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Abstract. Serverless computing is a Cloud development paradigm where
developers write and compose stateless functions, abstracting from their
deployment and scaling. In this paper, we address the problem of function-
execution scheduling, i.e., how to schedule the execution of Serverless
functions to optimise their performance against some user-defined goals.
We introduce a declarative language of Allocation Priority Policies (APP)
to specify policies that inform the scheduling of function execution. We
present a prototypical implementation of APP as an extension of Apache
OpenWhisk and we validate it by i) implementing a use case combining
IoT, Edge, and Cloud Computing and ii) by comparing its performance
to an alternative implementation that uses vanilla OpenWhisk.

Keywords: Serverless · Function-execution Scheduling · Optimisation.

1 Introduction

Serverless computing [1], also known as Functions-as-a-Service, is a new devel-
opment paradigm where programmers write and compose stateless functions,
leaving to Serverless infrastructure providers the duty to manage their deploy-
ment and scaling. Hence, although a bit of a misnomer—as servers are of course
involved—the “less” in Serverless refers to the removal of some server-related
concerns, namely, their maintenance, scaling, and expenses deriving from their
sub-optimal management (e.g., idle servers). Serverless computing was first pro-
posed as a deployment modality for Cloud architectures [1] that pushed to the
extreme the per-usage model of Cloud Computing, letting users pay only for the
computing resources used at each function invocation. However, recent industrial
and academic proposals, such as platforms to support Serverless development
in Edge [2] and Internet-of-Things [3] scenarios, confirm the rising interest of
neighbouring communities to adopt the Serverless paradigm.

While Serverless providers have become more and more common [4,5,6,7,8,9,10]
the technology is still in its infancy and there is much work to do to overcome
the many limitations [9,11,12,1] that hinder its wide adoption. One of the main
challenges to address is how should Serverless providers schedule the functions on
the available computation nodes. To visualise the problem, consider for example
Fig. 1 depicting the availability of two Workers—the computation nodes where
functions can execute. One Worker is in Italy (Site 1) and the other in Greece
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Fig. 1. Example of function-execution scheduling problem.

(Site 2). Both Workers can execute a function that interacts (represented by the
dashed green lines) with the Private Data storage located at Site 1. When the
Load Balancer (acting as function scheduler) receives a request to execute the
function, it must decide on which Worker to execute it. To minimise the response
time, the Load Balancer should consider the different computational loads of
the two Workers, which influence the time they take to execute the function.
Also, the latency to access the Private Data storage plays an important role in
determining the performance of function execution: the Worker at Site 1 is close
to the data storage and enjoys a faster interaction with it while the Worker at
Site 2 is farther from it and can undergo heavier latencies.

In this paper, we address the problem of function-execution scheduling optimi-

sation [9] by proposing a methodology that provides developers with a declarative
language, called Allocation Priority Policies (APP). Developers can use APP
to specify a scheduling policy for their functions that the scheduler later uses
to find the worker that, given the current status of the system, best fits the
constraints specified by the developer of a given function. To substantiate our
proposal, we extended the scheduler of OpenWhisk [5], a well-known open-source
distributed Serverless platform, to use APP-defined policies in the scheduling
of Serverless functions. In Section 3 we detail the APP language and present
our prototypical implementation as an extension of Apache OpenWhisk [5]—in
Section 2 we provide some introductory notions of the Serverless paradigm and an
overview of the OpenWhisk platform. To validate our extension, in Section 4, we
present a use case combining IoT, Edge, and Cloud Computing and we contrast
an implementation of the use case using our APP-based prototype with a näıve
one using three coexisting installations of the vanilla OpenWhisk stack to achieve
the same functional requirements. We present the data on the performance of the
two deployments, providing empirical evidence of the performance gains offered
by the APP-governed scheduling. We conclude comparing with related work in
Section 5 and discussing future and concluding remarks in Section 6.

2 Preliminaries

In this section, we give some preliminary information useful to better understand
the motivations and technical details of our contribution. First, we outline the
problems that motivate our research—as found in the literature. Then, we give
an overview of the OpenWhisk Serverless platform, which we use in Section 3 to
implement a prototype of our solution to the function scheduling problem.



Serverless Function Scheduling The Serverless development cycle is divided in
two main parts: a) the writing of a function using a programming language
supported by the platform (e.g. JavaScript, Python, C#) and b) the definition
of an event that should trigger the execution of the function. For example, an
event is a request to store some data, which triggers a process managing the
selection, instantiation, scaling, deployment, fault tolerance, monitoring, and
logging of the functions linked to that event. A Serverless provider—like IBM
Cloud Functions [10] (using Apache OpenWhisk [5]), AWS Lambda [4], Google
Cloud Functions [7] or Microsoft Azure Functions [6]—is responsible to schedule
functions on its workers, to control the scaling of the infrastructure by adjusting
their available resources, and to bill its users on a per-execution basis.

When instantiating a function, the provider has to create the appropriate
execution environment for the function. Containers [13] and Virtual Machines [14]
are the main technologies used to implement isolated execution environments
for functions. How the provider implements the allocation of resources and
the instantiation of execution environments impacts on the performance of the
function execution. If the provider allocates a new container for every request,
the initialisation overhead of the container would negatively affect both the
performance of the single function and heavily increase the load on the worker. A
solution to tackle this problem is to maintain a “warm” pool of already-allocated
containers. This matter is usually referred to as code locality [9]. Resource
allocation also includes I/O operations that need to be properly considered.
For example, the authors of [15] report that a single function in the Amazon
serverless platform can achieve on average 538Mbps network bandwidth, an order
of magnitude slower than single modern hard drives (the authors report similar
results from Google and Azure). Those performance result from bad allocations
over I/O-bound devices, which can be reduced following the principle of session
locality [9], i.e., taking advantage of already established user connections to
workers. Another important aspect to consider to schedule functions, as underlined
by the example in Fig. 1, is that of data locality, which comes into play when
functions need to intensively access (connection- or payload-wise) some data
storage (e.g., databases or message queues). Intuitively, a function that needs to
access some data storage and that runs on a worker with high-latency access to
that storage (e.g., due to physical distance or thin bandwidth) is more likely to
undergo heavier latencies than if run on a worker “closer” to it. Data locality
has been subject of research in neighbouring Cloud contexts [16,17].

Apache OpenWhisk Apache OpenWhisk [5] is an open-source Serverless platform
initially developed by IBM—at the core of the company’s Serverless offer [10]—and
subsequently donated to the Apache Software Foundation. It is a production-
ready Serverless platform and it supports the execution of functions written in
many programming languages, including JavaScript, Python, Java, Go, and C#.

OpenWhisk is an event-driven system that runs code in response to events
(e.g., changes to a database, an HTTP request or IoT sensors readings) or direct
invocations. To pick up an event from a source, OpenWhisk defines a feed that
activates triggers linked to a set of rules and actions to be executed.



OpenWhisk systems include one controller and a pool of invokers. The
controller is a load balancer that, given an action to be executed, forwards the
execution request to one selected invoker. The invokers execute actions using
isolated Docker containers. Invokers are the OpenWhisk equivalent of theWorkers
mentioned in our presentation. Latency-wise, container instantiation is by far
the most relevant overhead endured by the invokers. One of the most effective
mechanisms to reduce such overhead is to reuse containers, i.e., when a function
is invoked multiple times, the system can reuse the container of a terminated
invocation of that function rather than creating a fresh one.

The load balancing policy followed by the controller aims at maximising reuse.
When the controller needs to schedule the execution of a function, a numeric
hash h is calculated using the action name. An invoker is then selected using the
remainder of the division between h and the total number of invokers n. The
controller checks if the invoker is overloaded. If the chosen invoker is overloaded,
the index is incremented by a step-size, which is any of the co-prime numbers
smaller than the amount n of available invokers.

When no invoker is available after cycling through the entire invoker pool,
the load balancer randomly selects an invoker from those that are considered
“healthy”—able to sustain the workload. This happens when there are invokers
that are healthy but have no capacity available when the scheduling algorithm
was searching for an invoker. When there are no healthy invokers, the load
balancer returns an error stating that no invokers are available for executing the
function.

Motivation As discussed, at least three aspects related to function scheduling
affect the performances of function execution in Serverless platforms: code, session,
and data locality. Load balancing policies adopted by state-of-the-art Serverless
platforms like Apache OpenWhisk take advantage only of code locality, but they
currently have no way to integrate also information on other types of locality.
To take advantage of other forms of locality, the load balancer should have
knowledge on the way functions access external resources, like I/O-bound devices
or databases, whose usage depends on the implementation of functions.

Our work aims at bridging that information gap, presenting a language that
any Serverless platform can use in its scheduling policies to consider those factors.
Our approach is conservative: with its default settings (explained in the next
section) it can capture the status of current Serverless platforms. Then, more
advanced Serverless users and platform providers can use the features offered by
our proposal to optimise the execution of functions.

Moreover, optimised scheduling policies could be the outcome of automatic
heuristic/inference systems applied to the functions to be executed. Automatic
synthesis of optimized scheduling policies is the long-term objective of our research
and this paper addresses the first fundamental step, i.e., showing the feasibility of
Serverless platforms instructed with customized load balancing rules. Given this
objective, we narrow the current exposition to manually-defined configurations
and we leave the exploration of automatic configuration to future work.



3 The APP Language

Current serverless platforms, like OpenWhisk, come equipped with hard-coded
load balancing policies. In this section, we present the Allocation Priority Policies

(APP) language, intended as a language to specify customised load balancing
policies and overcome the inflexibility of the hard-coded load balancing ones. The
idea is that both developers and providers can write, besides the functions to be
executed by the platform, a policy that instructs the platform what workers each
function should be preferably executed on. Function-specific configurations are
optional and without them the system can follow a default strategy.

As an extension of the example depicted in Fig. 1, consider some functions
that need to access a database. To reduce latency (as per data locality principle),
the best option would be to run those functions on the same pool of machines
that run the database. If that option is not valid, then running those functions
on workers in the proximity (e.g., in the same network domain) is preferable than
using workers located further away (e.g., in other networks). We comment below
an initial APP script that specifies the scheduling policies only for those workers
belonging to the pool of machines running the database.

couchdb_query:

- workers:

- DB_worker1

- DB_worker2

strategy: random

invalidate: ↩

capacity used: 50%

followup: fail

At the first line, we define the policy tag, which
is couchdb_query. As explained below, tags are used
to link policies to functions. Then, the keyword
workers indicates a list of worker labels, which iden-
tify the workers in the proximity of the database,
i.e., DB_worker1 and DB_worker2. As explained be-
low, labels are used to identify workers. Finally,
we define three parameters: the strategy used by
the scheduler to choose among the listed worker
labels, the policy that invalidates the selection of

a worker label, and the followup policy in case all workers are invalidated. In
the example, we select one of the two labels randomly, we invalidate their usage
if the workers corresponding to the chosen label are used at more than the 50% of
their capacity (capacity used) and, in case all workers are invalidated (followup),
we let the request for function execution fail.

The APP syntax and semantics We report the syntax of APP in Fig. 2. The basic
entities considered in the APP language are a) scheduling policies, identified by
a policy tag identifier to which users can associate their functions—the policy-
function association is a one-to-many relation—and b) workers, identified by
a worker label—where a label identifies a collection of computation nodes. An
APP script is a YAML [18] file specifying a sequence of policies. Given a tag,
the corresponding policy includes a list of workers blocks, possibly closed with
a followup strategy. A workers block includes three parameters: a collection of
worker labels, a possible scheduling strategy, and an invalidate condition. A
followup strategy can be either a default policy or the notification of failure.

We discuss the APP semantics, and the possible parameters, by commenting
on a more elaborate script extending the previous one, shown in Fig. 3. The



policy tag ∈ Identifiers ∪ {default} worker label ∈ Identifiers n ∈ N

app ∶∶= tag

tag ∶∶= policy tag : - block followup?

block ∶∶= workers [ "*" ∣ - worker label ]
(strategy [ random ∣ platform ∣ best first ])?
(invalidate [ capacity used : n% ∣ max concurrent invocations : n ∣ overload ])?

followup ∶∶= followup : [ default ∣ fail ]

Fig. 2. The APP syntax.

APP script starts with the tag default, which is a special tag used to specify the
policy for non-tagged functions, or to be adopted when a tagged policy has all
its members invalidated, and the followup option is default.

In Fig. 3, the default tag describes the default behaviour of the serverless
platform running APP. The wildcard "*" for the workers represent all worker
labels. The strategy selected is the platform default (e.g., in our prototype in
Section 4 the platform strategy corresponds to the selection algorithm described
in Section 2) and its invalidate strategy considers a worker label non-usable when
its workers are overloaded, i.e., none has enough resources to run the function.

Besides the default tag, the couchdb_query tag is used for those functions
that access the database. The scheduler considers worker blocks in order of
appearance from top to bottom. As mentioned above, in the first block (associated
to DB_worker1 and DB_worker2) the scheduler randomly picks one of the two worker
labels and considers a label invalid when all corresponding workers reached the
50% of capacity. Here the notion of capacity depends on the implementation (e.g.,
our OpenWhisk-based APP implementation in Section 4 uses information on
the CPU usage to determine the load of invokers). When both worker labels
are invalid, the scheduler goes to the next workers block, with near_DB_worker1

and near_DB_worker2, chosen following a best first strategy—where the scheduler
considers the ordering of the list of workers, sending invocations to the first until
it becomes invalid, to then pass to the next ones in order. The invalidate strategy
of the block regards the maximal number of concurrent invocations over the
labelled workers—max concurrent invocations, which is set to 100. If all the worker
labels are invalid, the scheduler applies the followup behaviour, which is to fail.

Summarising, given a policy tag, the scheduler considers the corresponding
workers blocks starting from the top. A block includes three parameters:

– workers: contains a non-empty list of worker labels or the "*" wildcard to
encompass all of them;

– strategy: defines the policy of worker label selection. APP currently supports
three strategies:

● random: labels are selected in a fair random manner;
● best first: labels are selected following their order of appearance;



default:

- workers: "*"

strategy: platform

invalidate: overload

couchdb_query:

- workers:

- DB_worker1

- DB_worker2

strategy: random

invalidate: capacity_used: 50%

- workers:

- near_DB_worker1

- near_DB_worker2

strategy: best_first

invalidate: max_concurrent_invocations: 100

followup: fail

Fig. 3. Example of an APP script.

● platform: labels are selected following the default strategy of the serverless
platform—in our prototype (cf. Section 4) the platform option corresponds
to the algorithm based on identifier hashing with co-prime increments
explained in Section 2.

– invalidate: specifies when to stop considering a worker label. All invalidate
options below include as preliminary condition the unreachability of the
corresponding workers. When all labels in a block are invalid, the next block
or the followup behaviour is used. Current invalidate options are:

● overload: the corresponding workers lack enough computational resources
to run the function;1

● capacity used: the corresponding workers reached a threshold percentage
of CPU load (although not being overloaded);
● max concurrent invocations: the corresponding workers have reached a
threshold number of buffered concurrent invocations.

– followup: specifies the policy applied when all the blocks in a policy tag are
considered invalid. The supported followup strategies are:

● fail: stop the scheduling of the function;
● default: follow what is defined in the default tag.

1 The kind of computational resources that determine the overload option depends
on the APIs provided by a given serverless platform. For example, in our prototype
in Section 4 we consider a worker label overloaded when the related invokers are
declared “unhealthy” by the OpenWhisk APIs, which use memory consumption and
CPU load.
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Fig. 4. Use case architecture representation.

4 Implementation in Apache OpenWhisk

We have implemented a serverless platform in which load balancing policies
can be customised using the APP language. This implementation (available at
https://github.com/giusdp/openwhisk) was obtained by modifying the OpenWhisk
code base. Namely, we have replaced the load balancer module in the OpenWhisk
controller, with a new one that reads an APP script, parses it, and follows the
specified load balancing policies when OpenWhisk invokers should be selected2.

To test our implementation, we used the Serverless use case depicted in Fig. 4
encompassing three Serverless domains: i) a private cloud with a low-power
edge-device Worker at a first location, called Site 1; ii) a private cloud with the
Worker at Site 1 and a mid-tier server Worker at a second location, called Site

2; iii) a hybrid cloud with the two Workers at Site 1 and Site 2 and a third
mid-tier server from a Public Cloud. Site 1 and Site 2 are respectively located
in Italy and Greece while the Public Cloud is located in northern Europe.

Site 1 is the main branch of a company and it runs both a data storage of
Private Data and the IoT Devices used in their local line of production. Site
1 also hosts the scheduler of functions, called the Load Balancer. The Worker

at Site 1 can access all resources within its site. Site 2 hosts a Worker which,
belonging to the company virtual private network (VPN), can access the Private

Data at Site 1. The company also controls a Worker in a Public Cloud and a
data storage with Public Data accessible by all Workers.

2 In this paper we chose to associate one worker label with one invoker. Future devel-
opments can use labels to identify pools of resources, following, e.g., recent proposals
to change OpenWhisk invokers with Cluster Managers https://bit.ly/3cxYnTB).

https://bit.ly/3cxYnTB


In the use case, three different function deployments need to co-exist in the

same infrastructure, marked as E , S , and B . Function E (edge) manages
the IoT Devices at Site 1 and it can only execute on the edge Worker at the
same location, which has access to those devices. Function S (small) is a light-
weight computation that accesses the Private Data storage at Site 1, within the

company VPN. Function B (big) performs heavy-load queries on the Public

Data storage in the Public Cloud. As mentioned, here data locality plays an
important part in determining the performance of Serverless function execution:

– the Worker at Site 1 can execute all functions. It is the only worker that
can execute E and it is the worker with the fastest access to the co-located

Private Data for S . It can execute B undergoing some latency due to the
physical distance with the Public Data storage;

– the Worker at Site 2 can execute functions S and B , undergoing some
latency on both functions due to its distance from both data storages;

– the Worker at the Public Cloud can execute B , enjoying the fastest access
to the related Public Data source.

Finally, besides data locality, the scheduler should also take into account how
heavily the functions impact on the load of each Worker, considering that the
Worker in the Public Cloud is as powerful as the one at Site 2, followed by the
Worker at Site 1, which is a low-power edge device.

Experimental Results We compare the differences on the architecture and per-
formance of the use case above as implemented using our APP-based OpenWhisk
prototype against a näıve implementation using the vanilla OpenWhisk.

Specifically, we implement the use case using a Kubernetes cluster composed
of a low-power device—with an Intel Core i7-4510U CPU with 8GB of RAM—in
Italy for Site 1, a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Okeanos Cloud (https://okeanos.grnet.gr) located in Greece
for Site 2, and a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Public Cloud of Microsoft Azure located in Northern Europe.

Following the requirements of the use case, we define the APP deployment
plan for the use case as follows (we put the three tags in column for compactness):

Function_E:

- workers:

- worker_site1

followup: fail

Function_S:

- workers:

- worker_site2

- worker_site1

strategy: random

followup: fail

Function_B:

- workers:

- worker_public_cloud

- worker_site2

- worker_site1

strategy: best_first

followup: fail

Commenting the code above, we have function E represented by Function_E,
where the only invoker available is the one at Site 1 (worker_site1). Since we do

https://okeanos.grnet.gr


not allow other invokers to handle E , we set the followup value to fail. For S

we have Function_S, where the invokers available are the ones at Site 1 and Site

2 (worker_site2). We let the two invokers split evenly the load of invocations,
assigning random as routing strategy. Also here we let the invocation fail since
we do not have other invokers able to access the Private Data storage within

the company VPN. Finally, the policy for B (Funcion_B) includes all workers
(hence also worker_public_cloud besides the ones at Site 1 and Site 2) selected

according to the best first strategy. As for S , also here we let the invocation
fail since no other invokers are available.

For the APP-based deployment, we locate the Load Balancer at Site 1

registering to it the three Workers/invokers from Site 1, Site 2 and the Public

Cloud. For the näıve implementation, we use the same cluster but we install
three separate but co-existing vanilla OpenWhisk instances. The three separate
instances are needed to implement the functional requirements of limiting the
execution of function E only on the Italian Worker, of S only on the Italian

and Greek Workers, and of B on all Workers.

To implement the databases (both Private and Public ones) we used a
CouchDB instance deployed at Site 1 and another in the Public Cloud. To
simulate the access to IoT devices at Site 1 (function E ) we implemented a
JavaScript function that, queried, returns some readings after a one-second delay.

We followed a similar strategy for S and B , where two JavaScript functions
perform a (respectively lighter and heavier) query for JSON documents.

Architectural Evaluation An evident problem that arises with the triple-deployment
combination is the increased consumption of computational and memory resources
to host 3 copies of all the components, most importantly the Controller and the
Invoker. A partial solution to this is to deploy separately the Kafka, Redis, and
CouchDB components used by OpenWhisk, configuring them to be used by the
three different installations simultaneously. However, we did not perform such
optimisation to minimise the differences between the two tested architectures.

Quantitative Evaluation To have statistically relevant figures to compare the
two setups (the APP-based and the vanilla one), we fired a sequence of 1000
requests for each function in each setup. We report the results of the tests of the
APP-based implementation in Table 1 and those of the vanilla one in Table 2. In
both tables, the first column on the left reports the tested function. The three
following columns report the number of requests served by the respective Workers
at Site 1, Site 2, and in the Public Cloud. The last two columns report the time
passed from sending a request to the reception of its response: the second-to-last
column reports the average time (in ms) and the last one reports the average
time (in ms) for the fastest 95th percentile of request-responses.

We comment on the results starting from E (first row from the header in

both tables). As expected, all requests for E are executed at Site 1. The slight
difference in the two averages (APP ca. 5.6% faster than vanilla) and the two



Site 1 Site 2 Public Cloud Average (ms) 95% Average (ms)

E 1000 0 0 1096.53 1019.03

S 466 534 0 149.18 90.86

B 0 90 910 105.18 64.62

Table 1. 1000 invocation for each function in the APP-based OpenWhisk deployment.

Site 1 Site 2 Public Cloud Average (ms) 95% Average (ms)

E 1000 0 0 1159.90 1025.52

S 19 981 0 385.30 302.08

B 185 815 0 265.69 215.793

Table 2. 1000 invocations for each function in the vanilla OpenWhisk deployment.

fastest 95th percentile (APP ca. 0.6% faster than vanilla) come from the heavier
resource consumption of the vanilla deployment.

As expected, the impact of data locality and the performance increase provided

by the data-locality-aware policies in APP become visible for S and B . In

the case of S , the Load Balancer of the vanilla deployment elected Site 2 as
the location of the main invoker (passing to it 98.1% of the invocations). We

remind that S accesses a Private Data storage located at Site 1. The impact

of data locality is visible on the execution of S in the vanilla deployment, being
88.35% slower than the APP-based deployment on average and 107.5% slower
for the fastest 95th percentile. On the contrary, the APP-based scheduler evenly
divided the invocations between Site 1 (46.6%) and Site 2 (53.4%) with a slight
preference for the latter, thanks to its greater availability of resources. In the

case of B , the Load Balancer of the vanilla deployment elected again Site 2 as
the location of the main invoker (passing to it 81.5% of all the invocations) and
Site 1 as the second-best (passing the remaining 18.5%). Although available to

handle computations, the invoker in the Public Cloud is never used. Since B

accesses a Public Data storage located in the Public Cloud, also in this case the
effect of data locality is strikingly visible, marking a heavy toll on the execution

of B in the vanilla deployment, which is 86.5% slower than the APP-based
deployment on average and 107.8% slower for the fastest 95th percentile. The
APP-based scheduler, following the preference on the Public Cloud, sends the
majority of invocations to the Public Cloud (91%) while the invocations that
exceed the resource limits of the Worker in the Public Cloud are routed to Site

2 (9%), as defined by the Function_E policy.

As a concluding remark over our experiment, we note that these results do
not prove that the vanilla implementation of OpenWhisk is generally worse
(performance-wise) than the APP-based one. Indeed, what emerged from the
experiment is the expected result that, without proper information and software
infrastructure to guide the scheduling of functions with respect to some opti-
misation policies, the Load Balancer of OpenWhisk can perform a suboptimal



scheduling of function executions. Hence, there was a chance that the Load Bal-
ance of OpenWhisk could have performed some better scheduling strategies in our
experiment, however that would have been an occasional occurrence rather than
an informed decision. Contrarily, when equipped with the proper information
(as it happens with our APP-based prototype) the Load Balancer can reach
consistent results, which is the base for execution optimisation.

5 Related Work

While the industrial adoption of Serverless is spreading [19], it is a hot research
topic due to its “untapped” potential [9,11,12,1].

Regarding the optimisation of Serverless function scheduling, Kuntsevich
et al. [20] present an analysis and benchmarking approach for investigating
bottlenecks and limitations of Apache OpenWhisk Serverless platform, while
Shahrad et al. [21] report on the performance implications of using a Serverless
architecture (over Apache OpenWhisk), showing how its workloads go against
the locality-preserving architectural assumptions common in modern processors.

One of the main approaches explored in the literature to improve Serverless
performance through function scheduling comes from improving the warm- vs
cold-start of functions [12,1]. Those techniques mainly regard containers re-
utilisation and function scheduling heuristics to avoid setting up new containers
from scratch for every new invocation. However, other techniques have been
recently proposed in the literature. Mohan et al. [22] present an approach focused
on the pre-allocation of network resources (one of the main bottlenecks of cold
starts) which are dynamically associated with new containers. Abad et al. [23]
present a package-aware scheduling algorithm that tries to assign functions that
require the same package to the same worker. Suresh and Gandhi [24] present
a function-level scheduler designed to minimise provider resource costs while
meeting customer performance requirements.

Besides resource re-utilisation, other approaches tackle the problem of opti-
mising function scheduling with new balancing algorithms. Steint [25] and Akkus
et al. [26] proposed new algorithms for Serverless scheduling, respectively using a
non-cooperative game-theoretic load balancing approach for response-time min-
imisation and a combination of application-level sandboxing with a hierarchical
message bus. Sampé et al. [27] present a technique to move computation tasks
to storage workers with the aim to exploit data locality with small, stateless
functions that intercept and operate on data flows.

Baldini et al. [19] focus on the programming of compositions of Serverless
functions. In particular, they demonstrate that Serverless function composition
requires a careful evaluation of trade-offs, identifying three competing constraints
that form the “Serverless trilemma”, i.e., that without specific run-time support,
compositions-as-functions must violate at least one of the three constraints. To
solve the trilemma, they present a reactive core of OpenWhisk that enables the
sequential composition of functions.



Other works explored how to apply the Serverless paradigm to contexts like
Fog/Edge and IoT Computing. The work presented in [28] studies the emergence
of real-time and data-intensive applications for Edge Computing and proposes
a Serverless platform designed for it. The work in [29] introduces instead a
framework for supporting Multi-Provider Serverless Edge Computing to schedule
executions across different providers.

Hall et al. [30] show how containers introduce an overhead unsuitable for
Edge applications (requiring low-latency response or with hardware limitations),
proposing a Serverless platform based on WebAssembly as a lighter environment
to run Serverless applications in Edge scenarios. In [31] the authors present
a variant of Edge Computing called “Deviceless” Edge Computing, where a
prototypical architecture supports the distributed pooling and scheduling of
geographically sparse devices with a high tolerance to network disruption and
location-aware scheduling of functions.

Besides optimising Serverless scheduling, a common denominator of the works
described above is that many extend or experiment with Apache OpenWhisk,
which is also the technology we used to implement our prototype. Indeed, a line
of future work on APP can test its expressiveness by capturing and implementing
the policies presented in those works, so that users can choose to use them in
their function deployments. In this context, APP is an encompassing solution i)
able to let Serverless providers offer those scheduling strategies as options to their
users, who can then choose which of them best suit their needs and ii) able to let
different scheduling policies coexist in the same platform, while now researchers
and implementors provide them as ad-hoc, incompatible implementations.

Recent work tackled the problem of formally reasoning on Serverless architec-
tures. Gabbrielli et al. [32] present a core calculus for Serverless, combining ideas
from both the λ-calculus (for functions, equipped with futures) and the π-calculus
(for communication), paired with a repository of function definitions. On a similar
research direction, Jangda et al. [33] present a formal model for Serverless archi-
tectures, also inspired by the λ-calculus, equipped with two semantics: a more
involved one that captures the low-level details of function implementations and
a simpler one that omits low-lever details of computation to ease reasoning on the
interactions among Serverless functions. These two works offer formalisms that
can be used to automatically reason on the properties of APP-defined function
deployments. Future works can explore new policies that, through static analyses,
capture details of function execution able to optimise their scheduling.

6 Conclusion

We addressed the problem of function-execution scheduling optimisation, propos-
ing a methodology that provides developers with a declarative language called
APP to express scheduling policies for functions. We extended the scheduler of
OpenWhisk to use APP-defined policies in the scheduling of Serverless functions
and empirically tested our extension on a use case that combines IoT, Edge, and
Cloud Computing, contrasting our implementation with a näıve one using the



vanilla OpenWhisk stack to achieve the same functional requirements. We believe
that APP can be seamlessly integrated in other Serveless platforms.

Besides the future investigations centred around the exploration of locality
principles (e.g., code and session locality) as outlined in Section 5, an inter-
esting line of work is to evolve APP to be able to express the definition of
in-policy elements—such as scheduling strategies (strategy) and invalidation
rules (invalidate)—directly in the source APP configuration, next to the ones
given as “primitives” by the scheduler (e.g., platform or best first strategies).

We are also interested in studying heuristics that, based on the monitoring of
existing serverless applications, can suggest to its developer optimising scheduling
policies. A starting point for this are configurator optimisers such as [34] that can
be extended to automatically generate policies based on developer requirements.

Finally, we would like to investigate the separation of concerns between
developers and providers, trying to minimise the information that providers has
to share to allow developers to schedule functions efficiently, while, at the same
time, hide the complexity of their dynamically changing infrastructure.
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