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 10 

This work investigates the dynamic behaviour of a multi-storey frame building, assumed as the structure to be 11 

controlled, connected with an adjacent support structure by means of horizontal fluid viscous dampers. The 12 

dampers connection system has two main effects: (i) energy dissipation provided by the viscous dissipative 13 

forces, (ii) energy transfer between modes leading to modes coupling effects between the two buildings without 14 

a significant dissipation of energy. The relative contribution of the two effects is highly dependent on the main 15 

properties of the coupled system. To investigate this complex behaviour, first the minimal coupled dynamic 16 

system composed by two Single-Degree-Of-Freedom systems connected by a viscous damper is analysed. The 17 

theory of complex damping is used to determine complex frequencies and damping ratios, while analytical 18 

expressions of steady state response under harmonic excitation are determined to investigate the influence of 19 

the system parameters on the maximum dynamic amplifications. The seismic response is also investigated 20 

through a wide parametric study with the aim of evaluating the trends of the damping reduction factors with 21 

respect to the main dynamic parameters of the coupled system. Minimum values of the damping reduction 22 

factors and corresponding optimal damping coefficients are determined. Then, the analyses are extended to 23 

uniform multi-storey structures for which minimum damping reduction factors are provided for a wide range 24 

of the key system parameters. Comparisons between one-storey and uniform multi-storey systems are 25 

provided. The results can be useful for a preliminary design of the dampers connection system and for the 26 

evaluation of its effectiveness based on the fundamental dynamic properties of the connected buildings. 27 

 28 

KEYWORDS 29 
Adjacent buildings; Viscous dampers; Energy dissipation; Energy transfer; Seismic response; Damping 30 

reduction factors. 31 

 32 

1. Introduction 33 

Connecting adjacent buildings through dissipative devices can be an effective solution for mitigating the 34 

dynamic response under seismic excitation and reducing the possibility of poundings, which cannot be ignored 35 

as demonstrated by reconnaissance after major seismic events such as 1985 Mexico City and 1989 Loma Prieta 36 

earthquakes [1-4]. Scientific research developed in the last decades include both theoretical studies and 37 

experimental research. 38 

Theoretical studies were mainly focused on the identification of optimal viscous dampers by mean of stochastic 39 

analyses and optimization procedures. Luco et al. 1998 [5] investigated the response to harmonic motion at the 40 



2 
 

base of two adjacent structures of different height modelled as uniform, elastic, continuous shear beams and 1 

identified optimal damping values minimizing the top storey response of the taller structure near the first and 2 

second mode. Xu et al. 1999 [6] and Zhang and Xu 2000 [7] investigated the dynamic response of multi-storey 3 

adjacent buildings modelled as shear-type systems and connected through viscous dampers by using the 4 

pseudo-excitation method for handling non-classical damping properties of the system. Aida et al. 2001 [8] 5 

investigated the dynamic behaviour of two Single-Degree-Of-Freedom systems connected by a Kelvin-Voigt 6 

damper and proposed an approximate tuning for optimal modal damping ratios. A similar study was conducted 7 

by Zhu and Xu 2005 [9] to determine optimum parameters for a Maxwell damper connecting two Single-8 

Degree-Of-Freedom systems. Kim et al. 2006 [10] investigated the effect of installing viscoelastic dampers in 9 

places such as seismic joints or building-sky-bridge connections to reduce earthquake-induced structural 10 

responses. Bhaskararao and Jangid 2006 [11] investigated the seismic behaviour of adjacent buildings 11 

connected through friction dampers, considering both dampers with uniform distribution of slip forces along 12 

the height and dampers with different slip forces along the height. Results showed that friction dampers can 13 

be very effective in reducing the earthquake response of two adjacent buildings. In 2007 the same authors [12] 14 

derived closed form expressions in terms of the mass and frequency ratios of two connected structures for the 15 

optimum damper coefficient leading to minimum relative displacements and absolute accelerations under 16 

harmonic excitation, as well as minimum mean square responses under stationary white-noise random 17 

excitation. Zhu et al. 2011 [13] introduced a reduced order model to obtain analytical formulas for optimum 18 

parameters of visco-elastic dampers connecting adjacent multi-storey buildings for different optimization 19 

criteria. Gattulli et al. 2013 [14] investigated the complex eigenvalues of two SDOF systems connected by a 20 

visco-elastic damper through parametric studies aimed at determining optimal damper design parameters and 21 

design charts for preliminary design of dampers. Tubaldi et al. 2014 [15] investigated the probabilistic response 22 

of two adjacent steel structures connected with linear and non-linear visco-elastic dampers accounting for the 23 

uncertainties associated to both the seismic input and the model parameters. The results indicated that the 24 

performances of the systems are more sensitive to the viscous properties than to the stiffness properties of the 25 

dampers. In 2015 Tubaldi [16] analysed the dynamic behaviour of two adjacent buildings of different height 26 

connected by a single viscous/viscous-elastic damper at the top storey of the lower building through an 27 

analytical continuous model. Parametric analyses were conducted to evaluate the dependence of the natural 28 

frequencies and damping ratios on the main system parameters. In 2016 Kasagi et al. [17] investigated the 29 

effect of damper non-linearity on the connecting devices considering both high-damping rubber dampers and 30 

oil dampers with and without relief mechanism. Results showed that while high-damping rubber dampers are 31 

effective at a rather small deformation level, oil dampers without relief mechanism are effective at a larger 32 

deformation range. In 2017 Kandemir-Mazanoglu and Mazanoglu [18] proposed an optimization procedure 33 

for optimum location and capacity of linear and non-linear viscous dampers to prevent pounding effects. 34 

Few experimental investigations have been conducted in the last decades to assess the performances of adjacent 35 

buildings connected by dissipative devices. Xu et al. 1999 [19] conducted experimental tests on two 3-storey 36 

shear buildings with different natural frequencies connected by fluid dampers and subjected to unidirectional 37 

harmonic excitation. The two buildings without fluid dampers were first tested to obtain their individual 38 

dynamic properties. Then, tests were carried out on the two buildings connected by fluid dampers of different 39 

damping coefficients to determine modal damping ratios. Yang et al. 2003 [20] carried out experimental tests 40 

on scaled five-storey and six-storey steel frames connected by fluid viscous dampers. The experimental results 41 

showed that the installation of fluid dampers of proper parameters could significantly increase the modal 42 

damping ratios and reduce the seismic responses of both buildings, while the natural frequencies of both 43 

buildings remained almost unchanged. The seismic performances of adjacent buildings linked by fluid dampers 44 

were much superior to those of the adjacent buildings linked by rigid rods. 45 

In the past, the dynamic behaviour of frames equipped with linear viscous dampers leading to a Mass 46 

Proportional Damping (MPD) system was investigated by Trombetti and Silvestri 2004 [21]. The results 47 
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indicated that the MPD system, among the classically damped systems, is the one providing the best overall 1 

performances in terms of minimum top-storey response variance to a Gaussian band limited white noise input. 2 

Then, a practical solution to implement an “approximate” MPD system was proposed by connecting the 3 

reference building to an adjacent stiff support structure, such as a reinforced concrete core or a braced frame. 4 

It was found that the solution leads to seismic performances similar to those offered by the “exact” MPD 5 

system (Trombetti and Silvestri 2007 [22]). 6 

In this work, a comprehensive study is developed with the aim of evaluating the effectiveness of connecting 7 

two adjacent multi-storey buildings with linear viscous dampers at all floors. The dynamic properties of the 8 

coupled system and its dynamic response to harmonic and seismic excitation are investigated. In particular, 9 

trends of the displacement damping reduction factors are obtained as function of both the dampers properties 10 

and key dynamic parameters of the two structures. The results can be used for the preliminary design of the 11 

added dampers connection system. 12 

 13 

2. Problem statement and parametric study 14 

2.1. Assumptions and objectives 15 

Two adjacent multi-storey structures connected through horizontal fluid-viscous dampers at all floors are 16 

considered in the present study. The following assumptions are introduced so that the problem can be handled 17 

with an analytical approach: 18 

• The two adjacent structures are symmetric in plan, with their symmetry plan in the same alignment.  19 

• The dynamic input is applied along the direction of the symmetry plan.  20 

• Since the two buildings are close to each other, the same input is applied at the base of both buildings.  21 

• The two adjacent buildings have the same number of storeys, equal to N, and uniform inter-storey 22 

height h.  23 

• Each building is modelled as a shear-type frame structure, with lumped mass at each floor level. The 24 

frame elements are assumed to remain in the elastic range.  25 

• Equal viscous dampers are located at all floors, each one connecting the two buildings at the same 26 

storey.  27 

• A linear force-velocity relationship is assumed for the viscous dampers.  28 

• The axial stiffnesses of the connection system through which the damper is installed and of the fluid 29 

viscous damper itself (flexibility associated to oil compressibility) are large enough so that each 30 

damper can be modelled with a purely linear viscous dashpot model (representing the limiting case of 31 

the Maxwell model with a spring of infinite axial stiffness, Castaldo and De Iuliis 2014 [23], Silvestri 32 

et al. 2010 [24]). According to this constitutive model, the damping force is proportional to the relative 33 

velocity between the neighbour floors of the two structures.  34 

Under these assumptions a two-dimensional system like the one represented in Figure 1 can be analysed. 35 

Hereafter, the system composed by the two buildings connected through the viscous dampers (Figure 1a) will 36 

be also referred to as N-storey coupled system, while the single buildings will be also referred to as the 37 

“reference” building (or, alternatively, Building 1) and the “support” building (or, alternatively, Building 2). 38 

The reference structure is intended as the building to be controlled by the supplemental dampers system that 39 

utilizes the other building as support. Furthermore, for comparison purposes, also two MPD systems 40 

corresponding to Building 1 and Building 2 will be analysed. Each MPD system is composed by one of the 41 

two buildings linked with horizontal dampers connected to fixed points (Figure 1b). For each MPD system, 42 
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the damping coefficient of the damper located at the i-th storey is proportional to the corresponding i-th floor 1 

mass. 2 

                   3 

                                    (a)                                                                                    (b) 4 

Figure 1: The coupled N-storey system (a) and the corresponding MDP systems (b). 5 

The main objective of this work is to investigate the energy dissipation capabilities of the connection system 6 

made of supplemental viscous dampers with a specific focus on the damping reduction factor of the peak 7 

seismic displacement response of the reference building, as compared with the limiting case of the same 8 

building equipped with a MPD system. For this aim, a comprehensive parametric study has been conducted, 9 

starting from one-storey systems and then moving to multi-storey systems. For the one-storey systems, the 10 

complex frequencies and corresponding damping ratios are evaluated according to the theory of complex 11 

damping and compared with those of the corresponding disconnected buildings, as obtained from classical 12 

modal analysis. The steady state response under harmonic input at the base is then investigated to obtain 13 

frequency response curves (Chopra, 2001 [25]) and surfaces. The seismic response is also investigated with 14 

the purpose of evaluating the trends of the displacement damping reduction factors with respect to the key 15 

dynamic parameters. Finally, the analyses are extended to multi-storey systems with the main purpose of 16 

evaluating the trends of the damping reduction factors of the peak roof displacement. The study is focused 17 

uniquely to displacement reduction factors since they can be used directly for design purposes to reduce the 18 

ordinates of the reference 5%-damped pseudo-acceleration spectrum, thus obtaining the corresponding design 19 

elastic spectra for large damping ratios. 20 

 21 

2.2. The equation of motion and the dynamic analyses 22 

The dynamic behaviour of the N-storey coupled system under earthquake excitation is governed by the 23 

following equation of motion: 24 

( )I D gu+ + + = −Mu C C u Ku M1      (1) 25 

where: 26 

u is a 2N-dimensional horizontal relative displacement vector (with respect to ground displacement gu ). The 27 

first N components of u (from 1 to N) collect the horizontal relative displacements of Building 1, while the 28 
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remaining N components (from N+1 to 2N) refer to Building 2. 
1
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C  is a N x N diagonal matrix. 5 

dic is the damping coefficient of the viscous damper that connects the i-th floor of Building 1 with the 6 

corresponding i-th floor of Building 2. 7 

The equation of motion of the two MPD systems (Eq. 2) and of the two disconnected buildings (Eq. 3) are 8 

particular cases of the general equation of motion (Eq. 1): 9 

• Equation of motion for the MPD systems: 10 

( )*
I D gu+ + + = −Mu C C u Ku M1     (2) 11 

• Equation of motion for the two disconnected buildings (Building 1 and Building 2): 12 

I gu+ + = −Mu C u Ku M1      (3) 13 

where 
* d

D
d

 
=  

 

C 0
C

0 C
 is a matrix with the diagonal components of the DC  matrix and with null off-diagonal 14 

terms. 15 

For the general case (Eq. 1), the damping matrix ( I D+C C ) of the coupled system is non-proportional, thus the 16 

evaluation of its frequencies and damping ratios requires the theory of complex damping. For a generic non-17 

proportionally damped system, the damping matrix provides two different effects: (i) energy dissipation 18 

associated to the proportional component of the complex damping matrix through the real damping ratio, and 19 

(ii) energy transfer between modes associated to the non-proportional component of the complex damping 20 

matrix through the imaginary damping ratio. While the energy associated to effect (i) is transformed from 21 

mechanical energy to another type of energy (typically heat energy), the energy associated to effect (ii) is not 22 

transformed to another kind of energy but rather transferred between modes thus providing coupling effects 23 

between modes. As a consequence of this coupling effect, the undamped frequencies of a non-proportionally 24 

damped (or coupled) system are no longer independent on the damping matrix. The interested reader may find 25 

a complete exposition of the theory in the NCEER-91-0004 [26] report or in the textbook by Cheng 2001 [27]. 26 

The parametric studies on the dynamic properties of the coupled system (section 3.3) and on the harmonic 27 

steady state response (section 3.4) as well as the time-history dynamic analyses (sections 3.5 and 4.2) are 28 

carried out with an ad-hoc developed MATLAB routine. An ensemble of 10 artificially generated ground 29 

motions is considered as seismic input for the parametric study. The artificial ground motions are generated 30 

using the software SIMQKE (Gasparini and Vanmarcke 1976 [28]) in order to match the design spectrum 31 

according to the Italian building code NTC18 [29] (for an average Peak Ground Acceleration equal to 0.12g). 32 
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Each artificial record has a total duration of 20 s, while the duration of the stationary part (starting after 2 s) is 1 

of 10 s. The average pseudo-acceleration spectrum of the 10 accelerograms (with 5% damping ratio) is shown 2 

in Figure 2a. For the applicative example (section 5.2), the El-Centro S00E record (1940 Imperial Valley 3 

Earthquake) is considered. Its pseudo-acceleration response spectrum (with 5% damping ratio) is displayed in 4 

Figure 2b. 5 

 6 
(a)      (b) 7 

Figure 2: Pseudo-acceleration response spectra with 5% damping ratio: (a) the ten artificial accelerograms 8 

generated with SIMQKE; (b) the El-Centro S00E record. 9 

 10 

3. One-storey systems 11 

3.1. Considered systems and key parameters 12 

This section investigates the behaviour of two one-storey adjacent buildings connected through a viscous 13 

damper having damping coefficient cd (Figure 3). Each one-storey building is modelled as a damped Single-14 

Degree-Of-Freedom (SDOF) system with damping coefficient equal to cin1 for the SDOF system 1 and cin2 for 15 

the SDOF system 2. Both cin1 and cin2 values lead to an inherent damping ratio equal to 5%. The SDOF system 16 

1 is assumed as the reference structure, while the SDOF system 2 is the support structure. 17 

The dynamic response of the coupled one-storey system is compared with those of the corresponding damped 18 

SDOF systems, each one having a damping coefficient equal to the sum of the inherent damping (cin1 for SDOF 19 

system 1 and cin2 for SDOF system 2) and the viscous damping of the added damper cd. 20 

           21 

                           (a)                                                                                  (b) 22 

Figure 3: (a) Coupled one-storey system; (b) SDOF system 1 and SDOF system 2. 23 

The equations of motion of the coupled one-storey system with two degrees of freedom u1 and u2 and of the 24 

corresponding two damped SDOF systems (having one degree of freedom indicated as uSDOF1for SDOF system 25 

1 and uSDOF2 for SDOF system 2), as subjected to a ground excitation 
gu , are given below: 26 
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• for the coupled one-storey system: 1 

11 1 1 1 1 1

22 2 2 2 2 2

0 0 0 1

0 0 0 1

in d d

g

d in d

c c cm u u k u m
u

c c cm u u k u m

+ −              
+ + = −             

− +              
  (4) 2 

• for the two corresponding disconnected damped SDOF systems: 3 

1 1 1 1 1 1 1( )SDOF in d SDOF SDOF gm u c c u k u m u+ + + = −     (5) 4 

2 2 2 2 1 2 2( )SDOF in d SDOF SDOF gm u c c u k u m u+ + + = −    (6) 5 

The fundamental dynamic properties of the two disconnected damped SDOF systems are indicated as it 6 

follows. 1
1

1

n

k

m
 =  and 2

2

2

n

k

m
 =  are the undamped natural frequencies of SDOF systems 1 and 2, 7 

respectively; 1
1

1 12

in d
n

n

c c

m




+
=  and 2

2

2 22

in d
n

n

c c

m




+
=  are the corresponding damping ratios. The suffix n refers to 8 

the natural undamped mode of vibration. The periods of vibration corresponding to 
1n  and 

2n  are denoted 9 

as 
1nT and

2nT , respectively.  10 

It is useful to introduce the following dimensionless parameters: frequency ratio 1

2

n

n




 =  mass ratio 1

2

m

m
 =11 

and normalized damping coefficient 
1 12

d
d

n

c

m



= . Note that the normalized damping coefficient is coincident 12 

with the damping ratio of the damped SDOF system 1 in case of null intrinsic damping coefficient cin1. 13 

The dynamic response of the system is investigated varying the key parameters within the range indicated in 14 

Table 1. 15 

Table 1: Ranges of the key parameters considered in the parametric analysis. 16 
 Period T1n Mass ratio  Frequency ratio  Normalized viscous damping ratio d 

Range 0.5 s; 1.0 s; 1.5 s 0.5; 1.0; 2.0 0.2 - 4.0 (step 0.1) 0.2 - 4.0 (step 0.1) 

 17 

3.2. Dynamic properties 18 

The dynamic equilibrium equation of the coupled one-storey system with null intrinsic damping coefficients 19 

(e.g. cin1=cin2=0) under free vibration reads: 20 

( )
( )

1 1 1 2 1 1

2 2 2 1 2 2

0

0

d

d

m u c u u k u

m u c u u k u

 + − + =


+ − + =
      (7) 21 

According to the theory of complex damping, the characteristic equation of the system can be written as 22 

follows: 23 

2 3 4
1 2 1 2 1 2 2 1 1 2 1 2( ) ( ) ( ) 0d dk k k k c k m k m m m c m m   + + + + + + + =    (8) 24 

It is convenient to express the characteristic equation in terms of dimensionless coefficients , , and d : 25 
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4 2 2
3 2 2 3 41

1 1 12 2 2

1
2(1 ) 2(1 ) 0n

d n n d n

 
         

  + 
+ + + + + + = 

   
  (9) 1 

Eq. 9 is a fourth order algebraic equation and, in general, has four complex roots (k = 1, …, 4) of the following 2 

general form: 3 

21k k k k ki    = − + −      (10) 4 

where 
Re( )k

k

k





=  and 

2 2Re( ) Im( )k k k k   = = + are called the k-th damping ratio and undamped 5 

frequency, respectively. For an underdamped system, the four eigenvalues are complex conjugates pairs. The 6 

imaginary part of the k-th complex frequency, 
2Im( ) 1dk k k k   = = − , is the damped frequency. In general, the 7 

k-th undamped frequency k  may differ from its corresponding natural undamped frequency kn  due to the 8 

non-proportionality of the damping matrix.  9 

The graphs of Figures 4 and 5 provide the trends of the damping ratios 
k  and undamped frequencies

k vs10 

d  for the general case of  ≠ 1.0 and for the specific case of  = 1.0, respectively. For comparison purposes, 11 

also the damping ratios and the undamped natural frequencies of the corresponding damped SDOF systems 12 

are included in the graphs.  13 

 14 
                                              (a)                                                                             (b) 15 

Figure 4: Damping ratios (a) and undamped frequencies (b) for  = 0.5 and  = 1.0. 16 

 17 
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 1 
                                              (a)                                                                             (b) 2 

Figure 5: Damping ratios (a) and undamped frequencies (b) for  = 1.0 and  = 0.5. 3 

The following observations can be made: 4 

• For the general case of  ≠ 1.0, the four roots represent two complex modes with two different 5 

undamped frequencies up to the critical normalized damping coefficient ,d cr that represents the limit 6 

of two regions of behaviour: region A characterized by ,d d cr   and region B characterized by 7 

,d d cr  .  8 

In region B one mode is overdamped, therefore only one frequency has a physical meaning. The 9 

damping ratio of the remaining mode decreases with increasing values of 
d .  10 

In region A both modes are underdamped, and their frequencies tend to get closer and closer with 11 

increasing values of 
d . One damping ratio increases for increasing values of 

d  up to a unit value 12 

reached at ,d d cr = , while the other one first achieves a peak value peak  for ,d d opt =  and then 13 

progressively decreases for 
d  values larger than ,d opt . The damping coefficient of the viscous 14 

damper that corresponds to ,d opt  can be interpreted as an optimum damping coefficient, since it leads 15 

to the peak value of one damping ratio. The value of the other damping ratio at ,d d opt =  is indicated 16 

as 
* . In general, the extent of region A depends on the key parameters of the system. Within region 17 

A, two further sub-regions can be distinguished: region A1 characterized by ,d d opt   and region A2 18 

characterized by , ,d opt d d cr    . In region A1 the two damping ratios are very close to the damping 19 

ratios of the two corresponding undamped SDOF systems. This indicates a low coupling of modes. In 20 

other words, almost the entire damping coefficient is effective in providing energy dissipation. On the 21 

contrary, within region A2, the trends of both the two damping ratios and undamped frequencies 22 

diverge significantly from those of the corresponding damped SDOF systems, thus indicating a 23 

significant coupling between modes. Therefore, in this region, only a small fraction of the damping 24 

coefficient is effective in providing energy dissipation, while the remaining fraction is responsible for 25 
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energy transfer between modes. The specific values of ,d cr , ,d opt , peak  and 
* govern the dynamic 1 

behaviour of the coupled system and are highly dependent on the key dynamic parameters, as it will 2 

be clarified in sections 3.3 and 4. 3 

• In the specific case of  = 1.0, the two complex modes have an equal and constant (i.e. not influenced 4 

by 
d ) undamped frequency within the entire range of 

d . In region B, only one frequency has a 5 

physical meaning. In region A, one damping ratio linearly increases up to a unit value for increasing 6 

values of 
d  up to ,d cr , with a slope larger than the ones of the damping ratios of the two 7 

corresponding undamped SDOF systems. On the contrary, the other damping ratio remains identically 8 

null for all values of 
d . This means that one mode is a damped mode, whilst the other is an undamped 9 

mode independently from the value of 
d . The undamped mode corresponds to an in-phase motion 10 

of the two buildings leading therefore to a null relative displacement (and velocity) 2 1u u−  and to a 11 

null damping force, since the whole system made of the two coupled structures oscillates in unison. 12 

The damped mode corresponds to an out-of-phase motion of the two buildings. 13 

 14 

3.3. Influence of the key system parameters on the dynamic properties of the coupled system 15 

This paragraph discusses the influence of the key system parameters  and  on the dynamic properties of the 16 

coupled system, with particular focus on the damping ratios ,d cr , ,d opt , peak  and 
*  identified in the previous 17 

section. For this aim, Figure 6 shows the trends of the above-mentioned damping ratios vs. 
d  for eight different 18 

 values and for constant =1.0. For =1.0, the values of 
1n  and 

2n  are equal to each other since the two 19 

undamped SDOF systems have the same natural period and the same mass. For  values larger than 1.0, the 20 

order of modes is switched with respect to the case of  values smaller than 1.0. 21 

 22 

(a)      (b) 23 
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 1 

(c)      (d) 2 

 3 

(e)      (f) 4 

 5 

(g)      (h) 6 

Figure 6: Damping ratios for constant mass ratio (=1.0) and: (a) = (b) =; (c) = (d) =; 7 

(e) =; (f) = (g) =; (h) =. 8 

 9 
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For small values of  (for instance, refer to Figure 6a corresponding to =), the width of region A is large 1 

since the critical condition is achieved for 
d  values larger than 0.8 ( , 0.8d cr  ); the value peak is reached 2 

at a ,d opt  larger than 1.0; 
*  is equal to 1.0. In these cases, the system is weakly coupled within the full range 3 

of 
d <1.0. For increasing values of  (  ) the width of region A progressively decreases and the 4 

values of ,d opt  result to be very sensitive to . The corresponding peak  remain limited around 0.2. For 5 

instance, when considering the case of  =0.6 (Figure 6c), a value of peak  around 0.15 is reached for ,d opt  6 

around 0.3 with a 
*  value also around 0.3. The divergence of the damping ratios from those of the 7 

corresponding damped SDOF systems indicate the raising of the coupling effects, causing the progressively 8 

reduction of one damping ratio. For    this condition occurs at 
d  values around 0.2. In these cases, 9 

the energy transfer effect is predominant with respect to the energy dissipation effect. In other words, from a 10 

physical point of view, for the case of buildings with comparable floor masses, the presence of a support 11 

structure with stiffness of the same order of magnitude of that of the reference structure limits the full 12 

exploitation of the total damping coefficient cd (or its normalized version 
d ) theoretically available for energy 13 

dissipation. 14 

Figures 7 and 8 provide curves and surfaces of ,d cr , ,d opt , peak and 
* , respectively. First of all, it can be 15 

noted that all damping ratios appear to be very sensitive to both  and  parameters. Note that the values of 16 

,d opt , peak and 
*  are not defined for =  17 

 18 

                                              (a)                                                                              (b) 19 
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 1 

                                              (c)                                                                              (d) 2 

Figure 7:(a) ,d cr  vs  ; (b) ,d opt  vs  ; (c) peak  vs  ; (d) *  vs  , for different  values. 3 

 4 

                                              (a)                                                                              (b) 5 

 6 

                                              (c)                                                                              (d) 7 

Figure 8:(a) ,d cr  vs  and   (b) ,d opt  vs  and   (c) p  vs  and   (d) * vs  and  8 

 9 
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The values of ,d cr  progressively decrease for increasing values of both  and  The decrease with  is very 1 

fast for  values within the range of 0.0 and 1.0. Then the curves become flatter.  2 

The trends of both ,d opt , peak  and 
* vary significantly when  values get smaller or larger than 1.0.  3 

,d opt  values first rapidly decrease for  values between 0.0 and 1.0, and are not much influenced by . Then, 4 

for  values larger than 1.0, they progressively increase and become very sensitive to  values. In particular, 5 

for small values of  large values of ,d opt  (up to 0.8) are achieved. For larger  values, the increase of 6 

,d opt  is less significant.  7 

Values of peak  also first decrease with  values going from 0.0 to 1.0. The rate of decrease is very sensitive 8 

to . For large  values, peak values tend to be larger. Then, for  values larger than 1.0, peak values tend to 9 

increase with increasing values of  with trends that are qualitatively similar to those of ,d opt .  10 

Values of 
* are equal to 1.0 for small  values, while they rapidly decrease as  values approach 1.0. Then, 11 

for  values larger than 1.0, 
*  values tend to increase again, almost linearly with slopes depending on . The 12 

larger  the steeper the slope 13 

To sum up, the optimal systems are identified in terms of  and , as those able to maximize the damping 14 

parameters peak  and 
* . Then, for the identified optimal systems, the parameter ,d opt  may guide to select 15 

the optimal damping coefficient , , 1 12d opt d opt nc m = . Nevertheless, the system effectiveness also depends on 16 

the characteristics of the dynamic input. The influence of the main parameters on the dynamic response of the 17 

system will be analysed in the next sections, considering both harmonic (section 3.4) and earthquake (section 18 

3.5) ground excitations. 19 

 20 

3.4. Frequency response curves and surfaces 21 

Frequency response curves are determined considering an harmonic displacement of peak amplitude Dg and 22 

frequency g, ( ) gi t

g gu t D e


= , applied at the ground level: 23 

( )
( )

1 1 1 2 1 1 1

2 2 2 1 2 2 2

d g

d g

m u c u u k u m u

m u c u u k u m u

 + − + = −


+ − + = −
    (11) 24 

Assuming harmonic stationary solutions of the type 1 1( ) gi t
u t D e


= and 2 2( ) gi t

u t D e


= , and introducing the 25 

dimensionless frequency parameters 1/g n  =  and 2 2/g n   = =  , it is then possible to obtain the 26 

following analytical expressions of the complex amplitudes D1 and D2 of relative displacements u1 and u2: 27 
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( )( )

( ) ( ) ( )

( )
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( ) ( ) ( )
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   


        

  


        
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 =
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 

 − + − +
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 

  (12) 1 

It is then possible to evaluate the analytical expressions of ( )2
1 / gD D  | and ( )( )2

2 / gD D   which provide 2 

the moduli of the complex amplitudes as normalized with respect to the static responses of Building 1 and 3 

Building 2, respectively, namely the dynamic amplification factors of the two degrees of freedom. Analytical 4 

expressions of the displacement dynamic amplification factors were determined by Bhaskararao and Jangid 5 

2007 [9]. In the special case of = the expressions of the complex amplitudes D1 and D2 reduce to the 6 

same real value: 7 

2

1 2 2 1

gD
D D




= =

−
      (13) 8 

and the amplification factors become equal to ( ) ( )( ) ( )22 2
1 2/ / 1 / 1g gD D D D  =  = − . Note that the 9 

expression ( )21/ 1 −  represents the dynamic amplification of an undamped SDOF system (Chopra 2001 10 

[19]). 11 

The graphs displayed in Figures 9 and 10 provide frequency response curves (vs   ) and surfaces (vs   and 12 

d) of the dynamic amplification factors related to D1 and D2 (i.e. ( )2

1 / gD D  | and ( )( )2

2 / gD D  ), 13 

respectively. In detail, the frequency response curves shown in Figure 9 are represented for selected  (0.4 14 

and 2.0) and  (0.2, 1.0, 1.5 and 2.0) values and for a fixed d value (0.15). For comparison purposes, also the 15 

frequency response curve of the damped SDOF system with natural undamped frequency 1n  and damping 16 

ratio  =0.15 is provided.  17 

 18 
(a)      (b) 19 
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 1 
(c )      (d) 2 

Figure 9: Frequency response curves for: (a)  = 0.2; (b)  = 1.0; (c)  = 1.5; (d)  = 2.0. 3 

As well known, the curve of the SDOF system is characterized by a single peak around 1.0 =  with amplitude 4 

equal to ( )1 / 2  (that, in this specific case, is equal to 3.33). 5 

The frequency response curves of the coupled system have, instead, two peaks at frequencies equal to the 6 

damped frequencies 1d  and 2d . Note that the peak around 1.0 =  corresponds to the amplification at the 7 

first damped frequency 1d , while the other peak (around  =2.5 for  =0.4 and  =0.5 for  =2.0) 8 

corresponds to the amplification at the other damped frequency 2d . For =0.4, the peak amplification of D1 9 

around 1.0 =  is close to that of the corresponding damped SDOF system, independently from . On the 10 

contrary, the peak amplification of D2 around 2.5 =  is significantly influenced by : for small  values the 11 

amplification is very large (>15), while for increasing  values, the amplification progressively decreases. For 12 

=2.0, the peak amplification of D1 around 1.0 =  is larger than that of the corresponding damped SDOF 13 

system and tends to increase with increasing  values. On the contrary, the peak amplification of D2 around 14 

0.5 =  strongly reduces with increasing  values. 15 

The frequency response surfaces represented in Figure 10 allow to appreciate the influence of d on the 16 

dynamic amplification factors related to D1 and D2.  17 

 18 
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(a)      (b) 1 

 2 
(c)      (d) 3 

Figure 10: Frequency response surfaces for =0.4 and: (a) =0.2; (b) =1.0; (c) =1.5; (d) =2.0. 4 

As long as d remains below a certain value, the peak amplifications rapidly decrease with increasing d values. 5 

On the contrary, for larger d values the peak amplifications of the coupled system tend to increase with 6 

increasing d values. 7 

 8 

3.5. Displacement reduction factors under earthquake excitation 9 

The response of the coupled system under earthquake ground motion is investigated with the purpose of 10 

evaluating the trends of the damping reduction factors of the peak displacements with respect to d  and the 11 

key parameters ,  and T1n (i.e. the period of vibration of the reference structure). The following damping 12 

reduction factors are introduced: 13 
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 
=

=       (14) 14 
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d

d
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SDOF d
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u

u





 
=

=       (17) 17 

where 1,max, d
u  , 2,max, d

u  , 1,max, dSDOFu  and 2,max, dSDOFu   are the peak displacements of degrees of freedom u1, 18 

u2, uSDOF1, and uSDOF2, respectively. Similarly, 1,max, 0d
u  = , 2,max, 0d

u  = , 1,max, 0dSDOFu  =  and 2,max, 0dSDOFu  =  are 19 

the peak displacements for the specific value of d = 0. In all cases, inherent damping coefficients c1h and c2h 20 

leading to inherent damping ratios equal to 5% are considered in addition to the damping ratio provided by the 21 

added viscous damper. It can be noted that 1,max, 0 1,max, 0d dSDOFu u = ==  and 2,max, 0 2,max, 0d dSDOFu u = == . 22 
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Figures 11 and 12 provide curves and surfaces of the average values (over the 10 accelerograms described in 1 

section 2.2) of the displacement reduction factors, respectively. Figures 11a and b display the trends of the 2 

reduction factors 
1  and 

2  as a function of d for selected  values (0.2, 0.5, 1.5, 2 and 4) and for  = 1.0 and 3 

T1n = 0.5s, together with 1SDOF  and 2SDOF , respectively. For comparison purposes, also the well-known 4 

relationship by Bommer et al. 2000 [30] is represented in the graphs of Figure 11. 5 

 6 
                                              (a)                                                                             (b) 7 

Figure 11: Displacement reduction factors for  = 1.0 and T1n = 0.5s: (a) 
1 ; (b) 

2 . 8 

 9 
As far as 

1  is concerned, for small  values (refer, for instance, to the curve related to = corresponding 10 

to the case with SDOF system 2 much stiffer - 25 times - than SDOF system 1) the trends of 
1  follows the 11 

one of the corresponding damped SDOF system. On the contrary, systems with  values around  (SDOF 12 

system 2 is four times stiffer than SDOF system 1) show a reduction factor 
1  that first decreases up to a certain 13 

value of d=dp (around 0.2) and then remains almost constant for d ≥ dp. At d=dp reduction factor values 14 

are around 0.4-0.5 depending on the value of T1n. Systems with  values larger than 0.5 (the two SDOF systems 15 

have a similar stiffness) exhibit very limited reductions of the peak displacement (e.g. large values of 
1 ). For 16 

the cases represented in Figure 11a, the maximum reductions at dp correspond to reduction factor values 17 

around 0.7-0.8. For values of d>dp, the reduction factors increase and may achieve values even larger than 18 

1.0 (detrimental effects). 19 

As far as 
2  is concerned, the smallest reduction factor values (i.e. the largest reductions in the peak 20 

displacement response) are observed for large values of  (refer, for instance, to the curve related to  =  21 

corresponding to the case with SDOF system 1 much stiffer - 16 times - than SDOF system 2). For values of 22 

 , the 
2  values are limited to 0.8 (e.g. 20% reduction) at dp, while, for larger d values, they slightly 23 

increase. 24 

Figures 12a, c and e display surfaces of 
1  as function of d and  for selected  and T1n values, while Figures 25 

12 b, d and f display surfaces of 
2 . Both  and T1n parameters have a slight influence on the trends of 

1 . 26 

The minimum values of 
1  and 

2  (namely 
1min  and 

2min ) and corresponding 
d  values (namely *

1d and 27 

*
2d ) have been computed to evaluate the influence of the main key parameters ,  and T1n. Figures 13 and 28 

14 display the curves of 
1min and 

2min  and of *
1d  and *

2d  as functions of , for selected values of  and 29 
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T1n, respectively. Figure 15 displays the surfaces of 
1min and 

2min  as functions of  and , for selected 1 

values of T1n. 2 

It can be noted that both 
1min  and 

2min  are primarily influenced by , while their dependency upon both  3 

and T1n is less significant. In particular, 
1min  first increases (almost linearly) for values of  up to  Then, 4 

for  ≥1.0, a decreasing trend (almost hyperbolic) up to a value of around 0.6-0.7 at = is observed Values 5 
of 

2min  oscillate between 0.7-1.0 for  ≤1.0. Then, for  ≥1.0, a decreasing trend (almost hyperbolic) up to 6 

a value of around 0.2-0.5 at = is observed. The trends of *
1d  are similar to those of d,opt (Figure 7b), 7 

since, due to the coupling effects, they exhibit a quite sudden drop to the 0.1 value for increasing values of 8 
  up to 1.0. For  ≥ 1.0, *

1d  values tend to remain almost constant around 0.2-0.3. Values of *
2d  tend to 9 

first increase for  ≤ 1.0 (the increase is less significant for small  values), then a drop is evidenced for 10 
  ≥1.0. 11 
 12 

 13 
                                (a)                                                                             (b) 14 

 15 
                                (c)                                                                             (d) 16 
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 1 
                                (e)                                                                             (f) 2 
Figure 12: Displacement reduction factors: (a) 

1  for  = 1.0; (b) 
2  for  = 1.0;(c) 

1  for  = 0.5; (d) 
23 

for  = 0.5; (e) 
1  for  = 2.0;(f) 

2 for  = 2.0. 4 

 5 
                                              (a)                                                                             (b) 6 

 7 
                                              (c)                                                                             (d) 8 
Figure 13: Minimum values of the damping reduction factors: (a) 

1  for T1n = 0.5 s; (b) 
2  for T1n = 0.5 s ; 9 

(c) 
1  for  = 1.0; (d) 

2 for  = 1.0. 10 

 11 
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 1 
                                              (a)                                                                             (b) 2 

 3 
                                              (c)                                                                             (d) 4 
Figure 14: Values of 

d  corresponding to minimum damping reduction factors: (a) *
1d  for T1n = 0.5 s; (b) 5 

*
2d  for T1n = 0.5 s; (c) *

1d  for  = 1.0; (d) *
2d  for  = 1.0. 6 

 7 

 8 
(a )    (b) 9 

Figure 15: Minimum values of the damping reduction factors: (a) 
1min ; (b) 

2min . 10 

 11 

4. Uniform multi-storey systems 12 
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4.1. Considered systems and governing parameters 1 

The present section investigates the seismic behaviour of an N-storey coupled system connected through equal 2 

linear viscous dampers (damping coefficients all equal to cd) placed at all floors. Each building is modelled as 3 

a uniform shear-type frame with constant floor mass (equal to m1 for Building 1 and m2 for Building 2) and 4 

constant lateral stiffness (equal to k1 for Building 1 and k2 for Building 2) at all storeys. In such a case, the NxN 5 

mass and stiffness matrices of the two individual buildings specialize as follows: 6 
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The inherent damping matrix of each building is assumed to be proportional to the mass matrix, that is:11 

1 1 1I a=C Μ and 2 2 2I a=C M , with coefficients a1 and a2 selected to obtain a value of the first damping ratio equal 12 

to 5% for both buildings. The damping matrix Cd is given by: 13 

...

...

d

d d

d

c

c

c

 
 
 
 =
 
 
 
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C      (22) 14 

The damping matrices of the corresponding MPD systems are equal to 1 1I d= +C C C  and 2 2I d= +C C C . 15 

The seismic response of the coupled system is analysed considering the following normalized parameters: 16 

mass ratio =m1/m2, and fundamental period ratio =1n,1/2n,1, with 1n,1 and 2n,1 being the first natural 17 

undamped frequencies of vibration of the reference structure (Building 1) and the support structure (Building 18 
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2), respectively. The corresponding periods of vibration are indicated as 1n,1 and 2n,1. The analyses are 1 

conducted varying the key parameters within the ranges reported in Table 2. 2 

 3 

Table 2: Ranges of the key parameters considered in the parametric analysis. 4 
 Total number of storeys N 

(Period T1n,1) 

Mass ratio  Frequency ratio  Normalized viscous damping ratio d 

Range 5  (T1n,1=0.35 s) 

10  (T1n,1=0.67 s) 

20  (T1n,1=1.30 s) 

0.5; 1.0; 2.0 0.2 - 4.0 (step 0.1) 0.2 - 4.0 (step 0.1) 

 5 

4.2.  Displacement reduction factors under earthquake excitation 6 

The response of the N-storey coupled systems under earthquake ground motion is investigated with the purpose 7 

of evaluating the trends of the damping reduction factors of peak roof displacements. For this purpose, the 8 

following damping reduction factors are introduced (subscript r stands for roof): 9 
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,1r  and ,2r  are the reduction factors of the peak roof displacements for the reference structure (Building 1) 14 

and the support structure (Building 2), respectively; while , 1r MPD  and , 2r MPD  are the reduction factors of the 15 

corresponding MPD systems, namely MPD1 and MPD2. It can be noted that 1,max, 0 1,max, 0d droof roofMPDu u = ==  16 

and 2,max, 0 2,max, 0d droof roofMPDu u = == . 17 

Figure 16 provides the curves of ,1r  and ,2r  vs d , for the coupled 5-storey system with  =1.0 (e.g. 18 

buildings of same total mass) and for selected  values (0.2, 0.5, 1.5, 2 and 4). For comparison purposes, also 19 

the trends of 1rMPD  and 2rMPD  are provided. 20 
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 1 

(a)     (b) 2 

Figure 16: Displacement reduction factors for N=5 and =1.0: (a) ,1r ; (b) ,2r . 3 

 4 

Figure 17 provides the surfaces of ,1r  and ,2r  vs d  and  for the 5-storey, 10-storey and 20-storey systems 5 

with selected values of  (0.5, 1.0 and 2.0). It gives additional information about the dependence on the total 6 

number of storeys N (and therefore on the fundamental period T1n,1) and mass ratio . As for the one-storey 7 

systems, such dependence is not so remarkable. 8 

 9 
                                    (a)                                                                            (b) 10 

 11 
                                    (c)                                                                            (d) 12 
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 1 
                                    (e)                                                                            (f) 2 
Figure 17: Displacement reduction factors: (a) ,1r  for =0.5; (b) ,2r  for =0.5; (c) ,1r  for =1.0; (d) ,2r3 

for =1.0; (e) ,1r  for =2.0; (f) ,2r for =2.0. 4 

 5 

Visual comparison of the curves and surfaces for the uniform multi-storey buildings (Figures 16 and 17) with 6 

those related to the one-storey systems (Figures 11 and 12) allows to highlight that the trends of ,1r  and ,2r  7 

are quite similar to those of 1  and 2  obtained for the one-storey systems. This suggests that the considered 8 

uniform multi-storey coupled systems are primarily governed by the “first” mode of vibration. For low 9 

 values (≤0.2), the ,1r  curve is practically coincident with the , 1r MPD  curve, thus indicating a large 10 

effectiveness of the dampers connection system in reducing the peak roof displacements for the entire range 11 

0 1.0d  . For  > 0.2, the energy dissipation capabilities of the dampers connection system reduce and 12 

the minimum values of ,1r  progressively increases with increasing values of . For instance, for  =  the 13 

minimum value of the ,1r  curve (Figure 16a) is of around 0.4 and the corresponding 
d  value ( *

1dr ) is around 14 

0.2. On the contrary, as expected, the minimum values of the ,2r  curves (Figure 16b) tend to increase as  15 

values reduce. 16 

The surfaces providing the trends of the minimum values of ,1r  and ,2r  (e.g. 1minr  and 2minr ), with respect 17 

to the key parameters   and N, are shown in Figure 18. 18 

 19 
(a)     (b) 20 
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Figure 18: (a) surfaces of 1minr ; (b) surfaces of 2minr . 1 

 2 

Again, the trends of 1minr  and 2minr  are similar to the ones obtained for the one-storey systems (Figure 15). 3 

Both 1minr  and 2minr  are mainly influenced by , while their dependence on  and T1n,1 is less significant. 4 

In detail, 1minr  first increases (almost linearly) for increasing values of  up to  Then, for  ≥1.0, a 5 

decreasing trend (almost hyperbolic) up to a value of around 0.6-0.7 at  =  is observed Values of 2minr  6 

oscillate between 0.7-1.0 for  ≤1.0. Then, for  ≥1.0, decreasing trends (almost hyperbolic) up to values 7 

around 0.2-0.4 at  =  are observed. 8 

 9 

5. An estimation of the minimum damping reduction factors of peak roof displacements 10 

5.1. Simplified upper and lower bound estimations 11 

An estimation of the minimum damping reduction factor of the peak roof displacement of the reference 12 

building is proposed as a function of the fundamental frequency ratio : 13 

1min

                for 0.2 1.0

3
    for 1.0 4.0

3 3

c c

   


= −
+   



     (27) 14 

The functional form (linear branch for 0.2≤≤1.0 followed by a descending branch with hyperbolic decay) 15 

assumed for 1min  (Eq. 27) is based on the results of the parametric analyses on both the one-storey and multi-16 

storey buildings. Eq. 27 can be useful for a preliminary evaluation of the maximum effectiveness of the 17 

dampers connection system based on the fundamental dynamic properties of the two adjacent buildings. The 18 

values of parameter c can be calibrated from the results of the numerical simulations. Figure 19a displays Eq. 19 

27 for different c values. Even though the detailed calibration of c values is beyond the scope of the present 20 

work, for the sake of providing upper and lower bound values, Figures 19b and c compare the estimations 21 

provided by Eq. 27 with the whole ensemble of the average results of the numerical simulations, including 22 

both the one-storey systems (Figure 19b) and multi-storey systems (Figure 19c). The legends of Figures 19b 23 

and c report the c-values providing upper and lower bound estimates. 24 

 25 
(a) (b) 26 
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 1 

(c) 2 

Figure 19: (a) 1min  for different c values; (b) upper and lower bound estimates of 
1min  for one-storey 3 

systems; (c) upper and lower bound estimates of 
1min  for multi-storey systems. 4 

 5 

5.2. Applicative example 6 

A two-bay six-storey steel moment-resisting frame is considered as the reference structure analysed as a case 7 

study. The columns and the beams are made by European HE and IPE profiles, respectively. The seismic 8 

weight of the main frame building is equal to W=2880 kN and the fundamental period of vibration is equal to 9 

T1=1.25 s. It is supposed to connect all floors of the main building to four different support steel structures 10 

through linear fluid-viscous dampers with constant damping coefficient cd at all floors. The resulting coupled 11 

systems are defined as follows (refer to Figure 20 for the cross section profiles and to Table 3 for the main 12 

system parameters): 13 

• System C1: the main structure is connected to a very stiff braced frame support structure. 14 

• System C2: the main structure is connected to a stiff braced one-bay frame support structure. 15 

• System C3: the main structure is connected to an unbraced flexible one-bay frame support structure. 16 

• System C4: the main structure is connected to an unbraced flexible three-bay frame support structure. 17 

The diagonal braces of the support structures are made by circular hollow profiles (with diameter D=150 mm 18 

and thickness s=20mm). All frame elements have linear elastic behaviour. For comparison purposes, also the 19 

MPD system is considered. The MPD system is obtained connecting each floor of the reference frame with a 20 

fixed point through viscous dampers of equal damping coefficient cd. Figure 20 displays the analysed systems, 21 

while Table 3 collects the values of their key parameters.  22 

Table 3: Key parameters of the examined coupled systems. 23 
System   d 

C1 0.29 2 

0.05-0.8 
C2 0.78 2 

C3 2.34 2 

C4 2.54 0.5 

 24 

The seismic behaviour of the considered systems is investigated considering the El-Centro record as base input 25 

with the purpose of evaluating the reduction of the peak roof displacement of the reference frame for a specific 26 

earthquake record. The dynamic time-history analyses are developed using the software SAP2000 v.19 [31]. 27 
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               1 

                     (a)                                                    (b)                                                          (c) 2 

        3 

                             (d)                                                                                (e) 4 

Figure 20: The analysed systems: (a) MPD; (b) C1; (c) C2; (d) C3; (e) C4. 5 
 6 
Figure 21 compares the peak roof displacement reduction factors  for the different systems as obtained from 7 

the numerical simulations. In detail, Figure 21a provides the trends of the damping reduction factor of the peak 8 

roof displacement as function of d.  9 

 10 

(a )     (b) 11 

Figure 21: Results from the applicative example. (a)  vs d; (b) 
min  vs  12 

 13 
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As expected, for = (system C1) the dampers connection system provides good energy dissipation 1 

capabilities, in line with those of the MPD system. Indeed, for large values of d significant reductions of the 2 

peak roof displacement are obtained (minimum values around 0.4). For the other three systems characterised 3 

by  values closer to and larger than 1.0 (systems C2, C3 and C4), the energy dissipation capabilities are 4 

reduced since the minimum values of   are between 0.74-0.87. The minimum damping reduction factors 1min 5 

are displayed in Figure 21b and compared with the estimations given by Eq. 27. The estimations are able to 6 

reasonably well predict the obtained values. In detail, for the considered systems, values of the calibration 7 

parameter c are between 0.8 and 1.2. 8 

Clearly, in the final design also the seismic response of the support structure has to be considered for the proper 9 

sizing of all structural members. 10 

 11 

6. Conclusions 12 

The paper provides an insight into the coupled dynamic behaviour of two adjacent multi-storey buildings (the 13 

one assumed as the reference structure, while the other as the support structure) connected through added 14 

viscous dampers. A wide parametric study has been carried out with the main purpose of evaluating the trends 15 

of damping reduction factors of peak displacements with respect to the key parameters of the system, namely 16 

frequency ratio , mass ratio , normalized damping coefficient d and fundamental period of the reference 17 

structure. The attention has been focused first on the minimal coupled dynamic system, namely the system 18 

composed by two Single-Degree-Of-Freedom systems connected by a viscous damper and therefore 19 

representative of a one-storey coupled system, and then to uniform multi-storey coupled systems.  20 

The results of the analyses conduced on the one-storey coupled systems allow to draw the following 21 

conclusions: 22 

• For certain combinations of key parameters (in particular, larger values of ), the limited values of 23 

one of the two damping ratio as obtained from complex frequency analysis indicate the limited 24 

effectiveness in energy dissipation of the coupled system independently from the amount of damping 25 

coefficient provided by the viscous damper.  26 

• The trends of the frequency response functions of the coupled system evidence, for certain 27 

combinations of parameters, large dynamic amplifications even for large values of the damping 28 

coefficient.  29 

• The trends of the damping reduction factors of the peak displacements of the masses of the two SDOF 30 

systems under earthquake excitation confirm that the maximum reduction (corresponding to the 31 

minimum values of the damping reduction factors) are highly dependent on the frequency ratio, the 32 

mass ratio and the fundamental natural frequency of the reference SDOF system: for low frequency 33 

ratios (less than 0.4) the reductions are close to those of the corresponding uncoupled damped SDOF 34 

systems; for larger frequency ratios, the maximum reductions rapidly reduce, strongly limiting the 35 

effectiveness of the dampers connection system. 36 

The results of the analysis carried out on the uniform multi-storey coupled systems allow to draw the following 37 

conclusions: 38 

• The trends of the damping reduction factors of the peak roof displacements are similar to those 39 

obtained for the one-storey coupled systems having the same key parameters: significant reductions 40 

of the peak floor displacements are observed for systems characterized by frequency ratios smaller 41 

than 0.4, while, for larger  values, the energy dissipation capabilities of the dampers connection 42 
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system drastically reduce and the maximum reductions of the peak roof displacements remain limited 1 

to 20% (corresponding to minimum damping reduction factors around 0.8).  2 

• The analytical formula proposed to evaluate the upper and lower bound values of the minimum values 3 

of the damping reduction factor of the peak roof displacement can be useful in the preliminary design 4 

phase for a rapid assessment of the potential energy dissipation capabilities provided by the 5 

supplemental dampers connecting the two adjacent buildings. 6 
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