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0991, USA 
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Abstract 

In this paper we study free vibrations of stepped structures, providing two versions of the 

Galerkin method. Specifically, we first apply the straightforward version of the Galerkin method 

which stipulates the employment of the Galerkin procedure to be conducted in each subdomain, 

or step, of the structure. Second, the rigorous realization of the Galerkin method is presented 

where the structural parameters, like rigidity and mass, are treated as generalized functions over 

the entire domain. This latter implementation utilizes unit step functions, as well as the Dirac’s 

delta function, and its derivative to treat the changes of the structural parameters across the steps.  

It turns out that this rigorous implementation leads to additional terms that do not appear in the 

straightforward (or “naïve”) realization of the Galerkin method. Both versions of Galerkin 

methods are compared with the exact solutions of the considered problems. It turns out that with 

increase of number of terms in the expansion, the rigorous, generalized-functions based Galerkin 

method tends to exact solution. In contrast the naïve realization of Galerkin’s method, which is 

usually utilized in literature, does not tend to exact solution. This study demonstrates that 

extreme care must be taken when implementing the Galerkin’s method for stepped structures, 

and only the rigorous version should be employed. 
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1. Introduction 

Galerkin’s method is a celebrated approximate technique suggested over a century ago (Galerkin 

[1]). Reviews of this method are provided by numerous authors. Interested readers can consult 

the works by Leipholz [2], Gander and Wanner [3], Repin [4] as well as the book by Mikhlin [5]. 

One can see also articles by Magen et al [6], Sclavounos [7], Grinberg et al [8], Wilson et al [9], 

Wang et al [10] and Izem et al [11]. There are numerous papers devoted to its application to 

elastic structures. We are particularly interested in applications of this method to structures with 

discontinuities, and especially stepped structures. There are several studies focused on this topic. 

The interested readers can consult with the papers by Chehil and Jategaonkar [12], Maurini, 

Porfiri and Pouget [13], Sohrabian and Ahmadian [14], Al-said [15], Borneman, Hashemi and 

Alighanbari [16] and Pirmoradian, Keshmiri and Karimpour [17] as examples. 

 In the above works, the Galerkin’s procedure is applied in the straightforward, naïve 

form. In the naïve form the integrations associated with each step of the structure are performed 

and the obtained results subsequently summed, as it will be illustrated in the following section. 

This paper shows that the above implementation can lead to large errors. The rigorous 

implementation is suggested instead, based upon the use of generalized functions existing over 

the entire domain of the structure. To show and prove this thesis, we consider two structural 

problems, namely the longitudinal vibrations in a stepped bar that is clamped at both its end 

cross-sections, and the flexural vibrations in a simply supported rectangular plate with a single 

step in thickness. For both examples we show that the naïve version of the Galerkin method does 
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not tend to the exact solution when number of terms increases whereas the rigorous 

implementation does. 

2. Longitudinal Vibrations of the Stepped Bar 

2.1.  Governing differential equations 

 

Fig.1 A piecewise stepped bar of length L. 

 

Consider the stepped bar shown in Fig.1 with moduli of elasticity 𝐸𝑖, cross-sectional 

areas Ai and material densities 𝜌𝑖, and lengths 𝐿𝑖   (i=1,2). The governing differential equation for 

the non-uniform and/or inhomogeneous bar with piecewise constants 𝐸𝑖, 𝐴𝑖 and 𝜌𝑖, reads: 

 
𝜕

𝜕𝑥
(𝐸𝑖𝐴𝑖

∂𝑣𝑖(𝑥, 𝑡)

∂𝑥
) = 𝜌𝑖𝐴𝑖

  ∂2𝑣𝑖(𝑥, 𝑡)

 ∂t2
 (1) 

where 𝑣𝑖(x, t) is the displacement in longitudinal direction along the i-th segment, x is the axial 

coordinate and t is the time. Specifically, for the two-segmented bar of Fig.1 Eq. (1) leads to:  

 𝑐1
2

∂2𝑣1

 ∂𝑥2
=

  ∂2𝑣1

 ∂t2
,                 0 < 𝑥 < 𝐿1 (2) 

 𝑐2
2

∂2𝑣2

 ∂𝑥2
=

  ∂2𝑣2

 ∂t2
,                  𝐿1 < 𝑥 < 𝐿 (3) 

where L=L1+L2 is the total length of the two-step bar, with 𝑐𝑖 = √
𝐸𝑖

𝜌𝑖
  is the speed of propagation 

of longitudinal waves in the i-th bar. Consider the case of a clamped-clamped bar element, the 

boundary and continuity conditions read:  
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  𝑣1(0, 𝑡) = 𝑣2(𝐿, 𝑡) = 0 (4) 

 𝑣1(𝐿1, 𝑡) = 𝑣2(𝐿1, 𝑡) (5) 

 𝐸1𝐴1

∂𝑣1(𝐿1, 𝑡)

∂𝑥
= 𝐸2𝐴2

∂𝑣2(𝐿1, 𝑡)

∂𝑥
 (6) 

Consider now harmonic vibrations: 

  𝑣1(𝑥, 𝑡) = 𝑉1(𝑥)sin (ɷ𝑡) (7) 

 𝑣2(𝑥, 𝑡) = 𝑉2(𝑥)sin (ɷ𝑡) (8) 

where V1(x) and V2(x) constitute mode shapes of the first and second step, respectively, and ɷ is 

the sought circular frequency, and subsisting them into Eq. (2) and (3) leads to: 

 𝑐1
2 d2𝑉1(𝑥)

 d𝑥2 + ɷ2𝑉1(𝑥) = 0  (9) 

 𝑐2
2

d2𝑉2(𝑥)

 d𝑥2
+ ɷ2𝑉2(𝑥) = 0 (10) 

 Solutions of Eqs. (9) and (10) read, respectively: 

  𝑉1 = 𝐷1sin 𝛽1𝑥 +  𝐷2cos 𝛽1𝑥  (11) 

 𝑉2 = 𝐷3sin 𝛽2𝑥 +  𝐷4cos 𝛽2𝑥 (12) 

where 𝛽𝑖 =
ɷ

𝑐𝑖
. 

Substituting Eqs. (11-12) into Eqs. (4-6) leads to a homogeneous system whose non-trivial 

solutions can be obtained by imposing its determinant equal to zero: 

sin(𝛽1𝐿1) - sin(𝛽2𝐿1) - cos(𝛽2𝐿1)  

𝐸1𝐴1𝛽1cos(𝛽1𝐿1) -𝐸2𝐴2𝛽2cos(𝛽2𝐿1) 𝐸2𝐴2𝛽2sin(𝛽2𝐿1) = 0             (13) 

0 sin(𝛽2𝐿) cos(𝛽2𝐿)  
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which leads to the following characteristic transcendental equation: 

 

−𝐸2𝐴2𝛽2[sin(𝛽1𝐿1)cos(𝛽2𝐿1)cos(𝛽2𝐿) + sin(𝛽1𝐿1)sin(𝛽2𝐿1)sin(𝛽2𝐿)]

− 𝐸1𝐴1𝛽1[cos(𝛽1𝐿1)cos(𝛽2𝐿1)sin(𝛽2𝐿)

− sin(𝛽2𝐿1)cos(𝛽2𝐿)cos(𝛽1𝐿1)] = 0 

(14) 

2.2. Evaluation of Exact Solutions 

We introduce the following parameter which contains the sought frequency ɷ: 

 𝑧 = 𝛽1𝐿1 =
ɷ𝐿1

𝑐1
 (15) 

Then, 

 𝛽2𝐿1 = 𝑧
𝑐1

𝑐2

= 𝑧√
𝐸1

𝐸2

𝜌2

𝜌1

;    𝛽1𝐿 = 𝑧
𝐿

𝐿1

= 𝑧 (1 +
𝐿2

𝐿1

) ;   𝛽2𝐿 = 𝑧
𝑐1

𝑐2

 
𝐿

𝐿1

= 𝑧
𝑐1

𝑐2

 (1 +
𝐿2

𝐿1

) (16) 

Eq. (14) can be rewritten with respect to 𝑧 as: 

 

𝜙C−C(𝑧) =
𝐸2

𝐸1

𝐴2

𝐴1

𝑐1

𝑐2
[sin(𝑧) sin (𝑧√

𝐸1𝜌2

𝐸2𝜌1
) sin (𝑧

𝑐1

𝑐2
(1 +

𝐿2

𝐿1
))

+ sin(𝑧) cos (𝑧√
𝐸1𝜌2

𝐸2𝜌1
) cos (𝑧

𝑐1

𝑐2
(1 +

𝐿2

𝐿1
))]

+ [cos(𝑧) cos (𝑧√
𝐸1𝜌2

𝐸2𝜌1
) sin (𝑧

𝑐1

𝑐2
(1 +

𝐿2

𝐿1
))

− cos(𝑧) sin (𝑧√
𝐸1𝜌2

𝐸2𝜌1
) cos (𝑧

𝑐1

𝑐2
(1 +

𝐿2

𝐿1
))] = 0 

(19) 

We introduce the following notations: 
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 𝑀𝑐 =
𝐸2

𝐸1

𝐴2

𝐴1

𝑐1

𝑐2
 (20) 

 

𝐵 (𝑧,
𝐸2

𝐸1
,
𝜌2

𝜌1
,
𝐿2

𝐿1
)

= [sin(𝑧) sin (𝑧√
𝐸1𝜌2

𝐸2𝜌1
) sin (𝑧

𝑐1

𝑐2
(1 +

𝐿2

𝐿1
))

+ sin(𝑧) cos (𝑧√
𝐸1𝜌2

𝐸2𝜌1
) cos (𝑧

𝑐1

𝑐2
(1 +

𝐿2

𝐿1
))] 

(21) 

 

𝐶 (𝑧,
𝐸2

𝐸1
,
𝜌2

𝜌1
,
𝐿2

𝐿1
)

= [sin(𝑧) cos (𝑧√
𝐸1𝜌2

𝐸2𝜌1
) sin (𝑧

𝑐1

𝑐2
(1 +

𝐿2

𝐿1
))

− sin(𝑧) sin (𝑧√
𝐸1𝜌2

𝐸2𝜌1
) cos (𝑧

𝑐1

𝑐2
(1 +

𝐿2

𝐿1
))] 

(22) 

which allow to rewrite Eq. (19) in the following synthetic form 𝜙C−C(𝑧) = 𝑀𝑐𝐵(𝑧) + 𝐶(𝑧). 

2.3. Application of the Naïve Galerkin Method 

In order to apply the Galerkin method we have to select a set of comparison functions. We 

choose to use trigonometric comparison functions. The trigonometric comparison functions that 

satisfy the clamped-clamped boundary conditions are: 

 𝜓𝑗
(𝜉) = sin(𝑗𝜋𝜉) (23) 

where j=1,2,3…n denotes the number of the mode and ξ = x / L is the non-dimensional axial 

coordinate. Now, we express the axial displacement in terms of comparison functions as: 
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 𝑉(𝜉) = ∑ 𝑝𝑗

𝑛

𝑗=1

𝜓𝑗(𝜉) (24) 

We substitute this expansion into Eqs. (9) and (10); then we multiply each result by 𝜓𝑘(𝜉), 

integrate the result from zero to 𝜉1 = 𝐿1/𝐿 for Eq.(9), and from 𝜉1 to 1 for Eq.(10), and sum up 

the results to get: 

 

∫ [𝑐1
2

d2

d𝜉2
∑ 𝑝𝑗𝜓𝑗

(𝜉) + ɷ2𝐿2 ∑ 𝑝𝑗𝜓𝑗
(𝜉)]𝜓𝑘(𝜉)d𝜉 

𝑛

𝑗=1

𝑛

𝑗=1

𝜉1

0

 

+ ∫ [𝑐2
2

d2

d𝜉2
∑ 𝑝𝑗𝜓𝑗

(𝜉) + ɷ2𝐿2 ∑ 𝑝𝑗𝜓𝑗
(𝜉)]𝜓𝑘

(𝜉)d𝜉 = 0 

𝑛

𝑗=1

𝑛

𝑗=1

1

𝜉1

 

(25) 

where k=1, 2, 3 … n is a positive integer. The Eq. (25) can be rewritten in the following form: 

 ∑(𝐾𝑗𝑘 + ɷ2𝑀𝑗𝑘)𝑝𝑗 = 0

𝑛

𝑗=1

 (26) 

where: 

 𝐾𝑗𝑘 = ∫ 𝑐1
2

d2𝜓𝑗(𝜉)

d𝜉2
𝜓𝑘(𝜉)d𝜉 + ∫ 𝑐2

2
d2𝜓𝑗(𝜉)

d𝜉2
𝜓𝑘(𝜉)d𝜉

1

𝜉1

𝜉1

0

 (27) 

 𝑀𝑗𝑘 = ∫ 𝐿2𝜓𝑗(𝜉)𝜓𝑘(𝜉)d𝜉 + ∫ 𝐿2𝜓𝑗(𝜉)𝜓𝑘(𝜉)d𝜉
1

𝜉1

𝜉1

0

 (28) 

or in matrix notation as: 

 (𝑲 + ɷ2𝑴)𝒑 = 𝟎 (29) 

which is a homogeneous linear system of dimension 𝑛 in the unknowns 𝜔 and 𝒑. Eq. (29) has 

non-trivial solutions only when the determinant of the coefficient matrix is equal to zero, leading 

to the following eigenvalue problem in terms of the sought frequency ɷ2: 
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 det(𝑲 + ɷ2𝑴) = 0 (30) 

2.4. Application of the Rigorous Galerkin Method 

Within rigorous implementation, we represent the axial rigidity and the mass over the entire 

domain of the system 0 ≤ 𝑥 ≤ 𝐿 using the following generalized functions: 

 𝐷(𝑥) = 𝐸(𝑥)𝐴(𝑥) = 𝐷1𝐻(𝑥) + (𝐷2 − 𝐷1)𝐻(𝑥 − 𝐿1) (31) 

 𝑀(𝑥) = 𝜌(𝑥)𝐴(𝑥) = 𝑀1𝐻(𝑥) + (𝑀2 − 𝑀1)𝐻(𝑥 − 𝐿1) (32) 

where 𝐻(𝑥) is the unit step function or Heaviside function which has the following properties 

  𝐻(𝑥 − 𝛼) = {
1,                               if 𝑥 > 𝛼
0,                           otherwise

 (33) 

 
d

d𝑥
𝐻(𝑥) = 𝛿(𝑥). (34) 

where 𝛿(𝑥) is the Dirac’s delta function. 

Now, rewriting Eq. (1) using the above considerations: 

 

d

d𝑥
[(𝐷1𝐻(𝑥) + (𝐷2 − 𝐷1)𝐻(𝑥 − 𝐿1))

d𝑣

d𝑥
]

= [𝑀1𝐻(𝑥) + (𝑀2 − 𝑀1)𝐻(𝑥 − 𝐿1)]
d2𝑣

d𝑡2
 

(35) 

calculating derivatives, introducing the non-dimensional axial coordinate 𝜉 =
𝑥

𝐿
 and substituting 

Eqs. (7), (8) and (24), leads to the following model: 
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[𝐷1𝛿(𝜉) + (𝐷2 − 𝐷1)𝛿(𝜉 − 𝜉1)]
d

d𝜉
(∑ 𝑝𝑗𝜓𝑗(𝜉)

𝑛

𝑗=1

)

+ [𝐷1𝐻(𝜉) + (𝐷2 − 𝐷1)𝐻(𝜉 − 𝜉1)]
d2

d𝜉2
(∑ 𝑝𝑗𝜓𝑗(𝜉)

𝑛

𝑗=1

)

+ [𝑀1𝐻(𝜉) + (𝑀2 − 𝑀1)𝐻(𝜉 − 𝜉1)]𝜔2𝐿2 ∑ 𝑝𝑗𝜓𝑗(𝜉)

𝑛

𝑗=1

= 0 

(36) 

We perform the Galerkin’s procedure: 

 

∫ [𝐷1 ∙ 𝛿(𝜉) + (𝐷2 − 𝐷1) ∙ 𝛿(𝜉 − 𝜉1)]
d

d𝜉
∑ 𝑝𝑗𝜓𝑗(𝜉)

𝑛

𝑗=1

𝜓𝑘(𝜉)d𝜉
1

0

+ ∫ [𝐷1 ∙ 𝐻(𝜉) + (𝐷2 − 𝐷1) ∙ 𝐻(𝜉
1

0

− 𝜉1)]
d2

d𝜉2
∑ 𝑝𝑗𝜓𝑗(𝜉)

𝑛

𝑗=1

𝜓𝑘(𝜉)d𝜉

+ ∫ [𝑀1 ∙ 𝐻(𝜉) + (𝑀2 − 𝑀1) ∙ 𝐻(𝜉
1

0

− 𝜉1)]𝜔2𝐿2 ∑ 𝑝𝑗𝜓𝑗(𝜉)

𝑛

𝑗=1

𝜓𝑘(𝜉)d𝜉 = 0 

(37) 

This equation can be rewritten in the following form: 

 ∑(𝑁𝑗𝑘 + 𝐾𝑗𝑘 + 𝜔2𝑀𝑗𝑘)

𝑛

𝑗=1

𝑝𝑗 = 0 (38) 

where 

 𝑁𝑗𝑘 = ∫ [𝐷1𝛿(𝜉) + (𝐷2 − 𝐷1)𝛿(𝜉 − 𝜉1)]
d𝜓𝑗(𝜉)

d𝜉
𝜓𝑘(𝜉)d𝜉

1

0

 (39) 
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 𝐾𝑗𝑘 = ∫ [𝐷1𝐻(𝜉) + (𝐷2 − 𝐷1)𝐻(𝜉 − 𝜉1)]
d2𝜓𝑗(𝜉)

d𝜉2
𝜓𝑘(𝜉)d𝜉

1

0

 (40) 

 𝑀𝑗𝑘 = ∫ [𝑀1𝐻(𝜉) + (𝑀2 − 𝑀1)𝐻(𝜉 − 𝜉1)]𝐿2𝜓𝑗(𝜉)𝜓𝑘(𝜉)d𝜉
1

0

 (41) 

Introducing matrix notation, we have: 

 (𝑵 + 𝑲 + ɷ2𝑴)𝒑 = 𝟎 (42) 

Non trivial solutions of Eq. (42) can be found by solving the following eigenvalue problem in the 

unknown eigenfrequencies ɷ2: 

 det(𝑵 + 𝑲 + ɷ2𝑴) = 0 (43) 

We observe that if we delete the matrix 𝑵 we obtain the straightforward (naïve) Galerkin 

method. The full expression of this matrix 𝑵 contains the terms 𝑁𝑗𝑘 appearing in the rigorous 

Galerkin method, but missing in the straightforward (naïve) version. In the next example we 

compare the exact frequencies of vibration with those of both the naïve and the rigorous 

application of the Galerkin method, and discuss the discrepancies. 

2.5.  Numerical Example for a Bar 

We consider the concrete-steel bar, shown in Fig.2 
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Fig.2 A concrete-steel stepped bar. 

 

The geometrical and mechanical parameters of the system are described in Table 1. 

Concrete 50x50 cm 

 

Steel 𝜙14 cm 

E 3.096 ∙ 1010 Pa E 2.0 ∙ 1011 Pa 

𝜌 2.4 ∙ 103 kg m−3 𝜌 7.87 ∙ 103 kg m−3 

A 0.25 m2 A 1.49 ∙ 10−2 m2 

𝐿1 1 m  𝐿2 2 m 

Table.1 Parameters of each segment. 

The ratios in Eq. (44) reads: 

 
𝐸2

𝐸1
= 6.46,

𝜌2

𝜌1
= 3.28,

𝐿2

𝐿1
= 2,

𝐴2

𝐴1
= 0.06 (44) 

The exact characteristic Eq. (19) for the clamped-clamped bar leads to the following first four 

roots: 

 𝑧1 = 1.4323, 𝑧2 = 2.3832, 𝑧3 = 4.1316, 𝑧4 = 4.9720  

Since we defined 𝑧 as 𝛽1𝐿1, in order to obtain the circular frequency 𝜔 we need to multiply 𝑧 by 

𝑐1

𝐿1
. 

Exact Solution for circular 

Frequency [rad s-1] 

Mode Clamped-Clamped 

1 5144.3235 

2 8559.5002 

3 14839.2830 

4 17857.6076 

Table.2 First four exact natural frequencies for the two-stepped bar with clamped-clamped 

boundary conditions. 
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A “rule of thumb” suggests that a recommendable approximation by Galerkin method is to use at 

least 2N terms to obtain the first N frequencies accurately. As in our case we are studying the 

first four natural frequencies, eight terms can be considered as upper bound of the series to lead 

accurate frequencies. Tables 3 and 4 show the results obtained by using the naïve form and the 

rigorous form, respectively, of the Galerkin method. The Tables report also the relative error 𝜀 

between the exact and the approximate Galerkin solutions defined as: 

 𝜀 =
𝜔approx−𝜔exact

𝜔exact
× 100%  (45) 

 

Clamped-Clamped Two-Stepped Bar 

NAÏVE GALERKIN METHOD 

Mode 
Frequency [rad s-1] (Relative Error 𝜀 [%]) 

1 Term 2 Terms 3 Terms 4 Terms 5 Terms 6 Terms 7 Terms 8 Terms 

1 
5,018.5420 

(-2.45%) 

4,930.1558 

(-4.16%) 

4,851.9846 

(-5.68%) 

4,834.2335 

(-6.03%) 

4,833.2432 

(-6.05%) 

4,820.9782 

(-6.29%) 

4,815.1357 

(-6.40%) 

4,814.9866 

(-6.40%) 

2  
9,501.2833 

(11.00%) 

9,215.2323 

(7.66%) 

9,123.8169 

(6.59%) 

9,119.5767 

(6.54%) 

9,113.0776 

(6.47%) 

9,104.2562 

(6.36%) 

9,103.8069 

(6.36%) 

3   
14,689.0584 

(-1.01%) 

14,452.8971 

(-2.60%) 

14,318.3124 

(-3.51%) 

14,262.0080 

(-3.89%) 

14,257.8150 

(-3.92%) 

14,252.7848 

(-3.95%) 

4    
19,723.2563 

(10.45%) 

19,141.3765 

(7.19%) 

18,692.1093 

(4.67%) 

18,546.0617 

(3.86%) 

18,544.4815 

(3.85%) 

 

Table.3 First four natural frequencies for two-stepped bar in clamped-clamped boundary 

conditions obtained with naïve Galerkin method. For each frequency the relative error as defined 

per Eq. (45) is given in parentheses. 
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Clamped-Clamped Two-Stepped Bar 

RIGOROUS GALERKIN METHOD 

Mode 
Frequency [rad s-1] (Relative Error [%]) 

1 Term 2 Terms 3 Terms 4 Terms 5 Terms 6 Terms 7 Terms 8 Terms 

1 
5,202.1240 

(1.12%) 

5,180.7197 

(0.71%) 

5,158.3163 

(0.27%) 

5,152.1139 

(0.15%) 

5,152.1106 

(0.15%) 

5,150.2015 

(0.11%) 

5,148.6875 

(0.08%) 

5,148.6688 

(0.08%) 

2  
8,712.2687 

(1.78%) 

8,708.2820 

(1.74%) 

8,663.7780 

(1.22%) 

8,648.6380 

(1.04%) 

8,644.2586 

(0.99%) 

8,624.4633 

(0.76%) 

8,620.1693 

(0.71%) 

3   
15,034.5161 

(1.32%) 

15,033.8675 

(1.31%) 

15,022.7849 

(1.24%) 

14,971.2199 

(0.89%) 

14,937.3245 

(0.66%) 

14,936.5568 

(0.66%) 

4    
18,635.3520 

(4.36%) 

18,008.0035 

(0.84%) 

17,904.6285 

(0.26%) 

17,903.9560 

(0.26%) 

17,890.8099 

(0.19%) 

 

Table.4 First four natural frequencies for two-stepped bar in clamped-clamped boundary 

conditions obtained with rigorous Galerkin method. For each frequency the relative error as 

defined per Eq. (45) is given in parentheses. 

 

Fig.3 portreys the relative error of the naïve and rigorous Galerkin methods solution with respect 

to the number of terms considered. 
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Fig.3 Variation of the relative error between rigorous and naïve Galerkin method for the first 

four natural frequency of two-stepped bar in clamped-clamped boundary conditions with respect 

to the number of terms  

 

We observe from Fig.3. that rigorous implementation of Galerkin method tends to the exact 

solution for all the frequencies considered. For instance, with one term approximation the 

relative error of the first circular frequency is 1.12% and reduces to 0.08% considering eight 

terms. On the other side, the naïve implementation of Galerkin method leads to a relative error of 

-2.45% for one term and to -6.40% considering eight terms. In addition, it can be seen that while 

for the rigorous implementation all the frequencies share a common trend vs the number of terms 

adopted, in the naïve form for some frequencies the error reduces while for some others it grows. 
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This leads to the conclusions that as the naïve implementation does not tend to the exact solution 

and that by increasing the number of terms retained in its use it is not always beneficial. 

3. Stepped Plate Vibrations 

3.1. Basic Equations 

In this section we consider a stepped thin plate simply supported at all its edges as shown in 

Fig.4. We are interested in finding the exact and approximated Galerkin based frequencies of 

vibration with the idea to show the fact the naïve form does not tend to the exact solution. 

 

Fig.4. All-Round Simply-Supported Stepped Plate under Study 

This plate has 𝑎 as a side-length in 𝑥 direction and 𝑏 as side-length in 𝑦 direction. Each step is 

characterized by 𝑎𝑖 as a length in 𝑥 direction, ℎ𝑖 as thickness, elastic modulus 𝐸𝑖 and 𝜌𝑖 represent 

the mass density (𝑖 = 1,2). Considering a Kirchhoff-Love plate model, the governing differential 

equations in each part reads: 
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𝐷1∇4𝑤1 + 𝜌1ℎ1

𝜕2𝑤1

𝜕𝑡2
= 0                     0 < 𝑥 < 𝑎1 (46.a) 

𝐷2∇4𝑤2 + 𝜌2ℎ2

𝜕2𝑤2

𝜕𝑡2
= 0                     𝑎1 < 𝑥 < 𝑎2 (46.b) 

where 𝐷𝑖 =
𝐸𝑖ℎ𝑖

3  

12(1−𝜈𝑖
2)

 represents the flexural stiffness of the i-th portion of the stepped plate and  

𝜈𝑖 is the Poisson’s ratio. The displacement function in the z-direction 𝑤𝑖(𝑥, 𝑦, 𝑡) is represented as 

follows: 

𝑤𝑖(𝑥, 𝑦, 𝑡) = 𝑊𝑖(𝑥, 𝑦)sin (𝜔𝑡) 
(47) 

Inserting Eq. (47) into Eqs. (46.a) and (46.b) and dividing by 𝐷i we obtain: 

(∇4𝑊1(𝑥, 𝑦) −
𝜌1ℎ1

𝐷1
𝜔2𝑊1(𝑥, 𝑦)) sin(𝜔𝑡) = 0                     0 < 𝑥 < 𝑎1 

(48.a) 

(∇4𝑊2(𝑥, 𝑦) −
𝜌2ℎ2

𝐷2
𝜔2𝑊2(𝑥, 𝑦)) sin(𝜔𝑡) = 0                    𝑎1 < 𝑥 < 𝑎 

(48.b) 

We are interested to a solution which is true for any value of time so the expressions in 

parentheses must vanish: 

∇4𝑊1(𝑥, 𝑦) − 𝑘1
4𝑊1(𝑥, 𝑦) = 0                     0 < 𝑥 < 𝑎1 

(49.a) 

∇4𝑊2(𝑥, 𝑦) − 𝑘2
4𝑊2(𝑥, 𝑦) = 0                    𝑎1 < 𝑥 < 𝑎 

(49.b) 
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where 𝑘𝑖
4
 is defined as 𝑘𝑖

4 =
𝜌𝑖ℎ𝑖

𝐷𝑖
𝜔2. 

The expression for the function 𝑊𝑖(𝑥, 𝑦), which describe a plate simply supported on all 

its edges was proposed independently by Voigt [18] and Lévy [19]. They consider, in the 

beginning, a plate with two opposite supported edges, for definiteness, let the simply supported 

edges be 𝑦 = 0 and 𝑦 = 𝑏, without specifying the boundary conditions along edges 𝑥 = 0 and 

𝑥 = 𝑎. Following Voigt and Lévy, a solution of Eqs. (49.a) and (49.b) may be expressed in the 

form: 

𝑊𝑖(𝑥, 𝑦) = ∑ 𝑋𝑛(𝑥)sin ( 
𝑛𝜋𝑦

𝑏
)

∞

𝑛=1

 
(50) 

Substitution of Eq. (50) into Eqs. (49.a) and (49.b) results in: 

∑ (
d4

d𝑥4
𝑋𝑛,1(𝑥) − 2

𝑛2𝜋2

𝑏2

d2

d𝑥2
𝑋𝑛,1(𝑥) +

𝑛4𝜋4

𝑏4
𝑋𝑛,1(𝑥)

∞

𝑛=1

− 𝑘1
4𝑋𝑛,1(𝑥)) sin (

𝑛𝜋𝑦

𝑏
) = 0                           0 < 𝑥 < 𝑎1 

(51.a) 

∑ (
d4

d𝑥4
𝑋𝑛,2(𝑥) − 2

𝑛2𝜋2

𝑏2

d2

d𝑥2
𝑋𝑛,2(𝑥) +

𝑛4𝜋4

𝑏4
𝑋𝑛,2(𝑥)

∞

𝑛=1

− 𝑘2
4𝑋𝑛,2(𝑥)) sin (

𝑛𝜋𝑦

𝑏
) = 0                           𝑎1 < 𝑥 < 𝑎 

(51.b) 

The expression inside each pair of parentheses must vanish; namely: 
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d4

d𝑥4
𝑋𝑛,1(𝑥) − 2

𝑛2𝜋2

𝑏2

d2

d𝑥2
𝑋𝑛,1(𝑥) +

𝑛4𝜋4

𝑏4
𝑋𝑛,1(𝑥) − 𝑘1

4𝑋𝑛,1(𝑥)

= 0                           0 < 𝑥 < 𝑎1 

(52.a) 

d4

d𝑥4
𝑋𝑛,2(𝑥) − 2

𝑛2𝜋2

𝑏2

d2

d𝑥2
𝑋𝑛,2(𝑥) +

𝑛4𝜋4

𝑏4
𝑋𝑛,2(𝑥) − 𝑘2

4𝑋𝑛,2(𝑥)

= 0                           𝑎1 < 𝑥 < 𝑎 

(52.b) 

The solution of Eqs. (52.a) and (52.b) is sought in the form 𝑋𝑛(𝑥) = 𝐵𝑒𝑟𝑥  where 𝑟 is the 

characteristic exponent, satisfying the following equation: 

𝑟4 − 2
𝑛2𝜋2

𝑏2
𝑟2 +

𝑛4𝜋4

𝑏4
− 𝑘4 = 0 (53) 

Solving first for 𝑟2 yields: 

𝑟1,2
2 =

𝑛2𝜋2

𝑏2
± 𝑘2 (54) 

The four roots given in Eq.  (53) are obtained as follows: 

𝑟1,2 = ±𝑅𝑛
+ = ±√

𝑛2𝜋2

𝑏2
+ 𝑘2 (55.a) 

𝑟3,4 = ±𝑅𝑛
− = ±√

𝑛2𝜋2

𝑏2
− 𝑘2       for 𝑘2 <

𝑛2𝜋2

𝑏2
 (55.b) 
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𝑟3,4 = ±i𝑄𝑚 = ±i√𝑘2 −
𝑛2𝜋2

𝑏2
      for 𝑘2 >

𝑛2𝜋2

𝑏2
 (55.c) 

𝑟3,4 = 0      for 𝑘2 =
𝑛2𝜋2

𝑏2
 (55.d) 

The solution for Eqs. (52.a) and (52.b) may then be constructed as follows: 

𝑋𝑛(𝑥) = 𝐴1 sinh(𝑅𝑛
−𝑥) + 𝐴2 cosh(𝑅𝑛

−𝑥) + 𝐴3 sinh(𝑅𝑛
+𝑥)

+ 𝐴4 cosh(𝑅𝑛
+𝑥)       for 𝑘2 <

𝑛2𝜋2

𝑏2
 

(56.a) 

𝑋𝑛(𝑥) = 𝐴1 sin(𝑄𝑚𝑥) + 𝐴2 cos(𝑄𝑚𝑥) + 𝐴3 sinh(𝑅𝑛
+𝑥)

+ 𝐴4 cosh(𝑅𝑛
+𝑥)       for 𝑘2 >

𝑛2𝜋2

𝑏2
 

(56.b) 

𝑋𝑛(𝑥) = 𝐴1 sinh(𝑅𝑛
+𝑥) + 𝐴2 cosh(𝑅𝑛

+𝑥) + 𝐴3 + 𝐴4       for 𝑘2 =
𝑛2𝜋2

𝑏2
 (56.c) 

where 𝐴𝑖 are unknown constants. 

3.2.  Exact Solution for the Stepped Plate Vibrations 

In our problem, in total we have 8 unknowns: 4 constants for the first part of the plate and 4 for 

the second step. 

The Eqs (56.a), (56.b) and (56.c) can be recast in terms of the natural frequencies. Thus, 

expression in Eqs (56.a-56.c) are valid when the following respective inequalities are satisfied: 
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ω <
𝑛2𝜋2

𝑏2
√

𝐸ℎ2

12(1 − 𝜈2)𝜌
 (57.a) 

ω >
𝑛2𝜋2

𝑏2
√

𝐸ℎ2

12(1 − 𝜈2)𝜌
 (57.b) 

ω =
𝑛2𝜋2

𝑏2
√

𝐸ℎ2

12(1 − 𝜈2)𝜌
 (57.c) 

The boundary conditions are written as: 

𝑊1(𝑥 = 0) = 0 
(58.a) 

𝑀𝑥(𝑥 = 0) = 𝐷1 [
𝜕2𝑊1

𝜕𝑥2
+ 𝜈

𝜕2𝑊1

𝜕𝑦2
]

𝑥=0

= 0 
(58.b) 

𝑊2(𝑥 = 𝑎) = 0 
(58.c) 

𝑀𝑥(𝑥 = 𝑎) = 𝐷2 [
𝜕2𝑊2

𝜕𝑥2
+ 𝜈

𝜕2𝑊2

𝜕𝑦2
]

𝑥=𝑎

= 0 
(58.d) 

The continuity conditions between the two steps are written as: 

𝑊1(𝑥 = 𝑎1) = 𝑊2(𝑥 = 𝑎1) 
(59.a) 

𝑊1′(𝑥 = 𝑎1) = 𝑊2′(𝑥 = 𝑎1) 
(59.b) 
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𝑀𝑥(𝑥 = 𝑎1) = 𝐷1 [
𝜕2𝑊1

𝜕𝑥2
+ 𝜈

𝜕2𝑊1

𝜕𝑦2
]

𝑥=𝑎1

= 𝐷2 [
𝜕2𝑊2

𝜕𝑥2
+ 𝜈

𝜕2𝑊2

𝜕𝑦2
]

𝑥=𝑎1

= 𝑀𝑥(𝑥 = 𝑎1) 

(59.c) 

𝑉𝑥(𝑥 = 𝑎1) = 𝐷1 [
𝜕3𝑊1

𝜕𝑥3
+ (2 − 𝜈)

𝜕3𝑊1

𝜕𝑥𝜕𝑦2
]

𝑥=𝑎1

= 𝐷2 [
𝜕3𝑊2

𝜕𝑥3
+ (2 − 𝜈)

𝜕3𝑊2

𝜕𝑥𝜕𝑦2
]

𝑥=𝑎1

= 𝑉𝑥(𝑥 = 𝑎1) 

(59.d) 

The boundary condition Eqs. (58-59) lead thus to a homogeneous system of eight equation in the 

𝜔  and 𝐴𝑖 unknowns. Non-trivial solutions, i.e. the roots of the characteristic equation obtained 

by setting the determinant equal to zero, are the exact frequency of vibration of the problem. 

3.3. Application of the Naïve Galerkin Method for Stepped Plate Vibrations 

As was demonstrated by Elishakoff and Boutur [20], the literature applies, in overwhelming 

majority, if not all cases, the naïve version of the Galerkin method for stepped structures when 

applying the weighted residuals methodology. We first demonstrate this methodology. One starts 

with the following governing differential equation: 

𝜕4

𝜕𝑥4
𝑊(𝑥, 𝑦) + 2

𝜕4

𝜕𝑥2𝜕𝑦2
𝑊(𝑥, 𝑦) +

𝜕4

𝜕𝑦4
𝑊(𝑥, 𝑦) − 𝑘4(𝑥)𝑊(𝑥, 𝑦) = 0 

(60) 

expressing the function 𝑊(𝑥, 𝑦) in series as follows: 
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𝑊(𝑥, 𝑦) = ∑ ∑ 𝑝𝑚𝑛𝜓𝑚𝑛(𝑥, 𝑦)

∞

𝑛=1

∞

𝑚=1

= ∑ ∑ 𝑝𝑚𝑛𝜓𝑚(𝑥)𝜓𝑛(𝑦)

∞

𝑛=1

∞

𝑚=1

 
(61) 

where 𝜓𝑚𝑛(𝑥, 𝑦) is a comparison function that have to satisfy all the boundary conditions and 

𝜓𝑚(𝑥) and 𝜓𝑛(𝑦) are its variable separation. 

For the all-round simply supported plate on all edges, the case under study, the most 

employed and probably the best candidate comparison function is the product of two sinusoidal 

functions as follows, with attendant boundary conditions satisfied: 

𝜓𝑚𝑛(𝑥, 𝑦) = 𝜓𝑚(𝑥)𝜓𝑛(𝑦) = sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
) 

(62) 

Substituting Eq. (61) in Eq.(60) results in: 

∑ ∑[𝜓′′′′𝑚(𝑥)𝜓𝑛(𝑦) + 2𝜓′′𝑚(𝑥)𝜓′′𝑛(𝑦) + 𝜓𝑚(𝑥)𝜓′′′′𝑛(𝑦)

∞

𝑛=1

∞

𝑚=1

− 𝑘4(𝑥)𝜓𝑚(𝑥)𝜓𝑛(𝑦)] 𝑝𝑚𝑛 = 𝜀(𝑥, 𝑦) 

(63) 

where 𝜀(𝑥, 𝑦) is the residual or error. Now, multiplication of the residual by the comparison 

functions and integration over the plate’s domain leads to: 
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∑ ∑ (∫ ∫ 𝜓′′′′𝑚(𝑥)𝜓𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)
𝑏

0

d𝑥d𝑦
𝑎

0

∞

𝑛=1

∞

𝑚=1

+ ∫ ∫ 2𝜓′′𝑚(𝑥)𝜓′′𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)
𝑏

0

𝑎

0

d𝑥d𝑦

+ ∫ ∫ 𝜓𝑚(𝑥)𝜓′′′′𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦
𝑏

0

𝑎

0

+ ∫ ∫ −𝑘4
1𝜓𝑚(𝑥)𝜓𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎1

0

+ ∫ ∫ −𝑘4
2𝜓𝑚(𝑥)𝜓𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥𝑑𝑦

𝑏

0

𝑎

𝑎1

) 𝑝𝑚𝑛 = 0 

(64) 

It is instructive to introduce the following notation: 

𝐴𝑚𝑛𝑞 = ∫ ∫ 𝜓′′′′𝑚(𝑥)𝜓𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)
𝑏

0

d𝑥d𝑦
𝑎

0

 
(65.a) 

𝐵𝑚𝑛𝑞 = ∫ ∫ 2𝜓′′𝑚(𝑥)𝜓′′𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)
𝑏

0

𝑎

0

d𝑥d𝑦 
(65.b) 

𝐶𝑚𝑛𝑞 = ∫ ∫ 𝜓𝑚(𝑥)𝜓′′′′𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦
𝑏

0

𝑎

0

 
(65.c) 

𝑀𝑚𝑛𝑞 = ∫ ∫ −
𝜌1ℎ1

𝐷1
𝜓𝑚(𝑥)𝜓𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎1

0

+ ∫ ∫ −
𝜌2ℎ2

𝐷2
𝜓𝑚(𝑥)𝜓𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

𝑎1

 

(65.d) 

In this form we obtain, for a specific value of 𝑛, the following matrix equation: 

(𝑨 + 𝑩 + 𝑪 + 𝜔2𝑴)𝒑 = 𝟎 
(66) 
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Denoting 𝑲 = 𝑨 + 𝑩 + 𝑪 we reconduct the problem to a form similar to Eq. (29) which is a 

homogeneous linear system and it has non-trivial solution when the determinant of the 

expression between parentheses vanishes. 

As was demonstrated by Elishakoff et al. [21] for the static problem of a beam under 

distributed load, such a naïve application of the Galerkin method might lead to erroneous results. 

One has to resort to another methodology, namely to so-called rigorous implementation of the 

Galerkin method. 

3.4. Application of the Rigorous Galerkin Method for Stepped Plate 

Vibrations 

Denoting 𝜌ℎ(𝑥, 𝑦) as 𝑀(𝑥, 𝑦) and evaluating the Laplacian operator, the Eqs. (49.a) and (49.b) 

can be re-written as follows: 

𝜕2

𝜕𝑥2
[𝐷(𝑥, 𝑦) (

𝜕2𝑊(𝑥, 𝑦)

𝜕𝑥2
+ 𝜈

𝜕2𝑊(𝑥, 𝑦)

𝜕𝑦2
)]

+ 2(1 − 𝜈)
𝜕2

𝜕𝑥𝜕𝑦
[𝐷(𝑥, 𝑦) (

𝜕2𝑊(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
)]

+
𝜕2

𝜕𝑦2
[𝐷(𝑥, 𝑦) (

𝜕2𝑊(𝑥, 𝑦)

𝜕𝑦2
+ 𝜈

𝜕2𝑊(𝑥, 𝑦)

𝜕𝑥2
)]

− 𝑀(𝑥, 𝑦)𝜔2𝑊(𝑥, 𝑦) = 0 

(67) 

In order to implement the rigorous Galerkin method we represent the flexural rigidity and the 

mass of the system as generalized functions in total analogy with Eqs. (31) and (32) obtaining: 
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𝜕2𝐷(𝑥, 𝑦)

𝜕𝑥2

𝜕2𝑊(𝑥, 𝑦)

𝜕𝑥2
+ 2

𝜕𝐷(𝑥, 𝑦)

𝜕𝑥

𝜕3𝑊(𝑥, 𝑦)

𝜕𝑥3
+ 2

𝜕𝐷(𝑥, 𝑦)

𝜕𝑦

𝜕3𝑊(𝑥, 𝑦)

𝜕𝑦3

+ 𝐷(𝑥, 𝑦)
𝜕4𝑊(𝑥, 𝑦)

𝜕𝑥4
+ 𝐷(𝑥, 𝑦)

𝜕4𝑊(𝑥, 𝑦)

𝜕𝑦4

+ 2
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑥𝜕𝑦

𝜕2𝑊(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
+ 2

𝜕𝐷(𝑥, 𝑦)

𝜕𝑥

𝜕3𝑊(𝑥, 𝑦)

𝜕𝑥𝜕𝑦2

+ 2
𝜕𝐷(𝑥, 𝑦)

𝜕𝑦

𝜕3𝑊(𝑥, 𝑦)

𝜕𝑥2𝜕𝑦
+ 2𝐷(𝑥, 𝑦)

𝜕4𝑊(𝑥, 𝑦)

𝜕𝑥2𝜕𝑦2

− 2𝜈
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑥𝜕𝑦

𝜕2𝑊(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
+ 𝜈

𝜕2𝐷(𝑥, 𝑦)

𝜕𝑦2

𝜕2𝑊(𝑥, 𝑦)

𝜕𝑥2

+
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑦2

𝜕2𝑊(𝑥, 𝑦)

𝜕𝑦2
+ 𝜈

𝜕2𝐷(𝑥, 𝑦)

𝜕𝑥2

𝜕2𝑊(𝑥, 𝑦)

𝜕𝑦2

− 𝑀(𝑥, 𝑦)𝜔2𝑊(𝑥, 𝑦) = 0 

(68) 

Substituting Eq. (61) in Eq. (68) we get: 
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∑ ∑ [
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑥2
𝜓′′

𝑚
(𝑥)𝜓𝑛(𝑦) + 2

𝜕𝐷(𝑥, 𝑦)

𝜕𝑥
𝜓′′′

𝑚
(𝑥)𝜓𝑛(𝑦)

∞

𝑛=1

∞

𝑚=1

+ 2
𝜕𝐷(𝑥, 𝑦)

𝜕𝑥
𝜓𝑚(𝑥)𝜓′′′𝑛(𝑦) + 𝐷(𝑥, 𝑦)𝜓′′′′𝑚(𝑥)𝜓𝑛(𝑦)

+ 𝐷(𝑥, 𝑦)𝜓𝑚(𝑥)𝜓′′′′𝑛(𝑦) + 2
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
𝜓′

𝑚
(𝑥)𝜓′𝑛(𝑦)

+ 2
𝜕𝐷(𝑥, 𝑦)

𝜕𝑥
𝜓′𝑚(𝑥)𝜓′′𝑛(𝑦) + 2

𝜕𝐷(𝑥, 𝑦)

𝜕𝑥
𝜓′′𝑚(𝑥)𝜓′𝑛(𝑦)

+ 2𝐷(𝑥, 𝑦)𝜓′′𝑚(𝑥)𝜓′′𝑛(𝑦) − 2𝜈
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
𝜓′

𝑚
(𝑥)𝜓′

𝑛
(𝑦)

+ 𝜈
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑦2
𝜓′′𝑚(𝑥)𝜓𝑛(𝑦) +

𝜕2𝐷(𝑥, 𝑦)

𝜕𝑦2
𝜓𝑚(𝑥)𝜓′′𝑛(𝑦)

+ 𝜈
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑥2
𝜓𝑚(𝑥)𝜓′′

𝑛
(𝑦) − 𝜔2𝑀(𝑥)𝜓𝑚(𝑥)𝜓𝑛(𝑦)] 𝑝𝑚𝑛

= 𝜀(𝑥, 𝑦) 

(69) 

Now we multiply by the comparison functions and we integrate in both, 𝑥 and 𝑦 direction as 

follows: 
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∑ ∑ [∫ ∫
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑥2
𝜓′′

𝑚
(𝑥)𝜓𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

0

∞

𝑛=1

∞

𝑚=1

+ ∫ ∫ 2
𝜕𝐷(𝑥, 𝑦)

𝜕𝑥
𝜓′′′

𝑚
(𝑥)𝜓𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

0

+ ∫ ∫ 2
𝜕𝐷(𝑥, 𝑦)

𝜕𝑥
𝜓𝑚(𝑥)𝜓′′′𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)

𝑏

0

𝑎

0

d𝑥d𝑦

+ ∫ ∫ 𝐷(𝑥, 𝑦)𝜓′′′′𝑚(𝑥)𝜓𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦
𝑏

0

𝑎

0

+ ∫ ∫ 𝐷(𝑥, 𝑦)𝜓𝑚(𝑥)𝜓′′′′𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)
𝑏

0

𝑎

0

d𝑥d𝑦

+ ∫ ∫ 2
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
𝜓′

𝑚
(𝑥)𝜓′𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

0

+ ∫ ∫ 2
𝜕𝐷(𝑥, 𝑦)

𝜕𝑥
𝜓′𝑚(𝑥)𝜓′′𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

0

+ ∫ ∫ 2
𝜕𝐷(𝑥, 𝑦)

𝜕𝑥
𝜓′′𝑚(𝑥)𝜓′𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

0

+ ∫ ∫ 2𝐷(𝑥, 𝑦)𝜓′′𝑚(𝑥)𝜓′′𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦
𝑏

0

𝑎

0

+ ∫ ∫ −2𝜈
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
𝜓′

𝑚
(𝑥)𝜓′

𝑛
(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

0

+ ∫ ∫ 𝜈
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑦2
𝜓′′𝑚(𝑥)𝜓𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

0

+ ∫ ∫
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑦2
𝜓𝑚(𝑥)𝜓′′𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

0

+ ∫ ∫ 𝜈
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑥2
𝜓𝑚(𝑥)𝜓′′

𝑛
(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

0

+ ∫ ∫ −𝜔2𝑀(𝑥)𝜓𝑚(𝑥)𝜓𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦
𝑏

0

𝑎

0

] 𝑝𝑚𝑛 = 0 

(70) 

Introducing the following notation: 

𝐴𝑚𝑛𝑞 = ∫ ∫
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑥2
𝜓′′

𝑚
(𝑥)𝜓𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

0

 
(71.a) 
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𝐵𝑚𝑛𝑞 = ∫ ∫ 2
𝜕𝐷(𝑥, 𝑦)

𝜕𝑥
𝜓′′′

𝑚
(𝑥)𝜓𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

0

 
(71.b) 

𝐶𝑚𝑛𝑞 = ∫ ∫ 2
𝜕𝐷(𝑥, 𝑦)

𝜕𝑥
𝜓𝑚(𝑥)𝜓′′′𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)

𝑏

0

𝑎

0

d𝑥d𝑦 
(71.c) 

𝐷𝑚𝑛𝑞 = ∫ ∫ 𝐷(𝑥, 𝑦)𝜓′′′′𝑚(𝑥)𝜓𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦
𝑏

0

𝑎

0

 
(71.d) 

𝐸𝑚𝑛𝑞 = ∫ ∫ 𝐷(𝑥, 𝑦)𝜓𝑚(𝑥)𝜓′′′′𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)
𝑏

0

𝑎

0

d𝑥d𝑦 
(71.e) 

𝐹𝑚𝑛𝑞 = ∫ ∫ 2
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
𝜓′

𝑚
(𝑥)𝜓′𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

0

 
(71.f) 

𝐺𝑚𝑛𝑞 = ∫ ∫ 2
𝜕𝐷(𝑥, 𝑦)

𝜕𝑥
𝜓′𝑚(𝑥)𝜓′′𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

0

 
(71.g) 

𝐻𝑚𝑛𝑞 = ∫ ∫ 2
𝜕𝐷(𝑥, 𝑦)

𝜕𝑥
𝜓′′𝑚(𝑥)𝜓′𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

0

 
(71.h) 

𝐼𝑚𝑛𝑞 = ∫ ∫ 2𝐷(𝑥, 𝑦)𝜓′′𝑚(𝑥)𝜓′′𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦
𝑏

0

𝑎

0

 
(71.i) 

𝐿𝑚𝑛𝑞 = ∫ ∫ −2𝜈
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
𝜓′

𝑚
(𝑥)𝜓′

𝑛
(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

0

 
(71.j) 

𝑁𝑚𝑛𝑞 = ∫ ∫ 𝜈
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑦2
𝜓′′𝑚(𝑥)𝜓𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

0

 
(71.k) 

𝑂𝑚𝑛𝑞 = ∫ ∫
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑦2
𝜓𝑚(𝑥)𝜓′′𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

0

 
(71.l) 

𝑃𝑚𝑛𝑞 = ∫ ∫ 𝜈
𝜕2𝐷(𝑥, 𝑦)

𝜕𝑥2
𝜓𝑚(𝑥)𝜓′′

𝑛
(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦

𝑏

0

𝑎

0

 
(71.m) 

𝑀𝑚𝑛𝑞 = ∫ ∫ −𝑀(𝑥)𝜓𝑚(𝑥)𝜓𝑛(𝑦)𝜓𝑞(𝑥)𝜓𝑛(𝑦)d𝑥d𝑦
𝑏

0

𝑎

0

 
(71.n) 

Since Eqs.  (71.a) and (71.b) present the second order derivative of the stiffness function 𝐷(𝑥), 

the first derivative of the Dirac delta function, namely the doublet function, must be introduced: 

d

d𝑥
𝛿(𝑥) = 𝛿′(𝑥) 

(72) 
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The main property of the doublet function, applied to a generic function 𝑓(𝑥), reads as follows: 

∫ 𝛿′(𝑥)𝑓(𝑥)d𝑥 = − ∫ 𝛿(𝑥)𝑓′(𝑥)d𝑥
∞

−∞

∞

−∞

 
(73) 

In this form we obtain, for a specific value of 𝑛, the following matrix equation: 

(𝑨 + 𝑩 + 𝑪 + 𝑫 + 𝑬 + 𝑭 + 𝑮 + 𝑯 + 𝑰 + 𝑳 + 𝑵 + 𝑶 + 𝑷 + 𝜔2𝑴)𝒑 = 𝟎 
(74) 

Denoting 𝑲 = 𝑨 + 𝑩 + 𝑪 + 𝑫 + 𝑬 + 𝑭 + 𝑮 +𝑯 + 𝑰 + 𝑳 + 𝑵 + 𝑶 + 𝑷 we define an eigenvalue 

problem in the form of Eq. (29) for the sough unknown 𝜔2. 

3.5. Numerical Example for Stepped Plate Vibrations 

We study stepped plate, a simply supported on all edges, and made of only one material, namely 

steel, with the mechanical properties defined in Table 5. 

 

Material: Steel 

Elastic modulus 𝐸 = 207 ∙ 109 Pa 

Poisson’s ratio 𝜈 = 0.3 

Mass density 𝜌 = 7800 kg m−3 

Table 5. Material parameters of the plate 
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We define the plate under study through three characteristic dimensions ratios:  𝑎 𝑏⁄ ,  
𝑎1

𝑎⁄  and  

ℎ1
ℎ2

⁄ . We report these parameters in Table 6. 

 

Geometrical parameters 

𝑎 𝑏 𝑎1 ℎ1 ℎ2 
ℎ1

ℎ2
⁄  𝑎1

𝑎⁄  
𝑎

𝑏⁄  

1.0 m 1.0 m 0.3 m 0.001 m 0.0015 m 0.67 0.30 1 

Table 6.  Geometrical parameters for the studied case 

3.5.1 Exact Solution 

For the exact solution we substitute the sine function in 𝑦-direction and obtain the ordinary 

differential equation in the 𝑥-direction; satisfaction of boundary and continuity conditions yields 

to the frequency of vibrations, as in the paper by Xiang and Wang [22]. We report our exact 

solutions in Table 7 and compared them with those provided by reference [22]. For each mode 

we report the number of half-waves in both direction 𝑥 and 𝑦, the circular frequency value and 

its dimensionless value as well as the error with respect to  those in Ref. [22]. The non-

dimensional frequencies are obtained by multiplying the circular frequencies by the coefficient 

𝛾 = (
𝑏

𝜋
)

2

√
𝜌ℎ1

𝐷1
, as in Ref. [22], whereas the relative error is evaluated as: 

𝜀 =
𝜔Exact,current − 𝜔Ref.[22]

𝜔Ref.[22]
× 100% 

(75) 
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Simply supported plate 

Mode 

Half-

waves in 

𝑥 

direction 

Half-

waves in 

𝑦 

direction 

Frequency, 

current 

[rad s−1] 

Frequency, 

current  
[non −

dimensional] 

Frequency, 

Ref. 22 
[non −

dimensional] 

Relative 

Error [%] 

1 1 1 40.4486 2.6289 2.6289 0.0003% 

2 2 1 100.5934 6.5379 6.5380 −0.0009% 

3 1 2 104.0137 6.7602 6.7603 −0.0009% 

4 2 2 164.9920 10.7234 10.7240 −0.0051% 

5 3 1 206.6667 13.4320 13.4320 0.0003% 

6 1 3 207.7331 13.5013 13.5010 0.0026% 

Table.7 Exact solution 

3.5.2    Application of the Rigorous Galerkin method 

We report the result of rigorous implementation of the Galerkin method obtained by employment 

of up to 10 terms. Results are summarized in Table 8, in terms of frequency values as well as the 

relative error according to Eq. (45). 

Simply supported plate 

Mode 1 Term 2 Terms 3 Terms 4 Terms 5 Terms 6 Terms 7 Terms 8 Terms 9 Terms 10 Terms 

1 
42.8955 

(6.0495%) 

42.1596 

(4.2301%) 

41.4168 

(2.3937%) 

41.0100 

(1.3880%) 

40.9660 

(1.2792%) 

40.9364 

(1.2059%) 

40.8207 

(0.9199%) 

40.7620 

(0.7747%) 

40.7619 

(0.7746%) 

40.7270 

(0.6883%) 

2  
107.7234 

(7.0879%) 

104.4985 

(3.8821%) 

102.1641 

(1.5614%) 

101.5716 

(0.9724%) 

101.5716 

(0.9724%) 

101.3588 

(0.7609%) 

101.1555 

(0.5588%) 

101.1388 

(0.5422%) 

101.0984 

(0.5020%) 
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3 
108.9781 

(4.7728%) 

107.0490 

(2.9181%) 

105.5209 

(1.4491%) 

104.7518 

(0.7096%) 

104.6483 

(0.6101%) 

104.6207 

(0.5836%) 

104.4694 

(0.4381%) 

104.3832 

(0.3552%) 

104.3825 

(0.3546%) 

104.3427 

(0.3163%) 

4  
173.5322 

(5.1761%) 

169.5910 

(2.7874%) 

166.6639 

(1.0133%) 

165.6704 

(0.4112%) 

165.6278 

(0.3853%) 

165.5171 

(0.3183%) 

165.3255 

(0.2021%) 

165.2829 

(0.1763%) 

165.2734 

(0.1483%) 

5   
215.3084 

(4.1815%) 

210.8741 

(2.0358%) 

208.3348 

(0.8071%) 

207.3552 

(0.3331%) 

207.2139 

(0.2648%) 

207.1984 

(0.2573%) 

207.0735 

(0.1969%) 

206.9733 

(0.1483%) 

6 
220.6238 

(6.2054%) 

215.8230 

(3.8944%) 

211.6194 

(1.8708%) 

209.1886 

(0.7007%) 

208.6383 

(0.4358%) 

208.6366 

(0.4349%) 

208.4123 

(0.3270%) 

208.2140 

(0.2315%) 

208.1980 

(0.2238%) 

208.1606 

(0.2058%) 

Table 8. Natural frequencies and relative errors derived via rigorous Galerkin method  

One can observe that the relative error tends to diminish, as expected, for all the considered 

modes. It starts from a specific value and with increasing number of terms the error reduces to 

less than 1%.  

3.5.3 Naïve Galerkin method 

We report now the result of naïve implementation of the Galerkin method. Tables 9 reports the 

frequency values, as well as the relative error in comparison with the exact circular frequencies 

evaluated via Eq. (45), for up to 10 terms in the expansion. 

Simply supported plate 

Mode 1 Term 2 Terms 3 Terms 4 Terms 5 Terms 6 Terms 7 Terms 8 Terms 9 Terms 10 Terms 

1 
42.3880 

(4.7948%) 

42.1571 

(4.2240%) 

42.1142 

(4.1178%) 

42.1106 

(4.1088%) 

42.1105 

(4.1088%) 

42.1101 

(4.1077%) 

42.1099 

(4.1072%) 

42.1099 

(4.1072%) 

42.1099 

(4.1071%) 

42.1098 

(4.1071%) 

2  
99.2403 

(-1.3451%) 

98.3092 

(-2.2707%) 

98.2014 

(-2.3779%) 

98.1995 

(-2.3798%) 

98.1971 

(-2.3821%) 

98.1950 

(-2.3842%) 

98.1948 

(-2.3844%) 

98.1947 

(-2.3845%) 

98.1945 

(-2.3847%) 
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3 
105.9700 

(1.8808%) 

103.9772 

(-0.0351%) 

103.4244 

(-0.5666%) 

103.3628 

(-0.6258%) 

103.3628 

(-0.6258%) 

103.3565 

(-0.6318%) 

103.3533 

(-0.6349%) 

103.3532 

(-0.6350%) 

103.3529 

(-0.6353%) 

103.3524 

(-0.6358%) 

4  
160.9462 

(-2.4521%) 

158.7705 

(-3.7708%) 

158.4516 

(-3.9641%) 

158.4403 

(-3.9709%) 

158.4362 

(-3.9734%) 

158.4308 

(-3.9767%) 

158.4300 

(-3.9772%) 

158.4298 

(-3.9773%) 

158.4293 

(-3.9776%) 

5   
206.4340 

(-0.1126%) 

204.9155 

(-0.8473%) 

204.6357 

(-0.9828%) 

204.6047 

(-0.9977%) 

204.6046 

(-0.9978%) 

204.6029 

(-0.9986%) 

204.6015 

(-0.9993%) 

204.6014 

(-0.9994%) 

6 
211.9401 

(2.0252%) 

203.1052 

(-2.2278%) 

199.6772 

(-3.8780%) 

199.1581 

(-4.1279%) 

199.1564 

(-4.1287%) 

199.1193 

(-4.1466%) 

199.0945 

(-4.1585%) 

199.0930 

(-4.1592%) 

199.0911 

(-4.1602%) 

199.0877 

(-4.1618%) 

Table 9. Natural frequencies and relative error derived via naïve Galerkin method 

We show in Fig. 5 the trend of the relative error between rigorous and naïve implementation of 

Galerkin method versus the exact solution. This plot represents the behaviour of the relative error 

of the first six circular frequencies with the number of terms in the expansion. We observe that 

all the circular frequencies exhibit a decreasing trend as a function of the adopted number of 

approximating terms. However, we note that some frequencies are higher and remain higher than 

the exact ones w.r.t the increasing number of terms, some other are initially higher and ends to be 

lower than the exact one, whereas some others are lower and ends to be lower with respect to the 

exact ones.  
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Fig 5. Rigorous vs Naïve Galerkin method, 6th natural frequency, relative error 

In particular we observed that for the sixth natural frequency with one term of approximation 

rigorous version has 6.21% of error and naïve implementation 2.02%, then with ten terms in the 

expansion the rigorous method reached the convergence at 0.21% of error, on the other hand 

naïve implementation is far from the exact solution with an error of -4.16%. 

4. Discussion and conclusion 

Theoretical and numerical results derived in this study show that the naïve implementation of 

Galerkin method does not tend to exact solution for stepped structures, whereas rigorous version 

leads to exact solution. Rigorous Galerkin method has additional terms in contrast with the naïve 

version. These terms lead to a bounded error in the computation of the frequencies of vibration 

and more importantly the convergence to the exact solution. This study demonstrates that 
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straightforward, naïve Galerkin method should be abandoned altogether for stepped structures, 

and rigorous Galerkin method should be adopted. 

In order to stress the novelty and importance of the proposed technique, some relevant 

comments appear to be instructive. The application of the generalized functions in vibration 

problems is not new. For example, papers by Eftekhari [23], Chicurel-Uziel [24], Jones [25], 

Soedel and Powder [26] and Caddemi Calio [27]. Still, the present paper is the first one that 

deals with both stepped bars and plates in conjunction with generalized functions, namely the 

Heaviside step function, Dirac’s delta function, and doublet function. This study clearly shows 

that naïve version of the Galerkin method is inapplicable to stepped structures. This observation 

appears to be of extreme importance due to following consideration; engineers and researchers 

usually use low order approximations. Even, Leipholtz [28,29] who dealt with mathematical 

aspects of the convergence of the Galerkin method, still, in his numerous papers resorted to one 

or two-term Galerkin approximations, according to the testimony of Gladwell [30]. If engineer 

resorts to the low-order approximation of Galerkin method for the stepped structure, he/she will 

be unable to detect lack of convergence to the exact solution, as was demonstrated in this study. 

This is despite the fact that there are papers that deal with multi-term implementation of the 

method [31–34].  Thus, application of naïve methodology can lead to incorrect design of the 

structure, whereas the rigorous implementation will lead to exact solution, and thus, to rigorous 

design. 
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