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CBinfer: Exploiting Frame-to-Frame Locality for Faster
Convolutional Network Inference on Video Streams

Lukas Cavigelli, Luca Benini

Abstract— The last few years have brought advances in
computer vision at an amazing pace, grounded on new findings
in deep neural network construction and training as well as the
availability of large labeled datasets. Applying these networks to
images demands a high computational effort and pushes the use
of state-of-the-art networks on real-time video data out of reach
of embedded platforms.

Many recent works focus on reducing network complexity for
real-time inference on embedded computing platforms. We adopt
an orthogonal viewpoint and propose a novel algorithm exploiting
the spatio-temporal sparsity of pixel changes. This optimized
inference procedure resulted in an average speed-up of 9.1×
over cuDNN on the Tegra X2 platform at a negligible accuracy
loss of < 0.1% and no retraining of the network for a semantic
segmentation application. Similarly, an average speed-up of 7.0×
has been achieved for a pose detection DNN on static camera
video surveillance data. These throughput gains combined with
a lower power consumption result in an energy efficiency of
511 GOp/s/W compared to 70 GOp/s/W for the baseline.

I. INTRODUCTION

Computer vision (CV) technology has become a key in-
gredient for automatized data analysis over a broad range of
real-world applications: smart cameras for video surveillance,
robotics, industrial quality assurance, medical diagnostics, and
advanced driver assistance systems have recently become pop-
ular due the rising accuracy and robustness of CV algorithms.
This industry interest has fostered the procedure of a wealth
of research projects yielding a fierce competition on many
benchmarks datasets such as the ImageNet/ILSVRC [1], MS
COCO [2], and Cityscapes [3] benchmarks, on which scientists
from academia and big industry players evaluate their latest
algorithms.

In recent years, the most competitive approaches to address
many CV challenges have relied on machine learning with
complex, multi-layered, trained feature extractors commonly
referred to as deep learning [4]. The most frequently used
flavor of deep learning techniques for CV are convolutional
neural networks (ConvNets, CNNs). Since their landslide
success at the 2012 ILSVRC competition over hand-crafted
features, their accuracy has further improved year-over-year
even exceeding human performance on this complex dataset
[1], [5]. CNNs keep on expanding to more areas of computer
vision and data analytics in general [6]–[9] and are moving
towards analyzing video data for action recognition [10],
tracking [11], and improved object detection [12], [13].

The authors would like to thank armasuisse Science & Technology for
funding this research. This project was supported in part by the EU’s H2020
programme under grant no. 732631 (OPRECOMP).

L. Cavigelli and L. Benini are with ETH Zürich, Zürich, Switzerland (e-
mail: {cavigelli,benini}@iis.ee.ethz.ch).

Unfortunately, the high accuracy of CNNs comes with a
high computational cost, requiring powerful GPU servers to
train these networks for several weeks using hundreds of
gigabytes of labeled data. While this is a miassive effort, it
is a one-time endeavour and can be done offline for many
applications. However, the inference of state-of-the-art CNNs
also requires several billions of multiplications and additions to
classify even low resolution images by today’s standards [14].
While in some cases offloading to centralized compute centers
with powerful GPU servers is also possible for inference
after deployment, it is extremely costly in terms of com-
pute infrastructure and energy. Furthermore, collecting large
amounts of data at a central site raises privacy concerns and
the required high-bandwidth communication channel causes
additional reliability problems and potentially prohibitive cost
of deployment and during operation [15]. For many applica-
tions the introduced latency is prohibitive.

The alternative, on-site near sensor embedded processing,
largely solves the aforementioned issues by transmitting only
the less sensitive, condensed information—potentially only
security alerts in case of a smart surveillance camera—but
imposes restrictions on available computation resources and
power. These push the evaluation of such networks for real-
time semantic segmentation or object detection out of reach
of even the most powerful embedded platforms available
today for high-resolution video data [14]. However, exactly
such systems are required for a wide range of applications
limited in cost (CCTV/urban surveillance, perimeter surveil-
lance, consumer behavior and highway monitoring) and la-
tency (aerospace and UAV monitoring and defence, visual
authentication) [15], [16].

Large efforts have thus already been taken to develop opti-
mized software implementations for heterogeneous platforms
[14], [17]–[20], to design specialized hardware architectures
[9], [21]–[25], and to adapt the networks to avoid expen-
sive arithmetic operations by reducing arithmetic precision,
exploiting sparsity, and developing more compact DNNs [8],
[26]. However, they either do not provide a strong enough
performance boost, are already at the theoretical limit of what
can be achieved on a given platform, are inflexible and not
commercially available, or incur a considerable accuracy loss.
It is thus essential to extend the available options to efficiently
perform inference on CNNs.

In this paper, we propose a novel method performing
change-based inference (hence named CBinfer) for convolu-
tional neural networks on video data from a static camera with
limited frame-to-frame changes. We extend our preliminary
work in [27]:

1) Enhancements to the algorithm for improved compute
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time and ensuring a consistent input-output relation for
each convolution layer.

2) In-depth analysis how changes propagate through the
CBinfer DNN.

3) Analysis of accuracy, compute time and energy effi-
ciency for long frame sequences.

4) Additional evaluations for a pose detection application
with a much deeper network and a dataset without
annotations.

5) Optimizations and evaluations on the more recent Nvidia
Tegra X2 platform1.

6) Discussion and evaluation of the processing steps and
how the chosen configuration provides the highest per-
formance gain.

Overall the proposed method provides an average speed-
up by a factor of 9.1–7.0 over an implementation relying
on cuDNN and introducing only negligible accuracy loss. It
thus significantly outperforms previous approaches exploiting
frame-to-frame locality which all have measured performance
gains in the range of a few ten percents while introducing
accuracy losses of several percent (cf. Section II-C). Our
method can be combined with most single-frame optimizations
such as exploiting weight sparsity or the development of
more compact DNN models. The code is available online at
https://github.com/lukasc-ch/CBinfer.

II. RELATED WORK

In this section, we first describe existing optimized imple-
mentations for CNN inference and existing approximations
trading accuracy for throughput. We then specifically survey
related approaches exploiting the limited changes in video data
to reduce the computational effort required to perform CNN
inference. Finally, we discuss available datasets and CNNs
with which we can evaluate our proposed algorithm.

Most per-frame optimization techniques can be combined
with the method we propose herein. Existing approaches
targeting video data have very limited gains and have not been
specifically optimized for static camera frame sequences.

A. Optimized Embedded System Implementations

The latest wave of interest in neural networks can be
attributed to their sudden success driven by the availability of
large datasets and the increasingly powerful computing plat-
forms. One of the most economical and practicable solutions
for training medium-sized CNNs is to use a workstation with
GPUs. The available software frameworks to implement and
train CNNs provide strong support for this kind of platform.

The massive amounts of compute time spent training CNNs
has spurred the development of highly optimized GPU im-
plementations. First, most widely used frameworks relied on
their own custom implementations which have all converged
to methods relying on matrix-multiplications, leveraging the
availability of highly optimized code in BLAS libraries and the
fact that GPUs are capable of achieving a throughput within

1The Nvidia Tegra X2 is a system-on-chip available on an embedded board
with an affordable power budget (< 15W) for a stationary camera.

a few percent of their peak performance with this type of
workload. Specialized libraries such as Nvidia’s cuDNN and
Nervana Systems’ Neon provide some additional performance
gains through assembly-level implementations [19] and addi-
tional algorithmic improvements such as Winograd and FFT-
based convolution [20]. A specific implementation for non-
batched inference on an embedded platform building on a
matrix multiplication is documented in [14], also showing that
more than 90% of time is spent computing convolutions.

B. Approximations Trading Accuracy for Throughput
DNNs commonly require a high computation effort in the

order of 20 GOp/frame for classification of a 224 × 224
pixel image (1 multiply-add is counted as 2 operations) [28].
Extracting features when working with high resolution images
(e.g. for object detection or semantic segmentation) scales
up the effort proportional to the number of pixels, quickly
reaching few 100 GOp/frame.

Admitting limited accuracy losses in order to gain a higher
throughput by approximating existing networks, inference
algorithms, and arithmetic operations can help overcome the
computational obstacles preventing widespread adoption of
CNN-based algorithms on embedded and mobile platforms.
Several such approaches are surveyed and compared in [29],
[30]. In this section, we will provide an overview of different
options that can be exploited.

One such option is the reduction of the required arithmetic
precision to evaluation NNs. Various methods from normal
fixed-point analysis to retraining networks to adapt for quan-
tized weights and activations exist. On some off-the-shelf
software programmable platforms, 16-bit or 8-bit arithmetic
operations can be vectorized to obtain a performance boost
[31]. Extreme methods go as far as to enforce binary weights
[32], [33], and in some cases also binary activations [26]. This
means that multiplications can be dropped entirely, and in case
of binary activations even collapse some of the add/subtract
operations into XNOR and bit count operations. Many net-
works can be quantized with 8 bit without an increase in error
rate, before there is a trade-off between precision and accuracy
[21], [34]. Some methods try reducing the computational
effort by pruning many very small weights to zero, making
it possible to skip some operations [35], or even dynamically
skip operations when the activations are zero [36]. More
sophisticated quantization schemes such as vector quantization
exist and can further compress a trained CNN model, but
they require specialized hardware to bring an improvement
in energy efficiency [36], [37].

Further research has focused on optimizing semantic seg-
mentation and object detection algorithms to better reuse al-
ready computed features by eliminating any non-convolutional
elements from the network [38], [39] or introducing structured
sparsity [40]. Simplifying the operations in a network, such
as low-rank approximations of 2D convolutions or by simply
designing smaller networks with state-of-the-art methods have
been evaluated in [28], [41].

The method we propose in this paper does not supersede
these methods, but can be combined with the aforementioned
approximation methods to further improve throughput.

https://github.com/lukasc-ch/CBinfer
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C. Video-based Computation Reduction

Obtaining per-frame features naturally seems like an easier
task when these frames belong to a video sequence rather than
a random collection of images. Limited movement of objects
in a frame can be exploited in object tracking by working
with a limited search window within the frame [42], not only
reducing the problem size, but also simplifying the regression
task—up until the tracked target is occluded by a large object.

Clockwork CNNs [43] specifically target CNNs for semantic
segmentation with a structure similar to [39]. They have
extended this work on fully convolutional networks, which
presents a CNN with skip connections and deconvolution
layers to refine the lower-resolution feature maps obtained
deep within the network using the features extracted early
in the network. They exploit that lower-resolution feature
maps within the network are more stable over time than
the full-resolution input. They thus propose to reevaluate the
first few layers and the last layers affected through the skip
connections more frequently than the more coarse grained
feature maps. This is a strong limitation on the set of CNNs
this method can be applied to. They present evaluations based
on a static as well as a dynamic, content-adaptive reevaluation
schedule, showing that they can reduce the number of full-
frame convolutions by about 40% before the accuracy starts to
drop on the Youtube-Objects dataset. However, this approach
is limited to updating entire frames, whereas we exploit that
often only small parts of the scene change and need to be
reevaluated, which leads to larger savings.

CNNCache [44] describes a general approach pursuing a
similar direction of work. They describe their method as a
caching mechanism, where blocks of the image are matched
to blocks in the previous frame, thereby fetching results of
similar block from the cache instead of recomputing the
results. Similarly to our work, this requires the selection of
a threshold, and on top of that a block size and a cache
depth in the form of an expiration time. The block matching
allows to handle video data where the camera is not fully
static, but it does not allow perspective changes. They have
shown that their method achieves an average speed-up in the
order of 20% at a top-1 accuracy loss of 3.5% performing
image classification relative to the ncnn framework’s default
implementation. The capability to recall convolution results
even when the specific image tile has moved introduces a
significant overhead comparing image tiles, thereby limiting
the potential speed-up significantly. Further, this methods
requires a relatively high tolerance when comparing image
tiles to be able to find matches, thereby introducing significant
accuracy losses.

DeepMon [45] proposes another method combining convo-
lution layer decomposition, half-precision computation, and
convolutional layer caching. Similarly to CNNCache, they
divide the input to each convolutional layer into blocks and
reuse the result when a block matches to the one in the previ-
ous frame. To reduce overhead, they do not directly compare
the blocks, but instead extract histogram-based features. They
apply their technique only to the first few layers, because in
later layers the caching overhead exceeds the compute latency

savings. They show a speed-up attributable to caching of
18% for object detection and 36% for image classification
at an accuracy loss in the order of 3.8% to 6.2%. While
their histogram-based comparison method for the image tiles
reduces overhead, it still remains significant and the introduced
accuracy loss increases further.

Sigma-Delta Quantized Networks [46] is the most similar
method to ours. They combine quantizing the network and
decomposing the input to each convolution layer with the
difference of the current frame’s values to the previous frame’s
values and accumulate the result over time. They show a
4 − 10× reduction in the number of operations in total, of
which 2 − 3× can be attributed to the temporal differences
aspect of their method at an accuracy drop. However, whether
this reduction in number of multiply-add operations can be
put into performance gains after all the introduced overhead
remains an open question.

D. Suitable Datasets and Neural Networks

We show the applicability of the concept to various applica-
tions, namely by evaluating the proposed method for semantic
segmentation and pose detection. These are both often applied
to high-resolution images and video streams with high frame
rates above 10 frame/s for meaningful applications.

We are specifically interested in video sequences obtained
from a static camera. While some such datasets exist (e.g.
person or vehicle detection or re-identification), most of them
are limited to extremely few (1-3) classes and rarely target se-
mantic segmentation. However for first application scenario—
semantic segmentation—the dataset2 used in [47] provides
ground truth labels for 10-class semantic segmentation from
an urban street surveillance perspective, and while they work
with individual images, several surrounding unlabeled frames
and a trained convolutional network are available. An example
image labeled with the provided CNN is shown in Figure 1,
and a sample sequence of 3 images is visualized in Figure 2.

For the second application—pose detection—several
datasets to detect joints and limbs exist in the form of
annotated images or a moving camera frame sequences, but
none with a static camera. To overcome this and to show the
feasibility of applying CBinfer without annotated data, we use

2Available online at https://doi.org/10.3929/ethz-b-000276417

TABLE I
SEMANTIC SEGMENTATION CNN USED FOR EVALUATIONS.

Type Outp. Res. Feat. Maps CT [ms] rel. CT

L1 conv 7× 7 541× 871 3→ 16 72.9 13.6%
L2 act., pool 2× 2 271× 436 16→ 16 10.7 2.0%
L3 conv 7× 7 271× 436 16→ 64 116.2 21.7%
L4 act., pool 2× 2 136× 218 64→ 64 10.2 1.9%
L5 conv, act. 7× 7 136× 218 64→ 256 309.4 57.8%
L6 conv, act. 1× 1 136× 218 256→ 64 14.4 2.7%
L7 conv 1× 1 136× 218 64→ 8 1.6 0.3%

Total 535.4

https://doi.org/10.3929/ethz-b-000276417
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Fig. 1. Example output of the scene labeling network of [47] on which we
evaluate our algorithm.

Fig. 2. A sample video sequence from the dataset of [47] showing the frame-
by-frame changes by overlaying a sequence of length 3. Moving objects are
only a small part of the overall scene and affect only a small share of the
pixels.

unlabeled frame sequences from the CAVIAR dataset3 and
take the pretrained network to generate the reference output.
The dataset contains scenes recorded using surveillance
cameras with wide-angle lenses and captures the interaction
of few people. It has a resolution of 384 × 288 pixel and a
frame rate of 25 frame/s. A few sample frames are shown in
Figure 3.

III. METHODOLOGY

The most straight-forward pixel-level approach is to detect
changing pixels on the input frame based on a threshold on
the difference to the previous frame, and then update all the
pixels affected by them. This increases the number of pixels to
be updated layer-after-layer due to the convolution operations.
Thus for e.g. a 7× 7 convolution, a one-pixel change triggers
an update of 49 pixels in the next layer and 169 pixels after
another 7 × 7 convolution. Strided operations (often used
with pooling layers) reduce this effect, but do not prevent
it. This issue might seem prohibitive for multi-layer CNNs,
particularly when considering that individual pixels might keep
exceeding the threshold due to noise.

3Available at http://homepages.inf.ed.ac.uk/rbf/CAVIAR/, collected through
the EC Funded CAVIAR project/IST 2001 37540.

Fig. 3. Sample frames from sequences of the CAVIAR dataset on which we
perform evaluations for detection.

However, the change is not only spatially local at the input,
but also at the output. Furthermore, noise-like changes will
likely not have strong impacts on feature maps deeper within
the network. We thus propose to perform the change-detection
not only at the input, but before each convolution layer—
relative to its previous input—and to compute an updated value
only for the affected output pixels. This can be done without
modifications to the training of the CNN, can be applied to
existing pre-trained networks, and is not specific to the CNN
on which we evaluate the proposed algorithm.

We propose to replace all spatial convolution layers (conv
layers) with change-based spatial convolution layers (CBconv
layers). This means adapting the widely used, simple and
well-performing matrix-generation and matrix-multiplication
sequence of operations [14], [48]. The convolution layer
computes

yo(j, i) = bo +
∑

c∈Cin

∑
(∆j,∆i)∈Sk

ko,c(∆j,∆i)xc(j −∆j, i−∆i),

where o indexes the output channels Cout and c indexes the
input channels Cin. The pixel is identified by the tuple (j, i)
and Sk denotes the support of the filters kernels k. This can
be computed by performing a matrix multiplication

Y = KX, Y ∈ R|CO|×ho·wo , (1)

K ∈ R|CO|×|CI |·hk·wk , X ∈ R|CI |·hk·wk×ho·wo . (2)

The image matrix X is constructed as X((khk + j)wk +
i, yowo + xo) = x(k, j + yo, i + xo) with k = 1, . . . , |Cin|,
j = 1, . . . , hk, i = 1, . . . , wk and yo = 1, . . . , ho, xo =
1, . . . , wo. The filter matrix K is given by K(o, (chk +j)wk +
i) = k(o, c, j, i) for o = 1, . . . , |Cout|, c = 1, . . . , |Cin|,
j = 1, . . . , hk and i = 1, . . . , wk. The result matrix is stored as
Y (o, yowo + xo) = y(o, yo, xo). Zero-padding can be applied
during the construction of the X matrix and an efficient strided
convolution can be computed by dropping the unused rows.

We replace this matrix multiplication by the following
sequence of processing steps, thereby drastically reducing the
size of the matrix used in the main computation step.

A. Processing Steps

We modify the standard approach and use a sequence
of processing steps (cf. Figure 4, top/feed-forward): change
detection, change indexes extraction, matrix generation, matrix

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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Fig. 4. Processing flow and intermediate data tensors of CBinfer. Color code: custom processing kernels, cuBLAS kernel, variables sharable among layers,
and variables to be stored per-layer. Size and data type of intermediate results are indicated below the variable name.

multiplication, and output update. In the following, we will
explain the individual steps.

a) Change Detection: In this step, changed pixels are
detected. We define a changed pixel as one where the absolute
difference of the current to the previous input of any feature
map/channel exceeds some threshold τ , i.e.

m(j, i) =
∨
c∈CI

(
|x(t)(c, j, i)− x(t−1)(c, j, i)| > τ

)
. (3)

The computation effort of this step is crucial, since it is
executed independently of whether any pixel changed. Each
of these changes affects a region equal to the filter size, and
these output pixels are marked for updating:

m̃(j, i) =
∨

(∆j,∆i)∈Sk

m(j + ∆j, i+ ∆i), (4)

where Sk is the filter kernel support, e.g. Sk = {−3, . . . , 3}2
for a 7×7 filter. All of this is implemented on GPU by clearing
the change map to all-zero and having one thread per pixel,
which—if a change is detected—sets the pixels of the filter
support neighborhood in the resulting change map.

b) Change Indexes Extraction: In this step, we condense
the change map m̃ to 1) a list of pixel indexes where changes
occurred and 2) count the number of changed pixels. This has
been implemented by relying on the Thrust4 copy if function.
The computed index list is later on needed to access only the
needed pixels to assemble the matrix for the convolution.

c) Matrix Generation & Matrix Multiplication: Matrix
multiplications are used in many applications, and highly
optimized implementations such as the GEMM (general ma-
trix multiplication) function provided by the Nvidia cuBLAS
library come within a few percent of the peak FLOPS a GPU
is capable to provide. Matrix multiplication-based implemen-
tations of the convolution layer relying on GEMM are widely
available and are highly efficient [14], [49] as described above.
The X matrix in (1) is not generated full-sized, but instead
only those columns corresponding to the relevant output pixels
are assembled, resulting in a reduced width equal to the
number of output pixels affected by the changes in the input
image. The K matrix is made up of the filters trained using
normal convolution layers and keeps the same dimensions,
so the computation effort in this step is proportional to the

4https://thrust.github.io

number of changed pixels and the matrix multiplication is
in the worst case only as time consuming as the full-frame
convolution.

d) Output Updating: We use the previously stored results
and the newly computed output values along with the change
indexes list to provide the updated output feature maps. To
maximize throughput, we also include the ReLU activation of
the affected pixels in this step, reducing the compute time by
1) not writing the value to memory and immediately reading
them again—an independent ReLU layer is strongly memory
bandwidth limited, and 2) only applying the ReLU operation
to changed pixels.

B. Memory Requirements

The memory requirements of DNN frameworks are known
to be very high, up to the point where it becomes a limiting
factor for increasing the mini-batch size during learning and
thus reducing the throughput when parallelizing across multi-
ple GPUs. These requirements are very different when looking
at embedded inference-only systems:

1) Inference is typically done on single frames and creating
mini-batches would introduce often unacceptable latency
and the benefit of doing so is limited to a few percent
of additional performance [14].

2) During training, the input of each layer has to be stored
in order to be able to compute the gradients. This is not
required during inference.

3) Batch normalization layers, Dropout layer, etc. (if
present) are considered independent layers during train-
ing. They can be absorbed into the convolution layer for
inference.

To obtain a baseline memory requirement, we compute the
required memory of common DNN frameworks performing
convolutions using matrix multiplication with a batch size of
1. We assume an optimized network minimizing the number
of layers, e.g. by absorbing batch normalization layers into
the convolution layers or using in-place activation layers.
This way 30M values need to be stored for the intermediate
results, 264M values for the X matrix, and 873k values for
the parameters. This can further be optimized by sharing X
among all convolution layers and by keeping only memory
allocated to storing only the output of two layers and switching
back-and-forth between them, layer-by-layer. This reduces the

https://thrust.github.io


6

memory footprint to 9M, 93M, and 872k values, and a total
of 103M values for our baseline.

Applying our algorithm requires a little more memory,
because we need to store additional intermediate results (cf.
Figure 4) such as the change matrix, the changed indexes list,
and the Y matrix, which can all again be shared between the
layers. We also need to store the previous output to use it as a
basis for the updated output and to use it as the previous input
of the subsequent layer. For our sample network, this required
another ∼ 60M values to a total of 163M values (+58%, total
size ∼ 650 MB)—an acceptable increase and not a limitation,
considering that modern graphics cards typically come with
around 12 GB memory and even GPU-accelerated embedded
platforms such as the Nvidia Jetson TX2 module provide 8 GB
of memory.

C. Closed-Loop Formulation

In Figure 4a and Section III-A we describe the processing
steps for a feed-forward implementation of CBinfer. However,
note that this structure allows gradually changing inputs (e.g.
two images are morphed over several frames with increments
below the change detection threshold) to never trigger any
update within the network and thus keep a stale result. In an
outdoors surveillance setting, the effects could be even worse:
consider a static scenery with a sunset and thus gradually
changing brightness without triggering any update operation.
Now a moving object passes, leaving a dark trace behind
which has been updated under the changed lighting conditions.

To overcome such issues, we are proposing a closed-loop
version of CBinfer as shown in Figure 4, bottom/closed-loop.
Rather than storing the previous input, we now have an input
state, which is updated only for those pixels which have
triggered a change. This can be done directly in the change
detection phase. This way, the previous output is consistently
the convolution result of the input state and ensured not to
drift far away from ideal result.

Since the previous input had to be stored before as well, this
does not introduce any memory overhead. Moreover, in many
cases it can even decrease compute time since only the few
values where changes occurred have to be copied over from
the input to the input state. For the feed-forward CBinfer the
entire input tensor would have to be copied5.

D. Fine-Grained Change-based Inference

In the proposed scheme, every output value affected by
any change at the input is recomputed. As the convolution
operation is linear, updates based on the difference to the

5Note that one such tensor always has to be copied when applying CBinfer.
Consider two CBinfer layers after each other. During the update output step of
the first CBinfer layer, we copy the newly computed values into the previous
output tensor and feed it to the next CBinfer layer as the input. If we would
not copy the data from input to previous input here and instead just keep
the memory address of the previous frame’s input, it will be at the same
location where the output of the first CBinfer layer’s result will be stored
when processing the next frame, thus directly modifying the previous input
variable and thereby introducing incorrect behavior (i.e. there are never any
changes, since ultimately the input and previous input would point to the same
memory location)

previous frame can be computed to reduce the number of
multiplications and additions in two ways:

1) Fine-grained across feature maps (FG-FM): Only some
of the input feature maps affecting a given output value
might have changed. An incremental update of the
affected feature maps based on the difference of the
change in input values relative to the previous frame
would be sufficient.

2) Spatially fine-grained (FG-SP): Just because an output
pixel is affected by an input pixel does not require that
it is completely recomputed. With a 3×3 filter, a single
pixel marked as change would trigger the re-computation
of 9 pixels. Also here an incremental update based on
differences is possible.

However, there are some drawbacks and limitations:
• For both approaches the structure of the core computation

effort is less regular and can not be written as a dense
matrix multiplication.

• The compute effort of the change indexes extraction
scales linearly with the number of values that have to
be checked for changes. In case of (1), the effort in this
step is thus scale up by a factor of the number of input
feature maps.

• The potential gains in case of (2) are limited. Changing
pixels are typically clustered together and all that is being
saved is a small halo on the change map around the
changes. This can in most cases be expected to be in
the range of a few percent.

E. Propagating Changes & Pooling

Change detection and change indexes extraction can con-
tribute up to half of the compute time (cf. Section IV-F). In
some cases, it is thus worth considered to skip these steps and

1) reuse the previous layer’s change map and performing
a simple update on it assuming worst-case propagation,
or

2) when no propagation is happening (e.g. in case of 1 ×
1 kernels), reuse directly the previous layer’s change
indexes.

Avoiding change detection also implies saving the memory to
store the previous input for that layer. Besides the aforemen-
tioned advantages, there are some potential drawbacks.

In case of (1), only the change detection step can be avoided
and replaced with a change propagation step, and the change
indexes have to be extracted again. Also the changes spread
out at every layer this is done.

For (2), there is no propagation of changes and both, change
detection and change indexes extraction, can be skipped. So
the only drawback is that a few changes might be updated
although they would be discarded if the input would be
checked against the current layer’s threshold.

Besides for accelerating convolution layers, the above is also
interesting for pooling layers which can also be implemented
using a change-based approach. Since they typically follow a
convolution layer, case (2) can be applied and the change-
based update introduces no significant overhead but saves
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compute time—mostly by reducing memory bandwidth as
pooling layers are memory-bound operations.

F. Threshold Selection

The proposed algorithm adds one parameter to each convo-
lution layer, the detection threshold. It is fixed offline after the
training based on sample video sequences. A threshold of zero
yields identical results to the non-change-based implementa-
tion, which has been used for functional verification.

For our evaluations, we perform an automated threshold
selection process. First, all convolution layers are converted to
change-based convolutions and batch normalization and ReLU
layers are absorbed into the CBinfer layers wherever possible.
We define and choose

1) A performance metric such as pixel-wise classification
accuracy, intersect-over-union (IoU), mean average pre-
cision (mAP)—possibly, the loss function of the net-
work,

2) a set of frame sequences to evaluate the network,
where the last frame is ideally annotated. An obvious
alternative in case of a lack of frame sequences with
annotated last frame is the generation the comparison of
the change-based network model’s output to the output
of the original model using an appropriate metric, and

3) an initial threshold, a factor determining the rate with
which we adjust the threshold, and a maximum accept-
able increment in quality loss per layer.

We then set all thresholds to zero and start to iteratively
step from the first to the last layer of the network. For each
layer, we set an initial threshold value and evaluate the model
with the aforementioned metric and dataset. We increment the
threshold by a fixed factor (e.g.1.1), re-evaluate, and repeat
until the quality loss introduced by the current layer (with
respect to a zero threshold) exceeds the maximum acceptable
limit and then take the previous threshold value.

In case of a DNN with (re-)convergent paths, we perform the
threshold selection on these paths independently while setting
the thresholds for the other paths to zero.

The maximum acceptable quality loss can be set equally
for all layers of the network. We focus on low accuracy
loss configurations, and thus we are trying to select the
threshold values such that they are right at the point where
implementation losses are starting to occur. Nevertheless, we
have observed best results by splitting the overall acceptable
loss unevenly, allowing the first layer to introduce most of the
loss.

IV. RESULTS & DISCUSSION

In this section, we will first present the evaluation environ-
ment and analyze the baseline compute time breakdown. We
then analyze the threshold selection, the effect on accuracy
and achievable throughput. We then perform a more in-depth
analysis of the throughput to verify the quality of the GPU
implementation and investigate how the changes propagate in
the network. We then establish why more fine-grained change
detection does not pay off and how implementation loss and
performance gains behave on longer sequences.

Ground 
Truth

Frame N

Frame 1 Frame 2 Frame N-1          Frame N
full-frame

change-based change-based

evaluation
No ground truth available

...
change-based

Fig. 5. Scheme of the image sequence used for the evaluations.

A. Evaluation Environment
We evaluate our method for two application scenarios:

semantic segmentation and pose detection. For the first, we
perform our evaluations on the urban surveillance dataset
described in Section II-D and [47] and using the corresponding
scene labeling CNN, not using the multispectral imaging data.
The dataset provides 51 training images and 6 validation
images with 776×1040 pixel with the corresponding ground-
truth scene labeling, classifying each pixel into one of the
following 8 classes: building, road, tree, sky, tram, car/truck,
water, distant background. For the validation set, the labeled
images are part of short video sequences with 5 additional
frames available before the frame for which the ground
truth labeling is available. A trained network on this data is
described in [47] and its parameters are reused unaltered for
our evaluations. The procedure with which we perform our
evaluation is visualized in Figure 5.

For the pose detection application, we use frame sequences
from the CAVIAR dataset without ground truth annotations
and the trained body estimation network of OpenPose [50]
with T = 2 stages. The frames are re-sampled to 368 × 490
pixel as in the original OpenPose implementation to enable a
meaningful comparison. The frame sequences are subsampled
in time by a factor of 6 to arrive at a frame rate of around
4 frame/s. In this setting, we measure the accuracy loss in
terms of mean-squared error (MSE) relative to the output of the
non-change-based network. We have found a MSE of 2 ·10−4

on the network’s output to be sufficient for the pose detection
to work reliably. With this dataset we run change-based
inference for 9 frames before the accuracy and throughput
measurements are performed on Frame 10 to avoid any start-up
transients. As we will show later in Figure 15, these transients
are very short and the error does not accumulate over time.

We have implemented the proposed algorithm in the Py-
Torch framework using custom CUDA kernels, including
functions to aid in converting DNNs to CBinfer (automatic
conversion and threshold selection). We have evaluated the
performance on a Jetson TX2 board. Our performance baseline
is the PyTorch implementation using Nvidia’s cuDNN back-
end. It includes optimizations such as the Winograd algorithm
and FFT-based convolutions mentioned in Section II-A. Our
evaluations were conducted using half-precision floating point
numbers which have no negative impact on accuracy for both
DNNs.

B. Baseline Throughput and Computation Breakdown
Before we discuss the performance of the proposed algo-

rithm, we analyze the baseline throughput and compute time
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TABLE II
PERFORMANCE BASELINE COMPUTE TIME BREAKDOWN

Layer Conv. Activ. Pooling total share

1 72.9ms 7.4ms 3.3ms 83.6ms 15.6%
2 116.2ms 6.9ms 3.3ms 126.4ms 23.6%
3 302.8ms 6.6ms — 309.4ms 57.8%
4 12.7ms 1.7ms — 14.4ms 2.7%
5 1.6ms — — 1.6ms 0.3%

breakdown of the segmentation DNN in Table II. Clearly,
the convolution operations are dominant, taking up 94.5%
(506.2 ms) of the overall computation time (535 ms). This
reaffirms the focus on the convolution layers and will later
on show that after accelerating the convolution operation
significantly, optimizations for activation and pooling become
relevant.

C. Threshold Selection

Our algorithm introduces a threshold parameter for each
layer, for which we outline the selection process in Sec-
tion III-F. In Figure 6 we visualize the relation between accu-
racy and each layer’s change detection threshold. We proceed
similarly to our selection process, allowing an accuracy drop
of 0.04% per layer for the semantic segmentation network.
Starting from all-zero thresholds (τi = 0, i = 1, . . . , 3), we
sweep and select the optimal threshold parameter for each
layer iteratively. The main purpose is to align the tipping points
of the threshold-accuracy curve, such that not a single layer’s
threshold is limiting the overall accuracy.

After the selection of the thresholds, we can scale them
jointly to analyze the trade-off against the classification ac-
curacy more concisely as can be observed in Figure 7 (left).
The accuracy of the individual test sequences (different traces)
clearly show a similar behavior with a plateau up to a clear
point where there is a steep increase in error rate. We repeated
this analysis for the much deeper pose detection network (cf.
Figure 8), showing similar behavior for the MSE with respect
to the baseline DNN.

D. Throughput Evaluations

The motivation for the proposed algorithm was to increase
throughput by focusing only on the frame-to-frame changes.
We show the performance gain in Figure 7 (right) with the
indicated baseline analyzing the entire frame with the same
network using cuDNN. In the extreme case of setting all
thresholds to zero, the entire frame is updated, which results
in a clear performance loss because of the change detection
overhead as well as fewer optimization options such as less
cache-friendly access patterns when generating the X matrix.
Nevertheless, few operations are skipped where the pixels did
not change at all.

When increasing the threshold factor, the average through-
put increases rapidly to about 20 frame/s, where it starts satu-
rating because the change detection step as well as other non-
varying components like the pooling and pixel classification
layers are becoming dominant and the number of detected

changed pixels does not further decrease. We almost reach
this plateau already for a threshold factor of 1, where we
have by construction almost no accuracy loss. The average
frame rate over the different sequences is near 18 frame/s at
this point—an improvement of 9.1× over the cuDNN baseline
of 1.96 frame/s.

One sequence (Figure 7, ) has—while still being close
to 5.1× faster than the baseline—a significantly lower through-
put than the other sequences. While most of them show
typical scenarios such as shown in Figure 2, this sequences
shows a very busy situation where the entire road is full of
vehicles and all of them are moving. The effective number
of operations (add or multiply operations) to compute the
convolution updates is visualized in Figure 7 (center). For
most frame sequences the savings are above 10× while the
aforementioned exceptional cases has a significantly higher
share with savings of around 5×.

Running the same analysis for the pose detection network
yields very similar results. For the cuDNN baseline we get a
frame rate of 0.72 frame/s and CBinfer achieves a rate of 3–
8 frame/s for a threshold factor of 1 or a speed-up of 4.2× to
11.1×. A noticable difference are performance gains for the
zero threshold configuration. Here the overhead of CBinfer is
outweighed by the savings due to many pixels at the input not
changing at all and therefore not triggering an update even
for a zero threshold, yielding a performance gain even in a
completely loss-less configuration.

We have repeated the performance measurements with fp32
precision on a workstation with a Nvidia GTX 1080 Ti GPU
to compare them to the Tegra X2 platform, obtaining an
almost identical throughput-threshold trade-off and compute
time breakdown up to a scaling factor of 13.9×—as can be
expected for a largely very well parallelizable workload and a
14.1× more powerful device with a similar architecture6.

E. Accuracy-Throughput Trade-Off

While for some scenarios any drop in accuracy is unac-
ceptable, many applications allow for some trade-off between
accuracy and throughput—after all choosing a specific CNN
already implies selecting a network with an associated accu-
racy and computational cost.

We analyze the trade-off directly in Figure 9. The most
extreme case is updating the entire frame every time resulting
in the lowest throughput at the same accuracy as full-frame
inference. Increasing the threshold factor in steps of 0.25
immediately results in a significant throughput gain and for
most sequences the trade-off only starts at frame rates close
to saturation above 20 frame/s. The same frame sequence that
already deviated from the norm before behaves differently here
as well. However, an adaptive selection of the threshold factor
with a control loop getting feedback about the number of
changed pixels could allow for a guaranteed throughput by
reducing the accuracy in such cases and is left to be explored
in future work.

6Tegra X2: 437-750 GFLOPS (fp32), 874-1500 GFLOPS (fp16), and
58.4 GB/s DRAM bandwidth.
GTX 1080 Ti: 10609 GFLOPS (fp32) and 484 GB/s.
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Fig. 7. Evaluation of the impact of jointly scaling the change detection thresholds on the classification error, the number of detected changed pixels (sum
over all 3 layers), and the throughput.
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Fig. 8. Evaluation of introduced loss (left), effective number of compute operations (center) and measured throughput (right) for several frame sequences
running the pose detection network and varying the change detection threshold.

F. Compute Time Breakdown

In Section IV-B and specifically in Table II, we already
discussed the compute time breakdown of the entire network
when using frame-by-frame analysis. To gain more in-depth
understanding of the limiting factors of our proposed algo-
rithm, we show a detailed compute time breakdown of only the
change-based convolution layers in Figure 10. The time spent
on change detection is similar across all 3 convolution layers,
which aligns well with our expectations since the feature map
volume at the input of nch · h · w values is identical for L2

and L3, and 25% smaller for L1. That this step already makes
up for more than 23.4% of the overall time underlines the
importance of a very simple change detection function: any
increase in compute time for change detection has to be offset
by time savings in the other steps by reducing the number
of changes significantly. The change indexes extraction effort
is linear to the number of pixels h · w and the clear drop
from L1 to L2 is as expected. However, since it is not
well parallelizable, there is not much additional gain when
comparing L2 to L3. The effort to generate the X matrix
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Fig. 9. Evaluation of the throughput-accuracy trade-off for all 6 video
sequences.

0 2 4 6 8 10 12 14 16 18

L1 Conv.

L2 Conv.

L3 Conv.

Compute Time [ms]

Change Det. Change Extr. gen. X GEMM Output Upd.

Fig. 10. Compute time for the individual processing steps per layer running
on the GPU for a typical frame sequence.

is very dependent on the number of changed pixels, the
number of feature maps, and the filter size. It is, however,
most important that the time spent on shuffling data around
to generate X is significantly smaller than the actual matrix
multiplication, which clearly makes up the largest share. The
subsequent update of the output values including activation
only uses a negligible part of the overall processing time.

An important aspect is not directly visible: The overall
compute time for the dominant convolution layers, has shrunk
tremendously by more than 12.9× from 512.8 ms to about
39.7 ms. This makes the pooling layer a non-negligible con-
tributor to the overall compute time (total 6.6 ms). As outlined
in Section III-E, we can perform the pooling also with a
change-based approach and skip the change detection and
indexes extraction by relying on the preceeding convolution
layer’s change indexes. This provides an additional speed-up
by an average of 5.8× and 4.5× for the first and second
pooling layer, respectively.

G. Change Propagation

During the construction of the algorithm we argued that
change detection should be performed for every convolution
layer not only for modularity, but also justifying that the
worst-case change propagation would result in a rapid growth
of the share of changed pixels as we proceed deeper into
the network. However, skipping change detection and instead
assuming worst-case propagation for some intermediate layers
might improve performance. Our experiments have shown that
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labeling network.
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Fig. 12. Number of multiply and add operations for the pose detection
network stacked by layer with first layer on bottom.

for neither of the networks this pays off. An experiment has
shown that for Layer 2, the number of changes is reduced
by 6.8× from 7.57% to 1.11% and for Layer 3 from 2.58%
to 1.94% by 1.33×. Not repeating change detection for some
layer affects the compute time:

1) reducing the compute time by substituting the change
detection step with a more light-weight change propa-
gation step,

2) scaling up the compute effort from the matrix generation
through the output update proportionally to the increase
in the number of pixels marked as change, and

3) leaving the execution time of the change indexes extrac-
tion unaffected.

Combining this with the results in Figure 10, skipping change
detection for Layer 2 would result in an increase in execution
time by a factor of 2.9×. For Layer 3 it would result in
approximately no effect on performance.

An immediate concern evaluating a CNN based on changing
pixels is the spreading of the affected regions though the
convolutions. We have thus analyzed the effective number of
compute operationsin Figure 11 and Figure 12 for the semantic
segmentation and the pose detection networks, respectively.
For each layer the number of compute operations is shown
in dependence of the joint threshold scaling factor. Layers in
parallel branches of the network are shown sequentially. The
changes are neither spreading out nor vanishing as we proceed
deeper into the DNN.
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Fig. 13. Analysis of the change propagation. (a) shows the changes detected
in Layer 1 using the thresholds determined in Section IV-C, in the upper part
of the image there are several single-pixel changes due to noise. We show
the changed pixels for Layer 2 based on worst-case propagation as assumed
when dropping the Layer 2 change detection step (b) and those when applying
change detection instead (c).

0 5 10 15 20 25 30 35
0

5

10

layer index

co
m

pu
te

ef
fo

rt
[G

O
p]

Fig. 14. Analysis of the compute effort by layer for the pose detection
network. We compare not using CBinfer ( ) to different granularities of
CBinfer: normal (coarse-grained) ( ), spatially fine-grained ( ), and
feature map fine-grained ( ).

Besides the effect on performance, the visualization of these
changes in Figure 13 provides insight into the inner workings
of the DNN. As expected, single-pixel artifacts such as noise
disappear due to the smoothing effect of the convolution.
Changes originating from moving objects such as pedestrians
and cars are propagated to the next layer as desired. A
particularly interesting observation is the effect on the region
marked as tree: In the input frame sequence the leaves of the
tree move in the wind, but already after the first convolution
layer the resulting changes completely vanish. We construe
these pixels in this reagion to already be represented more
abstractly as leaves.

H. Fine-grained CBinfer

In Section III-D we have introduced two types of fine-
grained CBinfer to further reduce the number of multiply-
add operations: spatially and across feature maps. We analyze
this effect by running change-based inference and comparing
the compute effort to the number of detected changes and
number of operations to perform per change in Figure 14.
The drawbacks discussed in Section III-D are confirmed:
• Spatially fine-grained (SP-FG) CBinfer reduces the num-

ber of operations only by around 20% while exploiting
this lets the operations become much less regular and
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Fig. 15. Evaluation of accuracy effect, runtime, number of compute opera-
tions, power and energy when performing inference for the pose detection net-
work on a 200-frame video sequence. Legend: CBinfer, cuDNN; continuous:
max-N (max. performance) power mode, dashed: max-Q (max. efficiency)
power mode.

the larger matrix multiplication decays into many smaller
ones followed by an aggregation step, where both intro-
duce a massive memory bandwidth overhead.

• The results for fine-grained evaluation by feature map
show much more potential based on a reduction of
multiply and add operations by around 65%. However,
such an implementation also requires a change map per
feature map and thus the change extraction step has to
be performed on a 3D tensor rather than a 2D tensor.
The effort is scaled up by the number of feature maps
at the input of the convolution layer (often 16, 64, 256,
or more), thereby pushing this computation overhead
(for normal CBinfer from 10-20% of compute time,
cf. Figure 10) to several times (160-5120%) the overall
compute effort of normal CBinfer.
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I. Energy Efficiency

We have measured the power consumption of the Tegra
X2 module using the on-board sensors for two of its power
modes: maximum performance (max-N) and maximum ef-
ficiency (max-Q). When idling, the power consumption is
1.80 W and 1.77 W for max-N and max-Q, respectively. The
measurements under load have been conducted while running
pose detection on a 200-frame sequence and are visualized in
Figure 15. Generally, we can see a clear correlation between
the number of operations that have to be computed and the
runtime, where the later has a clear offset due to the overhead
of change detection and change indexes extraction. We can
also observe that there is no long-term rise in the introduced
loss. The power is very constant for the cuDNN baseline in
max-N ( , 12 W) and max-Q mode ( , 5.3 W) as well
as for the CBinfer implementation ( , 6.8 W) and ( ,
4.8 W), respectively. Note that we were processing the frames
without duty-cycling. The resulting energy efficiency is shown
in the trace at the bottom. The baseline uses around 9.6 J/frame
in max-N mode and 6.1 J/frame in max-Q mode, whereas the
CBinfer implementation uses an average of 1.1 J/frame and
0.8 J/frame, respectively. This corresponds to energy savings
of 8.7× and 7.6× and an equivalent average energy efficiency
of 148 GOp/s/W and 204 GOp/s/W for the max-N and max-Q
power modes, respectively.

For the scene labeling network and the max-N power mode
we have measured a power consumption of 6.8 W with CBinfer
and 10.5 W with cuDNN and thus 411 and 3003 mJ/frame,
respectively. With a frame requiring 210 GOp, this results in
an energy efficiency of 511 and 70 GOp/s/W—an improvement
by 5.9×.

V. CONCLUSION

We have proposed and evaluated a novel algorithm for
change-based evaluation of CNNs for video recorded with a
static camera setting, exploiting the spatio-temporal sparsity
of pixel changes. The method introduces a set of parameters
to trade-off accuracy and throughput. Even when choosing the
parameters conservatively to introduce no significant accuracy
loss, we have observed an average speed-up by 9.1× for a
semantic segmentation DNN and 7.0× for a pose detection
DNN relative to cuDNN using our GPU implementation. The
resulting boost in energy efficiency over per-frame evaluation
is an average of 8.7× and 5.9× for the two applications,
respectively. This corresponds to an equivalent energy effi-
ciency of 511 GOp/s/W on the Tegra X2 platform for the
pose detection DNN. We have analyzed various flavors of the
proposed algorithm and how the changes propagate through
the DNNs to further underline the optimality of the structure
of the proposed algorithm.

Further gains might be possible by training the network on
videos using change-based inference for the forward propaga-
tion or by introducing noise to simulate the slight deviations
for the ideal feature maps. The proposed method should also
not be limited to video data, but work on any data where
changes in at least one dimension are sparse (e.g. spectro-
grams of audio data). Finally, reducing the granularity of the

algorithm by 2 × 2 or 4 × 4 would allow an implementation
using Winograd’s convolution algorithm for additional speed-
up, like it is being done in the cuDNN baseline.
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