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A SHARP STABILITY RESULT
FOR THE GAUSS MEAN VALUE FORMULA

GIOVANNI CUPINI - NICOLA FUSCO - ERMANNO LANCONELLI - XIAO ZHONG

ABSTRACT. We prove a quantitative stability result for the Gauss mean value formula. We also
show by an example that the estimate proved here is sharp.

1. INTRODUCTION

Among the various rigidity properties satisfied by balls one of the best known example is
provided by the Gauss mean value formula for harmonic functions. A simple proof of this fact
was given by Kuran in [10]. Denoting by D an open set in Rn, n ≥ 2, and byH(D) the family of
the harmonic functions in D, his result reads as follows:

(Kuran) Let D ⊂ Rn be an open set with finite measure and let x0 ∈ D be such that

u(x0) = −
∫
D
u(x) dx ∀u ∈ H(D) ∩ L1(D). (1.1)

Then D is a Euclidean ball centered at x0.
In view of this harmonic characterization of balls it is natural to raise the question of the

stability of the mean value equality (1.1). Roughly speaking, the problem can be stated as follows:

(*) Let D and x0 be as above. If u(x0) is close to −
∫
D
u dx for every u ∈ H(D) ∩ L1(D), is

it true that D is close to a Euclidean ball centered at x0?
To put the previous question in a precise form we have introduced the Gauss mean value gap.

Precisely, given an open set D of finite measure and x0 ∈ D we define the rescaled Gauss mean
value gap of D relative to x0 as

G(D,x0) := sup
u∈H(D)∩L1(D),u6≡0

∣∣∣∣u(x0)−−
∫
D
u(x) dx

∣∣∣∣
‖u‖

L̃1(D)

, (1.2)

where we have set

‖u‖
L̃1(D)

:= −
∫
D
|u(x)| dx.

It is easy to verify that G(D,x0) is translation and scaling invariant. Moreover, using the
Gauss mean value property on the ball B(x0, rx0), where rx0 = dist(x0, ∂D), an elementary
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2 A SHARP STABILITY RESULT FOR THE GAUSS MEAN VALUE FORMULA

computation shows that

G(D,x0) ≤ 1 +
|D|

|B(x0, rx0)|
<∞.

Indeed, for every u ∈ H(D) ∩ L1(D), u 6≡ 0,∣∣∣∣u(x0)−−
∫
D
u(x) dx

∣∣∣∣
‖u‖

L̃1(D)

≤
−
∫
D
|u(x)| dx+−

∫
B(x0,rx0 )

|u(x)| dx

−
∫
D
|u(x)| dx

≤ 1 +
|D|

|B(x0, rx0)|
.

A common way to measure the distance of a measurable set D ⊂ Rn, |D| < ∞, from a ball
is provided by the so called Fraenkel asymmetry which is defined by setting

α(D) := min
x∈Rn

|D4B(x, rD)|
|D|

,

where rD is the radius of a ball with the same measure of D and

|D4B(x, rD)| := |D \B(x, rD)|+ |B(x, rD) \D|.

By using the Gauss gap G and the Fraenkel asymmetry α, question (*) can be formulated as
follows:

is it true that lim
G(D,x0)→0

α(D) = 0 ? (1.3)

In this paper we give a positive answer to this question. Actually we prove a stronger result; i.e,
the following stability inequality.

Theorem 1.1. There exists a constant C(n) such that if D ⊂ Rn is an open set of finite measure
and x0 ∈ D, then

|D \B(x0, rx0)|
|D|

≤ C(n)G(D,x0), (1.4)

where, as above, rx0 = dist(x0, ∂D).

Since |D4B(x0, rD)| = 2|D \ B(x0, rD)| ≤ 2|D \ B(x0, rx0)|, the stability estimate (1.4)
implies that

if D is an open set of finite measure and x0 ∈ D, then

α(D) ≤ 2C(n)G(D,x0), (1.5)

that trivially implies (1.3). Note also that Theorem 1.1 has Kuran’s Theorem as a corollary. In fact,
if G(D,x0) = 0 from (1.4) we have that |D \B(x0, rx0)| = 0. Thus, since D contains B(x0, rx0)

and is open, D = B(x0, rx0).

The estimate from below of the Gauss mean value gap in Theorem 1.1 is sharp in the following
sense: if we consider the family of ellipsoids

Dε :=
{
x ∈ Rn : (εx1)2 + x2

2 + · · ·+ x2
n < 1

}
,

1

2
< ε < 1

and denote x0 the origin, then rx0 = 1,

lim
ε→1
|Dε \B(0, 1)| = 0
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and there exists a constant c > 0, independent of ε, such that

1

C(n)

|Dε \B(0, 1)|
|Dε|

≤ G(Dε, 0) ≤ c |Dε \B(0, 1)|
|Dε|

. (1.6)

The first inequality comes from Theorem 1.1 and the second one is a straightforward consequence
of the following continuity-type result for the Gauss mean value gap: the C1,α-convergence of
domains to a Euclidean ball forces the Gauss gap to go to zero. Precisely,

Theorem 1.2. Let d ∈ C1,α(B(0, 2)), α ∈]0, 1[, and let

D := {x ∈ B(0, 2) : d(x) < 1}

be such that
∂D = {x ∈ B(0, 2) : d(x) = 1}

and
B(0, 1/2) ⊆ D ⊆ D ⊆ B(0, 2).

We let
de : Rn → R, de(x) := |x|2.

Then there exists a positive constant c, only depending on n and the C1,α-norm of d in B(0, 2),
such that

G(D, 0) ≤ c ‖d− de‖C1,α(B(0,2)) . (1.7)

Roughly, the above results says that the Gauss mean value gap of domains converging to the
unit ball in C1,α-norm goes to 0, and it provides a quantitative estimate, see (1.7).

The inequality (1.7) is almost sharp. Indeed, we cannot replace the C1,α-norm at the right
hand side with a C0,β-norm, for any β < 1, or even with a W 1,p-norm, for any fixed p < ∞, as
the following result shows.

Theorem 1.3. For every ε ∈]0, 1[ there exists a family of Lipschitz continuous functions dε :

Rn → [0,∞[, such that, letting

Dε = {x ∈ Rn : dε(x) < 1}

we have

(i) B(0, 1/2) ⊆ Dε ⊆ B(0, 2)

(ii) ∂Dε piecewise smooth and ∂Dε = {x ∈ Rn : dε(x) = 1}
(iii) ‖dε − de‖W 1,p(Dε) → 0 as ε→ 0 for every p > 1

(iv) lim inf
ε→0

G(Dε, 0) > 0.

Now, a few remarks are in order. The stability inequality (1.5) is reminiscent of other stability
estimates, such as the quantitative isoperimetric inequality, see [8], see also [7] for the anisotropic
case, which states that there exists a constant c(n) such that ifD ⊂ Rn is a measurable set of finite
measure, then

α(D)2 ≤ c(n)

(
P (D)− P (B(0, rD))

P (B(0, rD))

)
, (1.8)

where P (·) stands for the perimeter. Here, the right hand side of (1.8) represents the gap between
the perimeter of D and the (minimal) perimeter of the ball with the same volume.
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Another important property of balls, the Faber-Krahn inequality, states that they minimize the
first Dirichlet eigenvalue of the Laplacian λ(D) among all open setsD with the same volume. The
quantitative version of this inequality has been recently established in [4], where it is proved that
there exists a constant κ(n) such that if D is an open set of finite measure then

α(D)2 ≤ κ(n)

(
λ(D)− λ(B(0, rD))

λ(B(0, rD))

)
. (1.9)

Note that in (1.8) and (1.9), as well as in many other stability estimates of this kind, the Fraenkel
asymmetry always appears with a power 2. In our case the sharp exponent of the Fraenkel asym-
metry is 1. Indeed

α(D)γ ≤ C(n, γ)G(D,x0) ∀γ ≥ 1 (1.10)

with C(n, γ) = 2γC(n), as it immediately follows by (1.5), since α(D) ≤ 2. On the other hand,
our estimate (1.6) straightforwardly implies that inequality (1.10) does not hold for γ < 1.

We remark that our technique to prove the stability result Theorem 1.1 does not seem suitable
to obtain a similar result for the Gauss gap related to the surface average. An interesting stability
result in this direction has been obtained in dimension n = 2 by Agostiniani and Magnanini in
[1], see also [11].

The plan of the paper is the following. In Section 2 we prove the stability result Theorem
1.1. In Section 3 we provide the proofs of the estimates from above of the Gauss mean value gap,
precisely, the proofs of Theorem 1.2 and of (1.6). In Section 4 we give the proof of Theorem 1.3.

2. PROOF OF THEOREM 1.1

Let D ⊆ Rn, n ≥ 2, be an open set with finite Lebesgue measure. Fixed x0 ∈ D, denote
rx0 :=dist(x0, ∂D). Then there exists x1 ∈ ∂B(x0, rx0) ∩ ∂D.

As in Kuran [10], we define h : D → R,

h(x) := 1 + rn−2
x0

|x− x0|2 − r2
x0

|x− x1|n
.

Lemma 2.1. h ∈ H(D) ∩ L1(D) and

‖h‖L1(D) ≤ c(n, |D|),

where c(n, |D|) denotes a constant only depending on n and |D|.

Proof. Let P be the Poisson kernel for the ball B(0, rx0). Then

P (x, y) = c(rx0 , n)
r2
x0 − |x|

2

|x− y|n
x ∈ B(0, rx0), y ∈ ∂B(0, rx0),

for some positive constant c(rx0 , n). It is well known that x 7→ P (x, y) is harmonic in Rn \ {y}.
By a translation argument and taking into account that x1 /∈ D, we conclude that h ∈ H(D).

Let us prove that h ∈ L1(D) and let us estimate its L1-norm.
Using the inequalities

||x− x0| − rx0 | = ||x− x0| − |x1 − x0|| ≤ |x− x1|,

|x− x0|+ rx0 ≤ |x− x1|+ 2rx0 ,
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and taking into account that

rx0 ≤
(
|D|
ωn

) 1
n

, (2.1)

where ωn is the Lebesgue measure of the unit ball of Rn, we get

||x− x0|2 − r2
x0 |

|x− x1|n
≤ |x− x1|(|x− x1|+ 2rx0)

|x− x1|n

≤ 1

|x− x1|n−2
+

(
|D|
ωn

) 1
n 2

|x− x1|n−1
. (2.2)

Thus, recalling (2.1), h is summable in D ∩B(x1, 1) and

‖h‖L1(D∩B(x1,1)) ≤ c(|D|, n).

If x /∈ B(x1, 1) then |x− x1| ≥ 1, so (2.2) implies

||x− x0|2 − r2
x0 |

|x− x1|n
≤ 1 + 2

(
|D|
ωn

) 1
n

∀x ∈ D \B(x1, 1).

Therefore, using (2.1),∫
D\B(x1,1)

|h(x)| dx ≤

(
1 +

(
|D|
ωn

)n−2
n

+ 2

(
|D|
ωn

)n−1
n

)
|D| <∞.

We conclude that the L1-norm of h in D can be estimated by a constant only depending on n and
|D|. �

We are now ready to prove our main stability result. In the proof we adapt the argument used
by Kuran in [10] to prove his rigidity result.

Proof of Theorem 1.1. SinceG(D,x0) = G(D−x0, 0), we may assume without loss of generality
that x0 = 0. Moreover, since both G(D, 0) and the left hand side of (1.4) are scaling invariant, we
may also assume that |D| = 1.
By Lemma 2.1, h ∈ H(D) ∩ L1(D), moreover h(0) = 0. Therefore

G(D, 0) ≥

∣∣∣∣h(0)−−
∫
D
h(x) dx

∣∣∣∣
‖h‖L̃1(D)

=

∣∣∣∣−∫
D
h(x) dx

∣∣∣∣
‖h‖L̃1(D)

=

∣∣∣∣∫
D
h(x) dx

∣∣∣∣
‖h‖L1(D)

.

Using B(0, r0) ⊆ D and the Gauss mean value Theorem, we have∫
D
h(x) dx =

∫
D\B(0,r0)

h(x) dx+ |B(0, r0)|h(0) =

∫
D\B(0,r0)

h(x) dx.

So we have proved that

G(D, 0) ≥

∣∣∣∣∣
∫
D\B(0,r0)

h(x) dx

∣∣∣∣∣
‖h‖L1(D)

.

Taking into account that h(x) ≥ 1 in D \B(0, r0), we obtain

|D \B(0, r0)| ≤ G(D, 0)

∫
D
|h(x)| dx.
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We now observe that r0 ≤ |B(0, 1)|−1/n and |D| = 1. Then Lemma 2.1 immediately implies∫
D
|h(x)| dx ≤ C(n)

for some positive constant C(n) depending only on the dimension. Hence, (1.4) follows. �

3. PROOF OF THEOREM 1.2 AND OF INEQUALITY (1.6)

Proof of Theorem 1.2. We give a proof in Rn, n ≥ 3. The case n = 2 can be handled exactly in
the same way.

We split the proof into steps.

Step I.
Hereafter Γ denotes the fundamental solution of the classical Laplace operator ∆, that is

Γ(x) = Γ(|x|) :=
1

n(n− 2)ωn
|x|2−n,

where ωn is the Lebesgue measure of the unit ball of Rn, see e.g. [3].
We define ϕ : [0,∞[→ R,

ϕ(t) :=
n

n− 2

(Γ(1))
n
n−2

(Γ(1) + t)1+ n
n−2

.

A trivial computation shows that ∫ ∞
0

ϕ(t) dt = 1.

The function
wD := ϕ(GD)|∇GD|2,

where GD stands for GD(·, 0), the Green function of D with pole at 0, is a density with the mean
value property for D at 0; i.e.,

u(0) =

∫
D
u(x)wD(x) dx ∀u ∈ H(D) ∩ L1(D),

see Aikawa [2].
Analogously

wB := ϕ(GB)|∇GB|2

is a density with the mean value property for the Euclidean unit ball B centered at 0.
Since GB(x, 0) = Γ(x)− Γ(1), another trivial computation shows that

wB =
1

ωn
=

1

|B|
.

Step II.

Let U := {u ∈ H(D) : −
∫
D
|u(x)| dx = 1}. Then

G(D, 0) = sup
u∈U

∣∣∣∣u(0)−−
∫
D
u(x) dx

∣∣∣∣ = sup
u∈U

∣∣∣∣∫
D
u(x)

(
wD −

1

|D|

)
dx

∣∣∣∣ .
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Hence

G(D, 0) ≤ |D| sup
D

∣∣∣∣wD − 1

|D|

∣∣∣∣ ≤ ωn2n sup
D

∣∣∣∣wD − 1

|D|

∣∣∣∣ . (3.1)

Step III.
From inequality (3.1) we get

G(D, 0) ≤ ωn2n
(

sup
D

∣∣∣∣wD − 1

|B|

∣∣∣∣+

∣∣∣∣ 1

|D|
− 1

|B|

∣∣∣∣) .
We claim that ∣∣∣∣ 1

|D|
− 1

|B|

∣∣∣∣ ≤ c(n)‖d− de‖C(B(0,2)), (3.2)

where c(n) > 0 only depends on n, so obtaining

G(D, 0) ≤ ωn2n sup
D

∣∣∣∣wD − 1

|B|

∣∣∣∣+ C(n)‖d− de‖C(B(0,2)). (3.3)

Let us prove the claim. Let δ := ‖d− de‖C(B(0,2)). If δ ≥ 1
2 ,∣∣∣∣ 1

|D|
− 1

|B|

∣∣∣∣ ≤ 1

|B(0, 1
2)|

+
1

|B|
=

2n + 1

ωn
≤ 2n+2

ωn
δ. (3.4)

Let us now consider the case δ < 1
2 . The inclusions

B(0,
√

1− δ) ⊆ D ⊆ B(0,
√

1 + δ) (3.5)

hold true. Indeed, if x ∈ B(0,
√

1− δ), then

d(x) ≤ ‖d− de‖C(B(0,2)) + de(x) < δ + (1− δ) = 1

and the first inclusion follows by the definition of D.
If x ∈ D, then

de(x) ≤ ‖d− de‖C(B(0,2)) + d(x) < δ + 1,

and we get D ⊆ B(0,
√

1 + δ).
By (3.5) we obtain

|B| − |D| ≤ ωn
(

1− (1− δ)
n
2

)
≤ nωn

2
δ

and

|D| − |B| ≤ ωn
(

(1 + δ)
n
2 − 1

)
≤ nωn

2
δ

(
1 +

(n
2
− 1
)

sup
η∈]0,1[

(1 + η)
n
2
−2

)
,

therefore ∣∣|D| − |B|∣∣ ≤ cnδ
for some cn > 0 depending only on the dimension n. We have so proved that if δ < 1

2 then∣∣∣∣ 1

|D|
− 1

|B|

∣∣∣∣ =
||B| − |D||
|D||B|

≤ cn

|B(0, 1
2)||B|

δ. (3.6)

By (3.4) and (3.6) the claim (3.2) follows and, as a consequence of this, the inequality (3.3).

Step IV.
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In this step we estimate the first term at the right hand side of (3.3), precisely we prove that

sup
D

∣∣∣∣wD − 1

|B|

∣∣∣∣ ≤ c(sup
D
|h− Γ(1)|+ sup

D
|∇(h− Γ(1))|

)
, (3.7)

where c is a positive constant only depending on the dimension n and the C1,α-norm of d in
B(0, 2) and h− Γ(1) = GB −GD.

Here and in what follows, we denote by c an absolute constant, i.e., a positive constant only
depending on the dimension n and on the C1,α-norm of d in B(0, 2).

Moreover, since GB = Γ − Γ(1) in B, we agree to extend GB out of B by letting GB =

Γ− Γ(1) in Rn \B.
We have

wD −
1

|B|
= ϕ(GD)|∇GD|2 − ϕ(GB)|∇GB|2

=
(
ϕ(GD)− ϕ(GB)

)
|∇GD|2 + ϕ(GB)(|∇GD|2 − |∇GB|2)

=
ϕ(GD)− ϕ(GB)

GD −GB
|∇GD|2(GD −GB) + ϕ(GB)(|∇GD|+ |∇GB|)(|∇GD| − |∇GB|)

=: Q(D,B)(GD −GB) +R(D,B)(|∇GD| − |∇GB|).

Since GD −GB = Γ(1)− h, where h solves the Dirichlet problem{
∆h = 0 inD
h = Γ on ∂D,

inequality (3.7) follows if we prove that

sup
D
|Q(D,B)|+ sup

D
|R(D,B)| =: c <∞

where c is an absolute constant.
We first consider R(D,B). Keeping in mind that GB = Γ − Γ(1), from the very definition

of ϕ and using the estimate
|∇GD| ≤

c

|x|n−1
, x ∈ D, (3.8)

given by Widman’s Theorem ([12, Theorem 2.3]) for every x ∈ D we have

|R(D,B)| ≤ c|x|(n−2)(1+ n
n−2

)|x|1−n = c|x|n−1 ≤ c2n−1. (3.9)

Let us now consider

Q(D,B) :=
ϕ(GD)− ϕ(GB)

GD −GB
|∇GD|2. 1

We note that
Q(D,B) = ϕ′(s)|∇GD|2

where s = θGD + (1− θ)GB for a suitable θ ∈]0, 1[. Then, since ϕ′ is bounded, keeping in mind
inequality (3.8) we get

|Q(D,B)| ≤ c

δ2(n−1)
if x ∈ D and |x| ≥ δ (3.10)

where c is an absolute constant.

1We agree to let ϕ(GD)−ϕ(GB)
GD−GB

= ϕ′(GB) if GD = GB .
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On the other hand, if x ∈ D and |x| ≤ δ, we can estimate the parameters s as follows

|s| ≥ c

|x|n−2
,

where c is an absolute constant. As a consequence,

|ϕ′(s)| ≤ c

s2+ n
n−2

≤ c|x|3n−4.

Thus, keeping in mind (3.8), if x ∈ D and |x| ≤ δ, we get

|Q(D,B)| ≤ c|x|3n−4|x|2(1−n) = c|x|n−2 ≤ cδn−2.

This inequality and (3.10) show that |Q(D,B)| is bounded by an absolute constant. Thus, the
proof of inequality (3.7) is complete.

Step V.
In this last step we show that

sup
D
|h− Γ(1)|+ sup

D
|∇(h− Γ(1))| ≤ c‖d− de‖C1,α(B(0,2)), (3.11)

where c only depends on n and the C1,α-norm of d in B(0, 2). This inequality, together with (3.7)
and (3.3), will prove (1.7).

To prove (3.11) we first observe that h− Γ(1) solves{
∆(h− Γ(1)) = 0 inD
h− Γ(1) = Ψ(Γ− Γ(1)) on ∂D,

where Ψ ∈ C∞(B(0, 2)) is such that

Ψ = 1 on ∂D and Ψ = 0 in B(0, 1/2).

Now, if x ∈ ∂D (i.e. d(x) = 1) we have

Ψ(x)(Γ(x)− Γ(1)) = Ψ(x)Γ(x)(1− |x|n−2) =
Ψ(x)Γ(x)

1 + |x|n−2
(1− |x|2(n−2))

=
Ψ(x)Γ(x)

1 + |x|n−2
(dn−2(x)− dn−2

e (x)) = Φ(x)(d(x)− de(x)),

where, for every x ∈ B(0, 2),

Φ(x) =
Ψ(x)Γ(x)

1 + |x|n−2
(dn−3(x) + · · ·+ dn−3

e (x)).

Obviously Φ ∈ C1,α(B(0, 2)) and the function u := h− Γ(1) satisfies{
∆u = 0 inD
u = ϕ on ∂D,

with ϕ = (d − de)Φ. Since ∂D is C1,α, D ⊆ B(0, R) for a suitable R ∈]0, 2[ and ϕ ∈
C1,α(B(0, 2)), by Theorem 8.33 in [9] one has

‖u‖C1,α(D) ≤ c
(

sup
D
|u|+ ‖ϕ‖C1,α(B(0,R))

)
(3.12)
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where c only depends on the dimension n, R and the C1,α-norm of d in B(0, R). From this
inequality, (3.11) easily follows. Indeed, by the very definition of C1,α-norm we have

sup
D
|u|+ sup

D
|∇u| ≤ ‖u‖C1,α(D). (3.13)

Moreover, by the maximum principle

sup
D
|u| = sup

∂D
|ϕ| ≤ ‖ϕ‖C1,α(B(0,R)). (3.14)

Finally, since Φ ∈ C1,α(B(0, 2)) and ϕ = (d− de)Φ, we have

‖ϕ‖C1,α(B(0,R)) ≤ c‖d− de‖C1,α(B(0,2)), (3.15)

where c is a positive constant only depending on Φ.
Thus, from inequalities (3.12), (3.13), (3.14) and (3.15) we get

sup
D
|u|+ sup

D
|∇u| ≤ c‖d− de‖C1,α(B(0,2)).

This is (3.11), since u = h− Γ(1). �

Proof of (1.6). The left inequality comes from Theorem 1.1. We now prove the right inequality,
by using Theorem 1.2.
Define dε : Rn → R,

dε(x) := (εx1)2 + x2
2 + x2

3 + · · ·+ x2
n ε ∈

]1
2
, 1
[
.

Then

Dε = {x ∈ Rn : dε < 1},

so that

B(0, 1) ⊆ Dε ⊆ B
(
0,

1

ε

)
⊆ B(0, 2).

Of course dε ∈ C∞(Rn) and

dε(x)− de(x) = (ε2 − 1)x2
1.

Then

‖dε − de‖C1,α(B(0,2)) = Cα(1− ε2), (3.16)

where Cα is the C1,α(B(0, 2))-norm of x 7→ x2
1. On the other hand,

|Dε \B(0, 1)|
|Dε|

= 1− |B(0, 1)|
|Dε|

= 1− ε→ε→1− 0. (3.17)

By Theorem 1.2, (3.16) and (3.17) it immediately follows the right inequality in (1.6). �



A SHARP STABILITY RESULT FOR THE GAUSS MEAN VALUE FORMULA 11

4. PROOF OF THEOREM 1.3

Proof of Theorem 1.3. In Rn, n ≥ 2, let us denote a vector x ∈ Rn as x = (x1, x̂) ∈ R× Rn−1.
Fixed ε ∈]0, 1

n [, let us denote B(ε) the ball centered at xε := (1 + ε, 0̂) and radius 1; i.e.,

B(ε) := B(xε, 1).

Let us consider the truncated cone

K :=

{
x ∈ Rn :

|x|√
n
< x1 <

2

n

}
=

{
(x1, x̂) ∈ Rn :

|x̂|√
n− 1

< x1 <
2

n

}
.

Consider the open connected set Dε ⊆ Rn with Lipschitz boundary

Dε := B(ε) ∪K \B(0, ε2) (see fig. 1)

that converges, with respect to the Hausdorff metric, to the Euclidean unit ball centered at (1, 0̂).

Figure 1. The set Dε

Let us consider the Gauss gap of Dε with respect to xε; i.e,

G(Dε, xε) = sup
v∈H(Dε)∩L1(Dε),v 6≡0

∣∣∣∣−∫
Dε

v(x) dx− v(xε)

∣∣∣∣
−
∫
Dε

|v(x)| dx
.

We claim that

(a) lim inf
ε→0

G(Dε, xε) > 0

(b) there exists a Lipschitz function dε : Rn → [0,∞[, such that

Dε = {x ∈ Rn : dε < 1}, ∂Dε = {x ∈ Rn : dε = 1}

and, for any p ∈ [1,∞[,

‖dε − dε,e‖W 1,p(Dε) → 0 as ε→ 0, (4.1)

where
dε,e(x) := |x− xε|2.
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Note that the above claim proves the theorem up to replacing Dε by Dε − xε.
Let us prove (a).
Define the function u : Dε → R,

u(x) :=
1

|x|n

(
x2

1

|x|2
− 1

n

)
.

Notice that u ∈ H(Dε), since

u = cn
∂2Γ

∂x2
1

,

where Γ is the fundamental solution of the Laplace operator with pole at 0 and cn is a dimensional
constant.

By the mean value theorem and taking into account that Dε ⊇ B(ε) and u > 0 in Cε :=

Dε \B(ε) (see fig. 2)

G(Dε, xε) ≥

∣∣∣∣−∫
Dε

u(x) dx− u(xε)

∣∣∣∣
−
∫
Dε

|u(x)| dx
=

∣∣∣∣∣
∫
Dε

u(x) dx− |Dε|
|B(ε)|

∫
B(ε)

u(x) dx

∣∣∣∣∣∫
Dε

|u(x)| dx

≥

∫
Dε\B(ε)

u(x) dx− |Dε \B(ε)|
|B(ε)|

∫
B(ε)
|u(x)| dx∫

Dε

|u(x)| dx
.

Figure 2. The set Cε := Dε \B(ε)

Therefore, recalling that B(ε) has radius 1, we get

G(Dε, xε) ≥

∫
Cε

u(x) dx∫
Dε

|u| dx
− |Cε|

ωn
=: Iε + Jε. (4.2)
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Trivially

Jε → 0 as ε→ 0. (4.3)

Let us prove that

lim inf
ε→0

Iε > 0.

Since Dε ⊆ B(0, 2 + ε) \B(0, ε2) and |u(x)| ≤ 1
|x|n we get∫

Dε

|u| dx ≤ nωn
∫ 2+ε

ε2

1

ρ
dρ = nωn log

2 + ε

ε2
. (4.4)

Since u > 0 in Cε and

Cε ⊇ {x ∈ K : ε2 < |x| < ε},

then ∫
Cε

u dx ≥
∫ ε

ε2

1

ρ

(∫
Σ

(
x2

1

|x|2
− 1

n

)
dσ(x)

)
dρ = c log

1

ε
, (4.5)

where

Σ :=
{
ξ = (ξ1, ξ̂) ∈ Rn : |ξ| = 1, |ξ| <

√
nξ1

}
and c :=

∫
Σ

(
x21
|x|2 −

1
n

)
dσ(x) > 0.

By (4.2) and the previous estimates (4.3), (4.4) and (4.5) we get

lim inf
ε→0

G(Dε, xε) ≥ lim inf
ε→0

c log 1
ε

nωn log 2+ε
ε2

=
c

2nωn
> 0,

and claim (a) is proved.

Let us now prove (b).
Let us consider the function dε : Rn → [0,∞[

dε(x) :=


(1− dist(x, ∂Dε))

2 if x ∈ Dε

1 + dist(x, ∂Dε) if x /∈ Dε

Notice that

max
x∈Dε

dist(x, ∂Dε) = 1

and that dε is globally Lipschitz with Lipschitz constant uniformly bounded with respect to ε.
We have that

Dε = {x ∈ Rn : dε < 1} and ∂Dε = {x ∈ Rn : dε = 1}.

Notice that

dist(x, ∂Dε) = 1− |x− xε| x ∈ Dε \ Ĉε,

where Ĉε is as in fig. 3.
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Figure 3. The set Ĉε

Therefore,

dε(x) = (1− dist(x, ∂Dε))
2 = |x− xε|2 = dε,e(x) x ∈ Dε \ Ĉε.

This equality, together with

|Ĉε| → 0 as ε→ 0,

easily implies (4.1). �
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