the order of their declaration. The
equations axiomatize the appropriate variant of βη-equivalence.

42 Deductive Systems and Coherence for Skew Prounital Closed Categories

It is possible to prove that the natural deduction calculus is equivalent to the sequent calculus (up
to the equivalences of derivations $ and $nd), and it is therefore a presentation of FSkPCl(At). We
do not follow this strategy here. Instead we construct reduction-free normalization procedures for the
sequent calculus and the natural deduction calculus. The procedures target two calculi of normal forms:
a focused subsystem of the sequent calculus and a calculus of βη-long normal forms wrt. $nd. By
showing that the calculi of normal forms are equivalent, we conclude that the sequent calculus and the
natural deduction calculus are also equivalent up to the equivalences of derivations $ and $nd.

3.4 Focused Sequent Calculus Derivations

The congruence relation $ on sequent calculus derivations can be considered as a term rewrite system,
by directing every equation in (5) from left to right. The resulting rewrite system is weakly confluent and
strongly normalizing, hence confluent with unique normal forms.

Derivations in normal form wrt. $ can be described by a suitable focused subcalculus of the full
sequent calculus, following the paradigm introduced by Andreoli [5]. Derivations in this subcalculus are
inductively generated by the following inference rules:

S | Γ,A−→I B
S | Γ−→I A (B (R

A | Γ−→P C
− | A,Γ−→P C

pass
A | −→F A

ax

S | Γ−→P X
S | Γ−→I X P2I

A | Γ−→F C
A | Γ−→P C F2P

− | Γ−→I A B | ∆−→F C
A (B | Γ,∆−→F C (L

(9)

This is a sequent calculus with an additional phase annotation on sequents, for controlling root-first proof
search. In phase I (for inversion), sequents have the form S | Γ−→I C, where S is a general stoup and C
is a general formula. During this phase, we eagerly apply the invertible rule (R until the succedent is
reduced to an atomic formula. In phase P (for passivation), we have the opportunity of applying the pass
rule and can only go to the last phase F (for focusing) when the stoup has become a formula. During
this phase we can finish the derivation using ax, which is now restricted to atomic formulae, or apply
the (L rule. If we apply the (L rule, we are thrown back to the I phase in the first premise. One can
observe that, in any I-derivation, the succedent of any P- or F-sequent must actually be an atom, but the
generality of allowing any formula in the succedent in these phases (which we can have in derivations
of P- or F-sequents) will be useful for us shortly in the discussion of hereditary substitutions below and
also in Section 3.5 where we will relate focused sequent calculus derivations to normal natural deduction
calculus derivations.

Focusing. The focused rules define a sound and complete root-first proof search strategy for the cut-
free sequent calculus of Section 3.2. Soundness of the focused calculus is evident: focused derivations
can be embedded into sequent calculus derivations via functions embk : (S | Γ −→k C)→ (S | Γ −→C)
for all phases k ∈ {I,P,F} that just erase all phase annotations and uses of the rules P2I and F2P.

By the normalization property of the rewrite system associated to $, we know that the focused
calculus is also complete. This can also be established by constructing a reduction-free normalization
function focus : (S | Γ −→ C)→ (S | Γ −→I C) sending each derivation in the sequent calculus to a
canonical representative of its $-equivalence class in the focused calculus. This means in particular that
focus maps $-related derivations to equal focused derivations. For the definition of focus, we show that

T. Uustalu, N. Veltri & N. Zeilberger 43

general pass, (L and ax rules are admissible in phase I:

A | Γ−→I C
− | A,Γ−→I C

passI
− | Γ−→I A B | ∆−→I C

A (B | Γ,∆−→I C (LI

A | −→I A axI

This makes each sequent calculus inference rule matched by a focused calculus rule. Then the normaliza-
tion procedure focus can be easily defined by induction on the input derivation. The function focus is the
inverse of embI up to $: given a sequent calculus derivation f : S | Γ−→C, we have embI (focus f)$ f ;
given a focused derivation f : S | Γ−→I C, we have focus (embI f) = f .

The focused calculus solves the coherence problem for skew prounital closed categories, in the sense
of giving an explicit characterization of the homsets of FSkPCl(At). It also solves two related algorith-
mic problems effectively:

• Duplicate-free enumeration of all maps S =⇒ C in the form of representatives of .
=-equivalence

classes of categorical calculus derivations: For this, find all focused derivations of S | −→I C,
which is solvable by exhaustive proof search, which terminates, and translate them to the categor-
ical calculus derivations.

• Finding whether two given maps of type S =⇒C, presented as categorical calculus derivations, are
equal, i.e., .

=-related as derivations: For this, translate them to focused derivations of S | −→I C
and check whether they are equal, which is decidable.

Monoidal and nonmonoidal closed categories, and prounital closed categories likewise, admit no
simple coherence theorem like Mac Lane’s for monoidal categories [22] (depending on an easy condition
on the domain and codomain, no maps or just one in a homset). Enumeration of (presentations of) maps
and equality checking are nontrivial [15, 21, 26, 32]. In our focused calculus, the sequent (X (Y)(
(X (Z) | X (Y,X (X ,X −→I Z has two distinct focused derivations (we learned this example from
Anupam Das).

Hereditary Substitutions. Focused sequent calculus derivations can also be used as normal forms for
the natural deduction calculus of Section 3.3. We show this by describing a reduction-free normalization
procedure that is typically called normalization by hereditary substitution [38, 13]. Normal forms for
this procedure (at least in the case of simply-typed lambda-calculus) are typically defined in terms of a
suitable spine calculus, but we have defined our focused sequent calculus liberally enough to serve this
purpose.

The focused calculus defines a sound and complete root-first proof search strategy for the natural
deduction calculus of Section 3.3. Focused derivations can easily be embedded into natural deduction
derivations: there are functions embnd

k : (S | Γ−→k C)→ (S | Γ−→nd C) for all k ∈ {I,P,F}.
Similar to focusing completeness, normalization by hereditary substitution is also specified in two

steps. First we need to show that ax and (e rules are admissible in phase I:

A | −→I A axI
S | Γ−→I A (B − | ∆−→I A

S | Γ,∆−→I B (eI

(We already know that a general pass rule is admissible in phase I1.) Focused derivations in phase I should
correspond to normal forms, i.e., canonical representatives of $nd-equivalence classes. In particular,

1We also already know from focusing that axI is admissible, but it is defined in terms of (LI. For normalization by
hereditary substitutions, we define axI differently, avoiding the use of (LI since (L is not a primitive rule of the natural
deduction calculus.

44 Deductive Systems and Coherence for Skew Prounital Closed Categories

they should not contain any redex. This forces the rule (eI to be simultaneously defined with 3 pairs of
substitution rules (i.e., cut rules) in the focused calculus, one for each phase k ∈ {I,P,F}:

S | Γ−→k A A | ∆−→k C
S | Γ,∆−→k C scutk

− | Γ−→k A S | ∆0,A,∆1 −→k C
S | ∆0,Γ,∆1 −→k C ccutk

The rule (eI can then be defined as dictated by the β -conversion equation in the definition of $nd as

S | Γ,A f−→I B
S | Γ−→I A (B

(i − | ∆ g−→I A
S | Γ,∆−→I B (eI =

− | ∆ g−→I A S | Γ,A f−→I B
S | Γ,∆−→I B ccutI

Notice that the first premise is forced to be of the form (i f . This simultaneous substitution in canonical
forms and reduction of redexes that appear from substitution is the main idea behind hereditary substitu-
tions. We can then construct a normalization function hered : (S | Γ −→nd C)→ (S | Γ −→I C) sending
each primitive rule of the natural deduction calculus to its admissible counterpart in the focused calculus.
In particular, the function hered maps each natural deduction derivation to its normal form as rendered
in the focused calculus (which is our spine calculus).

The function hered is the inverse of embnd
I up to $nd: given a natural deduction derivation

f : S | Γ −→nd C, we have embnd
I (hered f) $nd f ; given a focused derivation f : S | Γ −→I C, we

get hered (embnd
I f) = f .

3.5 Normal Natural Deduction Derivations

The congruence relation $nd on natural deduction calculus derivations also has normal forms, which
correspond precisely to βη-long normal forms in the familiar terminology of lambda-calculus.

Derivations in normal form wrt. $nd can be described by a suitable subcalculus of the full natural
deduction calculus. Derivations in this subcalculus are inductively generated by the following inference
rules:

S | Γ,A−→nf B
S | Γ−→nf A (B

(i
A | Γ−→p C
− | A,Γ−→p C

pass
A | −→ne A

ax

S | Γ−→p X
S | Γ−→nf X

p2nf
A | Γ−→ne C
A | Γ−→p C

ne2p
A′ | Γ−→ne A (B − | ∆−→nf A

A′ | Γ,∆−→ne B
(e

Derivations are organized in an introduction phase and in an elimination phase [27]. In lambda-calculus
jargon, we refer to derivations in these phases as (pure) normal forms and neutrals. Normal forms are
derivations of sequents of the general form S | Γ−→nf C. Similarly to the case of simply-typed lambda-
calculus, a normal form is an iteration of λ -abstraction on a neutral term of an atomic type. Neutrals are
derivations of sequents of the form A | Γ−→ne C where the stoup is required to be a formula. Intuitively,
they correspond to terms which are stuck for $nd-conversion. A neutral is either a variable (declared
in the stoup, in our case) or a function application that cannot compute due to the presence of another
neutral in the function position. Due to the skew aspect of our natural deduction calculus, we also add
an intermediate third phase p, with sequents of the form A | Γ −→p C, in which we have the choice
of applying the structural rule pass. This is analogous to the passivation phase of the focused sequent
calculus of Section 3.4.

The normal natural deduction calculus defines a root-first proof search strategy for the natural de-
duction calculus. This procedure is sound. Normal forms can easily be embedded into natural deduction
derivations: there are functions embnd

k : (S | Γ−→k C)→ (S | Γ−→nd C) for all k ∈ {nf,p,ne}.

T. Uustalu, N. Veltri & N. Zeilberger 45

Normalization by Evaluation. The completeness of the normal natural deduction calculus, implying
that normal natural deduction derivations are indeed βη-long normal forms, is proved via normalization
by evaluation [8, 4]. This is a reduction-free procedure in which terms are first evaluated into a certain
semantic domain, and their evaluations are then reified back into normal forms.

We begin by constructing two discrete categories: Cxt and SCxt. The category Cxt has lists of
formulae as objects. It has a strict monoidal structure with the empty list as unit and concatenation of
lists as tensor. The category SCxt has objects of the form S | Γ, with S an optional formula and Γ a list
of formulae. It has a unit object − | (in which both components are empty) and there exists an action of
the monoidal category Cxt on SCxt: (S | Γ) ·Γ′ = S | Γ,Γ′. There is a functor E : Cxt→ SCxt, sending
each list Γ to the pair − | Γ.

We consider the two presheaf categories SetCxt and SetSCxt. The monoidal structure on Cxt lifts to
the Day convolution monoidal closed structure on SetCxt:

Icxt Γ = (Γ = ()) (P⊗cxt Q) Γ = ∑Γ0,Γ1(Γ = Γ0,Γ1)×P Γ0×Q Γ1

(Q (cxt P) Γ = ∏∆ Q ∆→ P (Γ,∆)

(Here and below () denotes the empty list.)
The unit of SCxt lifts to a unit in SetSCxt given by Iscxt (S | Γ) = (Γ = ())× (S = −). The action of

Cxt on SCxt lifts to an action of SetCxt on SetSCxt:

(P⊗scxt Q) (S | Γ) = ∑Γ0,Γ1(Γ = Γ0,Γ1)×P (S | Γ0)×Q Γ1

The functor ⊗scxtQ has a right adjoint Q (scxt given by:

(Q (scxt P) (S | Γ) = ∏∆ Q ∆→ P (S | Γ,∆)

The first step of normalization by evaluation is the interpretation of syntactic constructs, i.e. formulae
and natural deduction derivations, as semantic entities in SetSCxt. Formulae are modelled as presheaves
over SCxt. Implication is modelled via the functor (scxt. Notice the composition with the functor E,
which is needed for the interpretation to be well-defined. The interpretation of an atomic formula X on
an object S | Γ is the set of normal forms of type S | Γ−→nf X .

{{X}} (S | Γ) = S | Γ−→nf X {{A (B}} (S | Γ) = (({{A}}◦E)(scxt {{B}}) (S | Γ)

Lists of formulae can be interpreted as presheaves over Cxt.

{{ }} ∆ = Icxt ∆ {{A,Γ}} ∆ = (({{A}}◦E)⊗cxt {{Γ}}) ∆

Finally, antecedents S | Γ can be interpreted as presheaves over SCxt:

{{− | Γ}} (S | ∆) = (Iscxt⊗scxt {{Γ}}) (S | ∆) = (S =−)×{{Γ}} ∆

{{A | Γ}} (S | ∆) = ({{A}}⊗scxt {{Γ}}) (S | ∆)

The next step of normalization by evaluation is the interpretation of a derivation f : S | Γ −→nd C
in the natural deduction calculus as a natural transformation between presheaves {{S | Γ}} and {{C}}.
Formally, we define an evaluation function by induction on the input derivation:

eval : (S | Γ−→nd C)→{{S | Γ}} (S′ | ∆)→{{C}} (S′ | ∆)

46 Deductive Systems and Coherence for Skew Prounital Closed Categories

Subsequently, we extract a normal form from the evaluated term. The reification procedure sends
a semantic element in {{A}} (S | Γ) to a normal form in S | Γ −→nf A. The latter is defined by mutual
induction with a function reflecting neutrals in A | Γ−→ne C to semantic elements in {{C}} (A | Γ).

reflect : (A | Γ−→ne C)→{{C}} (A | Γ) reify : {{A}} (S | Γ)→ (S | Γ−→nf A)

Finally, a normalization procedure nbe : (S | Γ −→nd C)→ (S | Γ −→nf C) is defined as follows.
Apply eval to a given derivation f : S | Γ −→nd C in the natural deduction calculus, obtaining a natural
transformation eval f between presheaves {{S | Γ}} and {{C}}. Take the component of eval f at S | Γ,
which is a function of type {{S | Γ}} (S | Γ)→ {{C}} (S | Γ). By induction on S and Γ, it is possible to
define a canonical element γ : {{S | Γ}}(S | Γ). This allows to obtain an element eval f γ : {{C}} (S | Γ),
which can finally be reified into a normal form:

nbe f = reify (eval f γ)

We formally verified that the function nbe is well-defined, i.e. it sends $nd-related derivations to the
same normal form. Moreover, nbe is the inverse up to $nd of the embedding embnd

nf : (S | Γ −→nf C)
→ (S | Γ−→nd C) of normal forms into natural deduction derivations: given a natural deduction deriva-
tion f : S | Γ −→nd C, we have embnd

nf (nbe f) $nd f ; given a normal form f : S | Γ −→nf C, we have
nbe (embnd

nf f) = f .

Comparing Normal Forms. We conclude this section by showing that focused sequent calculus deriva-
tions and normal natural deduction derivations are in one-to-one correspondence. Notice that we have
already established a one-to-one correspondence indirectly: the correctness of normalization by heredi-
tary substitution implies that the set of focused calculus derivations S | Γ−→I C is isomorphic to the set
of natural deduction derivations S | Γ −→nd C quotiented by the equivalence relation $nd, which is fur-
ther isomorphic to the set of normal natural deduction derivations S | Γ−→nf C thanks to the correctness
of normalization by evaluation. The goal of this section is to provide a simple direct comparison of the
two classes of normal forms.

The crucial step of this comparison is the relation between neutrals and derivations in phase F. This
is because normal forms in phase nf have the same primitive inference rules derivations in phase I,
and similarly for derivations of the passivation phases of the two calculi. We simultaneously define six
translations back and forth between the three pairs of corresponding phases of the two calculi. We only
show the constructions of the translations ne2F and F2ne between neutrals and derivations in phase F.
The functions nf2I and I2nf for translating between normal forms and derivations in phase I are trivially
defined, similarly for the functions translating between the p and P phases. The definitions of translations
ne2F and F2ne rely on two auxiliary functions ne2F′ and F2ne′.

ne2F′ : (A | Γ−→ne B)→ (B | ∆−→F C)→ (A | Γ,∆−→F C)
ne2F′ ax g = g
ne2F′ ((e (f ,a)) g = ne2F′ f ((L (nf2I a,g))

F2ne′ : (A | Γ−→ne B)→ (B | ∆−→F C)→ (A | Γ,∆−→ne C)
F2ne′ f ax = f
F2ne′ f ((L (a,g)) = F2ne′ ((e (f , I2nf a)) g

Remember that neutrals are lambda-terms of the form x a1 . . . an with x being a variable (the only one)
declared in the stoup. The accumulator g in the definition of ne2F′ is intended to collect the arguments
ai, . . . ,an that have already been seen. So when a new argument a appears, which is a normal form, this is

T. Uustalu, N. Veltri & N. Zeilberger 47

immediately translated to an I-phase derivation via nf2I and then pushed on top of the accumulator using
the left rule (L. The accumulator f in the definition of F2ne′ serves a similar purpose. The translations
ne2F and F2ne are then easily definable:

ne2F : (A | Γ−→ne C)→ (A | Γ−→F C)
ne2F f = ne2F′ f ax

F2ne : (A | Γ−→F C)→ (A | Γ−→ne C)
F2ne f = F2ne′ ax f

These translations form an isomorphism. The crucial lemma for proving this is: given f : A | Γ−→ne B
and g : B | ∆−→F C, we have ne2F (F2ne′ f g) = ne2F′ f g and F2ne (ne2F′ f g) = F2ne′ f g.

4 Losing Skewness and How to Restore It

The free skew prounital closed category FSkPCl(At) on a set of atoms At is left normal, which means
that its skew aspect is superfluous. In other words, FSkPCl(At) is also the free (non-skew) prounital
closed category on At. An advantage of our proof theoretic analysis is that left-normality can be proved
in any one of the equivalent calculi of Section 3. Left-normality is a simple observation in the sequent
calculus, while it is not clear how to derive it directly in the categorical calculus of Section 3.1.

First we notice that left-normality, defined as the invertibility of the derivable map ĵ of (1), is trans-
lated to the invertibility of the passivation rule pass in the sequent calculus of Section 3.2. In other words,
ĵ is invertible up to .

= in the categorical calculus if and only if pass is invertible up to $ in the sequent
calculus. Then we show that pass has as inverse the admissible rule act:

− | A,Γ−→C
A | Γ−→C

act
(10)

This is defined by induction on the given derivation f :− | A,Γ−→C. There are only two possible cases:
if f = pass f ′, define act f = f ′; if f =(R f ′, define act f =(R (act f ′).

An important consequence of left-normality is that all calculi described in Sections 3.2–3.5 admit
a presentation without the stoup and the pass rule. In particular, the natural deduction calculus of Sec-
tion 3.3 is equivalent to (non-skew) planar simply-typed lambda-calculus [1, 39]. The categorical calcu-
lus of 3.1 also admits a stoup-free version where sequents take the form =⇒ A where A is a formula. The
inference rules are

=⇒ B =⇒ B (C
=⇒C comp′

=⇒ A (A
j =⇒ A

=⇒ (A (B)(B i′
=⇒ (B (C)(((A (B)((A (C))

L′
(11)

Under the Curry-Howard correspondence, this is the combinatory logic capturing planar lambda-calculus:
comp′ is application, j is the I-combinator, and L′ is the B-combinator, while the operation i′ replaces
the C-combinator of BCI combinatory logic [25] and is needed in the absence of symmetry.

A natural question arises: why did we bother including the stoup in our calculi in the first place?
There are two reasons behind our choice to include the stoup.

First, in the future we plan to extend the skew calculi described in this paper with other connectives,
such as unit and tensor. We already know from previous work on the proof theory of skew monoidal
categories [35] that the extended calculi will not be left-normal, so we will not be able to discard the
stoup. We believe that a thorough investigation of the normalization procedures of Sections 3.4 and 3.5,
which work in the presence of the stoup, is a stepping stone towards the development of normalization
functions for more involved calculi with additional connectives.

48 Deductive Systems and Coherence for Skew Prounital Closed Categories

Second, the left-normality of FSkPCl(At) arises from the fact that we are considering the free skew
prounital closed category on a set. In other words, it corresponds to a left adjoint to the forgetful functor
between the category of skew prounital closed categories and strict prounital closed functors and the
category of sets and functions. From a categorical point of view, there is no good reason to privilege the
category of sets and functions in this picture. The next subsection is devoted to the study of the free skew
prounital closed category FSkPCl(M) on a skew multicategory M. The category FSkPCl(At) arises
as a particular instance of the latter more general construction. Crucially, FSkPCl(M) is generally not
left-normal.

4.1 The Free Skew Prounital Closed Category on a Skew Multicategory

We start by recollecting Bourke and Lack’s notion of skew multicategory [10]. We slightly reformulate
Bourke and Lack’s definition to make its relationship to the sequent calculus of Section 3.2 more direct.
Skew multicategories are similar to the multicategories of Lambek [18] (also known as colored (non-
symmetric) operads), but instead use an optional object paired with a list of objects as the domain of a
multimap, rather than just a list of objects.

A skew multicategory M consists of a set M0 of objects and, for any optional object S, list of ob-
jects Γ and object C in M0, a set M(S|Γ;C) of multimaps whereby a multimap is called loose if S is
empty and tight if S is an object. For any object A, there is an identity multimap id ∈M(A| ;A). There
are two composition operations s◦ : M(A|∆;C)×M(S|Γ;A)→M(S|Γ,∆;C) and c◦ : M(S|∆0,A,∆1;C)×
M(−|Γ;A)→M(S|∆0,Γ,∆1;C) and a loosening operation loosen :M(A|Γ;C)→M(−|A,Γ;C) satisfying
a large number of equations, expressing unitality of identity wrt. composition, associativity of composi-
tion, commutativity of parallel cuts and commutativity of composition and loosening. See the whole list
of equations in our previous work [35].

A skew multifunctor G between skew multicategories M and M′ consists of a function G0 sending
objects of M to objects of M′ and a function G1 : M(S|Γ;C)→M′(G0S|G0Γ;G0C) preserving identity,
composition and loosening. Here G0 is extended to optional objects and lists of objects by G0 S = − if
S =− and G0 S = G0 A if S = A. Similarly, G0(A1, . . . ,An) = G0 A1, . . . ,G0 An. Skew multicategories and
skew multifunctors form a category. There exists a forgetful functor U between the category of skew
prounital closed categories and the latter category. Given a skew prounital closed category C, we define
U C as the skew multicategory with the same objects as C and with the multihomset (U C)(S|Γ;C) given
by C(S,JΓ|CK). From the structure of C, using properties of the interpretation JΓ|CK, one defines the
identity, composition and loosening of U C.

The free skew prounital closed category on a skew multicategory M is then a skew prounital closed
category FSkPCl(M) equipped with a skew multifunctor ι : M→U(FSkPCl(M)). For any other skew
prounital closed category C with a skew multifunctor G : M→ U C, there must exist a unique strict
prounital closed functor Ḡ : FSkPCl(M)→ C compatible with ι .

Let M be a skew multicategory. We construct a categorical calculus presenting the free skew prounital
closed category on M. We then proceed to describe an equivalent cut-free sequent calculus.

Categorical Calculus The formulae are given by objects X ∈M0 (atomic formulae) and A (B for
any formulae A, B. The inference rules are the same as in (2), supplemented with an additional inference
rule

M(T |Φ;Z)
T =⇒ JΦ|ZK

ι

T. Uustalu, N. Veltri & N. Zeilberger 49

where T is an optional atom, Φ is a list of atoms and Z is an atom. The equational theory .
= from (3) is

extended with new generating equations expressing the fact that ι is a skew multifunctor between M and
U(FSkPCl(M)).

Cut-Free Sequent Calculus The inference rules are those given in (4) minus the rules ax and pass plus
two new rules

M(T |Φ;Z)
T |Φ−→ Z

ι
− | Γ−→ A S | ∆0,B,∆1 −→C

S | ∆0,A (B,Γ,∆1 −→C (C

The rule (C was derivable using cut in the sequent calculus of Section 3.2, as we showed in (7). Here
it is needed as a primitive rule to achieve cut admissibility. From the presence of a map f ∈M(X |Y ;Z)
in the base skew multicategory M, we need to be able to derive, e.g., the sequent X | A (Y,A −→ Z,
which in the categorical calculus is derivable as follows:

M(X |Y ;Z)
X =⇒ Y (Z

ι
Y (Z =⇒ (A (Y)((A (Z)

L

X =⇒ (A (Y)((A (Z)
comp

The equational theory on derivations is obtained from the congruence $ of (5) by adding the follow-
ing generating equations:

(preservation of id and loosen by ι)
axX $ ι (idX)

pass (ι f)$ ι (loosen f) (for f ∈M(X |Φ;Z))

(commutative conversions of (C)
(C (f ,(R g)$(R ((C (f ,g)) (for f :− | Γ−→ A′,g : S | ∆0,B′,∆1,A−→ B)
pass ((C (f ,g))$(C (f ,pass g) (for f :− | Γ−→ A,g : A′ | ∆0,B,∆1 −→C)
pass ((L (f ,g))$(C (f ,pass g) (for f :− | Γ−→ A,g : B | ∆−→C)

(C (f ,(L(g,h))$(L (g,(C (f ,h)) (for f :− | Γ−→ A,g :− | Γ′ −→ A′,h : B′ | ∆0,B,∆1 −→C)
(C (f ,(L(g,h))$(L ((C (f ,g),h) (for f :− | Γ−→ A,g :− | ∆0,B,∆1 −→ A′,h : B′ | ∆−→C)
(C (f ,(C(g,h))$(C (g,(C (f ,h)) (for f :− | Γ−→ A,g :− | Γ′ −→ A′,h : S | ∆0,B,∆1,B′,∆2 −→C)
(C (f ,(C(g,h))$(C ((C (f ,g),h) (for f :− | Γ−→ A,g :− | ∆0,B,∆1 −→ A′,h : S | ∆2,B′,∆3 −→C)

Thanks to the presence of the primitive rule (C, the two cut rules in (6) are admissible in this
sequent calculus. In this case, they need to be defined by mutual induction with another cut rule

A′ | Γ−→ A S | ∆0,A,∆1 −→C
S | ∆0,A′,Γ,∆1 −→C

ccutFma

In the sequent calculus of Section 3.2, the rule ccutFma is definable by first applying pass to the first
premise and then using ccut. In the new sequent calculus of the current section, we have to define it
simultaneously with scut and ccut because of the added cases for the added primitive rules. It is possible
to prove that the embedding ι is a skew multifunctor, in particular it preserves the cut operations.

Notice that the sequent calculus is generally not left-normal. In fact, an attempt to prove the admis-
sibility of the rule act of (10) fails when the premise is of the form ι f for some f ∈M(−|X ,Φ;Z). E.g.,
we may well have a map in M(−|X ;Z) for some X and Z without there being any map in M(X |;Z).
Therefore the stoup cannot be discarded.

The categorical calculus and the sequent calculus are equivalent. It is possible to construct functions
sound and cmplt translating between the two calculi, and show that they form an isomorphism up to the
extended equivalence relations .

= and $.

50 Deductive Systems and Coherence for Skew Prounital Closed Categories

Focused derivations The focused subcalculus uses that the ax and pass rules of the sequent calculus
are admissible from id and loosen (crucially because the presence of (C makes it possible to commute
pass and (L). It has the inference rules from (9) minus the rules pass and ax plus two new rules

M(T |Φ;Z)
T |Φ−→F Z

ι
− | Γ−→I A T |Ψ,B,∆−→F C

T |Ψ,A (B,Γ,∆−→F C (C

Notice that, in the rule (C, T is restricted to be an optional atom and Ψ a list of atoms. Notice also that
the passivation phase is trivial because we have removed the rule pass.

4.2 Starting From a Skew Multigraph

The free skew prounital closed category FSkPCl(M) over a multicategory M is special in that we can
have a cut-free sequent calculus where the use of the generating multimaps is confined to “direct import”
by ι . In fact, no structural rules (neither any cut rules nor pass or ax) are needed beyond the degree
that they are readily available to us in the form of composition, loosening and identity in the base skew
multicategory M where they also satisfy the skew multicategory equations. This is possible because the
cut rules happen to be admissible from the sound rule (C that we may choose to take as primitive.

This approach is not robust for extensions with further connectives; we cannot have a similar cut-free
sequent calculus for the free skew (unital) closed category FskCl(M): from M(−| ;Y) and M(X |Y ;Z),
we must be able to derive X | I −→ Z, but for this we need ccut as a primitive rule (together with pass)
since, differently from (, it is unsound to introduce I into the passive context. However, as soon as we
introduce primitive cut rules (it suffices to take scut and ccut as primitive), we also need to introduce
(i) equations stating that ι preserves compositions as cuts and (ii) also the skew multicategory equations
for scut, ccut, ax and pass. The equations (i) can be dispensed with if we start with a skew multigraph
(At,DC) (of atoms and definite clauses) rather than a skew multicategory M, so that composition as well
as the identities and loosening are only available in terms of scut, ccut, ax and pass. We conjecture that
the equations (ii) can then also be avoided in a focused subcalculus with all the inference rules from (9)
plus the rule

− | Γ1 −→I Y1 . . . − | Γn −→I Yn DC(T |Y1, . . . ,Yn;X) X | ∆−→F C
T | Γ1, . . . ,Γn,∆−→F C ι ′

which packages a particular combination of ι and scut and ccut inferences.

5 Conclusions and Future Work

We presented several equivalent presentations of the free skew prounital closed category on a set At. We
showed that these correspond to a skew variant of the planar fragment of linear typed lambda-calculus.
We constructed two calculi of normal forms: a focused sequent calculus and a normal natural deduction
calculus. These solve the coherence problem for skew prounital closed categories by fully characterizing
the homsets of FSkPCl(At). The latter category is left-normal, meaning that its skew aspect is redundant.
We restored the skewness by studying deductive systems for the free skew prounital closed category on
a skew multicategory and showing that the latter is generally not left-normal.

The development presented in the paper has been fully formalized in the dependently typed program-
ming language Agda. Our Agda formalization also includes a similar proof theoretic analysis of the free
skew closed category on a set, in which the element set functor J is replaced by a unit object I [30].

T. Uustalu, N. Veltri & N. Zeilberger 51

The primitive rules of the cut-free sequent calculus of skew closed categories also include left and right
introduction rule for the unit I, where again the left rule acts only on the unit in the stoup. Similarly, the
natural deduction calculus has introduction and elimination rules for I. Our reduction-free normalization
procedures can be adapted to the skew closed case without much difficulty.

In the future, we plan to extend the work of this paper and our previous work on the sequent calculus
of the Tamari order [40] and of skew monoidal categories [35, 37] to a proof theoretic investigation
of skew monoidal closed categories, i.e. including unit I, tensor ⊗ and internal hom (related by an
adjunction −⊗B a B (−. We already know from our previous work that the corresponding sequent
calculus would not be left-normal. We conjecture that the free skew monoidal closed category on At
corresponds to a skew variant of the (I,⊗,() fragment of noncommutative intuitionistic linear logic [2].
It is currently not clear how to extend the normalization procedures of this paper to the skew monoidal
closed case, in particular normalization by evaluation, which has not been studied in the planar (or
even linear) fragment of lambda-calculus. Inspiration could come from the normalization by hereditary
substitution algorithm of Watkins et al. [38] for the propositional fragment of their concurrent logical
framework.

Acknowledgments. We thank the anonymous referees for extremely valuable comments. T.U. was
supported by the Icelandic Research Fund grant no. 196323-052 and the Estonian Ministry of Education
and Research institutional research grant no. IUT33-13. N.V. was supported by the ESF funded Estonian
IT Academy research measure (project 2014-2020.4.05.19-0001).

References

[1] S. Abramsky (2008): Temperly-Lieb algebra: from knot theory to logic and computation. In G. Chen,
L. Kauffman & S. Lomonaco (eds.), Mathematics of Quantum Computing and Technology, Applied Mathe-
matics and Nonlinear Science Series, Chapman and Hall/CRC, pp. 415–458, doi: 10.1201/9781584889007.
Preprint available at https://arxiv.org/abs/0910.2737.

[2] V. M. Abrusci (1990): Non-commutative intuitionistic linear logic. Math. Log. Quart. 36(4), pp. 297–318,
doi: 10.1002/malq.19900360405.

[3] T. Altenkirch, J. Chapman & T. Uustalu (2015): Monads need not be endofunctors. Log. Methods Comput.
Sci. 11(1), article 3, doi: 10.2168/lmcs-11(1:3).

[4] T. Altenkirch, M. Hofmann & T. Streicher (1995): Categorical reconstruction of a reduction free normal-
ization proof. In D. H. Pitt, D. E. Rydeheard & P. T. Johnstone (eds.), Proc. of 6th Int. Conf. on Category
Theory and Computer Science, CTCS ’95, Lect. Notes in Comput. Sci. 953, Springer, pp. 182–199, doi:
10.1007/3-540-60164-3 27.

[5] J.-M. Andreoli (1992): Logic programming with focusing proofs in linear logic. J. of Log. and Comput. 2(3),
pp. 297–347, doi: 10.1093/logcom/2.3.297.

[6] J. Bénabou (1963), Catégories avec multiplication. C. R. Acad. Sci. Paris 256, pp. 1887–1890. Available at
http://gallica.bnf.fr/ark:/12148/bpt6k3208j/f1965.image.

[7] N. Benton, G. Bierman, J. M. E. Hyland & V. C. V. de Paiva (1993): Linear λ -calculus and categorical
models revisited, E. Börger, G. Jäger, H. Kleine Büning, S. Martini, M. M. Richter (eds.), Proc. of 6th Wksh.
on Computer Science Logic, CSL ’92, Lect. Notes in Comput. Sci. 702, Springer, pp. 61–84, doi: 10.1007/3-
540-56992-8 6.

[8] U. Berger & H. Schwichtenberg (1991): An inverse of the evaluation functional for typed lambda-calculus.
In Proc. of 6th IEEE Ann. Symp. on Logic in Computer Science, LICS’91, IEEE Comput. Soc., pp. 203–211,
doi: 10.1109/lics.1991.151645.

https://doi.org/10.1201/9781584889007
https://arxiv.org/abs/0910.2737
https://doi.org/10.1002/malq.19900360405
https://doi.org/10.2168/lmcs-11(1:3)
https://doi.org/10.1007/3-540-60164-3_27
https://doi.org/10.1007/3-540-60164-3_27
https://doi.org/10.1093/logcom/2.3.297
http://gallica.bnf.fr/ark:/12148/bpt6k3208j/f1965.image
https://doi.org/10.1007/3-540-56992-8_6
https://doi.org/10.1007/3-540-56992-8_6
https://doi.org/10.1109/lics.1991.151645

52 Deductive Systems and Coherence for Skew Prounital Closed Categories

[9] J. Bourke (2017): Skew structures in 2-category theory and homotopy theory. J. Homotopy Relat. Str. 12,
pp. 31–81, doi: 10.1007/s40062-015-0121-z.

[10] J. Bourke & S. Lack (2018): Skew monoidal categories and skew multicategories. J. Alg. 506, pp. 237–266,
doi: 10.1016/j.jalgebra.2018.02.039.

[11] S. Eilenberg & G. M. Kelly (1966): Closed categories. In S. Eilenberg, D. K. Harrison, S. Mac Lane
& H. Röhl (eds.), Proc. of Conf. on Categorical Algebra (La Jolla, 1965), Springer, pp. 421–562, doi:
10.1007/978-3-642-99902-4 22.

[12] R. Houston (2013): Linear logic without units. arXiv eprint 1305.2231. Available at https://arxiv.org/
abs/1305.2231.

[13] C. Keller & T. Altenkirch (2010): Hereditary substitutions for simple types, formalized. In V. Capretta &
J. Chapman (eds.), Proc. of 3rd ACM SIGPLAN Wksh. on Mathematically Structured Functional Program-
ming, MSFP’10, ACM, pp. 3–10, doi: 10.1145/1863597.1863601.

[14] G. M. Kelly (1964): On MacLane’s conditions for coherence of natural associativities, commutativities, etc.
J. Alg. 1(4), pp. 397–402, doi: 10.1016/0021-8693(64)90018-3.

[15] G. M. Kelly & S. Mac Lane (1971): Coherence in closed categories. J. Alg. 1(1), pp. 97–140, doi:
10.1016/0022-4049(71)90013-2. (Erratum (1971): J. Alg. 1(2), p. 219, doi: 10.1016/0022-4049(71)90019-
3.)

[16] S. Lack & R. Street (2012): Skew monoidales, skew warpings and quantum categories. Theor. Appl. Categ.
26, pp. 385–402. Available at http://www.tac.mta.ca/tac/volumes/26/15/26-15abs.html.

[17] J. Lambek (1968): Deductive systems and categories I: Syntactic calculus and residuated categories. Math.
Syst. Theory 2(4), pp. 287–318, doi: 10.1007/bf01703261

[18] J. Lambek (1969): Deductive systems and categories II: Standard constructions and closed categories. In
P. Hilton (ed.), Category Theory, Homology Theory and Their Applications I, Lect. Notes in Math. 86,
Springer, pp. 76–122, doi: 10.1007/bfb0079385.

[19] J. Lambek (1972): Deductive systems and categories III: Cartesian closed categories, intuitionist propo-
sitional calculus, and combinatory logic. In F. W. Lawvere (ed.), Toposes Algebraic Geometry and Logic,
Lect. Notes in Math. 274, Springer, pp. 57–82. doi: 10.1007/bfb0073965.

[20] F. W. Lawvere (1970): Equality in hyperdoctrines and comprehension schema as an adjoint functor. In A.
Heller (ed.), Applications of Categorical Algebra, Proc. of Symp. in Pure Math. 17, Amer. Math. Soc., pp. 1–
14. doi: 10.1090/pspum/017

[21] M. L. Laplaza (1977): Coherence in nonmonoidal closed categories. Trans. Amer. Math. Soc. 230, pp. 293–
311, doi: 10.1090/s0002-9947-1977-0444740-9.

[22] S. Mac Lane (1963): Natural associativity and commutativity. Rice Univ. Stud. 49(4), pp. 28–46. Available
at http://hdl.handle.net/1911/62865.

[23] O. Manzyuk (2012): Closed categories vs. closed multicategories, Theor. Appl. Categ. 26(5), pp. 132–175.
Available at http://www.tac.mta.ca/tac/volumes/26/5/26-05abs.html.

[24] C. Mann (1975): The connection between equivalence of proofs and Cartesian closed categories, Proc.
London Math. Soc. 31(3), pp. 289–310, doi: 10.1112/plms/s3-31.3.289.

[25] C. A. Meredith & A. N. Prior (1963), Notes on the axiomatics of the propositional calculus, Notre Dame J.
Formal Log., 4, pp. 171–187, doi: 10.1305/ndjfl/1093957574.

[26] G. E. Mints (1977): Closed categories and the theory of proofs, Zap. Nauchn. Sem. LOMI 68, pp. 83–114.
(In Russian.)
Translated in 1981 in J. Sov. Math. 15, pp. 45–62. doi: 10.1007/bf01404107.
Reprinted in 1992 in G. E. Mints, Selected Papers in Proof Theory, Studies in Proof Theory 3,
Bibliopolis/North-Holland, pp. 183–212.

[27] D. Prawitz (1965): Natural Deduction: A Proof-Theoretical Study, Stockholm Studies in Philosophy 3,
Almqvist & Wiksell.

https://doi.org/10.1007/s40062-015-0121-z
https://doi.org/10.1016/j.jalgebra.2018.02.039
https://doi.org/10.1007/978-3-642-99902-4_22
https://doi.org/10.1007/978-3-642-99902-4_22
https://arxiv.org/abs/1305.2231
https://arxiv.org/abs/1305.2231
https://doi.org/10.1145/1863597.1863601
https://doi.org/10.1016/0021-8693(64)90018-3
https://doi.org/10.1016/0022-4049(71)90013-2
https://doi.org/10.1016/0022-4049(71)90013-2
https://doi.org/10.1016/0022-4049(71)90019-3
https://doi.org/10.1016/0022-4049(71)90019-3
http://www.tac.mta.ca/tac/volumes/26/15/26-15abs.html
https://doi.org/10.1007/bf01703261
https://doi.org/10.1007/bfb0079385
https://doi.org/10.1007/bfb0073965
https://doi.org/10.1090/pspum/017
https://doi.org/10.1090/s0002-9947-1977-0444740-9
http://hdl.handle.net/1911/62865
http://www.tac.mta.ca/tac/volumes/26/5/26-05abs.html
https://doi.org/10.1112/plms/s3-31.3.289
https://doi.org/10.1305/ndjfl/1093957574
https://doi.org/10.1007/bf01404107

T. Uustalu, N. Veltri & N. Zeilberger 53

[28] U. Schreiber, M. Shulman et al. (2009): Closed categories. ncatlab article. (Rev. 49 was by M. Shulman, May
2018. Current version is rev. 62 from July 2020) https://ncatlab.org/nlab/show/closed+category

[29] W. J. de Schipper (1975): Symmetric closed categories, Mathematical Centre Tracts 64, CWI, Amsterdam.
[30] R. Street (2013): Skew-closed categories. J. Pure Appl. Alg. 217(6), pp. 973–988, doi:

10.1016/j.jpaa.2012.09.020.
[31] M. E. Szabo (1974): A categorical equivalence of proofs, Notre Dame J. Formal Log. 15(2), pp. 177–191.

doi: 10.1305/ndjfl/1093891297.
[32] M. E. Szabo (1978): Algebra of Proofs, Studies in Logic and the Foundations of Mathematics 88, North-

Holland, 1978.
[33] K. Szlachányi (2012): Skew-monoidal categories and bialgebroids. Adv. Math. 231(3–4), pp. 1694–1730,

doi: 10.1016/j.aim.2012.06.027.
[34] A. S. Troelstra (1995): Natural deduction for intuitionistic linear logic, Ann. Pure Appl. Log. 73(1), pp. 79–

108, doi: 10.1016/0168-0072(93)e0078-3.
[35] T. Uustalu, N. Veltri & N. Zeilberger (2018): The sequent calculus of skew monoidal categories. Electron.

Notes Theor. Comput. Sci. 341, pp. 345–370. doi: 10.1016/j.entcs.2018.11.017.
Extended version to appear in C. Casadio & P. Scott (eds.), Joachim Lambek: The Interplay of Mathematics,
Logic, and Linguistics, Outstanding Contributions to Logic 20, Springer. Preprint available at https://
arxiv.org/abs/2003.05213.

[36] T. Uustalu, N. Veltri & N. Zeilberger (2020): Eilenberg-Kelly reloaded. Electron. Notes Theor. Comput. Sci.
352, pp. 233–256. doi: 10.1016/j.entcs.2020.09.012

[37] T. Uustalu, N. Veltri, N. Zeilberger (to appear): Proof theory of partially normal skew monoidal categories.
In D. I. Spivak, J. Vicary (eds.), Proc. of 3rd Applied Category Theory Conf., ACT 2020, Electron. Proc.
in Theor. Comput. Sci., Open Publishing Assoc. Available at https://cgi.cse.unsw.edu.au/~eptcs/
paper.cgi?ACT2020:60.

[38] K. Watkins, I. Cervesato, F. Pfenning & D. Walker (2004): A concurrent logical framework: The proposi-
tional fragment. In S. Berardi, M. Coppo, F. Damiani (eds.), Proc. of Int. Wksh. on Types for Proofs and
Programs, TYPES ’03, Lect. Notes in Comput. Sci. 3085, Springer, pp. 355–377, doi: 10.1007/978-3-540-
24849-1 23.

[39] N. Zeilberger (2018): A theory of linear typings as flows on 3-valent graphs. In Proc. of 33rd Ann. ACM/IEEE
Symp. on Logic in Computer Science, LICS ’18, ACM, pp. 919–928, doi: 10.1145/3209108.3209121.

[40] N. Zeilberger (2019): A sequent calculus for a semi-associative law. Log. Methods Comput. Sci. 15(1),
article 9, doi: 10.23638/lmcs-15(1:9)2019.

[41] J. Zucker (1974): The correspondence between cut-elimination and normalization, Ann. Math. Log. 7(1),
pp. 1–112, 1974. doi: 10.1016/0003-4843(74)90010-2

https://ncatlab.org/nlab/show/closed+category
https://doi.org/10.1016/j.jpaa.2012.09.020
https://doi.org/10.1016/j.jpaa.2012.09.020
https://doi.org/10.1305/ndjfl/1093891297
https://doi.org/10.1016/j.aim.2012.06.027
https://doi.org/10.1016/0168-0072(93)e0078-3
https://doi.org/10.1016/j.entcs.2018.11.017
https://arxiv.org/abs/2003.05213
https://arxiv.org/abs/2003.05213
https://doi.org/10.1016/j.entcs.2020.09.012
https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?ACT2020:60
https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?ACT2020:60
https://doi.org/10.1007/978-3-540-24849-1_23
https://doi.org/10.1007/978-3-540-24849-1_23
https://doi.org/10.1145/3209108.3209121
https://doi.org/10.23638/lmcs-15(1:9)2019
https://doi.org/10.1016/0003-4843(74)90010-2

C. Sacerdoti Coen, A. Tiu (Eds.): 15th International Workshop

on Logical Frameworks: Theory and Practice (LFMTP 2020)

EPTCS 332, 2021, pp. 54–67, doi:10.4204/EPTCS.332.4

© B. Barras & V. Maestracci

This work is licensed under the

Creative Commons Attribution License.

Implementation of Two Layers Type Theory in Dedukti

and Application to Cubical Type Theory

Bruno Barras

Inria, Université Paris-Saclay,
ENS Paris-Saclay, CNRS, LSV,
91190, Gif-sur-Yvette, France.

Valentin Maestracci

Université Paris-Saclay,
ENS Paris-Saclay, CNRS, LSV,
91190, Gif-sur-Yvette, France.

In this paper, we make a substantial step towards an encoding of Cubical Type Theory (CTT) in the

Dedukti logical framework. Type-checking CTT expressions features a decision procedure in a de

Morgan algebra that so far could not be expressed by the rewrite rules of Dedukti. As an alternative,

2 Layer Type Theories are variants of Martin-Löf Type Theory where all or part of the definitional

equality can be represented in terms of a so-called external equality. We propose to split the encoding

by giving an encoding of 2 Layer Type Theories (2LTT) in Dedukti, and a partial encoding of CTT

in 2LTT.

1 Introduction

The goal of this paper is to explore the possibility to express Homotopy Type Theory (HoTT, [9]) in the

Dedukti [5] logical framework.

Dedukti is a logical framework which main distinctive feature is the possibility to extend the defi-

nitional equality (aka conversion) with a class of rewrite rules. It is intended to be used as a “hub” for

proof systems. Many of the logics implemented by those systems can be encoded as Dedukti theories,

and proofs in those systems can be expressed as Dedukti terms in the corresponding theory. The point

is not just to collect the proofs of many logics, but rather to make it easier to translate proofs from one

system to the other.

Expressing HoTT as a Dedukti theory is at the same time a problem that challenges the expressive-

ness of the rewrite rules accepted by Dedukti, but HoTT is an interesting formalism on its own. Moreover,

in the long term, it would be interesting to have tools to investigate which proofs can be adapted from

more conventional logics (HOL, set theory) to HoTT and conversely.

The paper is organized as follows. We first give an introduction on HoTT, Dedukti and encodings

of Type Theory in Dedukti. This will motivate the introduction of Two Level Type Theories (2LTT) as

a more flexible way to deal with type theories having a definitional equality two complex to be encoded

as rewrite rules. In the second section, we will introduce 2LTTs and their encoding as a Dedukti theory.

In the third section, we will give a partial encoding of Cubical as a 2LTT, and the corresponding piece of

Dedukti theory.

Both encodings have been implemented and can be found here:

https://github.com/valent20000/CTTDedukti.

1.1 Homotopy Type Theories

In the broad sense, HoTT is based on an interpretation of Type Theory (ML, Coq, Agda, NuPRL) where

types are topological spaces and proofs of an equality x = y in type A are continuous paths between

points x and y of space A.

http://dx.doi.org/10.4204/EPTCS.332.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://github.com/valent20000/CTTDedukti

B. Barras & V. Maestracci 55

0
•

1
•

i

I Type A
I

2 Type A

i
j = 0

j

i = 0 i = 1

j = 1

Figure 1: Meaning of judgments i : I ⊢ t : A and i, j : I ⊢ t : A

This specific interpretation implies the possibility to extend the theory with new principles. The most

famous one is univalence expressing that paths between types are exactly the weak equivalences (which

is a particular case of isomorphism that deals with higher dimensions). Other extensions include higher

inductive types, which are a generalization of inductive definitions. They are used to define spaces such

as the circle, the torus, suspensions and many others.

Some members of the HoTT family are just regular Type Theory extended with axioms. The draw-

back of this approach is that axioms breaks metatheoretical properties such as canonicity. Worse, some

useful notions such as simplicial sets seems impossible to express by mere axioms: face map equations

require a coherence condition at dimension 2, which in turn requires another coherence condition at

higher dimension, etc. This situation is often called “coherence hell”.

In contrast, several members of the HoTT family, called cubical ([7],[2]), give a computational in-

terpretation to univalence. In this paper we will focus on the Cubical Type Theory in [7] (called Cubical

from now on) that we will briefly introduce in the next section. We believe that adapting this work to the

others cubical theories should be easy.

1.2 Cubical Type Theory

The intuition behind Cubical is to follow the definition of paths as continuous functions from interval

[0;1] to the points of the topological space.

Cubical is a type theory introducing an interval pretype I.1

Having an interval variable i in the context, a judgement i : I ⊢ t : A represents a point t parameterized

by the interval, hence a path in A (see Fig. 1, left). From that, one can define a type Path and a path

constructor in a way similar to λ -abstraction. It is also possible to apply an expression to path to get back

a point of A.
Γ ⊢ A type

Γ ⊢ 〈i〉t : Path A t(i0) t(i1)

Γ ⊢ p : Path A x y Γ ⊢ e : I

Γ ⊢ pe : A

Formally, the interval I is defined in a synthetic way: as the free De Morgan algebra on i, j,k · · · .
Expanding the definition, this means its terms are elements of the following form : 0 | 1 | i | 1− r | r∧ s |
r∨ s, with ∧ representing the inf and ∨ representing the sup of the elements.

Now if we have two interval variables, a judgment i, j : I ⊢ t : A means t is a square in A, as illustrated

by Fig. 1. Having n interval variable leads to a n-dimensional cube in A, hence the name of Cubical Type

Theory.

1
I is only a pretype, as it does not enjoy all properties of types: we should not identify 0 and 1 although they are connected

by a path.

56 Two Layers Type Theory in Dedukti

Some primitives of Cubical refer to expressions that may be defined only on a sub-polyhedra. To do

that, we first describe the cube in a synthetic way like we did with the interval. A pretype F for the faces

of the cube are defined with the following grammar:

• 1, the entire cube.

• 0, the empty face.

• i = 0/i = 1 the face where i = 0/i = 1

• f1 ∧ f2, the intersection of the faces f1, f2

• f1 ∨ f2, the union of the faces f1, f2

Contexts may also contain a face to restrict judgments to a sub-polyhedra. For instance, the judgment

i, j : I; i = 0∨ j = 1 ⊢ t : A represents the left and top edges of the square in Fig. 1.

In the general case, type-checking in Cubical features a decision procedure for the inclusion of faces.

This is the main challenge in encoding Cubical in Dedukti.

1.3 Encoding Type Theories in Dedukti

Encoding a logic L in Dedukti usually consists in introducing a Dedukti theory (i.e. a set of constants and

rewrite rules) D(L), and a mapping [[]]L from L-formulae to Dedukti types and from L-proofs to terms of

type corresponding to the formula they prove.

In the case of Type Theory, one introduces a Dedukti type for “codes of types”, and a decoding

function that assigns a Dedukti type to each of these codes. Then, one introduces one constant for each

type constructor, and constants for introduction and elimination rules.

The basic property of this encoding is that it must be well-typed, in the sense that a well-formed type

must be translated to a well-typed Dedukti term. More specifically this requires that definitionally equal

terms must be translated to convertible Dedukti terms. In other terms, we expect that the definitional

equality can be expressed as rewrite rules.

As we have explained above, Cubical is a type theory which definitional equality includes the equa-

tional theory of a de Morgan algebra. It is far from obvious that it can actually be encoded by the Dedukti

rewrite rules.

We prefer to investigate another approach, where part of the conversion is mapped to a kind of propo-

sitional equality. Unfortunately, we cannot express conversion as a propositional equality of Cubical (for

the same reason that some notions in HoTT cannot be expressed by mere axioms).

Those remarks have led to the introduction of Two Level Type Theories [3].

1.4 Two Level Type Theories

We recall that in Type Theory there are two notions of equality:

• the propositional equality, that represents the intended equality of the logic

• the definitional equality, which in fact is a judgment, which represents objects that should be

identified to ensure important properties of the judgments

Two-Layer Type Theories are a class of type theories. Their common point is that they are in fact

made of two types theories (both copies of MLTT, with different additional axioms)

B. Barras & V. Maestracci 57

• The internal: It represents the theory we want to study. It is often equipped with Univalence

Axiom, which makes its equality different than the usual equality, and incompatible with axioms

like Uniqueness of Identity Proofs (UIP, or K) and functional extensionality (FunExt).

• The external: This theory will act as a sort of ’meta-theory’ of the internal. We will use its

propositional equality as an intermediate equality between the definitional ones (there are two

definitional equalities here, the internal and the external), and the propositional equality of the

internal theory. It has additional axioms (UIP & FunExt) to make its propositional equality not

slightly weaker but as powerful as the usual one.

2 Two Layers Type Theories in Dedukti

2.1 Two Layer Type Theory as a Dedukti theory

In this section, we define Two Layers Type Theories by giving their encoding in Dedukti.

For a more comprehensive definition of 2LTT, we refer to [3], although we had to adapt the definition

as they were defined semantically on some specific points.

2LTTs are basically two copies of Martin Löf’s Type Theory: one internal layer and an external

one. In order to avoid the complexity of having the notion of type and later introduce each universe as a

subclass (as is usual in MLTT), we parameterize the notion of type by levels, that identify each universe,

following Assaf (section 8.3 of [5]). We made the minimal assumptions of those levels, by just assuming

a function lsuc such that universe l belongs to level lsuc l. The Dedukti declarations for that are:

Lev : Type.

lsuc : Lev -> Lev.

We can now introduce two codes of types: one for the internal layer (T) and one for the external one

(xT), and their corresponding decoding functions eps and xeps. Let us point out that we have chosen a

shallow embedding where 2LTT contexts are identified with Dedukti contexts. So codes of types are not

explicitely parameterized by a notion of context.

T : Lev -> Type. xT : Lev -> Type.

def eps : i : Lev -> T i -> Type. def xeps : i:Lev -> T i -> Type.

In this encoding, an internal type A at level l is a term A : T l, an element t of that type A is a term

t : eps l A. T, and likewise for external types.

The inclusion of a universe l in the bigger universe is taken care by first introducing a code in

t l : T (lsuc l), and a rewrite rule to assert that t l decodes to T l:

t : i : Lev -> T (lsuc i). xt : i : Lev -> xT (lsuc i).

[i] eps (lsuc i) (t i) --> T i. [i] xeps (lsuc i) (xt i) --> xT i.

It remains to lift each type of level l as a type of level lsuc l. We omit the external lift which is

defined similarly.

lUp : i : Lev -> a : T i -> T (lsuc i).

[i, a] eps (lsuc i) (lUp i a) --> eps i a.

The above rewrite rule relate codetypes at level l and their counterpart at level lsuc l in a very strong

way: they decode to the same type, which means they have the same inhabitants.

We then implemented the usual primitive types of MLTT to populate the universes. As an exam-

ple, internal dependent pairs are declared by introducing a constant Sig for the typecode, pair is the

introduction rules, and p1 and p2 are the projections:

58 Two Layers Type Theory in Dedukti

Sig : i : Lev -> A : T i -> (eps i A -> T i) -> T i.

def tSig := (i : Lev => A : T i => B : (eps i A -> T i)

=> eps i (Sig i A B)).

def pair : i : Lev -> A : T i -> B : (eps i A -> T i) ->

a : eps i A -> b : eps i (B a) -> tSig i A B.

def p1 : i : Lev -> A : T i -> B : (eps i A -> T i) ->

p : tSig i A B -> eps i A.

def p2 : i : Lev -> A : T i -> B : (eps i A -> T i) ->

p : tSig i A B -> eps i (B (p1 i A B p)).

[i,A,B,a,b] p1 i A B (pair i A B a b) --> a.

[i,A,B,a,b] p2 i A B (pair i A B a b) --> b.

Actually, we define the following types, both at the internal and external layer, and at each level:

Internal External

False i : T i xFalse i : xT i

True i : T i xTrue i : xT i

Nat i : T i xNat i : xT i

Pi i (A:T i)(B:x:eps i A->T i) : T i xPi i (A:xT i)(B:x:xeps i A->xT i) : xT i

Sig i (A:T i)(B:x:eps i A->T i):T i xSig i (A:xT i)(B:x:xeps i A->xT i):xT i

Sum i (A:T i) (B:T i) : T i xSum i (A:xT i) (B:xT i) : xT i

Eq i (A:T i)(x:eps i A)(y:eps i A):T i xEq i (A:xT i)(x:xeps i A)(y:xeps i A):xT i

So far, 2LTTs feature two copies of MLTT, each one totally independent from the other. In order

to include the internal layer into the external one, 2LTTs feature a coercion function c that assigns an

external to each internal type.

def c : i : Lev -> T i -> xT i.

In [3], the coercion was defined in semantical terms. Here, coercion is such each internal type A

is isomorphic to c(A). By lifting internal types into the external world, the coercion allows us to see

the internal world as a sort of sub-world of the external world. This allows to express properties of the

internal world using the external equality.

This isomorphism can be encoded in different ways, from the most general to the most specific:

• Assuming the existence of functions between eps(A) and xeps(c(A)), which are inverse one of

each other, propositionally.

• Assuming the existence of functions between eps(A) and xeps(c(A)), which are inverse one of

each other, definitionally.

• Assuming that both (code)types decode to the same type.

The third option is similar to the one chosen for the universe inclusion, but the goal of 2LTTs is to be as

general as possible, so we would better avoid it. However, the first one would probably need a coherence

condition, and would make the system harder to use. For these reasons we have chosen the second

option:

def isoUp : i : Lev -> A : T i -> eps i A -> tc i A.

def isoDown : i : Lev -> A : T i -> tc i A -> eps i A.

[i, A, a] isoDown i A (isoUp i A a) --> a.

[i, A, a] isoUp i A (isoDown i A a) --> a.

B. Barras & V. Maestracci 59

As stated before, 2LTTs are a class of type theories. They are a sort of ’à la carte’ type theory where

one can add additional axioms concerning coercion to tune it the way one wants it to be.

Like the definition of coercion, most of these axioms had a semantic definition. Here is a list of the

ones (as introduced in [3]) we were able to express in a syntactic manner:

• Coercion can be required to be injective:

(; < T1 > ;)

def T1 : l : Lev -> A : T l -> B : T l ->

p : xtTEq l (c l A) (c l B) -> tTEq l A B.

where xtTEq and tTEq are shorthands for the types of elements of respectively external and internal

equality

• The repletion axiom: an external type isomorphic to a c(A) also has an antecedent by c.

(; < T3 > ;)

repletion : l : Lev -> A : xT l -> B : T l ->

p : xtTEq l A (c l B) -> T l.

[l, A, B, e] c l (repletion l A B e) --> A.

• Integers are a fairly simple type with simple rules. One would expect c(N) and xN to be isomor-

phic, but it is actually not the case for technical reasons. There is only a morphism xN→ c(N).

A possible additional axiom is to make this morphism an isomorphism definitionally.

The union, eq and false types can have similar additional axioms, while in the case of the product,

sum and 1 types, the isomorphism is already there.

• One can also make these types isomorphic through that isomorphism not definitionally (ie by

rewriting), but only up to external equality.

• One can make all these isomorphisms (including the ones for pi, sig, and 1, with example code

below) equalities instead of just isomorphisms (cf option 3 for the coercion).

(; < T2 > Primitive Isomorphisms c A ~ xA become equality ;)

[l] c l True --> xTrue l.

[l, A, B] c l (Pi l A B) --> xPi l (c l A) (clift l A B).

[l, A, B] c l (Sig l A B) --> xSig l (c l A) (clift l A B).

We implemented all the above axioms in Dedukti.

Interestingly, there was in the list of axioms that couldn’t be implemented an axiom called (A5),
which requires that external equality validates the reflection rule (that is, externally equal types are con-

sidered definitionally equal). This could not be implemented in Dedukti. In it was possible, then we

would be able to encode Cubical in Dedukti without resorting to 2LTTs.

We also tested the usability of this encoding by formulating the axiom of univalence. Here, for the

sake of brevity, we only give the weaker form which states that the type A = B (where A and B are types

of level l) is weakly equivalent to A ≈ B, the type of weak equivalence between A and B:

WeakUnivalence : l : Lev -> A : T l -> B : T l ->

eps (lsuc l) (Equiv (lsuc l) (TEq l A B) (lUp l (Equiv l A B))).

Note that A = B actually belongs to level lsuc l, hence the need to lift A ≈ B one universe up. Also, the

notion of weak equivalence occurs twice but at different levels. This remark is the reason that made us

opt for a presentation of type theories with a hierarchy of universes

60 Two Layers Type Theory in Dedukti

2.2 Translating Two Layer Type Theories

We define a straightforward translation, with every type/term associated to the one with the same name

in Dedukti, and the convention that variables share the same name in 2LTT and Dedukti:

• JxKl = x

• J Σ
x:A
(B)K

l
= Sig l JAKl (x: eps l JAKl => JB(x)Kl)

• Jpair[x:A]B(a,b)Kl
= pair l JAKl (x: eps l JAKl => JB(x)Kl) JaKl JbKl

• · · ·

We also define the translation of context :

Jx1 :l1 A1, · · · ,xn :ln AnK = x1: eps JA1Kl1
, ..., xn: eps JAnKln

.

As stated before when we first talked about how 2LTTs were implemented, encoding has the partic-

ularity that it encodes types, not into Dedukti types, but into type codes, that is elements of type T l for

internal types, and xT l for external types. It encodes terms into terms of type the ’realization’ of JAKl ,

that is eps l JAKl , and similarly for the external layer.

2.3 Soundness of the encoding

There are two important properties that the translation is expected to have:

Soundness: this means that the translation defined above preserves typability, and hence provability too.

It also means that our encoding is powerful enough to prove everything that could be proven in the

theory of 2LTTs.

Conservativity: this would mean that any property provable in the encoding can be proved in the thoery

of 2LTTs, in other words that our encoding is not too powerful. From this we would be able to use

Dedukti as a 2LTT type-checker.

While soundness is quite straightforward to prove (since all of the definitional equality of 2LTTs

could be encoded by rewrite rules), conservativity is quite hard to prove.

The soundness property consists of 9 statements, one for each judgment kind:

THEOREM —

• If Γ 2LTT context, then JΓKl Dedukti context.

• If Γ ⊢2L A type l, then JΓKl ⊢Dk JAKl : T l

• If Γ ⊢2L A = A′ type l, then JΓKl ⊢Dk JAKl ↔
∗ JA′Kl : T l

• If Γ ⊢2L A type l, Γ ⊢2L t : A, then JΓKl ⊢Dk JtKl : eps l JAKl

• If Γ ⊢2L A type l, Γ ⊢2L t = t ′ : A then JΓKl ⊢Dk JtKl ↔
∗ Jt ′Kl : eps l JAKl

• If Γ ⊢2L A xtype l, then JΓKl ⊢Dk JAKl : xT l

• If Γ ⊢2L A = A′ xtype l, then JΓKl ⊢Dk JAKl ↔
∗ JA′Kl : xT l

• If Γ ⊢2L A xtype l, Γ ⊢2L t : A, then JΓKl ⊢Dk JtKl : xeps l JAKl

• If Γ ⊢2L A xtype l,Γ ⊢2L t = t ′ : A then JΓKl ⊢Dk JtKl ↔
∗ Jt ′Kl : xeps l JAKl

B. Barras & V. Maestracci 61

The proof is by mutual induction on the judgments.

Conservativity is a much harder problem, and we have not proven it yet. However, we make the

following conjecture a conservativity result. Every Dedukti proof which context and type are in the

image of the translation correspond to a 2LTT derivation:

CONJECTURE —

Given a Dedukti judgment

x1 : T1, . . . ,xn : Tn ⊢Dk t : A

where all Tis are of the form eps li JUiKli
or xeps li JUiKli

and A is convertible to a term of the form

eps l JBKl or xeps l JBKl , then there exists a 2LTT terms u such that

x1 : U1, . . . , xn : Un ⊢2L u : B

This obviously cannot hold if the logic of Dedukti is inconsistent (unless 2LTTs are themselves inconsis-

tent). The idea of the proof is to translate only proofs in normal form, and assume strong normalization

of the reduction rules of Dedukti. Another source of inspiration is [4], where conservativity is proven for

an encoding of Pure Type Systems.

3 Cubical Type Theory in Dedukti

This section introduces a partial encoding of Cubical as an extension of the 2LTT Dedukti theory. We

focused of the main primitive of Cubical: composition. As we have already mentionned, the typing

rule of composition is probably beyond the capabilities of Dedukti’s rewrite rules, and we expect 2LTTs

to be a trade-off where expressivity is recovered at the cost of building parts of definitional equality

derivations by hand. We try to express the largest fragment by rewrite rules, and the rest will be encoded

in the external layer.

We do not consider the primitives related to glueing, which is the main feature that makes univalence

provable in Cubical.

When viewing Cubical as an instance of a 2LTT, the leading idea is that the internal layer contains the

object theory (Cubical) while the external layer is that of the meta-theory. More concretely, the internal

layer contains the types of Cubical, while the external layer contains the pretypes (I, and F) and the

judgments of Cubical.

We first introduce a level cL for the primitive pretypes of Cubical: I and F which are declared as

external types.

cL : Lev. def T := xT cL. def ceps := xeps cL.

def cEq := xEq cL. (; and all types at level cL with prefix c ;)

Symbol cEq is used to express convertibility of preobjects. For the sake of conciseness we also define

a symbol to represent convertibility of objects, using the coercion to lift internal objects to the external

layer:

def CubicalEq (l : Lev) (A : T l) (a : eps l A) (b : eps l A) :=

xEq l (c l A) (isoUp l A a) (isoUp l A b).

In order to interpret the conversion rule, we need more interaction between both layers, by allowing

elimination of an external equality at level cL towards an internal type:

62 Two Layers Type Theory in Dedukti

def CubicalJ :

l:Lev -> A:cT -> x:ceps A -> P: (y:ceps A->cEq A x y->T l) ->

eps l (P x (crefl A x)) ->

y:ceps A -> e:cEq A x y -> eps l (P y e).

3.1 The interval pretype I

Implementing the grammar of intervals and faces needs care, because the type-checking of Dedukti

requires confluence of the set of rewrite rules. An algebra (A,∨,∧,0,1,¬) is a De Morgan algebra if ∨
and ∧ are associative and commutative and

x∧ x = x x∧0 = 0 x∧1 = x

x∧ (y∨ z) = (x∧ y)∨ (x∧ z) ¬(x∧ y) = ¬x∨¬y ¬¬x = x

The dual laws are derivable from these. In the currently distributed version of Dedukti, commutativity

cannot be added as a rewrite rule, and idempotence being non-linear may break confluence. Zero, neu-

tral, involution and De Morgan laws are straightforward. Associativity can be oriented in an arbitrary

direction. Regarding distributivity, we cannot have a law and the dual one (neither the left nor the right

one) or normalization is lost. Having the left and right laws at the same time creates a critical pair that

cannot be closed without commutativity. So, we can have at most one of the four. Considering that

distributivity is probably used only in very few cases, we decided to implement none as a rewrite rule.

The rules that cannot be expressed as rewrite rules are thus stated as external equations.

I : cT. 0 : ceps I. 1 : ceps I.

def Imin : ceps I -> ceps I -> ceps I.

def Imax : ceps I -> ceps I -> ceps I.

def sym : ceps I -> ceps I.

(; rewrite rules , completed by symmetry ;)

[i] Imin 0 i --> 0 [i] Imin i 0 --> 0.

[i] Imin 1 i --> i [i] Imin i 1 --> i.

[i] Imax 0 i --> i [i] Imax i 1 --> 0.

[i] Imax 1 i --> 1 [i] Imax i 1 --> 1.

[] sym 0 --> 1 [] sym 1 --> 0.

[i,j] sym (Imin i j) --> Imax (sym i) (sym j).

[i,j] sym (Imax i j) --> Imin (sym i) (sym j).

[i] sym (sym i) --> i.

[i,j,k] Imin (Imin i j) k --> Imin i (Imin j k).

[i,j,k] Imax (Imax i j) k --> Imax i (Imax j k).

(; properties expressed as external equations;

Imin laws derived by duality ;)

Imax_idem : i:ceps I -> cEq (Imax i i) i.

Imax_comm : i:ceps I -> j:ceps I -> cEq I (Imax i j) (Imax j i).

Imax_dist : i : ceps I -> j : ceps I -> k : ceps I ->

cEq (Imax (Imin i j) k) (Imin (Imax i k) (Imax j k).

3.2 Paths

We then define the type of paths together with its introduction and elimination rules. Since paths are

types in Cubical, they are encoded in the internal layer.

B. Barras & V. Maestracci 63

def Path : A : cT -> u : ceps A -> v : ceps A -> cT.

def lam : A : cT -> p : (ceps I -> ceps A) ->

ceps (Path A (p 0) (p 1)).

def app : A : cT -> u : ceps A -> v : ceps A ->

ceps (Path A u v) -> ceps I -> ceps A.

(; Computational rules ;)

[A,u,v,p] app A u v (lam A f) e --> f e. (; beta ;)

[A,u,v,p] app A u v p 0 --> u [A,u,v,p] app A u v p 1.

In the definition of Cubical, the last two definitional equalities above implement the rules

Γ ⊢ p : Path A u v

Γ ⊢ p 0 = u : A Γ ⊢ p 1 = v : A

which requires typing information about path p. This could be a problem since the conversion (and

rewrite rules) of Dedukti is applied on terms without any typing information. Fortunately, in our encoding

application is annotated with all of the information needed.

We also note that at this point paths are not related to the internal equality Eq.

It remains to express the key primitive of Cubical: composition. The typing rule involves the notions

of interval variable (which are just external variables of type I) and face (F).

3.3 Faces

Let us first define faces, following the explanations in the introduction.

F : cT. (; Type of Faces ;)

0f : ceps F. (; Empty face ;)

1f : ceps F. (; Whole cube ;)

def eq0 : ceps I -> ceps F. (; eq0 i is the face i = 0 ;)

def eq1 : ceps I -> ceps F. (; eq1 i is the face i = 1 ;)

def Fmin: ceps F -> ceps F -> ceps F. (; Intersection of faces ;)

def Fmax: ceps F -> ceps F -> ceps F. (; Union of faces ;)

(; Rewrite rules and equations (problem similar to the interval);)

[f] Fmin 0f f --> 0f.

...

Fdiscr : i : ceps I -> cEq F (Fmin (eq0 i) (eq1 i)) 0f.

We do not give details of how the algebraic properties of faces are turned into either rewrite rules or an

equation. We only give the crucial property Fdiscr that there is no intersection between the opposite

faces of a cube.

An important remark is that this does not exactly follow the syntax of the faces of Cubical, since the

face (i = 1) requires i to be a variable, which cannot be enforced in our shallow embedding. In Cubical

when an interval variable i is substituted by an interval expression e, in a face (i = 1), it is replaced

following the rules (and similarly for i = 0):

(i = 1)[i/0] = 0 (i = 1)[i/1] = 1 (i = 1)[i/1− e] = (i = 0)[i/e]
(i = 1)[i/e1 ∨ e2] = (i = 1)[i/e1]∨ (i = 1)[i/e2]
(i = 1)[i/e1 ∧ e2] = (i = 1)[i/e1]∧ (i = 1)[i/e2]

This is quite naturally expressed by rewrite rules (straightfowardly adapted to eq0):

64 Two Layers Type Theory in Dedukti

[] eq1 0 --> 0f [] eq1 1 --> 1f [e] eq1 (sym e) --> eq0 e.

[i,j] eq1 (Imax i j) --> Fmax (eq1 i) (eq1 j).

[i,j] eq1 (Imin i j) --> Fmin (eq1 i) (eq1 j).

Given a context Γ and a face φ of Γ, the context Γ,φ is a restriction of context Γ where the interval

variables must belong to φ . Since we use a shallow embedding of context, we need to represent a face

as an external type (actually a proposition) of witnesses that the interval variable belong to φ . So, the

Dedukti type F above is a code of types with a decoding function faceType.

The definition one would like to make would thus be something along the lines of:

(; First attempt ;)

def faceType : ceps F -> cT.

[] faceType 0f --> cFalse.

[] faceType 1f --> cTrue.

[a] faceType (eq1 a) --> cEq I 1 a.

[a] faceType (eq0 a) --> cEq I 0 a.

[a, b] faceType (Fmax a b) --> cSum (faceType a) (faceType b).

[a, b] faceType (Fmin a b) --> cSig (faceType a) (_=>faceType b).

where we see that intersection (resp. union) is represented by the cartesian product (resp. sum), and the

base constraint (i = 0) by an external equality.

But this definition breaks confluence. Here is an example of critical pair:

faceType (Fmin 1f 1f) --> cSig cTrue (_=> cTrue)

faceType (Fmin 1f 1f) --> faceType 1f --> cTrue

If we try to recover confluence by closing this critical pair, the types cTrue and cSig cTrue (_=> cTrue)

become convertible and hence allow to apply a projection to an inhabitant of cTrue. This destroys many

good properties (e.g. canonicity) of the external layer, and this may lead to have erroneous Cubical

proofs accepted by the encoding.

As a workaround, we decided to not have rewrite rules associated to faceType, but rather have an

isomorphism between faceTypeφ and its intended type. We will also need that those types are actually

propositions (i.e. all inhabitants must be equal). This is the case for faces 0, 1 and φ1∧φ2. This holds also

for (i= 1) and (i= 1) if the external layer enjoys Uniqueness of Identity Proofs (or axiom K). But having

φ1 ∨ φ2 isomorphic to a disjoint sum is a problem because the latter type may not be a proposition. We

need a new external type, for instance a truncated sum. This type as the same introduction rules similar to

disjoint sum, but the elimination rule requires a coherence condition (that will be given in the definition

TermSys below).

3.4 Systems

We now focus on the Cubical notion of system, which allows to define functions whose value depends

on where we are on the cube. A system is an expression of the form [φ1 → a | φ2 → b], which evaluates

to a on φ1, and b on φ2. This expression is defined on φ1 ∨ φ2 which is called the extent of that system.

Obviously, this makes sense only when a and b coincide on φ1∧φ2 w.r.t. definitional equality. In Cubical,

systems are valid terms only if their extent is equal to 1 f .

In our encoding, a system of type A and extent φ , is a term of type ceps(faceType phi) -> eps l A.

The embedding into terms of type A is done by applying a proof that the current context is on face φ . So,

a (binary) partial system is build with the following symbol:

def TermSys : l : Lev -> f1 : ceps F -> f2 : ceps F ->

B. Barras & V. Maestracci 65

tau : T l ->

A1 : (ceps(faceType f1) -> eps l tau) ->

A2 : (ceps(faceType f2) -> eps l tau) ->

coh : (e : ceps (faceType (Fmin f1 f2)) ->

tCubicalEq l tau (A1 (fp1 f1 f2 e)) (A2 (fp2 f1 f2 e))) ->

ceps (faceType (Fmax f1 f2)) -> eps l tau.

which implements the rule

Γ ⊢ A type Γ,φ1 ⊢ a1 : A Γ,φ2 ⊢ a2 : A Γ,φ1 ∧φ2 ⊢ a1 = a2 : A

Γ,φ1 ∨φ2 ⊢ [φ1 → a1 | φ2 → a2] : A

Actually, we implemented a more general rule where the first premisse is Γ,φ1 ∨φ2 ⊢ A type, but this

adds a lot of technicalities on the handling of face witnesses. We shall not give all the details here, but

making those witnesses irrelevent (either definitionaly or propositionaly) is necessary.

This condition and the fact that the theory uses dependent types makes the use of systems in practice

really complex, especially when more than two branches are involved since one has to check multiple

side conditions.

3.5 Composition and the example of filling

The formal definition of composition is

Γ ⊢ φ : F Γ, i : I ⊢ A type Γ,φ , i : I ⊢ u : A Γ ⊢ a0 : A(i0)[φ → u(i0)]

Γ ⊢ compi A [φ → u] a0 : A(i1)[φ → u(i1)]

where the notation Γ ⊢ t : A[φ → u] is a shorthand for Γ ⊢ t : A and Γ,φ ⊢ u = u : A, in other words t as

type A and is definitionally equal to u on face φ . This cannot be expressed via rewriting. So we used

external equality both for the premisse and the conclusion, which is split into two symbols:

def primCompTerm : l : Lev -> phi : ceps F -> A : (ceps I -> T l)

-> u : (ceps (faceType phi) -> i : ceps I -> eps l (A i))

-> a0 : eps l (A 0)

-> (e : ceps (faceType phi)-> tCubicalEq l (A 0) a0 (u e 0))

-> eps l (A 1).

def primCompEq : l : Lev -> phi : ceps F -> A : (ceps I -> T l)

-> u : (ceps (faceDataType phi) -> i : ceps I -> eps l (A i))

-> a0 : eps l (A 0)

-> coh :(e:ceps(faceType phi -> tCubicalEq l (A 0) a0 (u e 0))

-> e : ceps (faceType phi)

-> tCubicalEq l (A 1) (primCompTerm l phi A u a0 coh) (u e 1).

Combining composition with systems, one can prove many important theorems such as transitivity

of paths. To make an example use of our encoding as well as to test how usable it was in practice,

we implemented the example of filling, which draws the line between a point a0 and the composition

compi A [φ → u] a0.:

filli A [φ → u] a0 j : A(j)

Because of the verbosity of our encoding, making the proof by hand (i.e. creating the fill term) was quite

complicated in Dedukti. The situation would be better with the development version of Dedukti which

features an interactive proof construction engine.

66 Two Layers Type Theory in Dedukti

3.6 Translation of Cubical expressions

The soundness and conservativity of the encoding (using an translation function) is clearly a quite hard

problem. Here we will only sketch how those results should be obtained.

The first step is to translate Cubical terms into a Dedukti well-typed terms in the theory of 2LTTs

extended with the Cubical-specific piece of theory described above. This is quite difficult since parts

of the definitional equality of Cubical is translated to external equalities of 2LTTs. Given two Cubical-

convertible types A and B, a term M of types A is also of type B, while in the 2LTT encoding, JMK has

type JAK, but getting a term of type JBK requires the transport principle CubicalJ. Formally, one would

say that the translation domain is Cubical derivations rather than mere terms.

Proving the soundness of this translation raises the difficulty that the same term may be typed by

different derivations (using conversion at different places), resulting in translated terms that may not be

convertible. One important lemma is to show they are actually equal w.r.t. external equality. This is

where it is important that the external equality satisfies axiom UIP and functional extensionality. We

note that is problem is equivalent to the one of encoding extensional type theory into intensional type

theory extended with the above two axioms, see [10]

The conservativity proof follows the same idea as the one of 2LTTs.

4 Conclusion

We gave an encoding of 2LTTs as a Dedukti theory, and specialized it to an encoding of a subsystem of

Cubical Type Theory (excluding glueing).

The 2LTT encoding was rather straightforward, once the typing rules are expressed syntactically.

Definitional equality could be encoded as rewrite rules, which made the soundness proof rather easy.

However, we consider 2LTTs as an important logical framework to express theories which definitional

equality is very rich. Other theories could be expressed in our encoding. Beyond the HoTT family of

formalisms, we may cite CoqMTU [6], an extension of type theory with a decidable first-order theory.

The Cubical encoding required much more care. There are two main reasons for this. Firstly, Cubical

is based on an algebraic structure (De Morgan algebra) which properties cannot be encoded easily as

rewrite rules (commutativity, distributivity, idempotence). The answer to this problem may be to extend

the expressivity of the rewrite rules of Dedukti: rewriting modulo AC is being considered, but it is not

clear if this work is useful for theories with more properties, like having a unit element. The second

reason is that the definitional equality of Cubical includes a decision procedure. Rewrite rules cannot

inspect the context, so it does seem possible to encode it without giving up the shallow embedding for

faces.

Future work

There are several directions that this work may take. Of course, one is to establish the soundness and

conservativity results that we expect hold for our encodings.

We also plan to study how glueing can be added to the encoding. At first glance, the reduction rule

associated to glue types cannot be expressed as rewrite rules, so there are probably several interesting

problems to study there.

A more concrete concern would be to define the translation function from Cubical to our encoding.

In this paper, we have done it by hand on several examples (like filling). It appeared to become very

B. Barras & V. Maestracci 67

complex when systems are involved. Writing an elaboration function that fills the gaps would be the next

step before instrumenting Cubical proof systems to produce Dedukti terms that could be rechecked.

References

[1] Thorsten Altenkirch, Paolo Capriotti & Nicolai Kraus (2016): Extending Homotopy Type Theory with Strict

Equality. doi:10.4230/LIPIcs.CSL.2016.21.

[2] Carlo Angiuli, Kuen-Bang Hou (Favonia) & Robert Harper (2018): Cartesian Cubical Computational Type

Theory: Constructive Reasoning with Paths and Equalities. In Dan R. Ghica & Achim Jung, editors: 27th

EACSL Annual Conference on Computer Science Logic, CSL 2018, September 4-7, 2018, Birmingham, UK,

LIPIcs 119, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 6:1–6:17, doi:10.4230/LIPIcs.CSL.

2018.6.

[3] Danil Annenkov, Paolo Capriotti, Nicolai Kraus & Christian Sattler (2017): Two-Level Type Theory and

Applications.

[4] Ali Assaf (2015): Conservativity of Embeddings in the lambda Pi Calculus Modulo Rewriting. In Thorsten

Altenkirch, editor: 13th International Conference on Typed Lambda Calculi and Applications, TLCA 2015,

July 1-3, 2015, Warsaw, Poland, LIPIcs 38, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 31–44,

doi:10.4230/LIPIcs.TLCA.2015.31.

[5] Ali Assaf, Guillaume Burel, Raphaël Cauderlier, David Delahaye, Gilles Dowek, Catherine Dubois, Frédéric

Gilbert, Pierre Halmagrand, Olivier Hermant & Ronan Saillard (2016): Dedukti: a logical framework based

on the λ Π-calculus modulo theory. Unpublished manuscript. Available at http://www.lsv.fr/~dowek/

Publi/expressing.pdf.

[6] Bruno Barras, Jean-Pierre Jouannaud, Pierre-Yves Strub & Qian Wang (2011): CoQMTU: A Higher-Order

Type Theory with a Predicative Hierarchy of Universes Parametrized by a Decidable First-Order Theory. In:

Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24,

2011, Toronto, Ontario, Canada, IEEE Computer Society, pp. 143–151, doi:10.1109/LICS.2011.37.

[7] Cyril Cohen, Thierry Coquand, Simon Huber & Anders Mörtberg (2016): Cubical Type Theory: a construc-

tive interpretation of the univalence axiom.

[8] Martin Hofmann (1997): Syntax and semantics of dependent types.

[9] The Univalent Foundations Program (2013): Homotopy Type Theory: Univalent Foundations of Mathemat-

ics. https://homotopytypetheory.org/book, Institute for Advanced Study.

[10] Théo Winterhalter, Matthieu Sozeau & Nicolas Tabareau (2019): Eliminating reflection from type theory.

In Assia Mahboubi & Magnus O. Myreen, editors: Proceedings of the 8th ACM SIGPLAN International

Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, ACM, pp.

91–103, doi:10.1145/3293880.3294095.

http://dx.doi.org/10.4230/LIPIcs.CSL.2016.21
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.6
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.6
http://dx.doi.org/10.4230/LIPIcs.TLCA.2015.31
http://www.lsv.fr/~dowek/Publi/expressing.pdf
http://www.lsv.fr/~dowek/Publi/expressing.pdf
http://dx.doi.org/10.1109/LICS.2011.37
https://homotopytypetheory.org/book
http://dx.doi.org/10.1145/3293880.3294095

