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Abstract

Classification of histology images is a task that has been widely explored
on recent computer vision researches. The most studied approach for this
task has been the application of deep learning through CNN models. How-
ever, the use of CNN in the context of histological images classification has
yet some limitations such as the need of large datasets, the slow training time
and the difficult to implement a generalized model able to classify different
types of histology tissue. In this paper, we propose an ensemble model based
on handcrafted fractal features and deep learning that consists on fusing the
classification of two CNN by applying the sum rule. We apply feature extrac-
tion to obtain 300 fractal features from different histological datasets. These
features are reshaped into a 10×10×3 matrix in order to compose an artificial
image that is given as input to the first CNN. The second CNN receives as
input the correspondent original image. After combining the results of both
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CNN, we were able to obtain accuracies that range from 89.66% up to 99.62%
on five different datasets. Moreover, our model was able to classify images
from datasets with imbalanced classes, without the need of images having
the same resolution, and in a relative fast training time. We also verified
that the obtained results are compatible with the most recent and relevant
studies recently published in the context of histology image classification.

Keywords: deep learning, fractal features, classification ensemble,
histology images

1. Introduction1

Histopathology consists on the analysis of histological tissue and the study2

of how diseases affect the cells. Usually, a pathologist performs this analysis3

by observing histology slides through a digital microscope [7]. However, this4

task is prone to errors as evaluation is often subjective and dependent on the5

pathologist’s experience, which may lead to misdiagnosis [38].6

In order to provide support to pathologists, several computer vision tech-7

niques have been applied on images obtained from histology slides. These8

techniques consist on performing a series of evaluations on the input images9

and then provide a classification based on pre-defined classes, such as be-10

nign or malignant. This is a complex procedure, often refferred as computer11

aided-diagnosis (CAD), which can be split into several stages, from image12

acquisition, going through pre-processing, segmentation, feature extraction,13

feature selection and classification [27]. Therefore, a CAD system is an im-14

portant tool that provides a second view to the pathologist, increasing the15

diagnosis accuracy and reducing the amount of time and physicians required16

to label large amounts of medical exams [18]. In this paper, we focus on the17

feature extraction and classification stages of a CAD system for histological18

image analysis.19

Different techniques can be applied to extract handcrafted features from20

these images. Among the most recently researched techniques, we can cite lo-21

cal binary pattern (LBP), gray level co-occurrence matrix (GLCM), speeded22

up robust features (SURF) or fractal geometry, which were applied for kid-23

ney tissue analysis [53], breast cancer classification [64], colon cell nuclei24

detection [2] and lymphoma classification [47], respectively. However, the25

main research focus for this area in recent years has been the application of26
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deep learning approaches, more specifically, the use of convolutional neural27

networks (CNN).28

CNN have shown to be efficient for the classification of objects, mainly29

in multiclass problems [28, 24]. However, these relevant results are not as30

often in the context of histological images [10, 59, 4]. One of the reasons31

is that CNN require large sets for training, given that a major part of the32

public histological datasets available contain a limited number of samples33

[63]. To handle this situation, more data is generated for training by applying34

rotation, mirroring or region cutting on the images. Nonetheless, this data35

augmentation raises even more the high computational cost of CNN [32].36

One of the possible solutions to reduce processing time consists in simpli-37

fying the network architecture by reducing the amount of layers. However,38

the removal of deeper layers may hinder the image analysis from a global39

perspective [4], which may compromise the network performance. Some al-40

ternative approaches, like hybrid networks, have been explored. These ap-41

proaches associate non-deep learning techniques such as Gabor filters or LBP42

operators with the convolution operations of CNN, which allows to replace43

some of the network’s layers [28, 24]. Other approaches aim to achieve a44

lower processing time by reducing the images’ dimensionality. In [29], the45

authors applied Haar-wavelet decomposition on breast histology images and46

used the decomposed images as input to a CNN.47

Recent researches have shown that a fusion of handcrafted features with48

deep learning models can enhance common approaches [40]. The application49

of fractal features, which have provided relevant results in the context of50

histological images classification [46, 48], could also be associated to hybrid51

CNN. In [62], CNN were applied to extract values from an invariant fractal52

dimension filter for detecting object curves in grayscale images. The authors53

in [37] applied multifractal analysis to quantify and detect breast cancer,54

classifying the generated feature vectors using deep learning. However, an55

approach similar to the proposed by [29], wherein the CNN receives as input56

secondary images generated by a specific technique has not yet been exper-57

imented in the fractal geometry context. Moreover, methods that directly58

associate fractal geometry with CNN through an ensemble for the classifica-59

tion of histological images were not found in the literature.60

In this paper, we propose a novel approach, which we name as Fractal61

Neural Network (FNN), to classify histological images through the associ-62

ation of fractal geometry and CNN. In our proposal, fractal features are63

extracted from the histology images and then rearranged in order to gen-64
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erate an artificial RGB feature image. Both this artificial image and the65

correspondent original image are given as input to a CNN ensemble, wherein66

a classification based on the sum rule outputs the class prediction. This new67

method provides the following contributions to the literature:68

1. double-CNN classification ensemble wherein an image generated from69

handcrafted fractal features and the respective regular image are given70

as input to a CNN;71

2. An adaptive method that is able to classify different sets of histological72

images, including datasets with imbalanced classes, few samples and73

varying image dimensions;74

3. The combination of different fractal measures to provide a set of fea-75

tures capable of describing the image’s properties;76

4. A deep learning model that requires a small number of training epochs,77

even when classifying new types of histology images.78

In the second section of this paper, recent researches regarding the clas-79

sification of histological images are discussed. In Section 3, we provide a80

technical background on the use of fractal geometry for feature extraction of81

color images. The proposed methodology is presented on Section 4, and in82

Section 5, the results obtained by applying the method on the tested datasets83

are presented and discussed. Finally, we conclude the paper at Section 6, with84

an overview of the obtained results and suggestions for future researches.85

2. Related Work86

Plenty of advances have been achieved by researchers on the field of medi-87

cal image classification recently, wherein deep learning approaches have been88

playing a major role on such improvements mainly on the feature extraction89

and classification stages of a CAD system.90

2.1. Breast Tumors Classification91

Breast cancer is a disease that initially starts with a tumor in the breast92

area but can later grow to surrounding tissues. This is the most common93

cancer type among women, although it also affects men. According to the94

Nacional Cancer Institute, 276,480 new cases and 42,170 deaths are expected95

in the United States for 2020 [17]. Due to high incidence, breast cancer96

detection became an important focus on computer vision research.97
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In [13], an artificial neural network composed by two modules was built98

to classify 58,000 patches with dimensions 15× 15 of benign and malignant99

breast tumors. The first module performs an unsupervised feature extraction100

based on stacked denoising auto encoder. The second part, consists of a soft-101

max classifier. This approach was able to provide accuracies of 98.27% and102

90.54% for the detection of benign and malignant tumors, respectively. Mul-103

tiple instance classification have also recently provided relevant results for the104

classification of breast tumors. Using a spatial decomposition technique that105

produces spatial and color components corresponding to 2nd and 3rd dimen-106

sion of data tensors related to the input images, the authors in [44] were able107

to achieve an accuracy of 84.67% using a multiple instance classifier. Their108

method performed faster than other common approaches and could also ob-109

tain an accuracy of 79.33% even with 90% of missing data. Handcrafted110

image features have also been used as complementary to deep learning ap-111

proaches. In [64], nuclei segmentation of breast tumors is performed through112

the application of a CNN. Then, texture features obtained from different113

handcrafted approaches are extracted from the segmented images and given114

as input to an SVM classifier. After applying the Relief feature selection115

method, the method was able to obtain an accuracy of 96.7%. In [31], the116

authors used data-augmentation to significantly increase the number of sam-117

ples of the breast cancer dataset by generating 112 × 112 sized patches. To118

improve classification, the authors applied a simple six-layer CNN to remove119

mislabeled patches. After associating multiscale feature extraction with a120

CNN classifier, an accuracy of 100% was obtained.121

2.2. Colorectal Tumors Classification122

Colorectal cancer consists on the growth of malignant polyps in the colon123

or rectum area. This is the fourth most common type of cancer, with 147,950124

new cases and 53,200 deaths expected for 2020 in the United States [17].125

Several researches have been published in recent years aiming to improve the126

automated diagnosis of this type of cancer.127

In [11], the authors used a 31-layers CNN to perform the classification of128

colorectal histological images, achieving accuracies of 93.24% and 96.97% for129

5-class and 2-class classification respectively. Similar results were obtained in130

[51] when classifying 4 categories of colorectal tumors with a smaller network131

(12 layers), wherein an accuracy of 93.28% was obtained after 400 epochs of132

training. Furthermore, some researchers have been recently exploring ap-133

proaches that consist of ensembles of different CNN models. The authors of134
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[5], for instance, first applied color normalization on the images of the col-135

orectal dataset. Then, the normalized images were given as input to an U-136

Net CNN in order to perform segmentation, aiming to remove non-glandular137

areas. A different CNN model (GoogLeNet) was used to classify the seg-138

mented images. This approach provided an accuracy of 85%. An ensemble139

of different CNN was also published by [57] for the detection of colorectal140

tumors. The authors developed an approach based on generative adversarial141

networks (GAN) wherein the generator was implemented as an U-Net and142

the discriminator is a standard CNN. With 3,000 patches of colorectal tumor143

images available, the method provided an F-score of 0.940. According to the144

authors, this approach deals well with class imbalance, due to its capacity145

to retrain the network when new classes are added using the CNN Inception146

v3.147

2.3. Non-Hodgkin Lymphomas Classification148

Lymphomas are a type of cancer that affects cells of the immunological149

system, wherein the most common occurrence is the non-Hodgkin lymphoma150

(NHL). According to statistics, 77,240 new cases and 19,940 deaths caused151

by NHL are expected for 2020 in the United States [17]. Although it accounts152

for only 3.3% of all cancer-related deaths, NHL are divided into categories,153

each one requiring specific treatments. Therefore, computer methods that154

are able to identify the NHL type are an important tool to provide support155

to pathologists [43].156

In [22], NHL images were split into several 36 × 36 patches which were157

later cropped to 32× 32 sub-patches using the Caffe framework, generating158

825,000 training patches. These patches were given as input to a standard159

AlexNet architecture and an accuracy of 96.58% was achieved with the use160

of a voting scheme for classification. However, the use of deep learning tech-161

niques is not mandatory to obtain relevant results for such task, as shown by162

[25]. On this approach, the images were firstly converted into grayscale and163

then, 130 non-overlapped patches with size 100 × 100 were extracted from164

each image, resulting in a total of 48,620 patches. An unsupervised feature165

extraction method was applied along with ordinary texture approaches to166

extract 680 handcrafted features. These features were classified using a hi-167

erarchical 2-stages machine learning method, which resulted in an accuracy168

of 97.96%. In [6], the authors proposed a method that applies both deep169

learning and handcrafted features for NHL classification. On this approach,170

color, statistical and texture features were extracted from patches cropped171
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out of the original images and given as input at a random forest classifier.172

These patches were also used to feed a GoogLeNet CNN. Both the random173

forest and the CNN provided patch predictions which were processed using174

weighted sum to generate a final classification prediction. The obtained ac-175

curacy was of 99.10%. Fractal features have also provided relevant results176

on NHL classification recently. In [36], fractal geometry was used to ex-177

tract multiscale and multidimensional features from RGB and LAB colored178

NHL images. The features extracted from the original images, without data-179

augmentation, are given as input to a polynomial classifier. For binary class180

classification, an accuracy of up to 97% was obtained.181

2.4. Gender and Age Classification182

Besides providing support to the diagnosis of diseases and differentiation183

of tumors, computer vision techniques applied on histological images can184

also serve as an indicator of age and gender. A set of images obtained from185

mice liver tissue has been explored recently for this task. In [3], the au-186

thors presented a novel deep learning approach named Texture-CNN. After187

applying this approach along with a voting classification scheme, accuracies188

of 99.1% and 98.2% were obtained for the classification of 2 gender and 4189

aging classes respectively. However, handcrafted features have also provided190

excellent results in this dataset. [12] applied 3 statistical approaches for grey191

texture analysis, testing on different color spaces. After using a SVM to192

classify the generated features, an accuracy of 100% was obtained for both193

gender and aging classes. More recently, the authors in [39] proposed an194

ensemble of handcrafted features and deep learning approaches. Moreover,195

new data augmentation techniques based on principal component analysis196

and discrete cosine transform were also presented. Using an ensemble of 6197

CNN models trained with different data augmentation approaches and a set198

of handcrafted features, the method was also able to obtain an accuracy of199

100% for classifying gender and age from liver histological images.200

Despite providing relevant results, most of these methods were imple-201

mented for specific classification tasks. There are few computer vision ap-202

proaches that were able to perform well on different histological image cate-203

gories [48, 39, 19, 52]. Moreover, both handcrafted fractal features [46, 48, 49]204

and CNN models [31, 6, 3] were able to provide high accuracy rates in several205

CAD systems for histopathology tasks. Therefore, an ensemble method that206

addresses both fractal geometry and deep learning, which is the core of our207
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proposal, could be able to improve these results when applied to different208

histology datasets.209

3. Technical Background210

3.1. Fractal Features211

Fractal geometry is a concept designed for the study of shapes that could212

not be defined by euclidian geometry [35]. Shapes present in nature such as213

a coastline, clouds, trees or lightnings are examples of structures that don’t214

have well-defined patterns. With fractal-based approaches, these structures215

can be represented by observations through different scales. In computer216

vision, such techniques are known as multiscale. Among the most common217

ones, we can highlight the box-counting [41] and the gliding-box [21] algo-218

rithms. The application of these algorithms consists in splitting the images219

onto different scales and then extracting features from each sub-image. For220

the representation of numerical features using fractal approaches, we have221

fractal dimension (FD), lacunarity (LAC) and percolation (PERC) as three222

of the most relevant. A multiscale and a multidimensional analysis of the223

image are performed in order to obtain these features.224

One of the approaches available in the literature for multiscale analysis225

consists on the application of the gliding-box algorithm [21]. One of the main226

advantages of this approach is that it can be applied on datasets containing227

images with different resolutions, due to the fact that the output features are228

given in relation to the scale instead of being absolute values. This algorithm229

consists in placing a box βi sized L × L on the left superior corner of the230

image, wherein L is given in pixels. This box glides through the image, one231

column and then one row at a time. After reaching the end of the image, the232

box is repositioned at the starting point and the value of L is increased by233

2. On an image sized H ×W , the total number T of boxes βi for a scale L234

is given by Equation 1:235

T (L) = (H − L+ 1)× (W − L+ 1) | L ≤ min(H,W ). (1)

For each time the box βi is moved, a multidimensional analysis of color236

similarity is performed for every pixel inside it. This is done by assigning the237

center pixel to a vector fc = rc, gc, bc, where rc, gc and bc correspond to the238

color intensities of each of the RGB color channels of given pixel. The other239

pixels in the box are assigned to a vector fi = ri, gi, bi and compared to the240
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center pixel by calculating a color distance ∆. On the proposed approach,241

the Chessboard (∆h), Euclidian (∆e) and Manhattan (∆m) distances are242

calculated according to Equations 2-4.243

∆h = max(|fi(ki)− fc(kc)|), k ∈ r, g, b. (2)

∆e =

√∑
k

(
fi(ki)− fc(kc)

)2
, k ∈ r, g, b. (3)

∆m =
∑
k

|fi(ki)− fc(kc)| , k ∈ r, g, b. (4)

If the value of ∆ corresponding to the distance between fi and fc is less244

than or equal to the scale L, then fi is labeled as 1, otherwise fi receives the245

label 0. An example of the pixels’ labelling when a distance ∆ is calculated246

for a box sized 3× 3 is illustrated on Figure 1.247

Figure 1: Labelling the pixels on a 3× 3 by calculating a distance ∆.

This procedure converts a box that contains RGB values to one containing248

binary values. After performing this conversion for every box of every given249

L scale, a structure known as probability matrix is generated. Each element250

of the matrix corresponds to the probability P that m pixels on a scale L251

are labeled as 1 on each box. On Table 1, the visual representation of such252

matrix is presented. The matrix is normalized in a way that the sum of the253

elements in a column is equal to 1, as showed on Equation 5.254
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Table 1: Structure of the probability matrix.

3 5 · · · Lmax

1 P (1, 3) P (1, 5) · · · P (1, Lmax)
2 P (2, 3) P (2, 5) · · · P (2, Lmax)
...

...
...

. . .
...

L2 P (L2, 3) P (L2, 5) · · · P (L2, Lmax)

L2∑
m=1

P (m,L) = 1,∀L. (5)

Noteworthy here that the probability matrix does not have the shape of255

an ordinary rectangular matrix, as the number of rows grows exponentially256

for each value of L. After the matrix is complete, the FD and LAC local257

values can be obtained.258

3.1.1. Fractal Dimension259

FD is the most common technique to evaluate the fractal properties of an260

image. This is a measure for evaluating the irregularity and the complexity261

of a fractal.262

To obtain local FD features from the probability matrix, for each value263

of L, the FD denominated D(L) is calculated according to the Equation 6:264

D(L) =
L2∑

m=1

P (m,L)

m
. (6)

3.1.2. Lacunarity265

LAC is a measure complementary to FD and allows to evaluate how the266

space of a fractal is filled [20]. From the probability matrix, first and second267

order moments are calculated with the Equations 7 and 8.268

µ(L) =
L2∑

m=1

mP (m,L). (7)

µ2(L) =
L2∑

m=1

m2P (m,L). (8)
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The value of LAC for a scale L is given by Λ(L), which is obtained269

according to the Equation 9:270

Λ(L) =
µ2(L)− (µ(L))2

(µ(L))2
. (9)

3.1.3. Percolation271

PERC is a physical phenomenon that consists on the study of fluid prop-272

erties on a porous media [15]. Such media is said to be percolating if a273

fluid can flow through the whole system, from the top to the bottom. In274

computer vision, this concept can be applied to verify the image porosity, or275

some cluster properties regarding pixel neighborhoods [49]. The first steps276

to obtain percolation features from a colored image follow the same proce-277

dures described for obtaining FD and LAC features. After calculating ∆, the278

generated binary matrices are given as input to a cluster labelling algorithm.279

Groups of nearby pixels that satisfied the criterion of the ∆ distance are280

labelled in order to count the number of clusters on the image, as illustrated281

in Figure 2. The symbol * indicates pixels labelled as 1.282

(a) (b)

Figure 2: Matrix before (a) and after (b) the application of a cluster labelling algorithm.

Let ci be the number of clusters on a box βi, the feature C(L) that283

represents the average number of clusters per box on a scale L is given by284

Equation 10285
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C(L) =

∑T (L)
i=1 ci
T (L)

. (10)

Another feature that can be obtained consists on the average coverage286

area of the largest cluster in a box and is given by M(L). Let mi be the287

size in pixels of the largest cluster of the box βi. The feature M(L) is given288

according to Equation 11:289

M(L) =

∑T (L)
i=1

mi

L2

T (L)
. (11)

We can also verify whether a box βi is percolating. This can be achieved290

due to a property that states a percolation threshold for different types of291

structures. In squared matrices (digital images), this threshold has the value292

of p = 0.59275 [8], which means that if the ratio between pixels labeled as 1293

and pixels labeled as 0 is greater or equal than p, the matrix is considered as294

percolating. Let Ωi be the number of pixels labeled as 1 in a box βi with size295

L× L, we determine whether such box is percolating according to Equation296

12:297

qi =


1, Ωi

L2 > 0.59275.

0, Ωi

L2 < 0.59275.

(12)

This results in a binary value for qi, wherein 1 indicates that the box is298

percolating. The feature Q(L) regards the average occurrence of percolation299

on a scale L and can be obtained as shown in Equation 13:300

Q(L) =

∑T (L)
i=1 qi
T (L)

. (13)

The number of obtained local features depends on the total of observation301

scales L. Considering that L ranges from 3 to Lmax with an increment of 2,302

the amount of local features corresponds to 5 × (Lmax−3
2

+ 1) for each ∆. A303

summary of these features is shown in Table 2.304

3.2. Convolutional Neural Networks305

CNN are a special type of deep learning model that learns features from306

low- and high-level patterns on grid-shaped data [63]. The core of CNN307
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Table 2: Summary of the obtained local features.

FD LAC PERC
D(3) Λ(3) C(3) Q(3) M(3)
D(5) Λ(5) C(5) Q(5) M(5)

...
...

...
...

...
D(Lmax) Λ(Lmax) C(Lmax) Q(Lmax) M(Lmax)

are usually built from three types of layers: convolution; pooling; and fully308

connected layers. While the first two perform feature extraction, the later309

classifies these features and usually outputs a label to be assigned to the310

input data.311

The convolution layers are the base structures of the network, hence the312

name CNN. These layers usually consist on a series of two operations. The313

first is convolution, a simple linear procedure that performs element-wise314

product between the input data and small arrays of numbers called kernels,315

which are the only learnable parameters in this type of layers. The second316

operation consists on passing the convolution output through a non-linear317

activation function. Different functions have been applied, although the Rec-318

tified Linear Unit (ReLU), which is given by f(x) = max(0, x), became the319

most popular as it tends to reduce training time [30].320

Pooling layers provides a downsampling operation that reduces the data321

dimensionality. This is usually done by selecting the maximum or sometimes322

the average value of an element in a patch and feeding it to the following323

layer. These pooling operations are performed in order not only to decrease324

the number of features but also to introduce a small invariance to translation325

and distortion of structures in the input data.326

The fully connected layers consist on a series of one or more layers wherein327

every output is connected to every input of the following layer by a learnable328

weight. Usually, the last fully connected layer has the same number of nodes329

as the number of classes of the training dataset. In classification problems,330

its output corresponds to class probabilities, which are obtained by applying331

an activation function, such as softmax. The network’s prediction is given332

by the class that obtained the highest probability value.333
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4. Methodology334

4.1. Image Databases335

We evaluated five histological image datasets. The first is the breast336

cancer dataset provided by the Center of Bio-Image Informatics from the337

University of California, Santa Barbara (UCSB) [14]. This dataset consists338

of 58 breast tissue images split into two groups: benign (32) and malignant339

(26). One example of each group is shown in Figure 3.340

(a) (b)

Figure 3: Samples of a benign (a) and a malignant (b) case from the UCSB dataset.

The second dataset (CR) consists of 165 colorectal tissue images [54], also341

split into benign (74) and malignant (91) tumors. To acquire the images,342

histological sections were digitally photographed with a Zeiss MIRAX MIDI343

Slide Scanner with a scaled pixel resolution of 0.620µm, which corresponds to344

a magnification of 20x. On Figure 4, examples from each class are illustrated.345

The third dataset (NHL) is composed by 173 non-Hodgkin Lymphoma346

images divided into three classes: MCL - mantle cell lymphoma (99); FL347

- folicular lymphoma (62); and CLL - chronic lymphocyte leukemia (12).348

For the acquisition of the images, a light microscope Zeiss Axioscope with349

a 20x objective and a colored digital camera (AXio Cam MR5) were used.350

The obtained images were recorded without compression, with a resolution351

of 1388 × 1040 pixels, a 24 bit quantization ratio and the RGB color model.352

Regions of interest were later selected by a specialist [58]. This dataset was353

made publicly available by the National Cancer Institute and the National354

Institute on Aging [52].355
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(a) (b)

Figure 4: Samples of a benign (a) and a malignant (b) case from the CR dataset.

(a) (b) (c)

Figure 5: Samples of a CLL (a), a FL (b) and a MCL (c) case from the NHL dataset.

The two following datasets were both provided by the Atlas of Gene Ex-356

pression in Mouse Aging Project (AGEMAP) and are composed by liver357

tissue obtained from mice [42]. The images were acquired by a Carl Zeiss358

Axiovert 200 microscope and 40x objective. All images have the same res-359

olution of 417 × 312 pixels. The fourth dataset (LG) consists of 265 liver360

tissue images obtained from male (150) and female (115) mice on a caloric361

restriction diet. Examples of each class are illustrated on Figure 6. The fifth362

dataset (LA) consists of 529 images split in four classes, wherein each repre-363

sents a different age group of female mice on ad-libitum diets: one (100), six364

(115), 16 (162) and 24 (152) months old. On Figure 7, one example of each365

age group is illustrated. An overview of all these datasets is presented on Ta-366

ble 3. In all five datasets, the tissue samples were stained with Hematoxylin367

and Eosin (H&E).368
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(a) (b)

Figure 6: Samples of liver tissue from male (a) and female (b) mice from the LG dataset.

(a) (b)

(c) (d)

Figure 7: Samples of liver tissue from mice aged 1 month (a), 6 months (b), 16 months
(c) and 24 months (d) from the LA dataset.
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Table 3: Summary of the five tested datasets.

Dataset Image Classes Samples Resolution
UCSB [14] Breast tumors 2 58 896× 768
CR [54] Colorectal tumors 2 165 from 567× 430 to 775× 522
NHL [52] Non-Hodgkin Lymphoma 3 173 from 86× 65 to 1388× 1040
LG [42] Liver tissue 2 265 417× 312
LA [42] Liver tissue 4 529 417× 312

4.2. Method Overview369

The proposed approach can be split into two modules. The first module370

performs the extraction of local features by applying the fractal techniques371

described in Section 3.1. The output of this module consist on a set of 300372

features, which were obtained from calculating the FD, LAC and PERC local373

values from each of the three distances ∆ evaluated. The second module is374

composed by 2 CNN whose goal is to perform classifications to obtain an375

array of probabilities.376

The input of the first CNN, henceforth named F-CNN, consists on an377

artificial image generated from the features extracted on the first module.378

The set of local features is reshaped into a 10×10×3 RGB image, which is a379

procedure based on [33]. The generated images are given as input to a CNN380

for classification. The second CNN, henceforth named O-CNN, receives as381

input the original image, wherein the class probabilities obtained from the382

classification of such image are summed to the respective class probabilities383

from the F-CNN. After this sum, the highest probability value indicates the384

class prediction. An overview of this approach is presented on Figure 8. Each385

step is described in details on the following sections.386

4.3. Feature Extraction Module387

The main stage of the proposed method consists in applying the tech-388

niques based on fractal geometry, described in Section 3.1, on the images389

under investigation. FD, LAC, and PERC local features are extracted using390

multiscale and multidimensional approaches.391

After being given as input to the FNN, the image is divided into different392

scales, according to the gliding-box algorithm. Each perceptron of the first393

layer represents a different scale with value L. This layer’s function consists394

simply in generating a set of matrices for every region of the image and every395

assigned value of L, which ranges from 3 to 41 with an increment of 2. We396

chose this value for Lmax as it generates the exact number of features required397
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Figure 8: Overview of the proposed Fractal Neural Network model.

to provide a square image after applying the reshape procedure, which is398

ideal to avoid distortions when feeding the image to the F-CNN, and also399

due to the relevant classification results obtained with a similar value [46].400

The generated matrices are given as input to the second layer, which is a401

representation of the multidimensional approach of the methods described402

on Section 3.1. In the proposed architecture, each perceptron performs the403

calculation of a different type of distance ∆ between the pixels of the image.404

The output of each perceptron in the second layer consists in a set of405

binary matrices, wherein the values labeled as 1 are pixels that matched the406

∆ criteria. These matrices are given as input to the perceptrons of the third407

layer, wherein the techniques described on Section 3.1 for obtaining local FD,408

LAC and PERC values are finally applied. The resulting output consists on409

a set of 300 local features, which serve as input to the next module of the410

network. Prior to being given as input to both CNN, the original and the411

fractal images are resized in order to match the required input dimensions.412

4.4. Classification Module413

On the proposed FNN, classification is performed by two CNN. Both414

CNN are fine-tuned on the deepest layer, as we applied transfer learning415

using models pre-trained on the ImageNet database [50] in order to increase416

the accuracy whilst reducing the training time.417

18



4.4.1. Fractal Features CNN - F-CNN418

In order to serve as input for the incoming CNN classification, the feature419

vectors generated on the previous layers of the network must be converted420

into feature matrices. In order to do so, the set of 300 features obtained from421

the calculation of each of the three distances ∆ are arranged to compose a422

different dimension of the matrix, aiming to simulate RGB color channels.423

Therefore, we split the feature vector into three sub-vectors containing 100424

features. These features are sequentially rearranged into a 10 × 10 matrix.425

The matrices generated by ∆h, ∆e and ∆m correspond to the R, G and B426

color channels, respectively. In Figure 9, one example of each tested dataset427

is shown in order to illustrate the reshaping procedure.428
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Figure 9: Illustration of the procedure to rearrange the local features in order to create a
RGB image.

The generated images are given as input to the F-CNN, which outputs a429

score vector for each image indicating class probabilities.430
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4.4.2. Original Images CNN - O-CNN431

In order to fully explore the classification power of a CNN, we chose to432

append a second CNN to the proposed architecture. The original images433

are given as input to this CNN and the class probabilities obtained from the434

output of the softmax layer are summed to the class probabilities obtained435

from the correspondent layer of the F-CNN where the images generated from436

fractal features were classified.437

4.4.3. Transfer Learning438

In order to reduce training time and achieve good results with few training439

epochs we chose to use transfer learning instead of training both CNN from440

scratch. Our proposed method applies network-based transfer learning [56],441

wherein the pre-trained network is partially reused and only the final layer442

is changed in order to match the number of classes. Therefore, we selected443

four CNN candidates that have provided relevant results in histology image444

classification recently [45, 34, 26] pre-trained on the ImageNet dataset. An445

overview of these four models is shown in Table 4.446

Table 4: Selected pre-trained CNN models.

Model Layers Parameters Input size
ResNet-50 [16] 50 2.6× 107 224× 224× 3
ResNet-101 [16] 101 4.5× 107 224× 224× 3
InceptionV3 [55] 48 2.4× 107 299× 299× 3
Xception [9] 71 2.3× 107 299× 299× 3

4.5. Performance Evaluation447

In order to obtain the best possible results with the proposed method and448

properly evaluate these, we applied a testing approach divided in 4 stages.449

Firstly, we evaluated which CNN model would be the most appropriate450

for the F-CNN and O-CNN slots in the proposed architecture. Then, we451

apply each of the CNN on the 5 datasets with the number of training epochs452

ranging from 1 to 10. This verification aims to determine the smaller number453

of epochs needed to obtain the highest accuracies. After these experiments,454

the proposed approach is applied on the datasets using the configuration455

results obtained from the previous tests. At last, we compare the proposed456

method with other common feature extraction techniques, analysing results457
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Table 5: Loss evaluation of different CNN models and time performance in seconds.

Dataset ResNet-50 ResNet-101 InceptionV3 Xception

NHL
F-CNN 0.510 0.494 0.478 0.385
O-CNN 0.767 0.585 0.497 0.409
Time 42.69 85.79 87.58 77.01

CR
F-CNN 0.350 0.312 0.339 0.269
O-CNN 0.018 0.022 0.045 0.043
Time 50.21 91.26 93.82 83.37

UCSB
F-CNN 0.567 0.741 0.621 0.556
O-CNN 0.318 0.271 0.305 0.606
Time 21.99 39.65 39.01 29.76

LG
F-CNN 0.163 0.118 0.151 0.118
O-CNN 0.005 0.017 0.005 0.041
Time 67.25 133.84 139.99 128.66

LA
F-CNN 0.175 0.189 0.196 0.193
O-CNN 0.048 0.128 0.031 0.051
Time 122.47 247.67 259.65 247.22

obtained from using only the F-CNN as well as the ensemble with the O-458

CNN. To obtain these other features, we implemented the methods on Matlab459

R2019b, applied them on the same datasets and performed classification460

using the Rotation Forest classifier available at the software Weka 3.6.13. We461

chose this classifier due to its relevant results obtained from other researches462

on histology image classification [1, 48].463

All tests were performed on a Intel Xeon Silver 4116 CPU at 2.10GHz464

with 128GB of RAM and a NVIDIA GeForce RTX 2080Ti embedded, using465

Matlab R2019b. Since some of the tested datasets have a small number of466

samples, we chose to apply 10-folds cross-validation in all testing stages in467

order to avoid problems such as overfitting.468

5. Results and Discussion469

Before testing the proposed model on its complete implementation, it was470

necessary to determine the CNN models to be assigned to the F-CNN and471

O-CNN slots. We tested the performance of four of the most popular CNN472

that have been applied on recent researches. On Table 5, the loss values for473

each dataset are presented as well as the average time in seconds required to474

train and classify the samples in 10 epochs.475

We applied the Friedman non-parametrical test to verify whether the476

difference among the loss values were significant [23]. At α = 0.05, we477
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Table 6: Accuracy values for the F-CNN with varying training epochs.

Epochs NHL CR UCSB LG LA Avg.
1 78.03% 77.58% 60.34% 68.68% 77.88% 72.50%
2 80.35% 78.79% 70.69% 81.13% 81.66% 78.52%
3 78.61% 83.03% 68.97% 91.32% 84.88% 81.36%
4 82.66% 83.64% 70.69% 88.68% 86.39% 82.41%
5 84.97% 89.09% 74.14% 93.21% 86.77% 85.63%
6 84.39% 86.67% 72.41% 89.81% 91.68% 84.99%
7 84.97% 88.48% 68.97% 90.94% 91.68% 85.01%
8 84.39% 88.48% 72.41% 91.70% 90.36% 85.47%
9 82.66% 86.06% 79.31% 95.09% 93.57% 87.34%
10 83.81% 86.06% 77.59% 95.47% 93.19% 87.23%

Table 7: Accuracy values for the O-CNN with varying training epochs.

Epochs NHL CR UCSB LG LA Avg.
1 83.82% 93.33% 56.90% 98.49% 92.82% 85.07%
2 87.28% 98.18% 58.62% 98.49% 95.27% 87.57%
3 89.02% 98.79% 68.97% 98.49% 96.03% 90.26%
4 90.75% 98.78% 72.41% 98.11% 96.68% 91.33%
5 90.75% 100.00% 75.86% 99.62% 98.11% 92.87%
6 88.44% 99.39% 79.31% 99.62% 97.16% 92.79%
7 90.17% 99.39% 74.14% 99.62% 98.49% 92.36%
8 93.64% 98.79% 81.03% 98.87% 98.68% 94.20%
9 89.60% 98.18% 82.76% 98.87% 99.05% 93.69%
10 88.44% 99.39% 75.86% 98.82% 99.43% 92.40%

obtained Pk = 0.2073 for the F-CNN and Pk = 0.4144 for the O-CNN, which478

indicates that there is not a significant difference when comparing the four479

tested CNN models. However, when comparing the time needed to perform480

training, the Friedman test indicated a significant difference (Pk < 0.0001)481

for all pairwise comparisons (Conover) involving the ResNet-50. Therefore,482

we chose the ResNet-50 to be assigned to both CNN slots of our proposed483

architecture not only due to its shorter training time, but also due to the484

relevant results recently obtained in the classification of histology images485

[45, 34, 60, 61].486

Then, we tested the performance of each of the two CNN varying the487

number of training epochs. To prevent overfitting, and aiming to build a488

fast-training model, we chose to not go beyond 10 epochs for both CNN.489

The results are shown in Tables 6 and 7 for the F-CNN and the O-CNN490

respectively.491
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Table 8: Results obtained from the application of the proposed method.

Accuracy F-score
NHL 95.55% 0.864
CR 99.39% 0.994
UCSB 89.66% 0.895
LG 99.62% 0.996
LA 99.62% 0.996
Avg. 96.77% 0.949
SD. 4.334 0.058

From the results presented on Tables 6 and 7, it can be noted that the492

F-CNN is able to provide relevant results after 4 epochs. On the other hand,493

the O-CNN presented significant performance values with only 2 training494

epochs, providing accuracies above 85% for all datasets, with an exception for495

the breast tumor images, due to its small number of samples. Nevertheless,496

the best results were obtained with 9 and 8 training epochs for the F-CNN497

and O-CNN respectively. Therefore, these parameters were applied on the498

following tests.499

We proceeded to apply the proposed FNN using the configuration pa-500

rameters obtained on the previous tests in order to evaluate the performance501

when applied to the five histology images dataset. The detailed results are502

shown on Table 8.503

These results show that the proposed method is able to perform well on504

the classification of histology images. With exception for the UCSB dataset,505

accuracies above 95% were obtained, which can be a indicator of the method’s506

adaptability to different categories of histological tissue. Despite dealing with507

imbalanced classes on all datasets, the proposed method was also able to508

provide F-Measure values above 0.850 in all cases. It is also noteworthy the509

excellent results obtained for the CR, LG and LA, with performance values510

close to 1.0 for all evaluated metrics.511

In order to verify how the proposed method fits among other computer512

vision approaches, we compare its performance with the results obtained by513

LBP, Haralick, PERC, LAC and FD features. It’s important to highlight514

that the fractal features used for comparison in this test consist of common515

feature vectors that are given as input to machine learning algorithms, which516

differs from our approach of reshaping the fractal features into a RGB image517

and feeding it to a CNN. Firstly, we compared the individual performance of518
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Table 9: Accuracy values obtained by different computer vision methods.

NHL CR UCSB LG LA
LBP 72.83% 67.27% 79.31% 80.75% 71.46%
Haralick 74.57% 73.94% 81.03% 89.43% 88.28%
PERC 93.64% 87.27% 82.76% 95.09% 93.57%
LAC 89.60% 66.67% 79.31% 86.04% 83.93%
FD 78.03% 59.39% 62.07% 58.49% 50.47%
F-CNN 82.66% 86.06% 79.31% 95.09% 93.57%
O-CNN 93.64% 98.79% 81.03% 98.87% 98.68%

Table 10: Accuracy values obtained by the application of a classification ensemble between
the O-CNN and other techniques.

NHL CR UCSB LG LA
LBP 83.24% 91.52% 82.76% 93.58% 89.41%
Haralick 87.28% 92.12% 82.76% 95.47% 92.25%
PERC 94.22% 97.58% 86.21% 99.62% 99.24%
LAC 94.22% 98.18% 86.21% 99.62% 98.87%
FD 91.91% 98.79% 82.76% 99.25% 99.05%
FNN 95.55% 99.39% 89.66% 99.62% 99.62%

these techniques without using any classification fusion or ensemble approach.519

Thus, we did not performed the ensemble scheme between the F-CNN and520

the O-CNN, as it is originally intended for our proposal. The results are521

shown in Table 9.522

Without using any ensemble approach, the O-CNN, which consists simply523

on using a ResNet-50 for classifying the original images, provided the best524

results. An exception is made for the UCSB dataset, wherein the best results525

were provided by the PERC features. Moreover, apart from the FD, the526

fractal features performed better than the LBP and Haralick descriptors in527

most cases. It can also be noted that the proposed F-CNN struggles to528

provide relevant results when applied on its own.529

Thus, our method implements an ensemble between the F-CNN and the530

O-CNN. However, since a comparison among an ensemble method and non-531

ensemble approaches would not be fair, we included the O-CNN classification532

to compose an ensemble with the other compared methods. These results533

are shown in Table 10.534
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It can be noted that merging the classification results of both CNN not535

only improves the accuracy of the F-CNN, but also enhances the performance536

of the O-CNN. When compared to the other techniques, the proposed method537

provided better accuracies in all datasets. The LG dataset was the only538

one where the results obtained by our method could be matched by other539

techniques. In this case, the same accuracy value of 99.62% was obtained540

by PERC, LAC and the FNN. Besides, a significant difference among the541

compared techniques was indicated according to the Friedman test (Pk <542

0.0001 for α = 0.05) in all pairwise comparisons (Conover). Our method543

also provided the highest average accuracy (96.8%) and smallest standard544

deviation (4.334), as can be seen on the graph presented on Figure 10.545

Figure 10: Average accuracy of the evaluated classification ensemble between the O-CNN
and other techniques, applied to the five tested datasets.

An overview of the results obtained with the FNN in relation to other546

approaches in the context of histology image classification is shown in Table547

11. It can be noted that the methods that provided the best results on each548

classification task applied both deep learning (DL) and handcrafted (HC)549

features. Regarding the FNN, we were able to verify that its performance is550

compatible with recently published methods. Breast and colorectal cancer551
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classification remains as a challenging task in computer vision, since few552

methods were able to obtain accuracies above 95% when classifying these553

type of images. Nevertheless the FNN was able to achieve a remarkable554

99.39% accuracy, ranking first among the compared methods in colorectal555

cancer classification.556

6. Conclusion557

In this paper, we proposed an approach (FNN) that consists on the en-558

semble of two CNN, wherein one of these receives as input images generated559

from fractal features, to classify different categories of histological images.560

We showed that our proposal was able to provide relevant results, with accu-561

racies above 89%, for all tested histopathology challenges. Also, accuracies562

greater than 99% were obtained for three out of the five evaluated datasets563

(CR, LG and LA). Besides, we achieved these results with a training time564

shorter than the required for other approaches such as [64, 51, 29] to obtain565

similar performances. Therefore, we believe our proposal contributes to this566

research area not only due to its adaptability to different types of histol-567

ogy tissue and relatively low computing cost, but mainly due to the applied568

feature vectors reshaping concept that allows the combined use of fractal fea-569

tures and CNN. This approach has not yet been deeply explored and could570

provide new insights on the combined power of handcrafted features and571

deep learning. Nevertheless, there is still room for improvement, specially in572

regard to the UCSB dataset classification, wherein hyper-parameter tuning573

could play a major role to improve the model’s accuracy.574

For future works, we propose the application of the FNN on other types575

of histology tissue images, a study for optimizing the F-CNN and the O-576

CNN parameters, the inclusion of fractal global features in the classification577

ensemble and a deeper analysis of the fractal features reshaping procedure,578

e.g. experimenting different ways to dispose the features or generating images579

using a different 3-channel color model.580
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Table 11: Overview of the accuracy values obtained by different approaches in the context
of histology image classification.

Images Method Approach Accuracy

NHL

[6] DL+HC 99,10%
[24] DL 97,96%
[36] HC 97,00%
[22] DL 96,58%
FNN DL+HC 95,55%
[47] HC 86,14%

Breast

[31] DL+HC 100,00%
[64] DL+HC 96,67%
[13] DL 94,41%
[29] DL 91,00%
FNN DL+HC 89,66%
[48] HC 86,20%
[44] DL 84,67%
[4] DL 83,30%
[38] HC 80,00%

Colorectal

FNN DL+HC 99,39%
[11] DL 96,97%
[57] DL 94,02%
[51] DL 93,28%
[48] HC 90,90%
[7] DL 87,50%
[5] DL 85,00%
[39] DL+HC 100,00%

Liver [12] HC 100,00%
(gender) FNN DL+HC 99,62%

[3] DL 99,10%
[39] DL+HC 100,00%

Liver [12] HC 100,00%
(age) FNN DL+HC 99,62%

[3] DL 98,20%
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